blob: 0f8c4b86e0232257932544cddeb2b0da8b7d1c18 [file] [log] [blame]
/*
* ARM GICv3 support - common bits of emulated and KVM kernel model
*
* Copyright (c) 2012 Linaro Limited
* Copyright (c) 2015 Huawei.
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
* Written by Peter Maydell
* Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qom/cpu.h"
#include "hw/intc/arm_gicv3_common.h"
#include "gicv3_internal.h"
#include "hw/arm/linux-boot-if.h"
static void gicv3_pre_save(void *opaque)
{
GICv3State *s = (GICv3State *)opaque;
ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
if (c->pre_save) {
c->pre_save(s);
}
}
static int gicv3_post_load(void *opaque, int version_id)
{
GICv3State *s = (GICv3State *)opaque;
ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
if (c->post_load) {
c->post_load(s);
}
return 0;
}
static const VMStateDescription vmstate_gicv3_cpu = {
.name = "arm_gicv3_cpu",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(level, GICv3CPUState),
VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
VMSTATE_UINT32(gicr_waker, GICv3CPUState),
VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
VMSTATE_UINT32(edge_trigger, GICv3CPUState),
VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_gicv3 = {
.name = "arm_gicv3",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = gicv3_pre_save,
.post_load = gicv3_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(gicd_ctlr, GICv3State),
VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
vmstate_gicv3_cpu, GICv3CPUState),
VMSTATE_END_OF_LIST()
}
};
void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
const MemoryRegionOps *ops)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(s);
int i;
/* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
* GPIO array layout is thus:
* [0..N-1] spi
* [N..N+31] PPIs for CPU 0
* [N+32..N+63] PPIs for CPU 1
* ...
*/
i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
qdev_init_gpio_in(DEVICE(s), handler, i);
for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
}
for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
}
memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
"gicv3_dist", 0x10000);
memory_region_init_io(&s->iomem_redist, OBJECT(s), ops ? &ops[1] : NULL, s,
"gicv3_redist", 0x20000 * s->num_cpu);
sysbus_init_mmio(sbd, &s->iomem_dist);
sysbus_init_mmio(sbd, &s->iomem_redist);
}
static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
{
GICv3State *s = ARM_GICV3_COMMON(dev);
int i;
/* revision property is actually reserved and currently used only in order
* to keep the interface compatible with GICv2 code, avoiding extra
* conditions. However, in future it could be used, for example, if we
* implement GICv4.
*/
if (s->revision != 3) {
error_setg(errp, "unsupported GIC revision %d", s->revision);
return;
}
if (s->num_irq > GICV3_MAXIRQ) {
error_setg(errp,
"requested %u interrupt lines exceeds GIC maximum %d",
s->num_irq, GICV3_MAXIRQ);
return;
}
if (s->num_irq < GIC_INTERNAL) {
error_setg(errp,
"requested %u interrupt lines is below GIC minimum %d",
s->num_irq, GIC_INTERNAL);
return;
}
/* ITLinesNumber is represented as (N / 32) - 1, so this is an
* implementation imposed restriction, not an architectural one,
* so we don't have to deal with bitfields where only some of the
* bits in a 32-bit word should be valid.
*/
if (s->num_irq % 32) {
error_setg(errp,
"%d interrupt lines unsupported: not divisible by 32",
s->num_irq);
return;
}
s->cpu = g_new0(GICv3CPUState, s->num_cpu);
for (i = 0; i < s->num_cpu; i++) {
CPUState *cpu = qemu_get_cpu(i);
uint64_t cpu_affid;
int last;
s->cpu[i].cpu = cpu;
s->cpu[i].gic = s;
/* Pre-construct the GICR_TYPER:
* For our implementation:
* Top 32 bits are the affinity value of the associated CPU
* CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
* Processor_Number == CPU index starting from 0
* DPGS == 0 (GICR_CTLR.DPG* not supported)
* Last == 1 if this is the last redistributor in a series of
* contiguous redistributor pages
* DirectLPI == 0 (direct injection of LPIs not supported)
* VLPIS == 0 (virtual LPIs not supported)
* PLPIS == 0 (physical LPIs not supported)
*/
cpu_affid = object_property_get_int(OBJECT(cpu), "mp-affinity", NULL);
last = (i == s->num_cpu - 1);
/* The CPU mp-affinity property is in MPIDR register format; squash
* the affinity bytes into 32 bits as the GICR_TYPER has them.
