blob: 846eaa5918fe99f487ae877f24cb6fbbc9725413 [file] [log] [blame]
/*
* x86 SVM helpers
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu.h"
#include "exec/cpu-all.h"
#include "helper.h"
#if !defined(CONFIG_USER_ONLY)
#include "exec/softmmu_exec.h"
#endif /* !defined(CONFIG_USER_ONLY) */
/* Secure Virtual Machine helpers */
#if defined(CONFIG_USER_ONLY)
void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend)
{
}
void helper_vmmcall(CPUX86State *env)
{
}
void helper_vmload(CPUX86State *env, int aflag)
{
}
void helper_vmsave(CPUX86State *env, int aflag)
{
}
void helper_stgi(CPUX86State *env)
{
}
void helper_clgi(CPUX86State *env)
{
}
void helper_skinit(CPUX86State *env)
{
}
void helper_invlpga(CPUX86State *env, int aflag)
{
}
void helper_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1)
{
}
void cpu_vmexit(CPUX86State *nenv, uint32_t exit_code, uint64_t exit_info_1)
{
}
void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type,
uint64_t param)
{
}
void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type,
uint64_t param)
{
}
void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param,
uint32_t next_eip_addend)
{
}
#else
static inline void svm_save_seg(CPUX86State *env, hwaddr addr,
const SegmentCache *sc)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
stw_phys(cs->as, addr + offsetof(struct vmcb_seg, selector),
sc->selector);
stq_phys(cs->as, addr + offsetof(struct vmcb_seg, base),
sc->base);
stl_phys(cs->as, addr + offsetof(struct vmcb_seg, limit),
sc->limit);
stw_phys(cs->as, addr + offsetof(struct vmcb_seg, attrib),
((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00));
}
static inline void svm_load_seg(CPUX86State *env, hwaddr addr,
SegmentCache *sc)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
unsigned int flags;
sc->selector = lduw_phys(cs->as,
addr + offsetof(struct vmcb_seg, selector));
sc->base = ldq_phys(cs->as, addr + offsetof(struct vmcb_seg, base));
sc->limit = ldl_phys(cs->as, addr + offsetof(struct vmcb_seg, limit));
flags = lduw_phys(cs->as, addr + offsetof(struct vmcb_seg, attrib));
sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12);
}
static inline void svm_load_seg_cache(CPUX86State *env, hwaddr addr,
int seg_reg)
{
SegmentCache sc1, *sc = &sc1;
svm_load_seg(env, addr, sc);
cpu_x86_load_seg_cache(env, seg_reg, sc->selector,
sc->base, sc->limit, sc->flags);
}
void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
target_ulong addr;
uint32_t event_inj;
uint32_t int_ctl;
cpu_svm_check_intercept_param(env, SVM_EXIT_VMRUN, 0);
if (aflag == 2) {
addr = env->regs[R_EAX];
} else {
addr = (uint32_t)env->regs[R_EAX];
}
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr);
env->vm_vmcb = addr;
/* save the current CPU state in the hsave page */
stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.gdtr.base),
env->gdt.base);
stl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit),
env->gdt.limit);
stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.idtr.base),
env->idt.base);
stl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.idtr.limit),
env->idt.limit);
stq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]);
stq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]);
stq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]);
stq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]);
stq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]);
stq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]);
stq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer);
stq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.rflags),
cpu_compute_eflags(env));
svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.es),
&env->segs[R_ES]);
svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.cs),
&env->segs[R_CS]);
svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ss),
&env->segs[R_SS]);
svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ds),
&env->segs[R_DS]);
stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rip),
env->eip + next_eip_addend);
stq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]);
stq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.rax), env->regs[R_EAX]);
/* load the interception bitmaps so we do not need to access the
vmcb in svm mode */
env->intercept = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb,
control.intercept));
env->intercept_cr_read = lduw_phys(cs->as, env->vm_vmcb +
offsetof(struct vmcb,
control.intercept_cr_read));
env->intercept_cr_write = lduw_phys(cs->as, env->vm_vmcb +
offsetof(struct vmcb,
control.intercept_cr_write));
env->intercept_dr_read = lduw_phys(cs->as, env->vm_vmcb +
offsetof(struct vmcb,
control.intercept_dr_read));
env->intercept_dr_write = lduw_phys(cs->as, env->vm_vmcb +
offsetof(struct vmcb,
control.intercept_dr_write));
env->intercept_exceptions = ldl_phys(cs->as, env->vm_vmcb +
offsetof(struct vmcb,
control.intercept_exceptions
));
/* enable intercepts */
env->hflags |= HF_SVMI_MASK;
env->tsc_offset = ldq_phys(cs->as, env->vm_vmcb +
offsetof(struct vmcb, control.tsc_offset));
env->gdt.base = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb,
save.gdtr.base));
