| /* |
| * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator |
| * |
| * Copyright (c) 2004-2007 Fabrice Bellard |
| * Copyright (c) 2007 Jocelyn Mayer |
| * Copyright (c) 2010 David Gibson, IBM Corporation. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| * |
| */ |
| #include "sysemu/sysemu.h" |
| #include "hw/hw.h" |
| #include "hw/fw-path-provider.h" |
| #include "elf.h" |
| #include "net/net.h" |
| #include "sysemu/blockdev.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/kvm.h" |
| #include "kvm_ppc.h" |
| #include "mmu-hash64.h" |
| |
| #include "hw/boards.h" |
| #include "hw/ppc/ppc.h" |
| #include "hw/loader.h" |
| |
| #include "hw/ppc/spapr.h" |
| #include "hw/ppc/spapr_vio.h" |
| #include "hw/pci-host/spapr.h" |
| #include "hw/ppc/xics.h" |
| #include "hw/pci/msi.h" |
| |
| #include "hw/pci/pci.h" |
| #include "hw/scsi/scsi.h" |
| #include "hw/virtio/virtio-scsi.h" |
| |
| #include "exec/address-spaces.h" |
| #include "hw/usb.h" |
| #include "qemu/config-file.h" |
| #include "qemu/error-report.h" |
| |
| #include <libfdt.h> |
| |
| /* SLOF memory layout: |
| * |
| * SLOF raw image loaded at 0, copies its romfs right below the flat |
| * device-tree, then position SLOF itself 31M below that |
| * |
| * So we set FW_OVERHEAD to 40MB which should account for all of that |
| * and more |
| * |
| * We load our kernel at 4M, leaving space for SLOF initial image |
| */ |
| #define FDT_MAX_SIZE 0x40000 |
| #define RTAS_MAX_SIZE 0x10000 |
| #define FW_MAX_SIZE 0x400000 |
| #define FW_FILE_NAME "slof.bin" |
| #define FW_OVERHEAD 0x2800000 |
| #define KERNEL_LOAD_ADDR FW_MAX_SIZE |
| |
| #define MIN_RMA_SLOF 128UL |
| |
| #define TIMEBASE_FREQ 512000000ULL |
| |
| #define MAX_CPUS 256 |
| #define XICS_IRQS 1024 |
| |
| #define PHANDLE_XICP 0x00001111 |
| |
| #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) |
| |
| #define TYPE_SPAPR_MACHINE "spapr-machine" |
| |
| sPAPREnvironment *spapr; |
| |
| int spapr_allocate_irq(int hint, bool lsi) |
| { |
| int irq; |
| |
| if (hint) { |
| irq = hint; |
| if (hint >= spapr->next_irq) { |
| spapr->next_irq = hint + 1; |
| } |
| /* FIXME: we should probably check for collisions somehow */ |
| } else { |
| irq = spapr->next_irq++; |
| } |
| |
| /* Configure irq type */ |
| if (!xics_get_qirq(spapr->icp, irq)) { |
| return 0; |
| } |
| |
| xics_set_irq_type(spapr->icp, irq, lsi); |
| |
| return irq; |
| } |
| |
| /* |
| * Allocate block of consequtive IRQs, returns a number of the first. |
| * If msi==true, aligns the first IRQ number to num. |
| */ |
| int spapr_allocate_irq_block(int num, bool lsi, bool msi) |
| { |
| int first = -1; |
| int i, hint = 0; |
| |
| /* |
| * MSIMesage::data is used for storing VIRQ so |
| * it has to be aligned to num to support multiple |
| * MSI vectors. MSI-X is not affected by this. |
| * The hint is used for the first IRQ, the rest should |
| * be allocated continuously. |
| */ |
| if (msi) { |
| assert((num == 1) || (num == 2) || (num == 4) || |
| (num == 8) || (num == 16) || (num == 32)); |
| hint = (spapr->next_irq + num - 1) & ~(num - 1); |
| } |
| |
| for (i = 0; i < num; ++i) { |
| int irq; |
| |
| irq = spapr_allocate_irq(hint, lsi); |
| if (!irq) { |
| return -1; |
| } |
| |
| if (0 == i) { |
| first = irq; |
| hint = 0; |
| } |
| |
| /* If the above doesn't create a consecutive block then that's |
| * an internal bug */ |
| assert(irq == (first + i)); |
| } |
| |
| return first; |
| } |
| |
| static XICSState *try_create_xics(const char *type, int nr_servers, |
| int nr_irqs) |
| { |
| DeviceState *dev; |
| |
| dev = qdev_create(NULL, type); |
| qdev_prop_set_uint32(dev, "nr_servers", nr_servers); |
| qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs); |
| if (qdev_init(dev) < 0) { |
| return NULL; |
| } |
| |
| return XICS_COMMON(dev); |
| } |
| |
| static XICSState *xics_system_init(int nr_servers, int nr_irqs) |
| { |
| XICSState *icp = NULL; |
| |
| if (kvm_enabled()) { |
| QemuOpts *machine_opts = qemu_get_machine_opts(); |
| bool irqchip_allowed = qemu_opt_get_bool(machine_opts, |
| "kernel_irqchip", true); |
| bool irqchip_required = qemu_opt_get_bool(machine_opts, |
| "kernel_irqchip", false); |
| if (irqchip_allowed) { |
| icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs); |
| } |
| |
| if (irqchip_required && !icp) { |
| perror("Failed to create in-kernel XICS\n"); |
| abort(); |
| } |
| } |
| |
| if (!icp) { |
| icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs); |
| } |
| |
| if (!icp) { |
| perror("Failed to create XICS\n"); |
| abort(); |
| } |
| |
| return icp; |
| } |
| |
| static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr) |
| { |
| int ret = 0, offset; |
| CPUState *cpu; |
| char cpu_model[32]; |
| int smt = kvmppc_smt_threads(); |
| uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; |
| |
| CPU_FOREACH(cpu) { |
| DeviceClass *dc = DEVICE_GET_CLASS(cpu); |
| int index = ppc_get_vcpu_dt_id(POWERPC_CPU(cpu)); |
| uint32_t associativity[] = {cpu_to_be32(0x5), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(cpu->numa_node), |
| cpu_to_be32(index)}; |
| |
| if ((index % smt) != 0) { |
| continue; |
| } |
| |
| snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name, |
| index); |
| |
| offset = fdt_path_offset(fdt, cpu_model); |
| if (offset < 0) { |
| return offset; |
| } |
| |
| if (nb_numa_nodes > 1) { |
| ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, |
| sizeof(associativity)); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| ret = fdt_setprop(fdt, offset, "ibm,pft-size", |
| pft_size_prop, sizeof(pft_size_prop)); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| return ret; |
| } |
| |
| |
| static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop, |
| size_t maxsize) |
| { |
| size_t maxcells = maxsize / sizeof(uint32_t); |
| int i, j, count; |
| uint32_t *p = prop; |
| |
| for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { |
| struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; |
| |
| if (!sps->page_shift) { |
| break; |
| } |
| for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) { |
| if (sps->enc[count].page_shift == 0) { |
| break; |
| } |
| } |
| if ((p - prop) >= (maxcells - 3 - count * 2)) { |
| break; |
| } |
| *(p++) = cpu_to_be32(sps->page_shift); |
| *(p++) = cpu_to_be32(sps->slb_enc); |
| *(p++) = cpu_to_be32(count); |
| for (j = 0; j < count; j++) { |
| *(p++) = cpu_to_be32(sps->enc[j].page_shift); |
| *(p++) = cpu_to_be32(sps->enc[j].pte_enc); |
| } |
| } |
| |
| return (p - prop) * sizeof(uint32_t); |
| } |
| |
| #define _FDT(exp) \ |
| do { \ |
| int ret = (exp); \ |
| if (ret < 0) { \ |
| fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ |
| #exp, fdt_strerror(ret)); \ |
| exit(1); \ |
| } \ |
| } while (0) |
| |
| |
| static void *spapr_create_fdt_skel(hwaddr initrd_base, |
| hwaddr initrd_size, |
| hwaddr kernel_size, |
| bool little_endian, |
| const char *boot_device, |
| const char *kernel_cmdline, |
| uint32_t epow_irq) |
| { |
| void *fdt; |
| CPUState *cs; |
| uint32_t start_prop = cpu_to_be32(initrd_base); |
| uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); |
| char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" |
| "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode"; |
| char qemu_hypertas_prop[] = "hcall-memop1"; |
| uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; |
| uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; |
| int i, smt = kvmppc_smt_threads(); |
| unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; |
| |
| fdt = g_malloc0(FDT_MAX_SIZE); |
| _FDT((fdt_create(fdt, FDT_MAX_SIZE))); |
| |
| if (kernel_size) { |
| _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); |
| } |
| if (initrd_size) { |
| _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); |
| } |
| _FDT((fdt_finish_reservemap(fdt))); |
| |
| /* Root node */ |
| _FDT((fdt_begin_node(fdt, ""))); |
| _FDT((fdt_property_string(fdt, "device_type", "chrp"))); |
| _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); |
| _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries"))); |
| |
| _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); |
| _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); |
| |
| /* /chosen */ |
| _FDT((fdt_begin_node(fdt, "chosen"))); |
| |
| /* Set Form1_affinity */ |
| _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); |
| |
| _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); |
| _FDT((fdt_property(fdt, "linux,initrd-start", |
| &start_prop, sizeof(start_prop)))); |
| _FDT((fdt_property(fdt, "linux,initrd-end", |
| &end_prop, sizeof(end_prop)))); |
| if (kernel_size) { |
| uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), |
| cpu_to_be64(kernel_size) }; |
| |
| _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); |
| if (little_endian) { |
| _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0))); |
| } |
| } |
| if (boot_device) { |
| _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); |
| } |
| _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); |
| _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); |
| _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* cpus */ |
| _FDT((fdt_begin_node(fdt, "cpus"))); |
| |
| _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); |
| _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| DeviceClass *dc = DEVICE_GET_CLASS(cs); |
| PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); |
| int index = ppc_get_vcpu_dt_id(cpu); |
| uint32_t servers_prop[smp_threads]; |
| uint32_t gservers_prop[smp_threads * 2]; |
| char *nodename; |
| uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), |
| 0xffffffff, 0xffffffff}; |
| uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; |
| uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; |
| uint32_t page_sizes_prop[64]; |
| size_t page_sizes_prop_size; |
| |
| if ((index % smt) != 0) { |
| continue; |
| } |
| |
| nodename = g_strdup_printf("%s@%x", dc->fw_name, index); |
| |
| _FDT((fdt_begin_node(fdt, nodename))); |
| |
| g_free(nodename); |
| |
| _FDT((fdt_property_cell(fdt, "reg", index))); |
| _FDT((fdt_property_string(fdt, "device_type", "cpu"))); |
| |
| _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); |
| _FDT((fdt_property_cell(fdt, "d-cache-block-size", |
| env->dcache_line_size))); |
| _FDT((fdt_property_cell(fdt, "d-cache-line-size", |
