blob: 5f172da7d33cc6d57760b7472f85d3d475d69b0e [file] [log] [blame]
// Copyright 2013, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "a64/disasm-a64.h"
namespace vixl {
Disassembler::Disassembler() {
buffer_size_ = 256;
buffer_ = reinterpret_cast<char*>(malloc(buffer_size_));
buffer_pos_ = 0;
own_buffer_ = true;
}
Disassembler::Disassembler(char* text_buffer, int buffer_size) {
buffer_size_ = buffer_size;
buffer_ = text_buffer;
buffer_pos_ = 0;
own_buffer_ = false;
}
Disassembler::~Disassembler() {
if (own_buffer_) {
free(buffer_);
}
}
char* Disassembler::GetOutput() {
return buffer_;
}
void Disassembler::VisitAddSubImmediate(Instruction* instr) {
bool rd_is_zr = RdIsZROrSP(instr);
bool stack_op = (rd_is_zr || RnIsZROrSP(instr)) &&
(instr->ImmAddSub() == 0) ? true : false;
const char *mnemonic = "";
const char *form = "'Rds, 'Rns, 'IAddSub";
const char *form_cmp = "'Rns, 'IAddSub";
const char *form_mov = "'Rds, 'Rns";
switch (instr->Mask(AddSubImmediateMask)) {
case ADD_w_imm:
case ADD_x_imm: {
mnemonic = "add";
if (stack_op) {
mnemonic = "mov";
form = form_mov;
}
break;
}
case ADDS_w_imm:
case ADDS_x_imm: {
mnemonic = "adds";
if (rd_is_zr) {
mnemonic = "cmn";
form = form_cmp;
}
break;
}
case SUB_w_imm:
case SUB_x_imm: mnemonic = "sub"; break;
case SUBS_w_imm:
case SUBS_x_imm: {
mnemonic = "subs";
if (rd_is_zr) {
mnemonic = "cmp";
form = form_cmp;
}
break;
}
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitAddSubShifted(Instruction* instr) {
bool rd_is_zr = RdIsZROrSP(instr);
bool rn_is_zr = RnIsZROrSP(instr);
const char *mnemonic = "";
const char *form = "'Rd, 'Rn, 'Rm'HDP";
const char *form_cmp = "'Rn, 'Rm'HDP";
const char *form_neg = "'Rd, 'Rm'HDP";
switch (instr->Mask(AddSubShiftedMask)) {
case ADD_w_shift:
case ADD_x_shift: mnemonic = "add"; break;
case ADDS_w_shift:
case ADDS_x_shift: {
mnemonic = "adds";
if (rd_is_zr) {
mnemonic = "cmn";
form = form_cmp;
}
break;
}
case SUB_w_shift:
case SUB_x_shift: {
mnemonic = "sub";
if (rn_is_zr) {
mnemonic = "neg";
form = form_neg;
}
break;
}
case SUBS_w_shift:
case SUBS_x_shift: {
mnemonic = "subs";
if (rd_is_zr) {
mnemonic = "cmp";
form = form_cmp;
} else if (rn_is_zr) {
mnemonic = "negs";
form = form_neg;
}
break;
}
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitAddSubExtended(Instruction* instr) {
bool rd_is_zr = RdIsZROrSP(instr);
const char *mnemonic = "";
Extend mode = static_cast<Extend>(instr->ExtendMode());
const char *form = ((mode == UXTX) || (mode == SXTX)) ?
"'Rds, 'Rns, 'Xm'Ext" : "'Rds, 'Rns, 'Wm'Ext";
const char *form_cmp = ((mode == UXTX) || (mode == SXTX)) ?
"'Rns, 'Xm'Ext" : "'Rns, 'Wm'Ext";
switch (instr->Mask(AddSubExtendedMask)) {
case ADD_w_ext:
case ADD_x_ext: mnemonic = "add"; break;
case ADDS_w_ext:
case ADDS_x_ext: {
mnemonic = "adds";
if (rd_is_zr) {
mnemonic = "cmn";
form = form_cmp;
}
break;
}
case SUB_w_ext:
case SUB_x_ext: mnemonic = "sub"; break;
case SUBS_w_ext:
case SUBS_x_ext: {
mnemonic = "subs";
if (rd_is_zr) {
mnemonic = "cmp";
form = form_cmp;
}
break;
}
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitAddSubWithCarry(Instruction* instr) {
bool rn_is_zr = RnIsZROrSP(instr);
const char *mnemonic = "";
const char *form = "'Rd, 'Rn, 'Rm";
const char *form_neg = "'Rd, 'Rm";
switch (instr->Mask(AddSubWithCarryMask)) {
case ADC_w:
case ADC_x: mnemonic = "adc"; break;
case ADCS_w:
case ADCS_x: mnemonic = "adcs"; break;
case SBC_w:
case SBC_x: {
mnemonic = "sbc";
if (rn_is_zr) {
mnemonic = "ngc";
form = form_neg;
}
break;
}
case SBCS_w:
case SBCS_x: {
mnemonic = "sbcs";
if (rn_is_zr) {
mnemonic = "ngcs";
form = form_neg;
}
break;
}
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitLogicalImmediate(Instruction* instr) {
bool rd_is_zr = RdIsZROrSP(instr);
bool rn_is_zr = RnIsZROrSP(instr);
const char *mnemonic = "";
const char *form = "'Rds, 'Rn, 'ITri";
if (instr->ImmLogical() == 0) {
// The immediate encoded in the instruction is not in the expected format.
