| /* |
| ** Copyright (c) 2011, Intel Corporation |
| ** |
| ** This software is licensed under the terms of the GNU General Public |
| ** License version 2, as published by the Free Software Foundation, and |
| ** may be copied, distributed, and modified under those terms. |
| ** |
| ** This program is distributed in the hope that it will be useful, |
| ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
| ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| ** GNU General Public License for more details. |
| */ |
| |
| /* |
| * HAX common code for both Windows and Darwin |
| * Some portion of code from KVM is used in this file. |
| */ |
| |
| #include "hw/hw.h" |
| #include "target-i386/hax-i386.h" |
| |
| #define HAX_EMUL_ONE 0x1 |
| #define HAX_EMUL_REAL 0x2 |
| #define HAX_EMUL_HLT 0x4 |
| #define HAX_EMUL_EXITLOOP 0x5 |
| |
| #define HAX_EMULATE_STATE_MMIO 0x1 |
| #define HAX_EMULATE_STATE_REAL 0x2 |
| #define HAX_EMULATE_STATE_NONE 0x3 |
| #define HAX_EMULATE_STATE_INITIAL 0x4 |
| |
| struct hax_state hax_global; |
| |
| int hax_support = -1; |
| |
| /* Called after hax_init */ |
| int hax_enabled() |
| { |
| return (!hax_disabled && hax_support); |
| } |
| |
| /* Currently non-PG modes are emulated by QEMU */ |
| int hax_vcpu_emulation_mode(CPUState *cpu) |
| { |
| CPUX86State *env = cpu->env_ptr; |
| return !(env->cr[0] & CR0_PG_MASK); |
| } |
| |
| static int hax_prepare_emulation(CPUX86State *env) |
| { |
| /* Flush all emulation states */ |
| tlb_flush(env, 1); |
| tb_flush(env); |
| /* Sync the vcpu state from hax kernel module */ |
| hax_vcpu_sync_state(ENV_GET_CPU(env), 0); |
| return 0; |
| } |
| |
| /* |
| * Check whether to break the translation block loop |
| * Break tbloop after one MMIO emulation, or after finish emulation mode |
| */ |
| static int hax_stop_tbloop(CPUState *cpu) |
| { |
| switch (cpu->hax_vcpu->emulation_state) |
| { |
| case HAX_EMULATE_STATE_MMIO: |
| return 1; |
| case HAX_EMULATE_STATE_INITIAL: |
| case HAX_EMULATE_STATE_REAL: |
| if (!hax_vcpu_emulation_mode(cpu)) |
| return 1; |
| break; |
| default: |
| dprint("Invalid emulation state in hax_sto_tbloop state %x\n", |
| cpu->hax_vcpu->emulation_state); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int hax_stop_emulation(CPUState *cpu) |
| { |
| if (hax_stop_tbloop(cpu)) |
| { |
| cpu->hax_vcpu->emulation_state = HAX_EMULATE_STATE_NONE; |
| /* |
| * QEMU emulation changes vcpu state, |
| * Sync the vcpu state to HAX kernel module |
| */ |
| hax_vcpu_sync_state(cpu, 1); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| int hax_stop_translate(CPUState *cpu) |
| { |
| struct hax_vcpu_state *vstate; |
| |
| vstate = cpu->hax_vcpu; |
| assert(vstate->emulation_state); |
| if (vstate->emulation_state == HAX_EMULATE_STATE_MMIO ) |
| return 1; |
| |
| return 0; |
| } |
| |
| int valid_hax_tunnel_size(uint16_t size) |
| { |
| return size >= sizeof(struct hax_tunnel); |
| } |
| |
| hax_fd hax_vcpu_get_fd(CPUState *cpu) |
| { |
| struct hax_vcpu_state *vcpu = cpu->hax_vcpu; |
| if (!vcpu) |
| return HAX_INVALID_FD; |
| return vcpu->fd; |
| } |
| |
| /* Current version */ |
| uint32_t hax_cur_version = 0x2; |
| /* Least HAX kernel version */ |
| uint32_t hax_lest_version = 0x1; |
| |
| static int hax_get_capability(struct hax_state *hax) |
| { |
| int ret; |
| struct hax_capabilityinfo capinfo, *cap = &capinfo; |
| |
| ret = hax_capability(hax, cap); |
| if (ret) |
| return -ENOSYS; |
| |
| if ( ((cap->wstatus & HAX_CAP_WORKSTATUS_MASK) == |