env->gdt.limit = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb,
save.gdtr.limit));
env->idt.base = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb,
save.idtr.base));
env->idt.limit = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb,
save.idtr.limit));
/* clear exit_info_2 so we behave like the real hardware */
stq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0);
cpu_x86_update_cr0(env, ldq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb,
save.cr0)));
cpu_x86_update_cr4(env, ldq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb,
save.cr4)));
cpu_x86_update_cr3(env, ldq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb,
save.cr3)));
env->cr[2] = ldq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.cr2));
int_ctl = ldl_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
if (int_ctl & V_INTR_MASKING_MASK) {
env->v_tpr = int_ctl & V_TPR_MASK;
env->hflags2 |= HF2_VINTR_MASK;
if (env->eflags & IF_MASK) {
env->hflags2 |= HF2_HIF_MASK;
}
}
cpu_load_efer(env,
ldq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.efer)));
env->eflags = 0;
cpu_load_eflags(env, ldq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb,
save.rflags)),
~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
CC_OP = CC_OP_EFLAGS;
svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.es),
R_ES);
svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.cs),
R_CS);
svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ss),
R_SS);
svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ds),
R_DS);
env->eip = ldq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.rip));
env->regs[R_ESP] = ldq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.rsp));
env->regs[R_EAX] = ldq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.rax));
env->dr[7] = ldq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.dr7));
env->dr[6] = ldq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.dr6));
/* FIXME: guest state consistency checks */
switch (ldub_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) {
case TLB_CONTROL_DO_NOTHING:
break;
case TLB_CONTROL_FLUSH_ALL_ASID:
/* FIXME: this is not 100% correct but should work for now */
tlb_flush(cs, 1);
break;
}
env->hflags2 |= HF2_GIF_MASK;
if (int_ctl & V_IRQ_MASK) {
CPUState *cs = CPU(x86_env_get_cpu(env));
cs->interrupt_request |= CPU_INTERRUPT_VIRQ;
}
/* maybe we need to inject an event */
event_inj = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj));
if (event_inj & SVM_EVTINJ_VALID) {
uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK;
uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR;
uint32_t event_inj_err = ldl_phys(cs->as, env->vm_vmcb +
offsetof(struct vmcb,
control.event_inj_err));
qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err);
/* FIXME: need to implement valid_err */
switch (event_inj & SVM_EVTINJ_TYPE_MASK) {
case SVM_EVTINJ_TYPE_INTR:
cs->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = -1;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR");
/* XXX: is it always correct? */
do_interrupt_x86_hardirq(env, vector, 1);
break;
case SVM_EVTINJ_TYPE_NMI:
cs->exception_index = EXCP02_NMI;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = env->eip;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI");
cpu_loop_exit(cs);
break;
case SVM_EVTINJ_TYPE_EXEPT:
cs->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = -1;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT");
cpu_loop_exit(cs);
break;
case SVM_EVTINJ_TYPE_SOFT:
cs->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 1;
env->exception_next_eip = env->eip;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT");
cpu_loop_exit(cs);
break;
}
qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", cs->exception_index,
env->error_code);
}
}
void helper_vmmcall(CPUX86State *env)
{
cpu_svm_check_intercept_param(env, SVM_EXIT_VMMCALL, 0);
raise_exception(env, EXCP06_ILLOP);
}
void helper_vmload(CPUX86State *env, int aflag)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
target_ulong addr;
cpu_svm_check_intercept_param(env, SVM_EXIT_VMLOAD, 0);
if (aflag == 2) {
addr = env->regs[R_EAX];
} else {
addr = (uint32_t)env->regs[R_EAX];
}
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmload! " TARGET_FMT_lx
"\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
addr, ldq_phys(cs->as, addr + offsetof(struct vmcb,
save.fs.base)),
env->segs[R_FS].base);
svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.fs), R_FS);
svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.gs), R_GS);
svm_load_seg(env, addr + offsetof(struct vmcb, save.tr), &env->tr);
svm_load_seg(env, addr + offsetof(struct vmcb, save.ldtr), &env->ldt);
#ifdef TARGET_X86_64
env->kernelgsbase = ldq_phys(cs->as, addr + offsetof(struct vmcb,
save.kernel_gs_base));
env->lstar = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.lstar));
env->cstar = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.cstar));
env->fmask = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.sfmask));
#endif
env->star = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.star));
env->sysenter_cs = ldq_phys(cs->as,