Format(instr, "unallocated", "(LogicalImmediate)");
return;
}
switch (instr->Mask(LogicalImmediateMask)) {
case AND_w_imm:
case AND_x_imm: mnemonic = "and"; break;
case ORR_w_imm:
case ORR_x_imm: {
mnemonic = "orr";
unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize
: kWRegSize;
if (rn_is_zr && !IsMovzMovnImm(reg_size, instr->ImmLogical())) {
mnemonic = "mov";
form = "'Rds, 'ITri";
}
break;
}
case EOR_w_imm:
case EOR_x_imm: mnemonic = "eor"; break;
case ANDS_w_imm:
case ANDS_x_imm: {
mnemonic = "ands";
if (rd_is_zr) {
mnemonic = "tst";
form = "'Rn, 'ITri";
}
break;
}
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) {
ASSERT((reg_size == kXRegSize) ||
((reg_size == kWRegSize) && (value <= 0xffffffff)));
// Test for movz: 16 bits set at positions 0, 16, 32 or 48.
if (((value & 0xffffffffffff0000ULL) == 0ULL) ||
((value & 0xffffffff0000ffffULL) == 0ULL) ||
((value & 0xffff0000ffffffffULL) == 0ULL) ||
((value & 0x0000ffffffffffffULL) == 0ULL)) {
return true;
}
// Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48).
if ((reg_size == kXRegSize) &&
(((value & 0xffffffffffff0000ULL) == 0xffffffffffff0000ULL) ||
((value & 0xffffffff0000ffffULL) == 0xffffffff0000ffffULL) ||
((value & 0xffff0000ffffffffULL) == 0xffff0000ffffffffULL) ||
((value & 0x0000ffffffffffffULL) == 0x0000ffffffffffffULL))) {
return true;
}
if ((reg_size == kWRegSize) &&
(((value & 0xffff0000) == 0xffff0000) ||
((value & 0x0000ffff) == 0x0000ffff))) {
return true;
}
return false;
}
void Disassembler::VisitLogicalShifted(Instruction* instr) {
bool rd_is_zr = RdIsZROrSP(instr);
bool rn_is_zr = RnIsZROrSP(instr);
const char *mnemonic = "";
const char *form = "'Rd, 'Rn, 'Rm'HLo";
switch (instr->Mask(LogicalShiftedMask)) {
case AND_w:
case AND_x: mnemonic = "and"; break;
case BIC_w:
case BIC_x: mnemonic = "bic"; break;
case EOR_w:
case EOR_x: mnemonic = "eor"; break;
case EON_w:
case EON_x: mnemonic = "eon"; break;
case BICS_w:
case BICS_x: mnemonic = "bics"; break;
case ANDS_w:
case ANDS_x: {
mnemonic = "ands";
if (rd_is_zr) {
mnemonic = "tst";
form = "'Rn, 'Rm'HLo";
}
break;
}
case ORR_w:
case ORR_x: {
mnemonic = "orr";
if (rn_is_zr && (instr->ImmDPShift() == 0) && (instr->ShiftDP() == LSL)) {
mnemonic = "mov";
form = "'Rd, 'Rm";
}
break;
}
case ORN_w:
case ORN_x: {
mnemonic = "orn";
if (rn_is_zr) {
mnemonic = "mvn";
form = "'Rd, 'Rm'HLo";
}
break;
}
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitConditionalCompareRegister(Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rn, 'Rm, 'INzcv, 'Cond";
switch (instr->Mask(ConditionalCompareRegisterMask)) {
case CCMN_w:
case CCMN_x: mnemonic = "ccmn"; break;
case CCMP_w:
case CCMP_x: mnemonic = "ccmp"; break;
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitConditionalCompareImmediate(Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rn, 'IP, 'INzcv, 'Cond";
switch (instr->Mask(ConditionalCompareImmediateMask)) {
case CCMN_w_imm:
case CCMN_x_imm: mnemonic = "ccmn"; break;
case CCMP_w_imm:
case CCMP_x_imm: mnemonic = "ccmp"; break;
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitConditionalSelect(Instruction* instr) {
bool rnm_is_zr = (RnIsZROrSP(instr) && RmIsZROrSP(instr));
bool rn_is_rm = (instr->Rn() == instr->Rm());
const char *mnemonic = "";
const char *form = "'Rd, 'Rn, 'Rm, 'Cond";
const char *form_test = "'Rd, 'CInv";
const char *form_update = "'Rd, 'Rn, 'CInv";
Condition cond = static_cast<Condition>(instr->Condition());
bool invertible_cond = (cond != al) && (cond != nv);
switch (instr->Mask(ConditionalSelectMask)) {
case CSEL_w:
case CSEL_x: mnemonic = "csel"; break;
case CSINC_w:
case CSINC_x: {
mnemonic = "csinc";
if (rnm_is_zr && invertible_cond) {
mnemonic = "cset";
form = form_test;
} else if (rn_is_rm && invertible_cond) {
mnemonic = "cinc";
form = form_update;
}
break;
}
case CSINV_w:
case CSINV_x: {
mnemonic = "csinv";
if (rnm_is_zr && invertible_cond) {
mnemonic = "csetm";
form = form_test;
} else if (rn_is_rm && invertible_cond) {
mnemonic = "cinv";
form = form_update;
}
break;
}
case CSNEG_w:
case CSNEG_x: {
mnemonic = "csneg";
if (rn_is_rm && invertible_cond) {
mnemonic = "cneg";
form = form_update;
}
break;
}
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitBitfield(Instruction* instr) {
unsigned s = instr->ImmS();
unsigned r = instr->ImmR();
unsigned rd_size_minus_1 =
((instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize) - 1;
const char *mnemonic = "";
const char *form = "";
const char *form_shift_right = "'Rd, 'Rn, 'IBr";
const char *form_extend = "'Rd, 'Wn";
const char *form_bfiz = "'Rd, 'Rn, 'IBZ-r, 'IBs+1";
const char *form_bfx = "'Rd, 'Rn, 'IBr, 'IBs-r+1";
const char *form_lsl = "'Rd, 'Rn, 'IBZ-r";
switch (instr->Mask(BitfieldMask)) {
case SBFM_w:
case SBFM_x: {
mnemonic = "sbfx";
form = form_bfx;
if (r == 0) {
form = form_extend;
if (s == 7) {
mnemonic = "sxtb";
} else if (s == 15) {
mnemonic = "sxth";
} else if ((s == 31) && (instr->SixtyFourBits() == 1)) {
mnemonic = "sxtw";
} else {
form = form_bfx;
}
} else if (s == rd_size_minus_1) {
mnemonic = "asr";
form = form_shift_right;
} else if (s < r) {
mnemonic = "sbfiz";
form = form_bfiz;
}
break;
}
case UBFM_w:
case UBFM_x: {
mnemonic = "ubfx";
form = form_bfx;
if (r == 0) {
form = form_extend;
if (s == 7) {
mnemonic = "uxtb";
} else if (s == 15) {
mnemonic = "uxth";
} else {
form = form_bfx;
}
}
if (s == rd_size_minus_1) {
mnemonic = "lsr";
form = form_shift_right;
} else if (r == s + 1) {
mnemonic = "lsl";
form = form_lsl;
} else if (s < r) {
mnemonic = "ubfiz";
form = form_bfiz;
}
break;
}
case BFM_w:
case BFM_x: {
mnemonic = "bfxil";
form = form_bfx;
if (s < r) {
mnemonic = "bfi";
form = form_bfiz;
}
}
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitExtract(Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rd, 'Rn, 'Rm, 'IExtract";
switch (instr->Mask(ExtractMask)) {
case EXTR_w:
case EXTR_x: {
if (instr->Rn() == instr->Rm()) {
mnemonic = "ror";
form = "'Rd, 'Rn, 'IExtract";
} else {
mnemonic = "extr";
}
break;
}
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitPCRelAddressing(Instruction* instr) {
switch (instr->Mask(PCRelAddressingMask)) {
case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break;
// ADRP is not implemented.