| HAX_CAP_STATUS_NOTWORKING )) |
| { |
| if (cap->winfo & HAX_CAP_FAILREASON_VT) |
| dprint("VT feature is not enabled, HAXM not working.\n"); |
| else if (cap->winfo & HAX_CAP_FAILREASON_NX) |
| dprint("NX feature is not enabled, HAXM not working.\n"); |
| return -ENXIO; |
| } |
| |
| if (cap->wstatus & HAX_CAP_MEMQUOTA) |
| { |
| if (cap->mem_quota < hax->mem_quota) |
| { |
| dprint("The memory needed by this VM exceeds the driver limit.\n"); |
| return -ENOSPC; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int hax_version_support(struct hax_state *hax) |
| { |
| int ret; |
| struct hax_module_version version; |
| |
| ret = hax_mod_version(hax, &version); |
| if (ret < 0) |
| return 0; |
| |
| if ( (hax_lest_version > version.cur_version) || |
| (hax_cur_version < version.compat_version) ) |
| return 0; |
| |
| return 1; |
| } |
| |
| int hax_vcpu_create(int id) |
| { |
| struct hax_vcpu_state *vcpu = NULL; |
| int ret; |
| |
| if (!hax_global.vm) |
| { |
| dprint("vcpu %x created failed, vm is null\n", id); |
| return -1; |
| } |
| |
| if (hax_global.vm->vcpus[id]) |
| { |
| dprint("vcpu %x allocated already\n", id); |
| return 0; |
| } |
| |
| vcpu = g_malloc(sizeof(struct hax_vcpu_state)); |
| if (!vcpu) |
| { |
| dprint("Failed to alloc vcpu state\n"); |
| return -ENOMEM; |
| } |
| |
| memset(vcpu, 0, sizeof(struct hax_vcpu_state)); |
| |
| ret = hax_host_create_vcpu(hax_global.vm->fd, id); |
| if (ret) |
| { |
| dprint("Failed to create vcpu %x\n", id); |
| goto error; |
| } |
| |
| vcpu->fd = hax_host_open_vcpu(hax_global.vm->id, id); |
| if (hax_invalid_fd(vcpu->fd)) |
| { |
| dprint("Failed to open the vcpu\n"); |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| hax_global.vm->vcpus[id] = vcpu; |
| |
| ret = hax_host_setup_vcpu_channel(vcpu); |
| if (ret) |
| { |
| dprint("Invalid HAX tunnel size \n"); |
| ret = -EINVAL; |
| goto error; |
| } |
| return 0; |
| |
| error: |
| /* vcpu and tunnel will be closed automatically */ |
| if (vcpu && !hax_invalid_fd(vcpu->fd)) |
| hax_close_fd(vcpu->fd); |
| |
| hax_global.vm->vcpus[id] = NULL; |
| g_free(vcpu); |
| return -1; |
| } |
| |
| int hax_vcpu_destroy(CPUState *cpu) |
| { |
| struct hax_vcpu_state *vcpu = cpu->hax_vcpu; |
| |
| if (!hax_global.vm) |
| { |
| dprint("vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id); |
| return -1; |
| } |
| |
| if (!vcpu) |
| return 0; |
| |
| /* |
| * 1. The hax_tunnel is also destroyed at vcpu_destroy |
| * 2. hax_close_fd will require the HAX kernel module to free vcpu |
| */ |
| hax_close_fd(vcpu->fd); |
| hax_global.vm->vcpus[vcpu->vcpu_id] = NULL; |
| g_free(vcpu); |
| return 0; |
| } |
| |
| int hax_init_vcpu(CPUState *cpu) |
| { |
| int ret; |
| |
| ret = hax_vcpu_create(cpu->cpu_index); |
| if (ret < 0) |
| { |
| dprint("Failed to create HAX vcpu\n"); |
| exit(-1); |
| } |
| |
| cpu->hax_vcpu = hax_global.vm->vcpus[cpu->cpu_index]; |
| cpu->hax_vcpu->emulation_state = HAX_EMULATE_STATE_INITIAL; |
| |
| return ret; |
| } |
| |
| struct hax_vm *hax_vm_create(struct hax_state *hax) |
| { |
| struct hax_vm *vm; |
| int vm_id = 0, ret; |
| char *vm_name = NULL; |
| |
| if (hax_invalid_fd(hax->fd)) |
| return NULL; |
| |
| if (hax->vm) |
| return hax->vm; |
| |
| vm = g_malloc(sizeof(struct hax_vm)); |
| if (!vm) |
| return NULL; |
| memset(vm, 0, sizeof(struct hax_vm)); |
| ret = hax_host_create_vm(hax, &vm_id); |
| if (ret) { |
| dprint("Failed to create vm %x\n", ret); |
| goto error; |
| } |
| vm->id = vm_id; |
| vm->fd = hax_host_open_vm(hax, vm_id); |
