blob: 8d6f9a92f2e69cf5355c112f0c4e402805173f4c [file] [log] [blame]
/*
* ARM NEON vector operations.
*
* Copyright (c) 2007, 2008 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GNU GPL v2.
*/
#include <stdlib.h>
#include <stdio.h>
#include "cpu.h"
#include "exec/exec-all.h"
#include "helper.h"
#define SIGNBIT (uint32_t)0x80000000
#define SIGNBIT64 ((uint64_t)1 << 63)
#define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
#define NEON_TYPE1(name, type) \
typedef struct \
{ \
type v1; \
} neon_##name;
#ifdef HOST_WORDS_BIGENDIAN
#define NEON_TYPE2(name, type) \
typedef struct \
{ \
type v2; \
type v1; \
} neon_##name;
#define NEON_TYPE4(name, type) \
typedef struct \
{ \
type v4; \
type v3; \
type v2; \
type v1; \
} neon_##name;
#else
#define NEON_TYPE2(name, type) \
typedef struct \
{ \
type v1; \
type v2; \
} neon_##name;
#define NEON_TYPE4(name, type) \
typedef struct \
{ \
type v1; \
type v2; \
type v3; \
type v4; \
} neon_##name;
#endif
NEON_TYPE4(s8, int8_t)
NEON_TYPE4(u8, uint8_t)
NEON_TYPE2(s16, int16_t)
NEON_TYPE2(u16, uint16_t)
NEON_TYPE1(s32, int32_t)
NEON_TYPE1(u32, uint32_t)
#undef NEON_TYPE4
#undef NEON_TYPE2
#undef NEON_TYPE1
/* Copy from a uint32_t to a vector structure type. */
#define NEON_UNPACK(vtype, dest, val) do { \
union { \
vtype v; \
uint32_t i; \
} conv_u; \
conv_u.i = (val); \
dest = conv_u.v; \
} while(0)
/* Copy from a vector structure type to a uint32_t. */
#define NEON_PACK(vtype, dest, val) do { \
union { \
vtype v; \
uint32_t i; \
} conv_u; \
conv_u.v = (val); \
dest = conv_u.i; \
} while(0)
#define NEON_DO1 \
NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
#define NEON_DO2 \
NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
#define NEON_DO4 \
NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
#define NEON_VOP_BODY(vtype, n) \
{ \
uint32_t res; \
vtype vsrc1; \
vtype vsrc2; \
vtype vdest; \
NEON_UNPACK(vtype, vsrc1, arg1); \
NEON_UNPACK(vtype, vsrc2, arg2); \
NEON_DO##n; \
NEON_PACK(vtype, res, vdest); \
return res; \
}
#define NEON_VOP(name, vtype, n) \
uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
NEON_VOP_BODY(vtype, n)
#define NEON_VOP_ENV(name, vtype, n) \
uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
NEON_VOP_BODY(vtype, n)
/* Pairwise operations. */
/* For 32-bit elements each segment only contains a single element, so
the elementwise and pairwise operations are the same. */
#define NEON_PDO2 \
NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
#define NEON_PDO4 \
NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
#define NEON_POP(name, vtype, n) \
uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
{ \
uint32_t res; \
vtype vsrc1; \
vtype vsrc2; \
vtype vdest; \
NEON_UNPACK(vtype, vsrc1, arg1); \
NEON_UNPACK(vtype, vsrc2, arg2); \
NEON_PDO##n; \
NEON_PACK(vtype, res, vdest); \
return res; \
}
/* Unary operators. */
#define NEON_VOP1(name, vtype, n) \
uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
{ \
vtype vsrc1; \
vtype vdest; \
NEON_UNPACK(vtype, vsrc1, arg); \
NEON_DO##n; \
NEON_PACK(vtype, arg, vdest); \
return arg; \
}
#define NEON_USAT(dest, src1, src2, type) do { \
uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
if (tmp != (type)tmp) { \
SET_QC(); \
dest = ~0; \
} else { \
dest = tmp; \
}} while(0)
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
NEON_VOP_ENV(qadd_u8, neon_u8, 4)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
NEON_VOP_ENV(qadd_u16, neon_u16, 2)
#undef NEON_FN
#undef NEON_USAT
uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (res < a) {
SET_QC();
res = ~0;
}
return res;
}
uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
{
uint64_t res;
res = src1 + src2;
if (res < src1) {
SET_QC();
res = ~(uint64_t)0;
}
return res;
}
#define NEON_SSAT(dest, src1, src2, type) do { \
int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
if (tmp != (type)tmp) { \
SET_QC(); \
if (src2 > 0) { \
tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
} else { \
tmp = 1 << (sizeof(type) * 8 - 1); \
} \
} \
dest = tmp; \
} while(0)
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
NEON_VOP_ENV(qadd_s8, neon_s8, 4)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
NEON_VOP_ENV(qadd_s16, neon_s16, 2)
#undef NEON_FN
#undef NEON_SSAT
uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
SET_QC();
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
}
return res;
}
uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
{
uint64_t res;
res = src1 + src2;
if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
SET_QC();
res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
}
return res;
}
/* Unsigned saturating accumulate of signed value
*
* Op1/Rn is treated as signed
* Op2/Rd is treated as unsigned
*
* Explicit casting is used to ensure the correct sign extension of
* inputs. The result is treated as a unsigned value and saturated as such.
*
* We use a macro for the 8/16 bit cases which expects signed integers of va,
* vb, and vr for interim calculation and an unsigned 32 bit result value r.