*/
cpu_affid = (cpu_affid & 0xFF00000000ULL >> 8) | (cpu_affid & 0xFFFFFF);
s->cpu[i].gicr_typer = (cpu_affid << 32) |
(1 << 24) |
(i << 8) |
(last << 4);
}
}
static void arm_gicv3_common_reset(DeviceState *dev)
{
GICv3State *s = ARM_GICV3_COMMON(dev);
int i;
for (i = 0; i < s->num_cpu; i++) {
GICv3CPUState *cs = &s->cpu[i];
cs->level = 0;
cs->gicr_ctlr = 0;
cs->gicr_statusr[GICV3_S] = 0;
cs->gicr_statusr[GICV3_NS] = 0;
cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
cs->gicr_propbaser = 0;
cs->gicr_pendbaser = 0;
/* If we're resetting a TZ-aware GIC as if secure firmware
* had set it up ready to start a kernel in non-secure, we
* need to set interrupts to group 1 so the kernel can use them.
* Otherwise they reset to group 0 like the hardware.
*/
if (s->irq_reset_nonsecure) {
cs->gicr_igroupr0 = 0xffffffff;
} else {
cs->gicr_igroupr0 = 0;
}
cs->gicr_ienabler0 = 0;
cs->gicr_ipendr0 = 0;
cs->gicr_iactiver0 = 0;
cs->edge_trigger = 0xffff;
cs->gicr_igrpmodr0 = 0;
cs->gicr_nsacr = 0;
memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
cs->hppi.prio = 0xff;
/* State in the CPU interface must *not* be reset here, because it
* is part of the CPU's reset domain, not the GIC device's.
*/
}
/* For our implementation affinity routing is always enabled */
if (s->security_extn) {
s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
} else {
s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
}
s->gicd_statusr[GICV3_S] = 0;
s->gicd_statusr[GICV3_NS] = 0;
memset(s->group, 0, sizeof(s->group));
memset(s->grpmod, 0, sizeof(s->grpmod));
memset(s->enabled, 0, sizeof(s->enabled));
memset(s->pending, 0, sizeof(s->pending));
memset(s->active, 0, sizeof(s->active));
memset(s->level, 0, sizeof(s->level));
memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
/* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
* write these to get sane behaviour and we need not populate the
* pointer cache here; however having the cache be different for
* "happened to be 0 from reset" and "guest wrote 0" would be
* too confusing.
*/
gicv3_cache_all_target_cpustates(s);
if (s->irq_reset_nonsecure) {
/* If we're resetting a TZ-aware GIC as if secure firmware
* had set it up ready to start a kernel in non-secure, we
* need to set interrupts to group 1 so the kernel can use them.
* Otherwise they reset to group 0 like the hardware.
*/
for (i = GIC_INTERNAL; i < s->num_irq; i++) {
gicv3_gicd_group_set(s, i);
}
}
}
static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
bool secure_boot)
{
GICv3State *s = ARM_GICV3_COMMON(obj);
if (s->security_extn && !secure_boot) {
/* We're directly booting a kernel into NonSecure. If this GIC
* implements the security extensions then we must configure it
* to have all the interrupts be NonSecure (this is a job that
* is done by the Secure boot firmware in real hardware, and in
* this mode QEMU is acting as a minimalist firmware-and-bootloader
* equivalent).
*/
s->irq_reset_nonsecure = true;
}
}
static Property arm_gicv3_common_properties[] = {
DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
dc->reset = arm_gicv3_common_reset;
dc->realize = arm_gicv3_common_realize;
dc->props = arm_gicv3_common_properties;
dc->vmsd = &vmstate_gicv3;
albifc->arm_linux_init = arm_gic_common_linux_init;
}
static const TypeInfo arm_gicv3_common_type = {
.name = TYPE_ARM_GICV3_COMMON,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(GICv3State),
.class_size = sizeof(ARMGICv3CommonClass),
.class_init = arm_gicv3_common_class_init,
.abstract = true,
.interfaces = (InterfaceInfo []) {
{ TYPE_ARM_LINUX_BOOT_IF },
{ },
},
};
static void register_types(void)
{
type_register_static(&arm_gicv3_common_type);
}
type_init(register_types)