| env->dcache_line_size))); |
| _FDT((fdt_property_cell(fdt, "i-cache-block-size", |
| env->icache_line_size))); |
| _FDT((fdt_property_cell(fdt, "i-cache-line-size", |
| env->icache_line_size))); |
| |
| if (pcc->l1_dcache_size) { |
| _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size))); |
| } else { |
| fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n"); |
| } |
| if (pcc->l1_icache_size) { |
| _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size))); |
| } else { |
| fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n"); |
| } |
| |
| _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); |
| _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); |
| _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); |
| _FDT((fdt_property_string(fdt, "status", "okay"))); |
| _FDT((fdt_property(fdt, "64-bit", NULL, 0))); |
| |
| /* Build interrupt servers and gservers properties */ |
| for (i = 0; i < smp_threads; i++) { |
| servers_prop[i] = cpu_to_be32(index + i); |
| /* Hack, direct the group queues back to cpu 0 */ |
| gservers_prop[i*2] = cpu_to_be32(index + i); |
| gservers_prop[i*2 + 1] = 0; |
| } |
| _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s", |
| servers_prop, sizeof(servers_prop)))); |
| _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s", |
| gservers_prop, sizeof(gservers_prop)))); |
| |
| if (env->spr_cb[SPR_PURR].oea_read) { |
| _FDT((fdt_property(fdt, "ibm,purr", NULL, 0))); |
| } |
| |
| if (env->mmu_model & POWERPC_MMU_1TSEG) { |
| _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", |
| segs, sizeof(segs)))); |
| } |
| |
| /* Advertise VMX/VSX (vector extensions) if available |
| * 0 / no property == no vector extensions |
| * 1 == VMX / Altivec available |
| * 2 == VSX available */ |
| if (env->insns_flags & PPC_ALTIVEC) { |
| uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; |
| |
| _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); |
| } |
| |
| /* Advertise DFP (Decimal Floating Point) if available |
| * 0 / no property == no DFP |
| * 1 == DFP available */ |
| if (env->insns_flags2 & PPC2_DFP) { |
| _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); |
| } |
| |
| page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop, |
| sizeof(page_sizes_prop)); |
| if (page_sizes_prop_size) { |
| _FDT((fdt_property(fdt, "ibm,segment-page-sizes", |
| page_sizes_prop, page_sizes_prop_size))); |
| } |
| |
| _FDT((fdt_end_node(fdt))); |
| } |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* RTAS */ |
| _FDT((fdt_begin_node(fdt, "rtas"))); |
| |
| _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, |
| sizeof(hypertas_prop)))); |
| _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop, |
| sizeof(qemu_hypertas_prop)))); |
| |
| _FDT((fdt_property(fdt, "ibm,associativity-reference-points", |
| refpoints, sizeof(refpoints)))); |
| |
| _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* interrupt controller */ |
| _FDT((fdt_begin_node(fdt, "interrupt-controller"))); |
| |
| _FDT((fdt_property_string(fdt, "device_type", |
| "PowerPC-External-Interrupt-Presentation"))); |
| _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); |
| _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); |
| _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", |
| interrupt_server_ranges_prop, |
| sizeof(interrupt_server_ranges_prop)))); |
| _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); |
| _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); |
| _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* vdevice */ |
| _FDT((fdt_begin_node(fdt, "vdevice"))); |
| |
| _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); |
| _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); |
| _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); |
| _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); |
| _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); |
| _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* event-sources */ |
| spapr_events_fdt_skel(fdt, epow_irq); |
| |
| _FDT((fdt_end_node(fdt))); /* close root node */ |
| _FDT((fdt_finish(fdt))); |
| |
| return fdt; |
| } |
| |
| static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt) |
| { |
| uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), |
| cpu_to_be32(0x0), cpu_to_be32(0x0), |
| cpu_to_be32(0x0)}; |
| char mem_name[32]; |
| hwaddr node0_size, mem_start, node_size; |
| uint64_t mem_reg_property[2]; |
| int i, off; |
| |
| /* memory node(s) */ |
| if (nb_numa_nodes > 1 && node_mem[0] < ram_size) { |
| node0_size = node_mem[0]; |
| } else { |
| node0_size = ram_size; |
| } |
| |
| /* RMA */ |
| mem_reg_property[0] = 0; |
| mem_reg_property[1] = cpu_to_be64(spapr->rma_size); |
| off = fdt_add_subnode(fdt, 0, "memory@0"); |
| _FDT(off); |
| _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); |
| _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, |
| sizeof(mem_reg_property)))); |
| _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, |
| sizeof(associativity)))); |
| |
| /* RAM: Node 0 */ |
| if (node0_size > spapr->rma_size) { |
| mem_reg_property[0] = cpu_to_be64(spapr->rma_size); |
| mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size); |
| |
| sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size); |
| off = fdt_add_subnode(fdt, 0, mem_name); |
| _FDT(off); |
| _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); |
| _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, |
| sizeof(mem_reg_property)))); |
| _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, |
| sizeof(associativity)))); |
| } |
| |
| /* RAM: Node 1 and beyond */ |
| mem_start = node0_size; |
| for (i = 1; i < nb_numa_nodes; i++) { |
| mem_reg_property[0] = cpu_to_be64(mem_start); |
| if (mem_start >= ram_size) { |
| node_size = 0; |
| } else { |
| node_size = node_mem[i]; |
| if (node_size > ram_size - mem_start) { |
| node_size = ram_size - mem_start; |
| } |
| } |
| mem_reg_property[1] = cpu_to_be64(node_size); |
| associativity[3] = associativity[4] = cpu_to_be32(i); |
| sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); |
| off = fdt_add_subnode(fdt, 0, mem_name); |
| _FDT(off); |
| _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); |
| _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, |
| sizeof(mem_reg_property)))); |
| _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, |
| sizeof(associativity)))); |
| mem_start += node_size; |
| } |
| |
| return 0; |
| } |
| |
| static void spapr_finalize_fdt(sPAPREnvironment *spapr, |
| hwaddr fdt_addr, |
| hwaddr rtas_addr, |
| hwaddr rtas_size) |
| { |
| int ret, i; |
| size_t cb = 0; |
| char *bootlist; |
| void *fdt; |
| sPAPRPHBState *phb; |
| |
| fdt = g_malloc(FDT_MAX_SIZE); |
| |
| /* open out the base tree into a temp buffer for the final tweaks */ |
| _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); |
| |
| ret = spapr_populate_memory(spapr, fdt); |
| if (ret < 0) { |
| fprintf(stderr, "couldn't setup memory nodes in fdt\n"); |
| exit(1); |
| } |
| |
| ret = spapr_populate_vdevice(spapr->vio_bus, fdt); |
| if (ret < 0) { |
| fprintf(stderr, "couldn't setup vio devices in fdt\n"); |
| exit(1); |
| } |
| |
| QLIST_FOREACH(phb, &spapr->phbs, list) { |
| ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); |
| } |
| |
| if (ret < 0) { |
| fprintf(stderr, "couldn't setup PCI devices in fdt\n"); |
| exit(1); |
| } |
| |
| /* RTAS */ |
| ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); |
| if (ret < 0) { |
| fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); |
| } |
| |
| /* Advertise NUMA via ibm,associativity */ |
| ret = spapr_fixup_cpu_dt(fdt, spapr); |
| if (ret < 0) { |
| fprintf(stderr, "Couldn't finalize CPU device tree properties\n"); |
| } |
| |
| bootlist = get_boot_devices_list(&cb, true); |
| if (cb && bootlist) { |
| int offset = fdt_path_offset(fdt, "/chosen"); |
| if (offset < 0) { |
| exit(1); |
| } |
| for (i = 0; i < cb; i++) { |
| if (bootlist[i] == '\n') { |
| bootlist[i] = ' '; |
| } |
| |
| } |
| ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist); |
| } |
| |
| if (!spapr->has_graphics) { |
| spapr_populate_chosen_stdout(fdt, spapr->vio_bus); |
| } |
| |
| _FDT((fdt_pack(fdt))); |
| |
| if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { |
| hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n", |
| fdt_totalsize(fdt), FDT_MAX_SIZE); |
| exit(1); |
| } |
| |
| cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); |
| |
| g_free(fdt); |
| } |
| |
| static uint64_t translate_kernel_address(void *opaque, uint64_t addr) |
| { |
| return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; |
| } |
| |
| static void emulate_spapr_hypercall(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| if (msr_pr) { |
| hcall_dprintf("Hypercall made with MSR[PR]=1\n"); |
| env->gpr[3] = H_PRIVILEGE; |
| } else { |
| env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); |
| } |
| } |
| |
| static void spapr_reset_htab(sPAPREnvironment *spapr) |
| { |
| long shift; |
| |
| /* allocate hash page table. For now we always make this 16mb, |
| * later we should probably make it scale to the size of guest |
| * RAM */ |
| |
| shift = kvmppc_reset_htab(spapr->htab_shift); |
| |
| if (shift > 0) { |
| /* Kernel handles htab, we don't need to allocate one */ |
| spapr->htab_shift = shift; |
| kvmppc_kern_htab = true; |
| } else { |
| if (!spapr->htab) { |
| /* Allocate an htab if we don't yet have one */ |
| spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr)); |
| } |
| |
| /* And clear it */ |
| memset(spapr->htab, 0, HTAB_SIZE(spapr)); |
| } |
| |
| /* Update the RMA size if necessary */ |
| if (spapr->vrma_adjust) { |
| hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; |
| spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift); |
| } |
| } |
| |
| static void ppc_spapr_reset(void) |
| { |
| PowerPCCPU *first_ppc_cpu; |
| |
| /* Reset the hash table & recalc the RMA */ |
| spapr_reset_htab(spapr); |
| |
| qemu_devices_reset(); |
| |
| /* Load the fdt */ |
| spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, |
| spapr->rtas_size); |
| |
| /* Set up the entry state */ |
| first_ppc_cpu = POWERPC_CPU(first_cpu); |
| first_ppc_cpu->env.gpr[3] = spapr->fdt_addr; |
| first_ppc_cpu->env.gpr[5] = 0; |
| first_cpu->halted = 0; |