default: Format(instr, "unimplemented", "(PCRelAddressing)");
}
}
void Disassembler::VisitConditionalBranch(Instruction* instr) {
switch (instr->Mask(ConditionalBranchMask)) {
case B_cond: Format(instr, "b.'CBrn", "'BImmCond"); break;
default: UNREACHABLE();
}
}
void Disassembler::VisitUnconditionalBranchToRegister(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'Xn";
switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
case BR: mnemonic = "br"; break;
case BLR: mnemonic = "blr"; break;
case RET: {
mnemonic = "ret";
if (instr->Rn() == kLinkRegCode) {
form = NULL;
}
break;
}
default: form = "(UnconditionalBranchToRegister)";
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitUnconditionalBranch(Instruction* instr) {
const char *mnemonic = "";
const char *form = "'BImmUncn";
switch (instr->Mask(UnconditionalBranchMask)) {
case B: mnemonic = "b"; break;
case BL: mnemonic = "bl"; break;
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitDataProcessing1Source(Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rd, 'Rn";
switch (instr->Mask(DataProcessing1SourceMask)) {
#define FORMAT(A, B) \
case A##_w: \
case A##_x: mnemonic = B; break;
FORMAT(RBIT, "rbit");
FORMAT(REV16, "rev16");
FORMAT(REV, "rev");
FORMAT(CLZ, "clz");
FORMAT(CLS, "cls");
#undef FORMAT
case REV32_x: mnemonic = "rev32"; break;
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitDataProcessing2Source(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'Rd, 'Rn, 'Rm";
switch (instr->Mask(DataProcessing2SourceMask)) {
#define FORMAT(A, B) \
case A##_w: \
case A##_x: mnemonic = B; break;
FORMAT(UDIV, "udiv");
FORMAT(SDIV, "sdiv");
FORMAT(LSLV, "lsl");
FORMAT(LSRV, "lsr");
FORMAT(ASRV, "asr");
FORMAT(RORV, "ror");
#undef FORMAT
default: form = "(DataProcessing2Source)";
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitDataProcessing3Source(Instruction* instr) {
bool ra_is_zr = RaIsZROrSP(instr);
const char *mnemonic = "";
const char *form = "'Xd, 'Wn, 'Wm, 'Xa";
const char *form_rrr = "'Rd, 'Rn, 'Rm";
const char *form_rrrr = "'Rd, 'Rn, 'Rm, 'Ra";
const char *form_xww = "'Xd, 'Wn, 'Wm";
const char *form_xxx = "'Xd, 'Xn, 'Xm";
switch (instr->Mask(DataProcessing3SourceMask)) {
case MADD_w:
case MADD_x: {
mnemonic = "madd";
form = form_rrrr;
if (ra_is_zr) {
mnemonic = "mul";
form = form_rrr;
}
break;
}
case MSUB_w:
case MSUB_x: {
mnemonic = "msub";
form = form_rrrr;
if (ra_is_zr) {
mnemonic = "mneg";
form = form_rrr;
}
break;
}
case SMADDL_x: {
mnemonic = "smaddl";
if (ra_is_zr) {
mnemonic = "smull";
form = form_xww;
}
break;
}
case SMSUBL_x: {
mnemonic = "smsubl";
if (ra_is_zr) {
mnemonic = "smnegl";
form = form_xww;
}
break;
}
case UMADDL_x: {
mnemonic = "umaddl";
if (ra_is_zr) {
mnemonic = "umull";
form = form_xww;
}
break;
}
case UMSUBL_x: {
mnemonic = "umsubl";
if (ra_is_zr) {
mnemonic = "umnegl";
form = form_xww;
}
break;
}
case SMULH_x: {
mnemonic = "smulh";
form = form_xxx;
break;
}
case UMULH_x: {
mnemonic = "umulh";
form = form_xxx;
break;
}
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitCompareBranch(Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rt, 'BImmCmpa";
switch (instr->Mask(CompareBranchMask)) {
case CBZ_w:
case CBZ_x: mnemonic = "cbz"; break;
case CBNZ_w:
case CBNZ_x: mnemonic = "cbnz"; break;
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitTestBranch(Instruction* instr) {
const char *mnemonic = "";
// If the top bit of the immediate is clear, the tested register is
// disassembled as Wt, otherwise Xt. As the top bit of the immediate is
// encoded in bit 31 of the instruction, we can reuse the Rt form, which
// uses bit 31 (normally "sf") to choose the register size.
const char *form = "'Rt, 'IS, 'BImmTest";
switch (instr->Mask(TestBranchMask)) {
case TBZ: mnemonic = "tbz"; break;
case TBNZ: mnemonic = "tbnz"; break;
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitMoveWideImmediate(Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rd, 'IMoveImm";
// Print the shift separately for movk, to make it clear which half word will
// be overwritten. Movn and movz print the computed immediate, which includes
// shift calculation.