| if (hax_invalid_fd(vm->fd)) |
| { |
| dprint("Open vm device error:%s\n", vm_name); |
| goto error; |
| } |
| |
| hax->vm = vm; |
| return vm; |
| |
| error: |
| g_free(vm); |
| hax->vm = NULL; |
| return NULL; |
| } |
| |
| int hax_vm_destroy(struct hax_vm *vm) |
| { |
| int i; |
| |
| for (i = 0; i < HAX_MAX_VCPU; i++) |
| if (vm->vcpus[i]) |
| { |
| dprint("VCPU should be cleaned before vm clean\n"); |
| return -1; |
| } |
| hax_close_fd(vm->fd); |
| g_free(vm); |
| hax_global.vm = NULL; |
| return 0; |
| } |
| |
| int hax_set_ramsize(uint64_t ramsize) |
| { |
| struct hax_state *hax = &hax_global; |
| |
| memset(hax, 0, sizeof(struct hax_state)); |
| hax->mem_quota = ram_size; |
| |
| return 0; |
| } |
| |
| int hax_init(int smp_cpus) |
| { |
| struct hax_state *hax = NULL; |
| struct hax_qemu_version qversion; |
| int ret; |
| |
| hax_support = 0; |
| |
| hax = &hax_global; |
| |
| hax->fd = hax_mod_open(); |
| if (hax_invalid_fd(hax->fd)) |
| { |
| hax->fd = 0; |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| ret = hax_get_capability(hax); |
| /* In case HAXM have no such capability support */ |
| if (ret && (ret != -ENOSYS)) |
| { |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| if (!hax_version_support(hax)) |
| { |
| dprint("Incompatible HAX version. Qemu current version %x ", hax_cur_version ); |
| dprint("requires least HAX version %x\n", hax_lest_version); |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| hax->vm = hax_vm_create(hax); |
| if (!hax->vm) |
| { |
| dprint("Failed to create HAX VM\n"); |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| qversion.cur_version = hax_cur_version; |
| qversion.least_version = hax_lest_version; |
| hax_notify_qemu_version(hax->vm->fd, &qversion); |
| hax_support = 1; |
| qemu_register_reset( hax_reset_vcpu_state, 0, NULL); |
| |
| return 0; |
| error: |
| if (hax->vm) |
| hax_vm_destroy(hax->vm); |
| if (hax->fd) |
| hax_mod_close(hax); |
| |
| return ret; |
| } |
| |
| int hax_handle_fastmmio(CPUX86State *env, struct hax_fastmmio *hft) |
| { |
| uint64_t buf = 0; |
| |
| /* |
| * With fast MMIO, QEMU need not sync vCPU state with HAXM |
| * driver because it will only invoke MMIO handler |
| * However, some MMIO operations utilize virtual address like qemu_pipe |
| * Thus we need to sync the CR0, CR3 and CR4 so that QEMU |
| * can translate the guest virtual address to guest physical |
| * address |
| */ |
| env->cr[0] = hft->_cr0; |
| env->cr[2] = hft->_cr2; |
| env->cr[3] = hft->_cr3; |
| env->cr[4] = hft->_cr4; |
| |
| buf = hft->value; |
| cpu_physical_memory_rw(hft->gpa, &buf, hft->size, hft->direction); |
| if (hft->direction == 0) |
| hft->value = buf; |
| |
| return 0; |
| } |
| |
| int hax_handle_io(CPUX86State *env, uint32_t df, uint16_t port, int direction, |
| int size, int count, void *buffer) |
| { |
| uint8_t *ptr; |
| int i; |
| |
| if (!df) |
| ptr = (uint8_t *)buffer; |
| else |
| ptr = buffer + size * count - size; |
| for (i = 0; i < count; i++) |
| { |
| if (direction == HAX_EXIT_IO_IN) { |
| switch (size) { |
| case 1: |
| stb_p(ptr, cpu_inb(port)); |
| break; |
| case 2: |
| stw_p(ptr, cpu_inw(port)); |
| break; |
| case 4: |
| stl_p(ptr, cpu_inl(port)); |
| break; |
| } |
| } else { |
| switch (size) { |
| case 1: |
| cpu_outb(port, ldub_p(ptr)); |
| break; |
| case 2: |
| cpu_outw(port, lduw_p(ptr)); |
| break; |
| case 4: |
| cpu_outl(port, ldl_p(ptr)); |
| break; |
| } |
| } |
| if (!df) |
| ptr += size; |
| else |