*/
#define USATACC(bits, shift) \
do { \
va = sextract32(a, shift, bits); \
vb = extract32(b, shift, bits); \
vr = va + vb; \
if (vr > UINT##bits##_MAX) { \
SET_QC(); \
vr = UINT##bits##_MAX; \
} else if (vr < 0) { \
SET_QC(); \
vr = 0; \
} \
r = deposit32(r, shift, bits, vr); \
} while (0)
uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b)
{
int16_t va, vb, vr;
uint32_t r = 0;
USATACC(8, 0);
USATACC(8, 8);
USATACC(8, 16);
USATACC(8, 24);
return r;
}
uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b)
{
int32_t va, vb, vr;
uint64_t r = 0;
USATACC(16, 0);
USATACC(16, 16);
return r;
}
#undef USATACC
uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
{
int64_t va = (int32_t)a;
int64_t vb = (uint32_t)b;
int64_t vr = va + vb;
if (vr > UINT32_MAX) {
SET_QC();
vr = UINT32_MAX;
} else if (vr < 0) {
SET_QC();
vr = 0;
}
return vr;
}
uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b)
{
uint64_t res;
res = a + b;
/* We only need to look at the pattern of SIGN bits to detect
* +ve/-ve saturation
*/
if (~a & b & ~res & SIGNBIT64) {
SET_QC();
res = UINT64_MAX;
} else if (a & ~b & res & SIGNBIT64) {
SET_QC();
res = 0;
}
return res;
}
/* Signed saturating accumulate of unsigned value
*
* Op1/Rn is treated as unsigned
* Op2/Rd is treated as signed
*
* The result is treated as a signed value and saturated as such
*
* We use a macro for the 8/16 bit cases which expects signed integers of va,
* vb, and vr for interim calculation and an unsigned 32 bit result value r.
*/
#define SSATACC(bits, shift) \
do { \
va = extract32(a, shift, bits); \
vb = sextract32(b, shift, bits); \
vr = va + vb; \
if (vr > INT##bits##_MAX) { \
SET_QC(); \
vr = INT##bits##_MAX; \
} else if (vr < INT##bits##_MIN) { \
SET_QC(); \
vr = INT##bits##_MIN; \
} \
r = deposit32(r, shift, bits, vr); \
} while (0)
uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b)
{
int16_t va, vb, vr;
uint32_t r = 0;
SSATACC(8, 0);
SSATACC(8, 8);
SSATACC(8, 16);
SSATACC(8, 24);
return r;
}
uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b)
{
int32_t va, vb, vr;
uint32_t r = 0;
SSATACC(16, 0);
SSATACC(16, 16);
return r;
}
#undef SSATACC
uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
{
int64_t res;
int64_t op1 = (uint32_t)a;
int64_t op2 = (int32_t)b;
res = op1 + op2;
if (res > INT32_MAX) {
SET_QC();
res = INT32_MAX;
} else if (res < INT32_MIN) {
SET_QC();
res = INT32_MIN;
}
return res;
}
uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b)
{
uint64_t res;
res = a + b;
/* We only need to look at the pattern of SIGN bits to detect an overflow */
if (((a & res)
| (~b & res)
| (a & ~b)) & SIGNBIT64) {
SET_QC();
res = INT64_MAX;
}
return res;
}
#define NEON_USAT(dest, src1, src2, type) do { \
uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
if (tmp != (type)tmp) { \
SET_QC(); \
dest = 0; \
} else { \
dest = tmp; \
}} while(0)
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
NEON_VOP_ENV(qsub_u8, neon_u8, 4)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
NEON_VOP_ENV(qsub_u16, neon_u16, 2)
#undef NEON_FN
#undef NEON_USAT
uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a - b;
if (res > a) {
SET_QC();
res = 0;
}
return res;
}
uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
{
uint64_t res;
if (src1 < src2) {
SET_QC();
res = 0;
} else {
res = src1 - src2;
}
return res;
}
#define NEON_SSAT(dest, src1, src2, type) do { \
int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
if (tmp != (type)tmp) { \
SET_QC(); \
if (src2 < 0) { \
tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
} else { \
tmp = 1 << (sizeof(type) * 8 - 1); \
} \
} \
dest = tmp; \
} while(0)
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
NEON_VOP_ENV(qsub_s8, neon_s8, 4)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
NEON_VOP_ENV(qsub_s16, neon_s16, 2)
#undef NEON_FN
#undef NEON_SSAT
uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a - b;
if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
SET_QC();
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
}
return res;
}
uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
{
uint64_t res;
res = src1 - src2;
if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
SET_QC();
res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
}
return res;
}
#define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
NEON_VOP(hadd_s8, neon_s8, 4)
NEON_VOP(hadd_u8, neon_u8, 4)
NEON_VOP(hadd_s16, neon_s16, 2)
NEON_VOP(hadd_u16, neon_u16, 2)
#undef NEON_FN
int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
{
int32_t dest;
dest = (src1 >> 1) + (src2 >> 1);
if (src1 & src2 & 1)
dest++;
return dest;
}
uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
{
uint32_t dest;
dest = (src1 >> 1) + (src2 >> 1);
if (src1 & src2 & 1)
dest++;
return dest;
}
#define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
NEON_VOP(rhadd_s8, neon_s8, 4)
NEON_VOP(rhadd_u8, neon_u8, 4)
NEON_VOP(rhadd_s16, neon_s16, 2)
NEON_VOP(rhadd_u16, neon_u16, 2)
#undef NEON_FN
int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
{
int32_t dest;
dest = (src1 >> 1) + (src2 >> 1);
if ((src1 | src2) & 1)
dest++;
return dest;
}
uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
{
uint32_t dest;
dest = (src1 >> 1) + (src2 >> 1);
if ((src1 | src2) & 1)
dest++;
return dest;
}
#define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
NEON_VOP(hsub_s8, neon_s8, 4)
NEON_VOP(hsub_u8, neon_u8, 4)
NEON_VOP(hsub_s16, neon_s16, 2)
NEON_VOP(hsub_u16, neon_u16, 2)
#undef NEON_FN
int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
{
int32_t dest;
dest = (src1 >> 1) - (src2 >> 1);
if ((~src1) & src2 & 1)
dest--;
return dest;
}
uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