switch (instr->Mask(MoveWideImmediateMask)) {
case MOVN_w:
case MOVN_x: mnemonic = "movn"; break;
case MOVZ_w:
case MOVZ_x: mnemonic = "movz"; break;
case MOVK_w:
case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break;
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
#define LOAD_STORE_LIST(V) \
V(STRB_w, "strb", "'Wt") \
V(STRH_w, "strh", "'Wt") \
V(STR_w, "str", "'Wt") \
V(STR_x, "str", "'Xt") \
V(LDRB_w, "ldrb", "'Wt") \
V(LDRH_w, "ldrh", "'Wt") \
V(LDR_w, "ldr", "'Wt") \
V(LDR_x, "ldr", "'Xt") \
V(LDRSB_x, "ldrsb", "'Xt") \
V(LDRSH_x, "ldrsh", "'Xt") \
V(LDRSW_x, "ldrsw", "'Xt") \
V(LDRSB_w, "ldrsb", "'Wt") \
V(LDRSH_w, "ldrsh", "'Wt") \
V(STR_s, "str", "'St") \
V(STR_d, "str", "'Dt") \
V(LDR_s, "ldr", "'St") \
V(LDR_d, "ldr", "'Dt")
void Disassembler::VisitLoadStorePreIndex(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStorePreIndex)";
switch (instr->Mask(LoadStorePreIndexMask)) {
#define LS_PREINDEX(A, B, C) \
case A##_pre: mnemonic = B; form = C ", ['Xns'ILS]!"; break;
LOAD_STORE_LIST(LS_PREINDEX)
#undef LS_PREINDEX
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitLoadStorePostIndex(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStorePostIndex)";
switch (instr->Mask(LoadStorePostIndexMask)) {
#define LS_POSTINDEX(A, B, C) \
case A##_post: mnemonic = B; form = C ", ['Xns]'ILS"; break;
LOAD_STORE_LIST(LS_POSTINDEX)
#undef LS_POSTINDEX
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitLoadStoreUnsignedOffset(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStoreUnsignedOffset)";
switch (instr->Mask(LoadStoreUnsignedOffsetMask)) {
#define LS_UNSIGNEDOFFSET(A, B, C) \
case A##_unsigned: mnemonic = B; form = C ", ['Xns'ILU]"; break;
LOAD_STORE_LIST(LS_UNSIGNEDOFFSET)
#undef LS_UNSIGNEDOFFSET
case PRFM_unsigned: mnemonic = "prfm"; form = "'PrefOp, ['Xn'ILU]";
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitLoadStoreRegisterOffset(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStoreRegisterOffset)";
switch (instr->Mask(LoadStoreRegisterOffsetMask)) {
#define LS_REGISTEROFFSET(A, B, C) \
case A##_reg: mnemonic = B; form = C ", ['Xns, 'Offsetreg]"; break;
LOAD_STORE_LIST(LS_REGISTEROFFSET)
#undef LS_REGISTEROFFSET
case PRFM_reg: mnemonic = "prfm"; form = "'PrefOp, ['Xns, 'Offsetreg]";
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitLoadStoreUnscaledOffset(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'Wt, ['Xns'ILS]";
const char *form_x = "'Xt, ['Xns'ILS]";
const char *form_s = "'St, ['Xns'ILS]";
const char *form_d = "'Dt, ['Xns'ILS]";
switch (instr->Mask(LoadStoreUnscaledOffsetMask)) {
case STURB_w: mnemonic = "sturb"; break;
case STURH_w: mnemonic = "sturh"; break;
case STUR_w: mnemonic = "stur"; break;
case STUR_x: mnemonic = "stur"; form = form_x; break;
case STUR_s: mnemonic = "stur"; form = form_s; break;
case STUR_d: mnemonic = "stur"; form = form_d; break;
case LDURB_w: mnemonic = "ldurb"; break;
case LDURH_w: mnemonic = "ldurh"; break;
case LDUR_w: mnemonic = "ldur"; break;
case LDUR_x: mnemonic = "ldur"; form = form_x; break;
case LDUR_s: mnemonic = "ldur"; form = form_s; break;
case LDUR_d: mnemonic = "ldur"; form = form_d; break;
case LDURSB_x: form = form_x; // Fall through.
case LDURSB_w: mnemonic = "ldursb"; break;
case LDURSH_x: form = form_x; // Fall through.