| ptr -= size; |
| } |
| |
| return 0; |
| } |
| |
| static int hax_vcpu_interrupt(CPUState *cpu) |
| { |
| struct hax_vcpu_state *vcpu = cpu->hax_vcpu; |
| struct hax_tunnel *ht = vcpu->tunnel; |
| CPUX86State *env = cpu->env_ptr; |
| |
| /* |
| * Try to inject an interrupt if the guest can accept it |
| * Unlike KVM, the HAX kernel module checks the eflags, instead. |
| */ |
| if (ht->ready_for_interrupt_injection && |
| (cpu->interrupt_request & CPU_INTERRUPT_HARD)) |
| { |
| int irq; |
| |
| cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| irq = cpu_get_pic_interrupt(env); |
| if (irq >= 0) { |
| hax_inject_interrupt(cpu, irq); |
| } |
| } |
| |
| /* |
| * If we have an interrupt pending but the guest is not ready to |
| * receive it, request an interrupt window exit. This will cause |
| * a return to userspace as soon as the guest is ready to receive |
| * an interrupt. |
| */ |
| if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) |
| ht->request_interrupt_window = 1; |
| else |
| ht->request_interrupt_window = 0; |
| return 0; |
| } |
| |
| void hax_raise_event(CPUState *cpu) |
| { |
| struct hax_vcpu_state *vcpu = cpu->hax_vcpu; |
| |
| if (!vcpu) |
| return; |
| vcpu->tunnel->user_event_pending = 1; |
| } |
| |
| /* |
| * Request the HAX kernel module to run the CPU for us until one of |
| * the following occurs: |
| * 1. Guest crashes or is shut down |
| * 2. We need QEMU's emulation like when the guest executes a MMIO |
| * instruction or guest enters emulation mode (non-PG mode) |
| * 3. Guest executes HLT |
| * 4. Qemu has Signal/event pending |
| * 5. An unknown VMX-exit happens |
| */ |
| extern void qemu_system_reset_request(void); |
| static int hax_vcpu_hax_exec(CPUState *cpu) |
| { |
| int ret = 0; |
| CPUX86State *env = cpu->env_ptr; |
| struct hax_vcpu_state *vcpu = cpu->hax_vcpu; |
| struct hax_tunnel *ht = vcpu->tunnel; |
| |
| if (hax_vcpu_emulation_mode(cpu)) |
| { |
| dprint("Trying to vcpu execute at eip:%lx\n", env->eip); |
| return HAX_EMUL_EXITLOOP; |
| } |
| |
| do { |
| int hax_ret; |
| |
| if (cpu->exit_request) { |
| ret = HAX_EMUL_EXITLOOP ; |
| break; |
| } |
| |
| hax_vcpu_interrupt(cpu); |
| |
| hax_ret = hax_vcpu_run(vcpu); |
| |
| /* Simply continue the vcpu_run if system call interrupted */ |
| if (hax_ret == -EINTR || hax_ret == -EAGAIN) { |
| dprint("io window interrupted\n"); |
| continue; |
| } |
| |
| if (hax_ret < 0) |
| { |
| dprint("vcpu run failed for vcpu %x\n", vcpu->vcpu_id); |
| abort(); |
| } |
| switch (ht->_exit_status) |
| { |
| case HAX_EXIT_IO: |
| { |
| ret = hax_handle_io(env, ht->pio._df, ht->pio._port, |
| ht->pio._direction, |
| ht->pio._size, ht->pio._count, vcpu->iobuf); |
| } |
| break; |
| case HAX_EXIT_MMIO: |
| ret = HAX_EMUL_ONE; |
| break; |
| case HAX_EXIT_FAST_MMIO: |
| ret = hax_handle_fastmmio(env, |
| (struct hax_fastmmio *)vcpu->iobuf); |
| break; |
| case HAX_EXIT_REAL: |
| ret = HAX_EMUL_REAL; |
| break; |
| /* Guest state changed, currently only for shutdown */ |
| case HAX_EXIT_STATECHANGE: |
| dprint("VCPU shutdown request\n"); |
| qemu_system_reset_request(); |
| hax_prepare_emulation(env); |
| cpu_dump_state(cpu, stderr, fprintf, 0); |
| ret = HAX_EMUL_EXITLOOP; |
| break; |
| case HAX_EXIT_UNKNOWN_VMEXIT: |
| dprint("Unknown VMX exit %x from guest\n", ht->_exit_reason); |
| qemu_system_reset_request(); |
| hax_prepare_emulation(env); |
| cpu_dump_state(cpu, stderr, fprintf, 0); |
| ret = HAX_EMUL_EXITLOOP; |
| break; |
| case HAX_EXIT_HLT: |