{
uint32_t dest;
dest = (src1 >> 1) - (src2 >> 1);
if ((~src1) & src2 & 1)
dest--;
return dest;
}
#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
NEON_VOP(cgt_s8, neon_s8, 4)
NEON_VOP(cgt_u8, neon_u8, 4)
NEON_VOP(cgt_s16, neon_s16, 2)
NEON_VOP(cgt_u16, neon_u16, 2)
NEON_VOP(cgt_s32, neon_s32, 1)
NEON_VOP(cgt_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
NEON_VOP(cge_s8, neon_s8, 4)
NEON_VOP(cge_u8, neon_u8, 4)
NEON_VOP(cge_s16, neon_s16, 2)
NEON_VOP(cge_u16, neon_u16, 2)
NEON_VOP(cge_s32, neon_s32, 1)
NEON_VOP(cge_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
NEON_VOP(min_s8, neon_s8, 4)
NEON_VOP(min_u8, neon_u8, 4)
NEON_VOP(min_s16, neon_s16, 2)
NEON_VOP(min_u16, neon_u16, 2)
NEON_VOP(min_s32, neon_s32, 1)
NEON_VOP(min_u32, neon_u32, 1)
NEON_POP(pmin_s8, neon_s8, 4)
NEON_POP(pmin_u8, neon_u8, 4)
NEON_POP(pmin_s16, neon_s16, 2)
NEON_POP(pmin_u16, neon_u16, 2)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
NEON_VOP(max_s8, neon_s8, 4)
NEON_VOP(max_u8, neon_u8, 4)
NEON_VOP(max_s16, neon_s16, 2)
NEON_VOP(max_u16, neon_u16, 2)
NEON_VOP(max_s32, neon_s32, 1)
NEON_VOP(max_u32, neon_u32, 1)
NEON_POP(pmax_s8, neon_s8, 4)
NEON_POP(pmax_u8, neon_u8, 4)
NEON_POP(pmax_s16, neon_s16, 2)
NEON_POP(pmax_u16, neon_u16, 2)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) \
dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
NEON_VOP(abd_s8, neon_s8, 4)
NEON_VOP(abd_u8, neon_u8, 4)
NEON_VOP(abd_s16, neon_s16, 2)
NEON_VOP(abd_u16, neon_u16, 2)
NEON_VOP(abd_s32, neon_s32, 1)
NEON_VOP(abd_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src2; \
if (tmp >= (ssize_t)sizeof(src1) * 8 || \
tmp <= -(ssize_t)sizeof(src1) * 8) { \
dest = 0; \
} else if (tmp < 0) { \
dest = src1 >> -tmp; \
} else { \
dest = src1 << tmp; \
}} while (0)
NEON_VOP(shl_u8, neon_u8, 4)
NEON_VOP(shl_u16, neon_u16, 2)
NEON_VOP(shl_u32, neon_u32, 1)
#undef NEON_FN
uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
{
int8_t shift = (int8_t)shiftop;
if (shift >= 64 || shift <= -64) {
val = 0;
} else if (shift < 0) {
val >>= -shift;
} else {
val <<= shift;
}
return val;
}
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src2; \
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
dest = 0; \
} else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
dest = src1 >> (sizeof(src1) * 8 - 1); \
} else if (tmp < 0) { \
dest = src1 >> -tmp; \
} else { \
dest = src1 << tmp; \
}} while (0)
NEON_VOP(shl_s8, neon_s8, 4)
NEON_VOP(shl_s16, neon_s16, 2)
NEON_VOP(shl_s32, neon_s32, 1)
#undef NEON_FN
uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
{
int8_t shift = (int8_t)shiftop;
int64_t val = valop;
if (shift >= 64) {
val = 0;
} else if (shift <= -64) {
val >>= 63;
} else if (shift < 0) {
val >>= -shift;
} else {
val <<= shift;
}
return val;
}
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src2; \
if ((tmp >= (ssize_t)sizeof(src1) * 8) \
|| (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
dest = 0; \
} else if (tmp < 0) { \
dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
} else { \
dest = src1 << tmp; \
}} while (0)
NEON_VOP(rshl_s8, neon_s8, 4)
NEON_VOP(rshl_s16, neon_s16, 2)
#undef NEON_FN
/* The addition of the rounding constant may overflow, so we use an
* intermediate 64 bit accumulator. */
uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
{
int32_t dest;
int32_t val = (int32_t)valop;
int8_t shift = (int8_t)shiftop;
if ((shift >= 32) || (shift <= -32)) {
dest = 0;
} else if (shift < 0) {
int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
dest = big_dest >> -shift;
} else {
dest = val << shift;
}
return dest;
}
/* Handling addition overflow with 64 bit input values is more
* tricky than with 32 bit values. */
uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
{
int8_t shift = (int8_t)shiftop;
int64_t val = valop;
if ((shift >= 64) || (shift <= -64)) {
val = 0;
} else if (shift < 0) {
val >>= (-shift - 1);
if (val == INT64_MAX) {
/* In this case, it means that the rounding constant is 1,
* and the addition would overflow. Return the actual
* result directly. */
val = 0x4000000000000000LL;
} else {
val++;
val >>= 1;
}
} else {
val <<= shift;
}
return val;
}
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src2; \
if (tmp >= (ssize_t)sizeof(src1) * 8 || \
tmp < -(ssize_t)sizeof(src1) * 8) { \
dest = 0; \
} else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
dest = src1 >> (-tmp - 1); \
} else if (tmp < 0) { \
dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
} else { \
dest = src1 << tmp; \
}} while (0)
NEON_VOP(rshl_u8, neon_u8, 4)
NEON_VOP(rshl_u16, neon_u16, 2)
#undef NEON_FN
/* The addition of the rounding constant may overflow, so we use an
* intermediate 64 bit accumulator. */
uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
{
uint32_t dest;
int8_t shift = (int8_t)shiftop;
if (shift >= 32 || shift < -32) {
dest = 0;
} else if (shift == -32) {
dest = val >> 31;
} else if (shift < 0) {
uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
dest = big_dest >> -shift;
} else {
dest = val << shift;
}
return dest;
}
/* Handling addition overflow with 64 bit input values is more
* tricky than with 32 bit values. */
uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
{
int8_t shift = (uint8_t)shiftop;
if (shift >= 64 || shift < -64) {
val = 0;
} else if (shift == -64) {
/* Rounding a 1-bit result just preserves that bit. */
val >>= 63;
} else if (shift < 0) {
val >>= (-shift - 1);
if (val == UINT64_MAX) {
/* In this case, it means that the rounding constant is 1,
* and the addition would overflow. Return the actual
* result directly. */
val = 0x8000000000000000ULL;
} else {
val++;