case LDURSH_w: mnemonic = "ldursh"; break;
case LDURSW_x: mnemonic = "ldursw"; form = form_x; break;
default: form = "(LoadStoreUnscaledOffset)";
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitLoadLiteral(Instruction* instr) {
const char *mnemonic = "ldr";
const char *form = "(LoadLiteral)";
switch (instr->Mask(LoadLiteralMask)) {
case LDR_w_lit: form = "'Wt, 'ILLiteral 'LValue"; break;
case LDR_x_lit: form = "'Xt, 'ILLiteral 'LValue"; break;
case LDR_s_lit: form = "'St, 'ILLiteral 'LValue"; break;
case LDR_d_lit: form = "'Dt, 'ILLiteral 'LValue"; break;
default: mnemonic = "unimplemented";
}
Format(instr, mnemonic, form);
}
#define LOAD_STORE_PAIR_LIST(V) \
V(STP_w, "stp", "'Wt, 'Wt2", "4") \
V(LDP_w, "ldp", "'Wt, 'Wt2", "4") \
V(LDPSW_x, "ldpsw", "'Xt, 'Xt2", "4") \
V(STP_x, "stp", "'Xt, 'Xt2", "8") \
V(LDP_x, "ldp", "'Xt, 'Xt2", "8") \
V(STP_s, "stp", "'St, 'St2", "4") \
V(LDP_s, "ldp", "'St, 'St2", "4") \
V(STP_d, "stp", "'Dt, 'Dt2", "8") \
V(LDP_d, "ldp", "'Dt, 'Dt2", "8")
void Disassembler::VisitLoadStorePairPostIndex(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStorePairPostIndex)";
switch (instr->Mask(LoadStorePairPostIndexMask)) {
#define LSP_POSTINDEX(A, B, C, D) \
case A##_post: mnemonic = B; form = C ", ['Xns]'ILP" D; break;
LOAD_STORE_PAIR_LIST(LSP_POSTINDEX)
#undef LSP_POSTINDEX
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitLoadStorePairPreIndex(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStorePairPreIndex)";
switch (instr->Mask(LoadStorePairPreIndexMask)) {
#define LSP_PREINDEX(A, B, C, D) \
case A##_pre: mnemonic = B; form = C ", ['Xns'ILP" D "]!"; break;
LOAD_STORE_PAIR_LIST(LSP_PREINDEX)
#undef LSP_PREINDEX
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitLoadStorePairOffset(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(LoadStorePairOffset)";
switch (instr->Mask(LoadStorePairOffsetMask)) {
#define LSP_OFFSET(A, B, C, D) \
case A##_off: mnemonic = B; form = C ", ['Xns'ILP" D "]"; break;
LOAD_STORE_PAIR_LIST(LSP_OFFSET)
#undef LSP_OFFSET
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitLoadStorePairNonTemporal(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form;
switch (instr->Mask(LoadStorePairNonTemporalMask)) {
case STNP_w: mnemonic = "stnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break;
case LDNP_w: mnemonic = "ldnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break;
case STNP_x: mnemonic = "stnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break;
case LDNP_x: mnemonic = "ldnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break;
case STNP_s: mnemonic = "stnp"; form = "'St, 'St2, ['Xns'ILP4]"; break;
case LDNP_s: mnemonic = "ldnp"; form = "'St, 'St2, ['Xns'ILP4]"; break;
case STNP_d: mnemonic = "stnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break;
case LDNP_d: mnemonic = "ldnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break;
default: form = "(LoadStorePairNonTemporal)";
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitFPCompare(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'Fn, 'Fm";
const char *form_zero = "'Fn, #0.0";
switch (instr->Mask(FPCompareMask)) {
case FCMP_s_zero:
case FCMP_d_zero: form = form_zero; // Fall through.
case FCMP_s:
case FCMP_d: mnemonic = "fcmp"; break;
default: form = "(FPCompare)";
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitFPConditionalCompare(Instruction* instr) {
const char *mnemonic = "unmplemented";
const char *form = "'Fn, 'Fm, 'INzcv, 'Cond";
switch (instr->Mask(FPConditionalCompareMask)) {
case FCCMP_s:
case FCCMP_d: mnemonic = "fccmp"; break;
case FCCMPE_s:
case FCCMPE_d: mnemonic = "fccmpe"; break;
default: form = "(FPConditionalCompare)";
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitFPConditionalSelect(Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Fd, 'Fn, 'Fm, 'Cond";
switch (instr->Mask(FPConditionalSelectMask)) {
case FCSEL_s:
case FCSEL_d: mnemonic = "fcsel"; break;
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitFPDataProcessing1Source(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'Fd, 'Fn";
switch (instr->Mask(FPDataProcessing1SourceMask)) {
#define FORMAT(A, B) \
case A##_s: \
case A##_d: mnemonic = B; break;
FORMAT(FMOV, "fmov");
FORMAT(FABS, "fabs");
FORMAT(FNEG, "fneg");
FORMAT(FSQRT, "fsqrt");
FORMAT(FRINTN, "frintn");
FORMAT(FRINTP, "frintp");
FORMAT(FRINTM, "frintm");
FORMAT(FRINTZ, "frintz");
FORMAT(FRINTA, "frinta");
FORMAT(FRINTX, "frintx");
FORMAT(FRINTI, "frinti");
#undef FORMAT
case FCVT_ds: mnemonic = "fcvt"; form = "'Dd, 'Sn"; break;
case FCVT_sd: mnemonic = "fcvt"; form = "'Sd, 'Dn"; break;
default: form = "(FPDataProcessing1Source)";
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitFPDataProcessing2Source(Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Fd, 'Fn, 'Fm";
switch (instr->Mask(FPDataProcessing2SourceMask)) {
#define FORMAT(A, B) \
case A##_s: \
case A##_d: mnemonic = B; break;
FORMAT(FMUL, "fmul");
FORMAT(FDIV, "fdiv");
FORMAT(FADD, "fadd");
FORMAT(FSUB, "fsub");
FORMAT(FMAX, "fmax");
FORMAT(FMIN, "fmin");
FORMAT(FMAXNM, "fmaxnm");
FORMAT(FMINNM, "fminnm");
FORMAT(FNMUL, "fnmul");
#undef FORMAT
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitFPDataProcessing3Source(Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Fd, 'Fn, 'Fm, 'Fa";
switch (instr->Mask(FPDataProcessing3SourceMask)) {
#define FORMAT(A, B) \
case A##_s: \
case A##_d: mnemonic = B; break;
FORMAT(FMADD, "fmadd");
FORMAT(FMSUB, "fmsub");
FORMAT(FNMADD, "fnmadd");
FORMAT(FNMSUB, "fnmsub");
#undef FORMAT
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitFPImmediate(Instruction* instr) {
const char *mnemonic = "";
const char *form = "(FPImmediate)";
switch (instr->Mask(FPImmediateMask)) {
case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break;
case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break;