| first_ppc_cpu->env.nip = spapr->entry_point; |
| |
| } |
| |
| static void spapr_cpu_reset(void *opaque) |
| { |
| PowerPCCPU *cpu = opaque; |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| |
| cpu_reset(cs); |
| |
| /* All CPUs start halted. CPU0 is unhalted from the machine level |
| * reset code and the rest are explicitly started up by the guest |
| * using an RTAS call */ |
| cs->halted = 1; |
| |
| env->spr[SPR_HIOR] = 0; |
| |
| env->external_htab = (uint8_t *)spapr->htab; |
| if (kvm_enabled() && !env->external_htab) { |
| /* |
| * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte* |
| * functions do the right thing. |
| */ |
| env->external_htab = (void *)1; |
| } |
| env->htab_base = -1; |
| /* |
| * htab_mask is the mask used to normalize hash value to PTEG index. |
| * htab_shift is log2 of hash table size. |
| * We have 8 hpte per group, and each hpte is 16 bytes. |
| * ie have 128 bytes per hpte entry. |
| */ |
| env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1; |
| env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab | |
| (spapr->htab_shift - 18); |
| } |
| |
| static void spapr_create_nvram(sPAPREnvironment *spapr) |
| { |
| DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); |
| DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); |
| |
| if (dinfo) { |
| qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv); |
| } |
| |
| qdev_init_nofail(dev); |
| |
| spapr->nvram = (struct sPAPRNVRAM *)dev; |
| } |
| |
| /* Returns whether we want to use VGA or not */ |
| static int spapr_vga_init(PCIBus *pci_bus) |
| { |
| switch (vga_interface_type) { |
| case VGA_NONE: |
| return false; |
| case VGA_DEVICE: |
| return true; |
| case VGA_STD: |
| return pci_vga_init(pci_bus) != NULL; |
| default: |
| fprintf(stderr, "This vga model is not supported," |
| "currently it only supports -vga std\n"); |
| exit(0); |
| } |
| } |
| |
| static const VMStateDescription vmstate_spapr = { |
| .name = "spapr", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .minimum_version_id_old = 1, |
| .fields = (VMStateField []) { |
| VMSTATE_UINT32(next_irq, sPAPREnvironment), |
| |
| /* RTC offset */ |
| VMSTATE_UINT64(rtc_offset, sPAPREnvironment), |
| |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) |
| #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) |
| #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) |
| #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) |
| |
| static int htab_save_setup(QEMUFile *f, void *opaque) |
| { |
| sPAPREnvironment *spapr = opaque; |
| |
| /* "Iteration" header */ |
| qemu_put_be32(f, spapr->htab_shift); |
| |
| if (spapr->htab) { |
| spapr->htab_save_index = 0; |
| spapr->htab_first_pass = true; |
| } else { |
| assert(kvm_enabled()); |
| |
| spapr->htab_fd = kvmppc_get_htab_fd(false); |
| if (spapr->htab_fd < 0) { |
| fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n", |
| strerror(errno)); |
| return -1; |
| } |
| } |
| |
| |
| return 0; |
| } |
| |
| static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr, |
| int64_t max_ns) |
| { |
| int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; |
| int index = spapr->htab_save_index; |
| int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| |
| assert(spapr->htab_first_pass); |
| |
| do { |
| int chunkstart; |
| |
| /* Consume invalid HPTEs */ |
| while ((index < htabslots) |
| && !HPTE_VALID(HPTE(spapr->htab, index))) { |
| index++; |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| } |
| |
| /* Consume valid HPTEs */ |
| chunkstart = index; |
| while ((index < htabslots) |
| && HPTE_VALID(HPTE(spapr->htab, index))) { |
| index++; |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| } |
| |
| if (index > chunkstart) { |
| int n_valid = index - chunkstart; |
| |
| qemu_put_be32(f, chunkstart); |
| qemu_put_be16(f, n_valid); |
| qemu_put_be16(f, 0); |
| qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), |
| HASH_PTE_SIZE_64 * n_valid); |
| |
| if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { |
| break; |
| } |
| } |
| } while ((index < htabslots) && !qemu_file_rate_limit(f)); |
| |
| if (index >= htabslots) { |
| assert(index == htabslots); |
| index = 0; |
| spapr->htab_first_pass = false; |
| } |
| spapr->htab_save_index = index; |
| } |
| |
| static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr, |
| int64_t max_ns) |
| { |
| bool final = max_ns < 0; |
| int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; |
| int examined = 0, sent = 0; |
| int index = spapr->htab_save_index; |
| int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| |
| assert(!spapr->htab_first_pass); |
| |
| do { |
| int chunkstart, invalidstart; |
| |
| /* Consume non-dirty HPTEs */ |
| while ((index < htabslots) |
| && !HPTE_DIRTY(HPTE(spapr->htab, index))) { |
| index++; |
| examined++; |
| } |
| |
| chunkstart = index; |
| /* Consume valid dirty HPTEs */ |
| while ((index < htabslots) |
| && HPTE_DIRTY(HPTE(spapr->htab, index)) |
| && HPTE_VALID(HPTE(spapr->htab, index))) { |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| index++; |
| examined++; |
| } |
| |
| invalidstart = index; |
| /* Consume invalid dirty HPTEs */ |
| while ((index < htabslots) |