val >>= 1;
}
} else {
val <<= shift;
}
return val;
}
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src2; \
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
if (src1) { \
SET_QC(); \
dest = ~0; \
} else { \
dest = 0; \
} \
} else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
dest = 0; \
} else if (tmp < 0) { \
dest = src1 >> -tmp; \
} else { \
dest = src1 << tmp; \
if ((dest >> tmp) != src1) { \
SET_QC(); \
dest = ~0; \
} \
}} while (0)
NEON_VOP_ENV(qshl_u8, neon_u8, 4)
NEON_VOP_ENV(qshl_u16, neon_u16, 2)
NEON_VOP_ENV(qshl_u32, neon_u32, 1)
#undef NEON_FN
uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
{
int8_t shift = (int8_t)shiftop;
if (shift >= 64) {
if (val) {
val = ~(uint64_t)0;
SET_QC();
}
} else if (shift <= -64) {
val = 0;
} else if (shift < 0) {
val >>= -shift;
} else {
uint64_t tmp = val;
val <<= shift;
if ((val >> shift) != tmp) {
SET_QC();
val = ~(uint64_t)0;
}
}
return val;
}
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src2; \
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
if (src1) { \
SET_QC(); \
dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
if (src1 > 0) { \
dest--; \
} \
} else { \
dest = src1; \
} \
} else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
dest = src1 >> 31; \
} else if (tmp < 0) { \
dest = src1 >> -tmp; \
} else { \
dest = src1 << tmp; \
if ((dest >> tmp) != src1) { \
SET_QC(); \
dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
if (src1 > 0) { \
dest--; \
} \
} \
}} while (0)
NEON_VOP_ENV(qshl_s8, neon_s8, 4)
NEON_VOP_ENV(qshl_s16, neon_s16, 2)
NEON_VOP_ENV(qshl_s32, neon_s32, 1)
#undef NEON_FN
uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
{
int8_t shift = (uint8_t)shiftop;
int64_t val = valop;
if (shift >= 64) {
if (val) {
SET_QC();
val = (val >> 63) ^ ~SIGNBIT64;
}
} else if (shift <= -64) {
val >>= 63;
} else if (shift < 0) {
val >>= -shift;
} else {
int64_t tmp = val;
val <<= shift;
if ((val >> shift) != tmp) {
SET_QC();
val = (tmp >> 63) ^ ~SIGNBIT64;
}
}
return val;
}
#define NEON_FN(dest, src1, src2) do { \
if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
SET_QC(); \
dest = 0; \
} else { \
int8_t tmp; \
tmp = (int8_t)src2; \
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
if (src1) { \
SET_QC(); \
dest = ~0; \
} else { \
dest = 0; \
} \
} else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
dest = 0; \
} else if (tmp < 0) { \
dest = src1 >> -tmp; \
} else { \
dest = src1 << tmp; \
if ((dest >> tmp) != src1) { \
SET_QC(); \
dest = ~0; \
} \
} \
}} while (0)
NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
#undef NEON_FN
uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
{
if ((int32_t)valop < 0) {
SET_QC();
return 0;
}
return helper_neon_qshl_u32(env, valop, shiftop);
}
uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
{
if ((int64_t)valop < 0) {
SET_QC();
return 0;
}
return helper_neon_qshl_u64(env, valop, shiftop);
}
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src2; \
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
if (src1) { \
SET_QC(); \
dest = ~0; \
} else { \
dest = 0; \
} \
} else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
dest = 0; \
} else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
dest = src1 >> (sizeof(src1) * 8 - 1); \
} else if (tmp < 0) { \
dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
} else { \
dest = src1 << tmp; \
if ((dest >> tmp) != src1) { \
SET_QC(); \
dest = ~0; \
} \
}} while (0)
NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
#undef NEON_FN
/* The addition of the rounding constant may overflow, so we use an
* intermediate 64 bit accumulator. */
uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
{
uint32_t dest;
int8_t shift = (int8_t)shiftop;
if (shift >= 32) {
if (val) {
SET_QC();
dest = ~0;
} else {
dest = 0;
}
} else if (shift < -32) {
dest = 0;
} else if (shift == -32) {
dest = val >> 31;
} else if (shift < 0) {
uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
dest = big_dest >> -shift;
} else {
dest = val << shift;
if ((dest >> shift) != val) {
SET_QC();
dest = ~0;
}
}
return dest;
}
/* Handling addition overflow with 64 bit input values is more
* tricky than with 32 bit values. */
uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
{
int8_t shift = (int8_t)shiftop;
if (shift >= 64) {
if (val) {
SET_QC();
val = ~0;
}
} else if (shift < -64) {
val = 0;
} else if (shift == -64) {
val >>= 63;
} else if (shift < 0) {
val >>= (-shift - 1);
if (val == UINT64_MAX) {
/* In this case, it means that the rounding constant is 1,
* and the addition would overflow. Return the actual
* result directly. */
val = 0x8000000000000000ULL;
} else {
val++;
val >>= 1;
}
} else { \
uint64_t tmp = val;
val <<= shift;
if ((val >> shift) != tmp) {
SET_QC();
val = ~0;
}
}
return val;
}
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src2; \
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
if (src1) { \
SET_QC(); \
dest = (1 << (sizeof(src1) * 8 - 1)); \
if (src1 > 0) { \
dest--; \
} \
} else { \
dest = 0; \
} \
} else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
dest = 0; \
} else if (tmp < 0) { \
dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
} else { \
dest = src1 << tmp; \
if ((dest >> tmp) != src1) { \
SET_QC(); \
dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
if (src1 > 0) { \
dest--; \
} \
} \
}} while (0)
NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
#undef NEON_FN
/* The addition of the rounding constant may overflow, so we use an
* intermediate 64 bit accumulator. */
uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
{
int32_t dest;
int32_t val = (int32_t)valop;
int8_t shift = (int8_t)shiftop;