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitFPIntegerConvert(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(FPIntegerConvert)";
const char *form_rf = "'Rd, 'Fn";
const char *form_fr = "'Fd, 'Rn";
switch (instr->Mask(FPIntegerConvertMask)) {
case FMOV_ws:
case FMOV_xd: mnemonic = "fmov"; form = form_rf; break;
case FMOV_sw:
case FMOV_dx: mnemonic = "fmov"; form = form_fr; break;
case FCVTMS_ws:
case FCVTMS_xs:
case FCVTMS_wd:
case FCVTMS_xd: mnemonic = "fcvtms"; form = form_rf; break;
case FCVTMU_ws:
case FCVTMU_xs:
case FCVTMU_wd:
case FCVTMU_xd: mnemonic = "fcvtmu"; form = form_rf; break;
case FCVTNS_ws:
case FCVTNS_xs:
case FCVTNS_wd:
case FCVTNS_xd: mnemonic = "fcvtns"; form = form_rf; break;
case FCVTNU_ws:
case FCVTNU_xs:
case FCVTNU_wd:
case FCVTNU_xd: mnemonic = "fcvtnu"; form = form_rf; break;
case FCVTZU_xd:
case FCVTZU_ws:
case FCVTZU_wd:
case FCVTZU_xs: mnemonic = "fcvtzu"; form = form_rf; break;
case FCVTZS_xd:
case FCVTZS_wd:
case FCVTZS_xs:
case FCVTZS_ws: mnemonic = "fcvtzs"; form = form_rf; break;
case SCVTF_sw:
case SCVTF_sx:
case SCVTF_dw:
case SCVTF_dx: mnemonic = "scvtf"; form = form_fr; break;
case UCVTF_sw:
case UCVTF_sx:
case UCVTF_dw:
case UCVTF_dx: mnemonic = "ucvtf"; form = form_fr; break;
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitFPFixedPointConvert(Instruction* instr) {
const char *mnemonic = "";
const char *form = "'Rd, 'Fn, 'IFPFBits";
const char *form_fr = "'Fd, 'Rn, 'IFPFBits";
switch (instr->Mask(FPFixedPointConvertMask)) {
case FCVTZS_ws_fixed:
case FCVTZS_xs_fixed:
case FCVTZS_wd_fixed:
case FCVTZS_xd_fixed: mnemonic = "fcvtzs"; break;
case FCVTZU_ws_fixed:
case FCVTZU_xs_fixed:
case FCVTZU_wd_fixed:
case FCVTZU_xd_fixed: mnemonic = "fcvtzu"; break;
case SCVTF_sw_fixed:
case SCVTF_sx_fixed:
case SCVTF_dw_fixed:
case SCVTF_dx_fixed: mnemonic = "scvtf"; form = form_fr; break;
case UCVTF_sw_fixed:
case UCVTF_sx_fixed:
case UCVTF_dw_fixed:
case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break;
default: UNREACHABLE();
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitSystem(Instruction* instr) {
// Some system instructions hijack their Op and Cp fields to represent a
// range of immediates instead of indicating a different instruction. This
// makes the decoding tricky.
const char *mnemonic = "unimplemented";
const char *form = "(System)";
if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
switch (instr->Mask(SystemSysRegMask)) {
case MRS: {
mnemonic = "mrs";
switch (instr->ImmSystemRegister()) {
case NZCV: form = "'Xt, nzcv"; break;
case FPCR: form = "'Xt, fpcr"; break;
default: form = "'Xt, (unknown)"; break;
}
break;
}
case MSR: {
mnemonic = "msr";
switch (instr->ImmSystemRegister()) {
case NZCV: form = "nzcv, 'Xt"; break;
case FPCR: form = "fpcr, 'Xt"; break;
default: form = "(unknown), 'Xt"; break;
}
break;
}
}
} else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
ASSERT(instr->Mask(SystemHintMask) == HINT);
switch (instr->ImmHint()) {
case NOP: {
mnemonic = "nop";
form = NULL;
break;
}
}
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitException(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'IDebug";
switch (instr->Mask(ExceptionMask)) {
case HLT: mnemonic = "hlt"; break;
case BRK: mnemonic = "brk"; break;
case SVC: mnemonic = "svc"; break;
case HVC: mnemonic = "hvc"; break;
case SMC: mnemonic = "smc"; break;
case DCPS1: mnemonic = "dcps1"; form = "{'IDebug}"; break;
case DCPS2: mnemonic = "dcps2"; form = "{'IDebug}"; break;
case DCPS3: mnemonic = "dcps3"; form = "{'IDebug}"; break;
default: form = "(Exception)";
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitUnimplemented(Instruction* instr) {
Format(instr, "unimplemented", "(Unimplemented)");
}
void Disassembler::VisitUnallocated(Instruction* instr) {
Format(instr, "unallocated", "(Unallocated)");
}
void Disassembler::ProcessOutput(Instruction* /*instr*/) {
// The base disasm does nothing more than disassembling into a buffer.
}
void Disassembler::Format(Instruction* instr, const char* mnemonic,
const char* format) {
ASSERT(mnemonic != NULL);
ResetOutput();
Substitute(instr, mnemonic);
if (format != NULL) {
buffer_[buffer_pos_++] = ' ';
Substitute(instr, format);
}
buffer_[buffer_pos_] = 0;
ProcessOutput(instr);
}
void Disassembler::Substitute(Instruction* instr, const char* string) {
char chr = *string++;
while (chr != '\0') {
if (chr == '\'') {
string += SubstituteField(instr, string);
} else {
buffer_[buffer_pos_++] = chr;
}
chr = *string++;
}
}
int Disassembler::SubstituteField(Instruction* instr, const char* format) {
switch (format[0]) {
case 'R': // Register. X or W, selected by sf bit.
case 'F': // FP Register. S or D, selected by type field.
case 'W':
case 'X':
case 'S':
case 'D': return SubstituteRegisterField(instr, format);
case 'I': return SubstituteImmediateField(instr, format);
case 'L': return SubstituteLiteralField(instr, format);
case 'H': return SubstituteShiftField(instr, format);
case 'P': return SubstitutePrefetchField(instr, format);
case 'C': return SubstituteConditionField(instr, format);
case 'E': return SubstituteExtendField(instr, format);
case 'A': return SubstitutePCRelAddressField(instr, format);
case 'B': return SubstituteBranchTargetField(instr, format);
case 'O': return SubstituteLSRegOffsetField(instr, format);
default: {
UNREACHABLE();
return 1;
}
}
}
int Disassembler::SubstituteRegisterField(Instruction* instr,
const char* format) {
unsigned reg_num = 0;
unsigned field_len = 2;
switch (format[1]) {
case 'd': reg_num = instr->Rd(); break;
case 'n': reg_num = instr->Rn(); break;
case 'm': reg_num = instr->Rm(); break;
case 'a': reg_num = instr->Ra(); break;
case 't': {
if (format[2] == '2') {
reg_num = instr->Rt2();
field_len = 3;
} else {
reg_num = instr->Rt();
}
break;
}
default: UNREACHABLE();
}
// Increase field length for registers tagged as stack.