| if (!(cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
| !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) { |
| /* hlt instruction with interrupt disabled is shutdown */ |
| env->eflags |= IF_MASK; |
| cpu->halted = 1; |
| env->exception_index = EXCP_HLT; |
| ret = HAX_EMUL_HLT; |
| } |
| break; |
| /* these situation will continue to hax module */ |
| case HAX_EXIT_INTERRUPT: |
| case HAX_EXIT_PAUSED: |
| break; |
| default: |
| dprint("Unknow exit %x from hax\n", ht->_exit_status); |
| qemu_system_reset_request(); |
| hax_prepare_emulation(env); |
| cpu_dump_state(cpu, stderr, fprintf, 0); |
| ret = HAX_EMUL_EXITLOOP; |
| break; |
| } |
| }while (!ret); |
| |
| if (cpu->exit_request) { |
| cpu->exit_request = 0; |
| env->exception_index = EXCP_INTERRUPT; |
| } |
| return ret; |
| } |
| |
| /* |
| * return 1 when need to emulate, 0 when need to exit loop |
| */ |
| int hax_vcpu_exec(CPUState *cpu) |
| { |
| int next = 0, ret = 0; |
| struct hax_vcpu_state *vcpu; |
| CPUX86State *env = cpu->env_ptr; |
| |
| if (cpu->hax_vcpu->emulation_state != HAX_EMULATE_STATE_NONE) |
| return 1; |
| |
| vcpu = cpu->hax_vcpu; |
| next = hax_vcpu_hax_exec(cpu); |
| switch (next) |
| { |
| case HAX_EMUL_ONE: |
| ret = 1; |
| vcpu->emulation_state = HAX_EMULATE_STATE_MMIO; |
| hax_prepare_emulation(env); |
| break; |
| case HAX_EMUL_REAL: |
| ret = 1; |
| vcpu->emulation_state = HAX_EMULATE_STATE_REAL; |
| hax_prepare_emulation(env); |
| break; |
| case HAX_EMUL_HLT: |
| case HAX_EMUL_EXITLOOP: |
| break; |
| default: |
| dprint("Unknown hax vcpu exec return %x\n", next); |
| abort(); |
| } |
| |
| return ret; |
| } |
| |
| #define HAX_RAM_INFO_ROM 0x1 |
| |
| static void set_v8086_seg(struct segment_desc_t *lhs, const SegmentCache *rhs) |
| { |
| memset(lhs, 0, sizeof(struct segment_desc_t )); |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = 3; |
| lhs->present = 1; |
| lhs->dpl = 3; |
| lhs->operand_size = 0; |
| lhs->desc = 1; |
| lhs->long_mode = 0; |
| lhs->granularity = 0; |
| lhs->available = 0; |
| } |
| |
| static void get_seg(SegmentCache *lhs, const struct segment_desc_t *rhs) |
| { |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->flags = |
| (rhs->type << DESC_TYPE_SHIFT) |
| | (rhs->present * DESC_P_MASK) |
| | (rhs->dpl << DESC_DPL_SHIFT) |
| | (rhs->operand_size << DESC_B_SHIFT) |
| | (rhs->desc * DESC_S_MASK) |
| | (rhs->long_mode << DESC_L_SHIFT) |
| | (rhs->granularity * DESC_G_MASK) |
| | (rhs->available * DESC_AVL_MASK); |
| } |
| |
| static void set_seg(struct segment_desc_t *lhs, const SegmentCache *rhs) |
| { |
| unsigned flags = rhs->flags; |
| |
| memset(lhs, 0, sizeof(struct segment_desc_t)); |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; |
| lhs->present = (flags & DESC_P_MASK) != 0; |
| lhs->dpl = rhs->selector & 3; |
| lhs->operand_size = (flags >> DESC_B_SHIFT) & 1; |
| lhs->desc = (flags & DESC_S_MASK) != 0; |
| lhs->long_mode = (flags >> DESC_L_SHIFT) & 1; |
| lhs->granularity = (flags & DESC_G_MASK) != 0; |
| lhs->available = (flags & DESC_AVL_MASK) != 0; |
| } |
| |
| static void hax_getput_reg(uint64_t *hax_reg, target_ulong *qemu_reg, int set) |
| { |
| target_ulong reg = *hax_reg; |
| |
| if (set) |
| *hax_reg = *qemu_reg; |
| else |
| *qemu_reg = reg; |
| } |
| |
| /* The sregs has been synced with HAX kernel already before this call */ |
| static int hax_get_segments(CPUX86State *env, struct vcpu_state_t *sregs) |
| { |
| get_seg(&env->segs[R_CS], &sregs->_cs); |
| get_seg(&env->segs[R_DS], &sregs->_ds); |