if (shift >= 32) {
if (val) {
SET_QC();
dest = (val >> 31) ^ ~SIGNBIT;
} else {
dest = 0;
}
} else if (shift <= -32) {
dest = 0;
} else if (shift < 0) {
int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
dest = big_dest >> -shift;
} else {
dest = val << shift;
if ((dest >> shift) != val) {
SET_QC();
dest = (val >> 31) ^ ~SIGNBIT;
}
}
return dest;
}
/* Handling addition overflow with 64 bit input values is more
* tricky than with 32 bit values. */
uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
{
int8_t shift = (uint8_t)shiftop;
int64_t val = valop;
if (shift >= 64) {
if (val) {
SET_QC();
val = (val >> 63) ^ ~SIGNBIT64;
}
} else if (shift <= -64) {
val = 0;
} else if (shift < 0) {
val >>= (-shift - 1);
if (val == INT64_MAX) {
/* In this case, it means that the rounding constant is 1,
* and the addition would overflow. Return the actual
* result directly. */
val = 0x4000000000000000ULL;
} else {
val++;
val >>= 1;
}
} else {
int64_t tmp = val;
val <<= shift;
if ((val >> shift) != tmp) {
SET_QC();
val = (tmp >> 63) ^ ~SIGNBIT64;
}
}
return val;
}
uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
{
uint32_t mask;
mask = (a ^ b) & 0x80808080u;
a &= ~0x80808080u;
b &= ~0x80808080u;
return (a + b) ^ mask;
}
uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
{
uint32_t mask;
mask = (a ^ b) & 0x80008000u;
a &= ~0x80008000u;
b &= ~0x80008000u;
return (a + b) ^ mask;
}
#define NEON_FN(dest, src1, src2) dest = src1 + src2
NEON_POP(padd_u8, neon_u8, 4)
NEON_POP(padd_u16, neon_u16, 2)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = src1 - src2
NEON_VOP(sub_u8, neon_u8, 4)
NEON_VOP(sub_u16, neon_u16, 2)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = src1 * src2
NEON_VOP(mul_u8, neon_u8, 4)
NEON_VOP(mul_u16, neon_u16, 2)
#undef NEON_FN
/* Polynomial multiplication is like integer multiplication except the
partial products are XORed, not added. */
uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
{
uint32_t mask;
uint32_t result;
result = 0;
while (op1) {
mask = 0;
if (op1 & 1)
mask |= 0xff;
if (op1 & (1 << 8))
mask |= (0xff << 8);
if (op1 & (1 << 16))
mask |= (0xff << 16);
if (op1 & (1 << 24))
mask |= (0xff << 24);
result ^= op2 & mask;
op1 = (op1 >> 1) & 0x7f7f7f7f;
op2 = (op2 << 1) & 0xfefefefe;
}
return result;
}
uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
{
uint64_t result = 0;
uint64_t mask;
uint64_t op2ex = op2;
op2ex = (op2ex & 0xff) |
((op2ex & 0xff00) << 8) |
((op2ex & 0xff0000) << 16) |
((op2ex & 0xff000000) << 24);
while (op1) {
mask = 0;
if (op1 & 1) {
mask |= 0xffff;
}
if (op1 & (1 << 8)) {
mask |= (0xffffU << 16);
}
if (op1 & (1 << 16)) {
mask |= (0xffffULL << 32);
}
if (op1 & (1 << 24)) {
mask |= (0xffffULL << 48);
}
result ^= op2ex & mask;
op1 = (op1 >> 1) & 0x7f7f7f7f;
op2ex <<= 1;
}
return result;
}
#define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
NEON_VOP(tst_u8, neon_u8, 4)
NEON_VOP(tst_u16, neon_u16, 2)
NEON_VOP(tst_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
NEON_VOP(ceq_u8, neon_u8, 4)
NEON_VOP(ceq_u16, neon_u16, 2)
NEON_VOP(ceq_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
NEON_VOP1(abs_s8, neon_s8, 4)
NEON_VOP1(abs_s16, neon_s16, 2)
#undef NEON_FN
/* Count Leading Sign/Zero Bits. */
static inline int do_clz8(uint8_t x)
{
int n;
for (n = 8; x; n--)
x >>= 1;
return n;
}
static inline int do_clz16(uint16_t x)
{
int n;
for (n = 16; x; n--)
x >>= 1;
return n;
}
#define NEON_FN(dest, src, dummy) dest = do_clz8(src)
NEON_VOP1(clz_u8, neon_u8, 4)
#undef NEON_FN
#define NEON_FN(dest, src, dummy) dest = do_clz16(src)
NEON_VOP1(clz_u16, neon_u16, 2)
#undef NEON_FN
#define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
NEON_VOP1(cls_s8, neon_s8, 4)
#undef NEON_FN
#define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
NEON_VOP1(cls_s16, neon_s16, 2)
#undef NEON_FN
uint32_t HELPER(neon_cls_s32)(uint32_t x)
{
int count;
if ((int32_t)x < 0)
x = ~x;
for (count = 32; x; count--)
x = x >> 1;
return count - 1;
}
/* Bit count. */
uint32_t HELPER(neon_cnt_u8)(uint32_t x)
{
x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
return x;
}
/* Reverse bits in each 8 bit word */
uint32_t HELPER(neon_rbit_u8)(uint32_t x)
{
x = ((x & 0xf0f0f0f0) >> 4)
| ((x & 0x0f0f0f0f) << 4);
x = ((x & 0x88888888) >> 3)
| ((x & 0x44444444) >> 1)
| ((x & 0x22222222) << 1)
| ((x & 0x11111111) << 3);
return x;
}
#define NEON_QDMULH16(dest, src1, src2, round) do { \
uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
SET_QC(); \
tmp = (tmp >> 31) ^ ~SIGNBIT; \
} else { \
tmp <<= 1; \
} \
if (round) { \
int32_t old = tmp; \
tmp += 1 << 15; \
if ((int32_t)tmp < old) { \
SET_QC(); \
tmp = SIGNBIT - 1; \
} \
} \
dest = tmp >> 16; \
} while(0)
#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
#undef NEON_FN
#undef NEON_QDMULH16
#define NEON_QDMULH32(dest, src1, src2, round) do { \
uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
SET_QC(); \
tmp = (tmp >> 63) ^ ~SIGNBIT64; \
} else { \
tmp <<= 1; \
} \
if (round) { \
int64_t old = tmp; \
tmp += (int64_t)1 << 31; \
if ((int64_t)tmp < old) { \
SET_QC(); \
tmp = SIGNBIT64 - 1; \
} \
} \
dest = tmp >> 32; \
} while(0)
#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
#undef NEON_FN
#undef NEON_QDMULH32
uint32_t HELPER(neon_narrow_u8)(uint64_t x)
{
return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
| ((x >> 24) & 0xff000000u);
}
uint32_t HELPER(neon_narrow_u16)(uint64_t x)
{
return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
}
uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
{
return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
| ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
}
uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
{
return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
}
uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
{
x &= 0xff80ff80ff80ff80ull;
x += 0x0080008000800080ull;
return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
| ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
}
uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
{
x &= 0xffff8000ffff8000ull;
x += 0x0000800000008000ull;
return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
}
uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
{
uint16_t s;
uint8_t d;
uint32_t res = 0;
#define SAT8(n) \
s = x >> n; \
if (s & 0x8000) { \
SET_QC(); \
} else { \
if (s > 0xff) { \
d = 0xff; \
SET_QC(); \
} else { \
d = s; \
} \
res |= (uint32_t)d << (n / 2); \
}
SAT8(0);
SAT8(16);
SAT8(32);
SAT8(48);
#undef SAT8
return res;
}
uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
{
uint16_t s;
uint8_t d;
uint32_t res = 0;
#define SAT8(n) \
s = x >> n; \
if (s > 0xff) { \
d = 0xff; \
SET_QC(); \
} else { \
d = s; \
} \
res |= (uint32_t)d << (n / 2);
SAT8(0);
SAT8(16);
SAT8(32);
SAT8(48);
#undef SAT8
return res;
}
uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
{
int16_t s;
uint8_t d;
uint32_t res = 0;
#define SAT8(n) \
s = x >> n; \
if (s != (int8_t)s) { \
d = (s >> 15) ^ 0x7f; \
SET_QC(); \
} else { \
d = s; \
} \
res |= (uint32_t)d << (n / 2);
SAT8(0);
SAT8(16);
SAT8(32);
SAT8(48);
#undef SAT8
return res;
}
uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
{
uint32_t high;
uint32_t low;
low = x;
if (low & 0x80000000) {
low = 0;
SET_QC();
} else if (low > 0xffff) {
low = 0xffff;
SET_QC();
}
high = x >> 32;
if (high & 0x80000000) {
high = 0;
SET_QC();
} else if (high > 0xffff) {
high = 0xffff;
SET_QC();
}
return low | (high << 16);
}
uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
{
uint32_t high;
uint32_t low;
low = x;
if (low > 0xffff) {
low = 0xffff;
SET_QC();
}
high = x >> 32;
if (high > 0xffff) {
high = 0xffff;
SET_QC();
}
return low | (high << 16);
}
uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
{
int32_t low;
int32_t high;
low = x;
if (low != (int16_t)low) {
low = (low >> 31) ^ 0x7fff;
SET_QC();
}
high = x >> 32;
if (high != (int16_t)high) {
high = (high >> 31) ^ 0x7fff;
SET_QC();
}
return (uint16_t)low | (high << 16);
}
uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
{
if (x & 0x8000000000000000ull) {
SET_QC();
return 0;
}
if (x > 0xffffffffu) {
SET_QC();
return 0xffffffffu;
}
return x;
}
uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
{
if (x > 0xffffffffu) {
SET_QC();
return 0xffffffffu;
}
return x;
}
uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
{
if ((int64_t)x != (int32_t)x) {
SET_QC();
return ((int64_t)x >> 63) ^ 0x7fffffff;
}
return x;
}
uint64_t HELPER(neon_widen_u8)(uint32_t x)
{
uint64_t tmp;
uint64_t ret;
ret = (uint8_t)x;
tmp = (uint8_t)(x >> 8);
ret |= tmp << 16;
tmp = (uint8_t)(x >> 16);
ret |= tmp << 32;
tmp = (uint8_t)(x >> 24);
ret |= tmp << 48;
return ret;
}
uint64_t HELPER(neon_widen_s8)(uint32_t x)
{
uint64_t tmp;
uint64_t ret;
ret = (uint16_t)(int8_t)x;
tmp = (uint16_t)(int8_t)(x >> 8);
ret |= tmp << 16;
tmp = (uint16_t)(int8_t)(x >> 16);
ret |= tmp << 32;
tmp = (uint16_t)(int8_t)(x >> 24);
ret |= tmp << 48;
return ret;
}
uint64_t HELPER(neon_widen_u16)(uint32_t x)
{
uint64_t high = (uint16_t)(x >> 16);
return ((uint16_t)x) | (high << 32);
}
uint64_t HELPER(neon_widen_s16)(uint32_t x)
{
uint64_t high = (int16_t)(x >> 16);
return ((uint32_t)(int16_t)x) | (high << 32);
}
uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
{
uint64_t mask;
mask = (a ^ b) & 0x8000800080008000ull;
a &= ~0x8000800080008000ull;
b &= ~0x8000800080008000ull;
return (a + b) ^ mask;
}
uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
{
uint64_t mask;
mask = (a ^ b) & 0x8000000080000000ull;
a &= ~0x8000000080000000ull;
b &= ~0x8000000080000000ull;
return (a + b) ^ mask;
}
uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
{
uint64_t tmp;
uint64_t tmp2;
tmp = a & 0x0000ffff0000ffffull;
tmp += (a >> 16) & 0x0000ffff0000ffffull;
tmp2 = b & 0xffff0000ffff0000ull;
tmp2 += (b << 16) & 0xffff0000ffff0000ull;
return ( tmp & 0xffff)
| ((tmp >> 16) & 0xffff0000ull)
| ((tmp2 << 16) & 0xffff00000000ull)
| ( tmp2 & 0xffff000000000000ull);
}
uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
{
uint32_t low = a + (a >> 32);
uint32_t high = b + (b >> 32);
return low + ((uint64_t)high << 32);
}
uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
{
uint64_t mask;
mask = (a ^ ~b) & 0x8000800080008000ull;
a |= 0x8000800080008000ull;
b &= ~0x8000800080008000ull;
return (a - b) ^ mask;
}
uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
{
uint64_t mask;
mask = (a ^ ~b) & 0x8000000080000000ull;
a |= 0x8000000080000000ull;
b &= ~0x8000000080000000ull;
return (a - b) ^ mask;
}
uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
{
uint32_t x, y;
uint32_t low, high;
x = a;
y = b;
low = x + y;
if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
SET_QC();
low = ((int32_t)x >> 31) ^ ~SIGNBIT;
}
x = a >> 32;
y = b >> 32;
high = x + y;
if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
SET_QC();
high = ((int32_t)x >> 31) ^ ~SIGNBIT;
}
return low | ((uint64_t)high << 32);
}
uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
{
uint64_t result;
result = a + b;
if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
SET_QC();
result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
}
return result;
}
/* We have to do the arithmetic in a larger type than
* the input type, because for example with a signed 32 bit
* op the absolute difference can overflow a signed 32 bit value.