| && HPTE_DIRTY(HPTE(spapr->htab, index)) |
| && !HPTE_VALID(HPTE(spapr->htab, index))) { |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| index++; |
| examined++; |
| } |
| |
| if (index > chunkstart) { |
| int n_valid = invalidstart - chunkstart; |
| int n_invalid = index - invalidstart; |
| |
| qemu_put_be32(f, chunkstart); |
| qemu_put_be16(f, n_valid); |
| qemu_put_be16(f, n_invalid); |
| qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), |
| HASH_PTE_SIZE_64 * n_valid); |
| sent += index - chunkstart; |
| |
| if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { |
| break; |
| } |
| } |
| |
| if (examined >= htabslots) { |
| break; |
| } |
| |
| if (index >= htabslots) { |
| assert(index == htabslots); |
| index = 0; |
| } |
| } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); |
| |
| if (index >= htabslots) { |
| assert(index == htabslots); |
| index = 0; |
| } |
| |
| spapr->htab_save_index = index; |
| |
| return (examined >= htabslots) && (sent == 0) ? 1 : 0; |
| } |
| |
| #define MAX_ITERATION_NS 5000000 /* 5 ms */ |
| #define MAX_KVM_BUF_SIZE 2048 |
| |
| static int htab_save_iterate(QEMUFile *f, void *opaque) |
| { |
| sPAPREnvironment *spapr = opaque; |
| int rc = 0; |
| |
| /* Iteration header */ |
| qemu_put_be32(f, 0); |
| |
| if (!spapr->htab) { |
| assert(kvm_enabled()); |
| |
| rc = kvmppc_save_htab(f, spapr->htab_fd, |
| MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); |
| if (rc < 0) { |
| return rc; |
| } |
| } else if (spapr->htab_first_pass) { |
| htab_save_first_pass(f, spapr, MAX_ITERATION_NS); |
| } else { |
| rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); |
| } |
| |
| /* End marker */ |
| qemu_put_be32(f, 0); |
| qemu_put_be16(f, 0); |
| qemu_put_be16(f, 0); |
| |
| return rc; |
| } |
| |
| static int htab_save_complete(QEMUFile *f, void *opaque) |
| { |
| sPAPREnvironment *spapr = opaque; |
| |
| /* Iteration header */ |
| qemu_put_be32(f, 0); |
| |
| if (!spapr->htab) { |
| int rc; |
| |
| assert(kvm_enabled()); |
| |
| rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1); |
| if (rc < 0) { |
| return rc; |
| } |
| close(spapr->htab_fd); |
| spapr->htab_fd = -1; |
| } else { |
| htab_save_later_pass(f, spapr, -1); |
| } |
| |
| /* End marker */ |
| qemu_put_be32(f, 0); |
| qemu_put_be16(f, 0); |
| qemu_put_be16(f, 0); |
| |
| return 0; |
| } |
| |
| static int htab_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| sPAPREnvironment *spapr = opaque; |
| uint32_t section_hdr; |
| int fd = -1; |
| |
| if (version_id < 1 || version_id > 1) { |
| fprintf(stderr, "htab_load() bad version\n"); |
| return -EINVAL; |
| } |
| |
| section_hdr = qemu_get_be32(f); |
| |
| if (section_hdr) { |
| /* First section, just the hash shift */ |
| if (spapr->htab_shift != section_hdr) { |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| if (!spapr->htab) { |
| assert(kvm_enabled()); |
| |
| fd = kvmppc_get_htab_fd(true); |
| if (fd < 0) { |
| fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n", |
| strerror(errno)); |
| } |
| } |
| |
| while (true) { |
| uint32_t index; |
| uint16_t n_valid, n_invalid; |
| |
| index = qemu_get_be32(f); |
| n_valid = qemu_get_be16(f); |
| n_invalid = qemu_get_be16(f); |
| |
| if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { |
| /* End of Stream */ |
| break; |
| } |
| |
| if ((index + n_valid + n_invalid) > |
| (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { |
| /* Bad index in stream */ |
| fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) " |
| "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid, |
| spapr->htab_shift); |
| return -EINVAL; |
| } |
| |
| if (spapr->htab) { |
| if (n_valid) { |
| qemu_get_buffer(f, HPTE(spapr->htab, index), |
| HASH_PTE_SIZE_64 * n_valid); |
| } |
| if (n_invalid) { |
| memset(HPTE(spapr->htab, index + n_valid), 0, |
| HASH_PTE_SIZE_64 * n_invalid); |
| } |
| } else { |
| int rc; |
| |
| assert(fd >= 0); |
| |
| rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); |
| if (rc < 0) { |
| return rc; |
| } |
| } |
| } |
| |
| if (!spapr->htab) { |
| assert(fd >= 0); |
| close(fd); |
| } |
| |
| return 0; |
| } |
| |
| static SaveVMHandlers savevm_htab_handlers = { |
| .save_live_setup = htab_save_setup, |
| .save_live_iterate = htab_save_iterate, |
| .save_live_complete = htab_save_complete, |
| .load_state = htab_load, |
| }; |
| |
| /* pSeries LPAR / sPAPR hardware init */ |
| static void ppc_spapr_init(QEMUMachineInitArgs *args) |
| { |
| ram_addr_t ram_size = args->ram_size; |
| const char *cpu_model = args->cpu_model; |
| const char *kernel_filename = args->kernel_filename; |
| const char *kernel_cmdline = args->kernel_cmdline; |
| const char *initrd_filename = args->initrd_filename; |
| const char *boot_device = args->boot_order; |
| PowerPCCPU *cpu; |
| CPUPPCState *env; |
| PCIHostState *phb; |
| int i; |
| MemoryRegion *sysmem = get_system_memory(); |
| MemoryRegion *ram = g_new(MemoryRegion, 1); |
| hwaddr rma_alloc_size; |
| hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; |
| uint32_t initrd_base = 0; |
| long kernel_size = 0, initrd_size = 0; |
| long load_limit, rtas_limit, fw_size; |