| get_seg(&env->segs[R_ES], &sregs->_es); |
| get_seg(&env->segs[R_FS], &sregs->_fs); |
| get_seg(&env->segs[R_GS], &sregs->_gs); |
| get_seg(&env->segs[R_SS], &sregs->_ss); |
| |
| get_seg(&env->tr, &sregs->_tr); |
| get_seg(&env->ldt, &sregs->_ldt); |
| env->idt.limit = sregs->_idt.limit; |
| env->idt.base = sregs->_idt.base; |
| env->gdt.limit = sregs->_gdt.limit; |
| env->gdt.base = sregs->_gdt.base; |
| return 0; |
| } |
| |
| static int hax_set_segments(CPUX86State *env, struct vcpu_state_t *sregs) |
| { |
| if ((env->eflags & VM_MASK)) { |
| set_v8086_seg(&sregs->_cs, &env->segs[R_CS]); |
| set_v8086_seg(&sregs->_ds, &env->segs[R_DS]); |
| set_v8086_seg(&sregs->_es, &env->segs[R_ES]); |
| set_v8086_seg(&sregs->_fs, &env->segs[R_FS]); |
| set_v8086_seg(&sregs->_gs, &env->segs[R_GS]); |
| set_v8086_seg(&sregs->_ss, &env->segs[R_SS]); |
| } else { |
| set_seg(&sregs->_cs, &env->segs[R_CS]); |
| set_seg(&sregs->_ds, &env->segs[R_DS]); |
| set_seg(&sregs->_es, &env->segs[R_ES]); |
| set_seg(&sregs->_fs, &env->segs[R_FS]); |
| set_seg(&sregs->_gs, &env->segs[R_GS]); |
| set_seg(&sregs->_ss, &env->segs[R_SS]); |
| |
| if (env->cr[0] & CR0_PE_MASK) { |
| /* force ss cpl to cs cpl */ |
| sregs->_ss.selector = (sregs->_ss.selector & ~3) | |
| (sregs->_cs.selector & 3); |
| sregs->_ss.dpl = sregs->_ss.selector & 3; |
| } |
| } |
| |
| set_seg(&sregs->_tr, &env->tr); |
| set_seg(&sregs->_ldt, &env->ldt); |
| sregs->_idt.limit = env->idt.limit; |
| sregs->_idt.base = env->idt.base; |
| sregs->_gdt.limit = env->gdt.limit; |
| sregs->_gdt.base = env->gdt.base; |
| return 0; |
| } |
| |
| /* |
| * After get the state from the kernel module, some |
| * qemu emulator state need be updated also |
| */ |
| static int hax_setup_qemu_emulator(CPUX86State *env) |
| { |
| |
| #define HFLAG_COPY_MASK ~( \ |
| HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ |
| HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ |
| HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ |
| HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) |
| |
| uint32_t hflags; |
| |
| hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
| hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
| hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & |
| (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
| hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
| hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << |
| (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
| |
| if (env->efer & MSR_EFER_LMA) { |
| hflags |= HF_LMA_MASK; |
| } |
| |
| if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { |
| hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; |
| } else { |
| hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> |
| (DESC_B_SHIFT - HF_CS32_SHIFT); |
| hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
| (DESC_B_SHIFT - HF_SS32_SHIFT); |
| if (!(env->cr[0] & CR0_PE_MASK) || |
| (env->eflags & VM_MASK) || |
| !(hflags & HF_CS32_MASK)) { |
| hflags |= HF_ADDSEG_MASK; |
| } else { |
| hflags |= ((env->segs[R_DS].base | |
| env->segs[R_ES].base | |
| env->segs[R_SS].base) != 0) << |
| HF_ADDSEG_SHIFT; |
| } |
| } |
| env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; |
| return 0; |
| } |
| |
| static int hax_sync_vcpu_register(CPUX86State *env, int set) |
| { |
| CPUState *cpu = ENV_GET_CPU(env); |
| struct vcpu_state_t regs; |
| int ret; |
| memset(®s, 0, sizeof(struct vcpu_state_t)); |
| |
| if (!set) |
| { |