*/
#define DO_ABD(dest, x, y, intype, arithtype) do { \
arithtype tmp_x = (intype)(x); \
arithtype tmp_y = (intype)(y); \
dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
} while(0)
uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
{
uint64_t tmp;
uint64_t result;
DO_ABD(result, a, b, uint8_t, uint32_t);
DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
result |= tmp << 16;
DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
result |= tmp << 32;
DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
result |= tmp << 48;
return result;
}
uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
{
uint64_t tmp;
uint64_t result;
DO_ABD(result, a, b, int8_t, int32_t);
DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
result |= tmp << 16;
DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
result |= tmp << 32;
DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
result |= tmp << 48;
return result;
}
uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
{
uint64_t tmp;
uint64_t result;
DO_ABD(result, a, b, uint16_t, uint32_t);
DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
return result | (tmp << 32);
}
uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
{
uint64_t tmp;
uint64_t result;
DO_ABD(result, a, b, int16_t, int32_t);
DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
return result | (tmp << 32);
}
uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
{
uint64_t result;
DO_ABD(result, a, b, uint32_t, uint64_t);
return result;
}
uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
{
uint64_t result;
DO_ABD(result, a, b, int32_t, int64_t);
return result;
}
#undef DO_ABD
/* Widening multiply. Named type is the source type. */
#define DO_MULL(dest, x, y, type1, type2) do { \
type1 tmp_x = x; \
type1 tmp_y = y; \
dest = (type2)((type2)tmp_x * (type2)tmp_y); \
} while(0)
uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
{
uint64_t tmp;
uint64_t result;
DO_MULL(result, a, b, uint8_t, uint16_t);
DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
result |= tmp << 16;
DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
result |= tmp << 32;
DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
result |= tmp << 48;
return result;
}
uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
{
uint64_t tmp;
uint64_t result;
DO_MULL(result, a, b, int8_t, uint16_t);
DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
result |= tmp << 16;
DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
result |= tmp << 32;
DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
result |= tmp << 48;
return result;
}
uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
{
uint64_t tmp;
uint64_t result;
DO_MULL(result, a, b, uint16_t, uint32_t);
DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
return result | (tmp << 32);
}
uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
{
uint64_t tmp;
uint64_t result;
DO_MULL(result, a, b, int16_t, uint32_t);
DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
return result | (tmp << 32);
}
uint64_t HELPER(neon_negl_u16)(uint64_t x)
{
uint16_t tmp;
uint64_t result;
result = (uint16_t)-x;
tmp = -(x >> 16);
result |= (uint64_t)tmp << 16;
tmp = -(x >> 32);
result |= (uint64_t)tmp << 32;
tmp = -(x >> 48);
result |= (uint64_t)tmp << 48;
return result;
}
uint64_t HELPER(neon_negl_u32)(uint64_t x)
{
uint32_t low = -x;
uint32_t high = -(x >> 32);
return low | ((uint64_t)high << 32);
}
/* Saturating sign manipulation. */
/* ??? Make these use NEON_VOP1 */
#define DO_QABS8(x) do { \
if (x == (int8_t)0x80) { \
x = 0x7f; \
SET_QC(); \
} else if (x < 0) { \
x = -x; \
}} while (0)
uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
{
neon_s8 vec;
NEON_UNPACK(neon_s8, vec, x);
DO_QABS8(vec.v1);
DO_QABS8(vec.v2);
DO_QABS8(vec.v3);
DO_QABS8(vec.v4);
NEON_PACK(neon_s8, x, vec);
return x;
}
#undef DO_QABS8
#define DO_QNEG8(x) do { \
if (x == (int8_t)0x80) { \
x = 0x7f; \
SET_QC(); \
} else { \
x = -x; \
}} while (0)
uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
{
neon_s8 vec;
NEON_UNPACK(neon_s8, vec, x);
DO_QNEG8(vec.v1);
DO_QNEG8(vec.v2);
DO_QNEG8(vec.v3);
DO_QNEG8(vec.v4);
NEON_PACK(neon_s8, x, vec);
return x;
}
#undef DO_QNEG8
#define DO_QABS16(x) do { \
if (x == (int16_t)0x8000) { \
x = 0x7fff; \
SET_QC(); \
} else if (x < 0) { \
x = -x; \
}} while (0)
uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
{
neon_s16 vec;
NEON_UNPACK(neon_s16, vec, x);
DO_QABS16(vec.v1);
DO_QABS16(vec.v2);
NEON_PACK(neon_s16, x, vec);
return x;
}
#undef DO_QABS16
#define DO_QNEG16(x) do { \
if (x == (int16_t)0x8000) { \
x = 0x7fff; \
SET_QC(); \
} else { \
x = -x; \
}} while (0)
uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
{
neon_s16 vec;
NEON_UNPACK(neon_s16, vec, x);
DO_QNEG16(vec.v1);
DO_QNEG16(vec.v2);
NEON_PACK(neon_s16, x, vec);
return x;
}
#undef DO_QNEG16
uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
{
if (x == SIGNBIT) {
SET_QC();
x = ~SIGNBIT;
} else if ((int32_t)x < 0) {
x = -x;
}
return x;
}
uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
{
if (x == SIGNBIT) {
SET_QC();
x = ~SIGNBIT;
} else {
x = -x;
}
return x;
}
uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x)
{
if (x == SIGNBIT64) {
SET_QC();
x = ~SIGNBIT64;
} else if ((int64_t)x < 0) {
x = -x;
}
return x;
}
uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x)
{
if (x == SIGNBIT64) {
SET_QC();
x = ~SIGNBIT64;
} else {
x = -x;
}
return x;
}
/* NEON Float helpers. */
uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
{
float_status *fpst = fpstp;
float32 f0 = make_float32(a);
float32 f1 = make_float32(b);
return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
}
/* Floating point comparisons produce an integer result.
* Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
* Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
*/
uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
{
float_status *fpst = fpstp;
return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
}
uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
{
float_status *fpst = fpstp;
return -float32_le(make_float32(b), make_float32(a), fpst);
}
uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
{
float_status *fpst = fpstp;
return -float32_lt(make_float32(b), make_float32(a), fpst);
}
uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
{
float_status *fpst = fpstp;
float32 f0 = float32_abs(make_float32(a));
float32 f1 = float32_abs(make_float32(b));
return -float32_le(f1, f0, fpst);
}
uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
{
float_status *fpst = fpstp;
float32 f0 = float32_abs(make_float32(a));
float32 f1 = float32_abs(make_float32(b));
return -float32_lt(f1, f0, fpst);
}
uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp)
{
float_status *fpst = fpstp;
float64 f0 = float64_abs(make_float64(a));
float64 f1 = float64_abs(make_float64(b));
return -float64_le(f1, f0, fpst);
}
uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp)
{
float_status *fpst = fpstp;
float64 f0 = float64_abs(make_float64(a));
float64 f1 = float64_abs(make_float64(b));
return -float64_lt(f1, f0, fpst);
}
#define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
void HELPER(neon_qunzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
{
uint64_t zm0 = float64_val(env->vfp.regs[rm]);
uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
uint64_t zd0 = float64_val(env->vfp.regs[rd]);
uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
| (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
| (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
| (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
| (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
| (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
| (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
| (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
| (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
| (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
| (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
| (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
| (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
env->vfp.regs[rm] = make_float64(m0);
env->vfp.regs[rm + 1] = make_float64(m1);
env->vfp.regs[rd] = make_float64(d0);
env->vfp.regs[rd + 1] = make_float64(d1);
}
void HELPER(neon_qunzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
{
uint64_t zm0 = float64_val(env->vfp.regs[rm]);
uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
uint64_t zd0 = float64_val(env->vfp.regs[rd]);
uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
| (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
| (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
| (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
| (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
env->vfp.regs[rm] = make_float64(m0);
env->vfp.regs[rm + 1] = make_float64(m1);
env->vfp.regs[rd] = make_float64(d0);
env->vfp.regs[rd + 1] = make_float64(d1);
}
void HELPER(neon_qunzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
{
uint64_t zm0 = float64_val(env->vfp.regs[rm]);
uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
uint64_t zd0 = float64_val(env->vfp.regs[rd]);
uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
env->vfp.regs[rm] = make_float64(m0);
env->vfp.regs[rm + 1] = make_float64(m1);
env->vfp.regs[rd] = make_float64(d0);
env->vfp.regs[rd + 1] = make_float64(d1);
}
void HELPER(neon_unzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
{
uint64_t zm = float64_val(env->vfp.regs[rm]);
uint64_t zd = float64_val(env->vfp.regs[rd]);
uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
| (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
| (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
| (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
| (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
| (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
| (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
env->vfp.regs[rm] = make_float64(m0);
env->vfp.regs[rd] = make_float64(d0);
}
void HELPER(neon_unzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
{
uint64_t zm = float64_val(env->vfp.regs[rm]);
uint64_t zd = float64_val(env->vfp.regs[rd]);
uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
| (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
| (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
env->vfp.regs[rm] = make_float64(m0);
env->vfp.regs[rd] = make_float64(d0);
}
void HELPER(neon_qzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
{
uint64_t zm0 = float64_val(env->vfp.regs[rm]);
uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
uint64_t zd0 = float64_val(env->vfp.regs[rd]);
uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
| (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
| (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
| (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
| (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
| (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
| (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
| (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
| (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
| (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
| (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
| (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
| (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
env->vfp.regs[rm] = make_float64(m0);
env->vfp.regs[rm + 1] = make_float64(m1);
env->vfp.regs[rd] = make_float64(d0);
env->vfp.regs[rd + 1] = make_float64(d1);
}
void HELPER(neon_qzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
{
uint64_t zm0 = float64_val(env->vfp.regs[rm]);
uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
uint64_t zd0 = float64_val(env->vfp.regs[rd]);
uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
| (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
| (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
| (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
| (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
env->vfp.regs[rm] = make_float64(m0);
env->vfp.regs[rm + 1] = make_float64(m1);
env->vfp.regs[rd] = make_float64(d0);
env->vfp.regs[rd + 1] = make_float64(d1);
}
void HELPER(neon_qzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
{
uint64_t zm0 = float64_val(env->vfp.regs[rm]);
uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
uint64_t zd0 = float64_val(env->vfp.regs[rd]);
uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
env->vfp.regs[rm] = make_float64(m0);
env->vfp.regs[rm + 1] = make_float64(m1);
env->vfp.regs[rd] = make_float64(d0);
env->vfp.regs[rd + 1] = make_float64(d1);
}
void HELPER(neon_zip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
{
uint64_t zm = float64_val(env->vfp.regs[rm]);
uint64_t zd = float64_val(env->vfp.regs[rd]);
uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
| (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
| (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
| (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
| (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
| (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
| (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
env->vfp.regs[rm] = make_float64(m0);
env->vfp.regs[rd] = make_float64(d0);
}
void HELPER(neon_zip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
{
uint64_t zm = float64_val(env->vfp.regs[rm]);
uint64_t zd = float64_val(env->vfp.regs[rd]);
uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
| (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
| (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
env->vfp.regs[rm] = make_float64(m0);
env->vfp.regs[rd] = make_float64(d0);
}