if (format[2] == 's') {
field_len = 3;
}
char reg_type;
if (format[0] == 'R') {
// Register type is R: use sf bit to choose X and W.
reg_type = instr->SixtyFourBits() ? 'x' : 'w';
} else if (format[0] == 'F') {
// Floating-point register: use type field to choose S or D.
reg_type = ((instr->FPType() & 1) == 0) ? 's' : 'd';
} else {
// Register type is specified. Make it lower case.
reg_type = format[0] + 0x20;
}
if ((reg_num != kZeroRegCode) || (reg_type == 's') || (reg_type == 'd')) {
// A normal register: w0 - w30, x0 - x30, s0 - s31, d0 - d31.
AppendToOutput("%c%d", reg_type, reg_num);
} else if (format[2] == 's') {
// Disassemble w31/x31 as stack pointer wsp/sp.
AppendToOutput("%s", (reg_type == 'w') ? "wsp" : "sp");
} else {
// Disassemble w31/x31 as zero register wzr/xzr.
AppendToOutput("%czr", reg_type);
}
return field_len;
}
int Disassembler::SubstituteImmediateField(Instruction* instr,
const char* format) {
ASSERT(format[0] == 'I');
switch (format[1]) {
case 'M': { // IMoveImm or IMoveLSL.
if (format[5] == 'I') {
uint64_t imm = instr->ImmMoveWide() << (16 * instr->ShiftMoveWide());
AppendToOutput("#0x%" PRIx64, imm);
} else {
ASSERT(format[5] == 'L');
AppendToOutput("#0x%" PRIx64, instr->ImmMoveWide());
if (instr->ShiftMoveWide() > 0) {
AppendToOutput(", lsl #%" PRId64, 16 * instr->ShiftMoveWide());
}
}
return 8;
}
case 'L': {
switch (format[2]) {
case 'L': { // ILLiteral - Immediate Load Literal.
AppendToOutput("pc%+" PRId64,
instr->ImmLLiteral() << kLiteralEntrySizeLog2);
return 9;
}
case 'S': { // ILS - Immediate Load/Store.
if (instr->ImmLS() != 0) {
AppendToOutput(", #%" PRId64, instr->ImmLS());
}
return 3;
}
case 'P': { // ILPx - Immediate Load/Store Pair, x = access size.
if (instr->ImmLSPair() != 0) {
// format[3] is the scale value. Convert to a number.
int scale = format[3] - 0x30;
AppendToOutput(", #%" PRId64, instr->ImmLSPair() * scale);
}
return 4;
}
case 'U': { // ILU - Immediate Load/Store Unsigned.
if (instr->ImmLSUnsigned() != 0) {
AppendToOutput(", #%" PRIu64,
instr->ImmLSUnsigned() << instr->SizeLS());
}
return 3;
}
}
}
case 'C': { // ICondB - Immediate Conditional Branch.
int64_t offset = instr->ImmCondBranch() << 2;
char sign = (offset >= 0) ? '+' : '-';
AppendToOutput("#%c0x%" PRIx64, sign, offset);
return 6;
}
case 'A': { // IAddSub.
ASSERT(instr->ShiftAddSub() <= 1);
int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub());
AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm);
return 7;
}
case 'F': { // IFPSingle, IFPDouble or IFPFBits.
if (format[3] == 'F') { // IFPFbits.
AppendToOutput("#%" PRId64, 64 - instr->FPScale());
return 8;
} else {
AppendToOutput("#0x%" PRIx64 " (%.4f)", instr->ImmFP(),
format[3] == 'S' ? instr->ImmFP32() : instr->ImmFP64());
return 9;
}
}
case 'T': { // ITri - Immediate Triangular Encoded.
AppendToOutput("#0x%" PRIx64, instr->ImmLogical());
return 4;
}
case 'N': { // INzcv.
int nzcv = (instr->Nzcv() << Flags_offset);
AppendToOutput("#%c%c%c%c", ((nzcv & NFlag) == 0) ? 'n' : 'N',
((nzcv & ZFlag) == 0) ? 'z' : 'Z',
((nzcv & CFlag) == 0) ? 'c' : 'C',
((nzcv & VFlag) == 0) ? 'v' : 'V');
return 5;
}
case 'P': { // IP - Conditional compare.
AppendToOutput("#%" PRId64, instr->ImmCondCmp());
return 2;
}
case 'B': { // Bitfields.
return SubstituteBitfieldImmediateField(instr, format);
}
case 'E': { // IExtract.
AppendToOutput("#%" PRId64, instr->ImmS());
return 8;
}
case 'S': { // IS - Test and branch bit.
AppendToOutput("#%" PRId64, (instr->ImmTestBranchBit5() << 5) |
instr->ImmTestBranchBit40());
return 2;
}
case 'D': { // IDebug - HLT and BRK instructions.
AppendToOutput("#0x%" PRIx64, instr->ImmException());
return 6;
}
default: {
UNIMPLEMENTED();
return 0;
}
}
}
int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
const char* format) {
ASSERT((format[0] == 'I') && (format[1] == 'B'));
unsigned r = instr->ImmR();
unsigned s = instr->ImmS();
switch (format[2]) {
case 'r': { // IBr.
AppendToOutput("#%d", r);
return 3;
}
case 's': { // IBs+1 or IBs-r+1.
if (format[3] == '+') {
AppendToOutput("#%d", s + 1);
return 5;
} else {
ASSERT(format[3] == '-');
AppendToOutput("#%d", s - r + 1);
return 7;
}
}
case 'Z': { // IBZ-r.