| ret = hax_sync_vcpu_state(cpu, ®s, 0); |
| if (ret < 0) |
| return -1; |
| } |
| |
| /*generic register */ |
| hax_getput_reg(®s._rax, &env->regs[R_EAX], set); |
| hax_getput_reg(®s._rbx, &env->regs[R_EBX], set); |
| hax_getput_reg(®s._rcx, &env->regs[R_ECX], set); |
| hax_getput_reg(®s._rdx, &env->regs[R_EDX], set); |
| hax_getput_reg(®s._rsi, &env->regs[R_ESI], set); |
| hax_getput_reg(®s._rdi, &env->regs[R_EDI], set); |
| hax_getput_reg(®s._rsp, &env->regs[R_ESP], set); |
| hax_getput_reg(®s._rbp, &env->regs[R_EBP], set); |
| #ifdef TARGET_X86_64 |
| hax_getput_reg(®s._r8, &env->regs[8], set); |
| hax_getput_reg(®s._r9, &env->regs[9], set); |
| hax_getput_reg(®s._r10, &env->regs[10], set); |
| hax_getput_reg(®s._r11, &env->regs[11], set); |
| hax_getput_reg(®s._r12, &env->regs[12], set); |
| hax_getput_reg(®s._r13, &env->regs[13], set); |
| hax_getput_reg(®s._r14, &env->regs[14], set); |
| hax_getput_reg(®s._r15, &env->regs[15], set); |
| #endif |
| hax_getput_reg(®s._rflags, &env->eflags, set); |
| hax_getput_reg(®s._rip, &env->eip, set); |
| |
| if (set) |
| { |
| |
| regs._cr0 = env->cr[0]; |
| regs._cr2 = env->cr[2]; |
| regs._cr3 = env->cr[3]; |
| regs._cr4 = env->cr[4]; |
| hax_set_segments(env, ®s); |
| } |
| else |
| { |
| env->cr[0] = regs._cr0; |
| env->cr[2] = regs._cr2; |
| env->cr[3] = regs._cr3; |
| env->cr[4] = regs._cr4; |
| hax_get_segments(env, ®s); |
| } |
| |
| if (set) |
| { |
| ret = hax_sync_vcpu_state(cpu, ®s, 1); |
| if (ret < 0) |
| return -1; |
| } |
| if (!set) |
| hax_setup_qemu_emulator(env); |
| return 0; |
| } |
| |
| static void hax_msr_entry_set(struct vmx_msr *item, |
| uint32_t index, uint64_t value) |
| { |
| item->entry = index; |
| item->value = value; |
| } |
| |
| static int hax_get_msrs(CPUX86State *env) |
| { |
| struct hax_msr_data md; |
| struct vmx_msr *msrs = md.entries; |
| int ret, i, n; |
| |
| n = 0; |
| msrs[n++].entry = MSR_IA32_SYSENTER_CS; |
| msrs[n++].entry = MSR_IA32_SYSENTER_ESP; |
| msrs[n++].entry = MSR_IA32_SYSENTER_EIP; |
| msrs[n++].entry = MSR_IA32_TSC; |
| #ifdef TARGET_X86_64 |
| msrs[n++].entry = MSR_STAR; |
| msrs[n++].entry = MSR_LSTAR; |
| msrs[n++].entry = MSR_CSTAR; |
| msrs[n++].entry = MSR_FMASK; |
| msrs[n++].entry = MSR_KERNELGSBASE; |
| #endif |
| |
| md.nr_msr = n; |
| ret = hax_sync_msr(ENV_GET_CPU(env), &md, 0); |
| if (ret < 0) |
| return ret; |
| |
| for (i = 0; i < md.done; i++) { |
| switch (msrs[i].entry) { |
| case MSR_IA32_SYSENTER_CS: |
| env->sysenter_cs = msrs[i].value; |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| env->sysenter_esp = msrs[i].value; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| env->sysenter_eip = msrs[i].value; |
| break; |
| case MSR_IA32_TSC: |
| env->tsc = msrs[i].value; |
| break; |
| #ifdef TARGET_X86_64 |
| case MSR_STAR: |
| env->star = msrs[i].value; |
| break; |
| case MSR_LSTAR: |
| env->lstar = msrs[i].value; |
| break; |
| case MSR_CSTAR: |
| env->cstar = msrs[i].value; |
| break; |
| case MSR_FMASK: |
| env->fmask = msrs[i].value; |
| break; |
| case MSR_KERNELGSBASE: |
| env->kernelgsbase = msrs[i].value; |
| break; |
| #endif |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int hax_set_msrs(CPUX86State *env) |
| { |
| struct hax_msr_data md; |
| struct vmx_msr *msrs; |
| msrs = md.entries; |
| int n = 0; |
| |
| memset(&md, 0, sizeof(struct hax_msr_data)); |
| hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
| hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); |
| hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); |