addr + offsetof(struct vmcb, save.sysenter_cs));
env->sysenter_esp = ldq_phys(cs->as, addr + offsetof(struct vmcb,
save.sysenter_esp));
env->sysenter_eip = ldq_phys(cs->as, addr + offsetof(struct vmcb,
save.sysenter_eip));
}
void helper_vmsave(CPUX86State *env, int aflag)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
target_ulong addr;
cpu_svm_check_intercept_param(env, SVM_EXIT_VMSAVE, 0);
if (aflag == 2) {
addr = env->regs[R_EAX];
} else {
addr = (uint32_t)env->regs[R_EAX];
}
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmsave! " TARGET_FMT_lx
"\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
addr, ldq_phys(cs->as,
addr + offsetof(struct vmcb, save.fs.base)),
env->segs[R_FS].base);
svm_save_seg(env, addr + offsetof(struct vmcb, save.fs),
&env->segs[R_FS]);
svm_save_seg(env, addr + offsetof(struct vmcb, save.gs),
&env->segs[R_GS]);
svm_save_seg(env, addr + offsetof(struct vmcb, save.tr),
&env->tr);
svm_save_seg(env, addr + offsetof(struct vmcb, save.ldtr),
&env->ldt);
#ifdef TARGET_X86_64
stq_phys(cs->as, addr + offsetof(struct vmcb, save.kernel_gs_base),
env->kernelgsbase);
stq_phys(cs->as, addr + offsetof(struct vmcb, save.lstar), env->lstar);
stq_phys(cs->as, addr + offsetof(struct vmcb, save.cstar), env->cstar);
stq_phys(cs->as, addr + offsetof(struct vmcb, save.sfmask), env->fmask);
#endif
stq_phys(cs->as, addr + offsetof(struct vmcb, save.star), env->star);
stq_phys(cs->as,
addr + offsetof(struct vmcb, save.sysenter_cs), env->sysenter_cs);
stq_phys(cs->as, addr + offsetof(struct vmcb, save.sysenter_esp),
env->sysenter_esp);
stq_phys(cs->as, addr + offsetof(struct vmcb, save.sysenter_eip),
env->sysenter_eip);
}
void helper_stgi(CPUX86State *env)
{
cpu_svm_check_intercept_param(env, SVM_EXIT_STGI, 0);
env->hflags2 |= HF2_GIF_MASK;
}
void helper_clgi(CPUX86State *env)
{
cpu_svm_check_intercept_param(env, SVM_EXIT_CLGI, 0);
env->hflags2 &= ~HF2_GIF_MASK;
}
void helper_skinit(CPUX86State *env)
{
cpu_svm_check_intercept_param(env, SVM_EXIT_SKINIT, 0);
/* XXX: not implemented */
raise_exception(env, EXCP06_ILLOP);
}
void helper_invlpga(CPUX86State *env, int aflag)
{
X86CPU *cpu = x86_env_get_cpu(env);
target_ulong addr;
cpu_svm_check_intercept_param(env, SVM_EXIT_INVLPGA, 0);
if (aflag == 2) {
addr = env->regs[R_EAX];
} else {
addr = (uint32_t)env->regs[R_EAX];
}
/* XXX: could use the ASID to see if it is needed to do the
flush */
tlb_flush_page(CPU(cpu), addr);
}
void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type,
uint64_t param)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
if (likely(!(env->hflags & HF_SVMI_MASK))) {
return;
}
switch (type) {
case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR0 + 8:
if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) {
helper_vmexit(env, type, param);
}
break;
case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR0 + 8:
if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) {
helper_vmexit(env, type, param);
}
break;
case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR0 + 7:
if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) {
helper_vmexit(env, type, param);
}
break;
case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR0 + 7:
if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) {
helper_vmexit(env, type, param);
}
break;
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 31:
if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) {
helper_vmexit(env, type, param);
}
break;
case SVM_EXIT_MSR:
if (env->intercept & (1ULL << (SVM_EXIT_MSR - SVM_EXIT_INTR))) {
/* FIXME: this should be read in at vmrun (faster this way?) */
uint64_t addr = ldq_phys(cs->as, env->vm_vmcb +
offsetof(struct vmcb,
control.msrpm_base_pa));
uint32_t t0, t1;
switch ((uint32_t)env->regs[R_ECX]) {
case 0 ... 0x1fff:
t0 = (env->regs[R_ECX] * 2) % 8;
t1 = (env->regs[R_ECX] * 2) / 8;
break;
case 0xc0000000 ... 0xc0001fff:
t0 = (8192 + env->regs[R_ECX] - 0xc0000000) * 2;
t1 = (t0 / 8);
t0 %= 8;
break;
case 0xc0010000 ... 0xc0011fff:
t0 = (16384 + env->regs[R_ECX] - 0xc0010000) * 2;
t1 = (t0 / 8);
t0 %= 8;
break;
default:
helper_vmexit(env, type, param);
t0 = 0;
t1 = 0;
break;
}
if (ldub_phys(cs->as, addr + t1) & ((1 << param) << t0)) {
helper_vmexit(env, type, param);
}
}
break;
default:
if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) {
helper_vmexit(env, type, param);
}
break;
}
}
void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type,
uint64_t param)
{
helper_svm_check_intercept_param(env, type, param);
}
void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param,
uint32_t next_eip_addend)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) {
/* FIXME: this should be read in at vmrun (faster this way?) */
uint64_t addr = ldq_phys(cs->as, env->vm_vmcb +
offsetof(struct vmcb, control.iopm_base_pa));
uint16_t mask = (1 << ((param >> 4) & 7)) - 1;
if (lduw_phys(cs->as, addr + port / 8) & (mask << (port & 7))) {
/* next env->eip */
stq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
env->eip + next_eip_addend);
helper_vmexit(env, SVM_EXIT_IOIO, param | (port << 16));
}
}
}
/* Note: currently only 32 bits of exit_code are used */