| bool kernel_le = false; |
| char *filename; |
| |
| msi_supported = true; |
| |
| spapr = g_malloc0(sizeof(*spapr)); |
| QLIST_INIT(&spapr->phbs); |
| |
| cpu_ppc_hypercall = emulate_spapr_hypercall; |
| |
| /* Allocate RMA if necessary */ |
| rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); |
| |
| if (rma_alloc_size == -1) { |
| hw_error("qemu: Unable to create RMA\n"); |
| exit(1); |
| } |
| |
| if (rma_alloc_size && (rma_alloc_size < node0_size)) { |
| spapr->rma_size = rma_alloc_size; |
| } else { |
| spapr->rma_size = node0_size; |
| |
| /* With KVM, we don't actually know whether KVM supports an |
| * unbounded RMA (PR KVM) or is limited by the hash table size |
| * (HV KVM using VRMA), so we always assume the latter |
| * |
| * In that case, we also limit the initial allocations for RTAS |
| * etc... to 256M since we have no way to know what the VRMA size |
| * is going to be as it depends on the size of the hash table |
| * isn't determined yet. |
| */ |
| if (kvm_enabled()) { |
| spapr->vrma_adjust = 1; |
| spapr->rma_size = MIN(spapr->rma_size, 0x10000000); |
| } |
| } |
| |
| if (spapr->rma_size > node0_size) { |
| fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n", |
| spapr->rma_size); |
| exit(1); |
| } |
| |
| /* We place the device tree and RTAS just below either the top of the RMA, |
| * or just below 2GB, whichever is lowere, so that it can be |
| * processed with 32-bit real mode code if necessary */ |
| rtas_limit = MIN(spapr->rma_size, 0x80000000); |
| spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; |
| spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; |
| load_limit = spapr->fdt_addr - FW_OVERHEAD; |
| |
| /* We aim for a hash table of size 1/128 the size of RAM. The |
| * normal rule of thumb is 1/64 the size of RAM, but that's much |
| * more than needed for the Linux guests we support. */ |
| spapr->htab_shift = 18; /* Minimum architected size */ |
| while (spapr->htab_shift <= 46) { |
| if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) { |
| break; |
| } |
| spapr->htab_shift++; |
| } |
| |
| /* Set up Interrupt Controller before we create the VCPUs */ |
| spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads, |
| XICS_IRQS); |
| spapr->next_irq = XICS_IRQ_BASE; |
| |
| /* init CPUs */ |
| if (cpu_model == NULL) { |
| cpu_model = kvm_enabled() ? "host" : "POWER7"; |
| } |
| for (i = 0; i < smp_cpus; i++) { |
| cpu = cpu_ppc_init(cpu_model); |
| if (cpu == NULL) { |
| fprintf(stderr, "Unable to find PowerPC CPU definition\n"); |
| exit(1); |
| } |
| env = &cpu->env; |
| |
| /* Set time-base frequency to 512 MHz */ |
| cpu_ppc_tb_init(env, TIMEBASE_FREQ); |
| |
| /* PAPR always has exception vectors in RAM not ROM. To ensure this, |
| * MSR[IP] should never be set. |
| */ |
| env->msr_mask &= ~(1 << 6); |
| |
| /* Tell KVM that we're in PAPR mode */ |
| if (kvm_enabled()) { |
| kvmppc_set_papr(cpu); |
| } |
| |
| xics_cpu_setup(spapr->icp, cpu); |
| |
| qemu_register_reset(spapr_cpu_reset, cpu); |
| } |
| |
| /* allocate RAM */ |
| spapr->ram_limit = ram_size; |
| if (spapr->ram_limit > rma_alloc_size) { |
| ram_addr_t nonrma_base = rma_alloc_size; |
| ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; |
| |
| memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size); |
| vmstate_register_ram_global(ram); |
| memory_region_add_subregion(sysmem, nonrma_base, ram); |
| } |
| |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); |
| spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, |
| rtas_limit - spapr->rtas_addr); |
| if (spapr->rtas_size < 0) { |
| hw_error("qemu: could not load LPAR rtas '%s'\n", filename); |
| exit(1); |
| } |
| if (spapr->rtas_size > RTAS_MAX_SIZE) { |
| hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n", |
| spapr->rtas_size, RTAS_MAX_SIZE); |
| exit(1); |
| } |
| g_free(filename); |
| |
| /* Set up EPOW events infrastructure */ |
| spapr_events_init(spapr); |
| |
| /* Set up VIO bus */ |
| spapr->vio_bus = spapr_vio_bus_init(); |
| |
| for (i = 0; i < MAX_SERIAL_PORTS; i++) { |
| if (serial_hds[i]) { |
| spapr_vty_create(spapr->vio_bus, serial_hds[i]); |
| } |
| } |
| |
| /* We always have at least the nvram device on VIO */ |
| spapr_create_nvram(spapr); |
| |
| /* Set up PCI */ |
| spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW); |
| spapr_pci_rtas_init(); |
| |
| phb = spapr_create_phb(spapr, 0); |
| |
| for (i = 0; i < nb_nics; i++) { |
| NICInfo *nd = &nd_table[i]; |
| |
| if (!nd->model) { |
| nd->model = g_strdup("ibmveth"); |
| } |
| |
| if (strcmp(nd->model, "ibmveth") == 0) { |
| spapr_vlan_create(spapr->vio_bus, nd); |
| } else { |
| pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); |
| } |
| } |
| |
| for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { |
| spapr_vscsi_create(spapr->vio_bus); |
| } |
| |
| /* Graphics */ |
| if (spapr_vga_init(phb->bus)) { |
| spapr->has_graphics = true; |
| } |
| |
| if (usb_enabled(spapr->has_graphics)) { |
| pci_create_simple(phb->bus, -1, "pci-ohci"); |
| if (spapr->has_graphics) { |
| usbdevice_create("keyboard"); |
| usbdevice_create("mouse"); |
| } |
| } |
| |
| if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { |
| fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " |
| "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); |
| exit(1); |
| } |
| |
| if (kernel_filename) { |
| uint64_t lowaddr = 0; |
| |
| kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, |
| NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); |
| if (kernel_size == ELF_LOAD_WRONG_ENDIAN) { |
| kernel_size = load_elf(kernel_filename, |
| translate_kernel_address, NULL, |
| NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0); |
| kernel_le = kernel_size > 0; |
| } |
| if (kernel_size < 0) { |
| fprintf(stderr, "qemu: error loading %s: %s\n", |
| kernel_filename, load_elf_strerror(kernel_size)); |
| exit(1); |
| } |
| |
| /* load initrd */ |
| if (initrd_filename) { |
| /* Try to locate the initrd in the gap between the kernel |
| * and the firmware. Add a bit of space just in case |
| */ |
| initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; |
| initrd_size = load_image_targphys(initrd_filename, initrd_base, |
| load_limit - initrd_base); |
| if (initrd_size < 0) { |
| fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", |
| initrd_filename); |
| exit(1); |
| } |
| } else { |
| initrd_base = 0; |
| initrd_size = 0; |
| } |
| } |
| |
| if (bios_name == NULL) { |
| bios_name = FW_FILE_NAME; |
| } |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); |
| fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); |
| if (fw_size < 0) { |
| hw_error("qemu: could not load LPAR rtas '%s'\n", filename); |
| exit(1); |
| } |
| g_free(filename); |
| |
| spapr->entry_point = 0x100; |
| |
| vmstate_register(NULL, 0, &vmstate_spapr, spapr); |
| register_savevm_live(NULL, "spapr/htab", -1, 1, |
| &savevm_htab_handlers, spapr); |
| |
| /* Prepare the device tree */ |
| spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size, |
| kernel_size, kernel_le, |
| boot_device, kernel_cmdline, |
| spapr->epow_irq); |
| assert(spapr->fdt_skel != NULL); |
| } |
| |
| static int spapr_kvm_type(const char *vm_type) |
| { |
| if (!vm_type) { |
| return 0; |
| } |
| |
| if (!strcmp(vm_type, "HV")) { |
| return 1; |
| } |
| |
| if (!strcmp(vm_type, "PR")) { |
| return 2; |
| } |
| |
| error_report("Unknown kvm-type specified '%s'", vm_type); |
| exit(1); |
| } |
| |
| static QEMUMachine spapr_machine = { |
| .name = "pseries", |
| .desc = "pSeries Logical Partition (PAPR compliant)", |
| .is_default = 1, |
| .init = ppc_spapr_init, |
| .reset = ppc_spapr_reset, |
| .block_default_type = IF_SCSI, |
| .max_cpus = MAX_CPUS, |
| .no_parallel = 1, |
| .default_boot_order = NULL, |
| .kvm_type = spapr_kvm_type, |
| }; |
| |
| /* |
| * Implementation of an interface to adjust firmware patch |
| * for the bootindex property handling. |
| */ |
| static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, |
| DeviceState *dev) |
| { |
| #define CAST(type, obj, name) \ |
| ((type *)object_dynamic_cast(OBJECT(obj), (name))) |
| SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); |
| sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); |
| |
| if (d) { |
| void *spapr = CAST(void, bus->parent, "spapr-vscsi"); |
| VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); |
| USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); |
| |
| if (spapr) { |
| /* |
| * Replace "channel@0/disk@0,0" with "disk@8000000000000000": |
| * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun |
| * in the top 16 bits of the 64-bit LUN |
| */ |
| unsigned id = 0x8000 | (d->id << 8) | d->lun; |
| return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), |
| (uint64_t)id << 48); |
| } else if (virtio) { |
| /* |
| * We use SRP luns of the form 01000000 | (target << 8) | lun |
| * in the top 32 bits of the 64-bit LUN |
| * Note: the quote above is from SLOF and it is wrong, |
| * the actual binding is: |
| * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) |
| */ |
| unsigned id = 0x1000000 | (d->id << 16) | d->lun; |
| return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), |
| (uint64_t)id << 32); |
| } else if (usb) { |
| /* |
| * We use SRP luns of the form 01000000 | (usb-port << 16) | lun |
| * in the top 32 bits of the 64-bit LUN |
| */ |
| unsigned usb_port = atoi(usb->port->path); |
| unsigned id = 0x1000000 | (usb_port << 16) | d->lun; |
| return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), |
| (uint64_t)id << 32); |
| } |
| } |
| |
| if (phb) { |
| /* Replace "pci" with "pci@800000020000000" */ |
| return g_strdup_printf("pci@%"PRIX64, phb->buid); |
| } |
| |
| return NULL; |
| } |
| |
| static void spapr_machine_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); |
| |
| mc->qemu_machine = data; |
| fwc->get_dev_path = spapr_get_fw_dev_path; |
| } |
| |
| static const TypeInfo spapr_machine_info = { |
| .name = TYPE_SPAPR_MACHINE, |
| .parent = TYPE_MACHINE, |
| .class_init = spapr_machine_class_init, |
| .class_data = &spapr_machine, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_FW_PATH_PROVIDER }, |
| { } |
| }, |
| }; |
| |
| static void spapr_machine_register_types(void) |
| { |
| type_register_static(&spapr_machine_info); |
| } |
| |
| type_init(spapr_machine_register_types) |