| hax_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
| #ifdef TARGET_X86_64 |
| hax_msr_entry_set(&msrs[n++], MSR_EFER, env->efer); |
| hax_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
| hax_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); |
| hax_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); |
| hax_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); |
| hax_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); |
| #endif |
| |
| md.nr_msr = n; |
| md.done = 0; |
| |
| return hax_sync_msr(ENV_GET_CPU(env), &md, 1); |
| |
| } |
| |
| static int hax_get_fpu(CPUX86State *env) |
| { |
| struct fx_layout fpu; |
| int i, ret; |
| |
| ret = hax_sync_fpu(ENV_GET_CPU(env), &fpu, 0); |
| if (ret < 0) |
| return ret; |
| |
| env->fpstt = (fpu.fsw >> 11) & 7; |
| env->fpus = fpu.fsw; |
| env->fpuc = fpu.fcw; |
| for (i = 0; i < 8; ++i) |
| env->fptags[i] = !((fpu.ftw >> i) & 1); |
| memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs)); |
| |
| memcpy(env->xmm_regs, fpu.mmx_1, sizeof(fpu.mmx_1)); |
| memcpy((XMMReg *)(env->xmm_regs) + 8, fpu.mmx_2, sizeof(fpu.mmx_2)); |
| env->mxcsr = fpu.mxcsr; |
| |
| return 0; |
| } |
| |
| static int hax_set_fpu(CPUX86State *env) |
| { |
| struct fx_layout fpu; |
| int i; |
| |
| memset(&fpu, 0, sizeof(fpu)); |
| fpu.fsw = env->fpus & ~(7 << 11); |
| fpu.fsw |= (env->fpstt & 7) << 11; |
| fpu.fcw = env->fpuc; |
| |
| for (i = 0; i < 8; ++i) |
| fpu.ftw |= (!env->fptags[i]) << i; |
| |
| memcpy(fpu.st_mm, env->fpregs, sizeof (env->fpregs)); |
| memcpy(fpu.mmx_1, env->xmm_regs, sizeof (fpu.mmx_1)); |
| memcpy(fpu.mmx_2, (XMMReg *)(env->xmm_regs) + 8, sizeof (fpu.mmx_2)); |
| |
| fpu.mxcsr = env->mxcsr; |
| |
| return hax_sync_fpu(ENV_GET_CPU(env), &fpu, 1); |
| } |
| |
| int hax_arch_get_registers(CPUState *cpu) |
| { |
| CPUX86State *env = cpu->env_ptr; |
| int ret; |
| |
| ret = hax_sync_vcpu_register(env, 0); |
| if (ret < 0) |
| return ret; |
| |
| ret = hax_get_fpu(env); |
| if (ret < 0) |
| return ret; |
| |
| ret = hax_get_msrs(env); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int hax_arch_set_registers(CPUState *cpu) |
| { |
| int ret; |
| CPUX86State *env = cpu->env_ptr; |
| ret = hax_sync_vcpu_register(env, 1); |
| |
| if (ret < 0) |
| { |
| dprint("Failed to sync vcpu reg\n"); |
| return ret; |
| } |
| ret = hax_set_fpu(env); |
| if (ret < 0) |
| { |
| dprint("FPU failed\n"); |
| return ret; |
| } |
| ret = hax_set_msrs(env); |
| if (ret < 0) |
| { |
| dprint("MSR failed\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| void hax_vcpu_sync_state(CPUState *cpu, int modified) |
| { |
| if (hax_enabled()) { |
| if (modified) |
| hax_arch_set_registers(cpu); |
| else |
| hax_arch_get_registers(cpu); |
| } |
| } |
| |
| /* |
| * This is simpler than the one for KVM because we don't support |
| * direct I/O device assignment at this point. |
| */ |
| int hax_sync_vcpus(void) |
| { |
| if (hax_enabled()) { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| int ret = hax_arch_set_registers(cpu); |
| if (ret < 0) { |
| dprint("Failed to sync HAX vcpu context\n"); |
| exit(1); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| void hax_reset_vcpu_state(void *opaque) |
| { |
| CPUState *cpu; |
| CPU_FOREACH(cpu) { |
| if (cpu->hax_vcpu) { |
| cpu->hax_vcpu->emulation_state = HAX_EMULATE_STATE_INITIAL; |
| cpu->hax_vcpu->tunnel->user_event_pending = 0; |
| cpu->hax_vcpu->tunnel->ready_for_interrupt_injection = 0; |
| } |
| } |
| } |