ASSERT((format[3] == '-') && (format[4] == 'r'));
unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize;
AppendToOutput("#%d", reg_size - r);
return 5;
}
default: {
UNREACHABLE();
return 0;
}
}
}
int Disassembler::SubstituteLiteralField(Instruction* instr,
const char* format) {
ASSERT(strncmp(format, "LValue", 6) == 0);
USE(format);
switch (instr->Mask(LoadLiteralMask)) {
case LDR_w_lit:
case LDR_x_lit:
case LDR_s_lit:
case LDR_d_lit: AppendToOutput("(addr %p)", instr->LiteralAddress()); break;
default: UNREACHABLE();
}
return 6;
}
int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) {
ASSERT(format[0] == 'H');
ASSERT(instr->ShiftDP() <= 0x3);
switch (format[1]) {
case 'D': { // HDP.
ASSERT(instr->ShiftDP() != ROR);
} // Fall through.
case 'L': { // HLo.
if (instr->ImmDPShift() != 0) {
const char* shift_type[] = {"lsl", "lsr", "asr", "ror"};
AppendToOutput(", %s #%" PRId64, shift_type[instr->ShiftDP()],
instr->ImmDPShift());
}
return 3;
}
default:
UNIMPLEMENTED();
return 0;
}
}
int Disassembler::SubstituteConditionField(Instruction* instr,
const char* format) {
ASSERT(format[0] == 'C');
const char* condition_code[] = { "eq", "ne", "hs", "lo",
"mi", "pl", "vs", "vc",
"hi", "ls", "ge", "lt",
"gt", "le", "al", "nv" };
int cond;
switch (format[1]) {
case 'B': cond = instr->ConditionBranch(); break;
case 'I': {
cond = InvertCondition(static_cast<Condition>(instr->Condition()));
break;
}
default: cond = instr->Condition();
}
AppendToOutput("%s", condition_code[cond]);
return 4;
}
int Disassembler::SubstitutePCRelAddressField(Instruction* instr,
const char* format) {
USE(format);
ASSERT(strncmp(format, "AddrPCRel", 9) == 0);
int offset = instr->ImmPCRel();
// Only ADR (AddrPCRelByte) is supported.
ASSERT(strcmp(format, "AddrPCRelByte") == 0);
char sign = '+';
if (offset < 0) {
offset = -offset;
sign = '-';
}
// TODO: Extend this to support printing the target address.
AppendToOutput("#%c0x%x", sign, offset);
return 13;
}
int Disassembler::SubstituteBranchTargetField(Instruction* instr,
const char* format) {
ASSERT(strncmp(format, "BImm", 4) == 0);
int64_t offset = 0;
switch (format[5]) {
// BImmUncn - unconditional branch immediate.
case 'n': offset = instr->ImmUncondBranch(); break;
// BImmCond - conditional branch immediate.
case 'o': offset = instr->ImmCondBranch(); break;
// BImmCmpa - compare and branch immediate.
case 'm': offset = instr->ImmCmpBranch(); break;
// BImmTest - test and branch immediate.
case 'e': offset = instr->ImmTestBranch(); break;
default: UNIMPLEMENTED();
}
offset <<= kInstructionSizeLog2;
char sign = '+';
if (offset < 0) {
offset = -offset;
sign = '-';
}
AppendToOutput("#%c0x%" PRIx64, sign, offset);
return 8;
}
int Disassembler::SubstituteExtendField(Instruction* instr,
const char* format) {
ASSERT(strncmp(format, "Ext", 3) == 0);
ASSERT(instr->ExtendMode() <= 7);
USE(format);
const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx",
"sxtb", "sxth", "sxtw", "sxtx" };
// If rd or rn is SP, uxtw on 32-bit registers and uxtx on 64-bit
// registers becomes lsl.
if (((instr->Rd() == kZeroRegCode) || (instr->Rn() == kZeroRegCode)) &&
(((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) ||
(instr->ExtendMode() == UXTX))) {
if (instr->ImmExtendShift() > 0) {
AppendToOutput(", lsl #%" PRId64, instr->ImmExtendShift());
}
} else {
AppendToOutput(", %s", extend_mode[instr->ExtendMode()]);
if (instr->ImmExtendShift() > 0) {
AppendToOutput(" #%" PRId64, instr->ImmExtendShift());
}
}
return 3;
}
int Disassembler::SubstituteLSRegOffsetField(Instruction* instr,
const char* format) {
ASSERT(strncmp(format, "Offsetreg", 9) == 0);
const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl",
"undefined", "undefined", "sxtw", "sxtx" };
USE(format);
unsigned shift = instr->ImmShiftLS();
Extend ext = static_cast<Extend>(instr->ExtendMode());
char reg_type = ((ext == UXTW) || (ext == SXTW)) ? 'w' : 'x';
unsigned rm = instr->Rm();
if (rm == kZeroRegCode) {
AppendToOutput("%czr", reg_type);
} else {
AppendToOutput("%c%d", reg_type, rm);
}
// Extend mode UXTX is an alias for shift mode LSL here.
if (!((ext == UXTX) && (shift == 0))) {
AppendToOutput(", %s", extend_mode[ext]);
if (shift != 0) {
AppendToOutput(" #%" PRId64, instr->SizeLS());
}
}
return 9;
}
int Disassembler::SubstitutePrefetchField(Instruction* instr,
const char* format) {
ASSERT(format[0] == 'P');
USE(format);
int prefetch_mode = instr->PrefetchMode();
const char* ls = (prefetch_mode & 0x10) ? "st" : "ld";
int level = (prefetch_mode >> 1) + 1;
const char* ks = (prefetch_mode & 1) ? "strm" : "keep";
AppendToOutput("p%sl%d%s", ls, level, ks);
return 6;
}
void Disassembler::ResetOutput() {
buffer_pos_ = 0;
buffer_[buffer_pos_] = 0;
}
void Disassembler::AppendToOutput(const char* format, ...) {
va_list args;
va_start(args, format);
buffer_pos_ += vsnprintf(&buffer_[buffer_pos_], buffer_size_, format, args);
va_end(args);
}
void PrintDisassembler::ProcessOutput(Instruction* instr) {
fprintf(stream_, "0x%016" PRIx64 " %08" PRIx32 "\t\t%s\n",
reinterpret_cast<uint64_t>(instr),
instr->InstructionBits(),
GetOutput());
}
} // namespace vixl