void helper_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
uint32_t int_ctl;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016"
PRIx64 ", " TARGET_FMT_lx ")!\n",
exit_code, exit_info_1,
ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb,
control.exit_info_2)),
env->eip);
if (env->hflags & HF_INHIBIT_IRQ_MASK) {
stl_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, control.int_state),
SVM_INTERRUPT_SHADOW_MASK);
env->hflags &= ~HF_INHIBIT_IRQ_MASK;
} else {
stl_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0);
}
/* Save the VM state in the vmcb */
svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.es),
&env->segs[R_ES]);
svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.cs),
&env->segs[R_CS]);
svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ss),
&env->segs[R_SS]);
svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ds),
&env->segs[R_DS]);
stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base),
env->gdt.base);
stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit),
env->gdt.limit);
stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.idtr.base),
env->idt.base);
stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit),
env->idt.limit);
stq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer);
stq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]);
stq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]);
stq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]);
stq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]);
int_ctl = ldl_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
int_ctl &= ~(V_TPR_MASK | V_IRQ_MASK);
int_ctl |= env->v_tpr & V_TPR_MASK;
if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
int_ctl |= V_IRQ_MASK;
}
stl_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), int_ctl);
stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rflags),
cpu_compute_eflags(env));
stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rip),
env->eip);
stq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]);
stq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.rax), env->regs[R_EAX]);
stq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]);
stq_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]);
stb_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cpl),
env->hflags & HF_CPL_MASK);
/* Reload the host state from vm_hsave */
env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
env->hflags &= ~HF_SVMI_MASK;
env->intercept = 0;
env->intercept_exceptions = 0;
cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
env->tsc_offset = 0;
env->gdt.base = ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb,
save.gdtr.base));
env->gdt.limit = ldl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb,
save.gdtr.limit));
env->idt.base = ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb,
save.idtr.base));
env->idt.limit = ldl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb,
save.idtr.limit));
cpu_x86_update_cr0(env, ldq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb,
save.cr0)) |
CR0_PE_MASK);
cpu_x86_update_cr4(env, ldq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb,
save.cr4)));
cpu_x86_update_cr3(env, ldq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb,
save.cr3)));
/* we need to set the efer after the crs so the hidden flags get
set properly */
cpu_load_efer(env, ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb,
save.efer)));
env->eflags = 0;
cpu_load_eflags(env, ldq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb,
save.rflags)),
~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK |
VM_MASK));
CC_OP = CC_OP_EFLAGS;
svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.es),
R_ES);
svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.cs),
R_CS);
svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ss),
R_SS);
svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ds),
R_DS);
env->eip = ldq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.rip));
env->regs[R_ESP] = ldq_phys(cs->as, env->vm_hsave +
offsetof(struct vmcb, save.rsp));
env->regs[R_EAX] = ldq_phys(cs->as, env->vm_hsave +
offsetof(struct vmcb, save.rax));
env->dr[6] = ldq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.dr6));
env->dr[7] = ldq_phys(cs->as,
env->vm_hsave + offsetof(struct vmcb, save.dr7));
/* other setups */
stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_code),
exit_code);
stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1),
exit_info_1);
stl_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info),
ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj)));
stl_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err),
ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj_err)));
stl_phys(cs->as,
env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0);
env->hflags2 &= ~HF2_GIF_MASK;
/* FIXME: Resets the current ASID register to zero (host ASID). */
/* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */
/* Clears the TSC_OFFSET inside the processor. */
/* If the host is in PAE mode, the processor reloads the host's PDPEs
from the page table indicated the host's CR3. If the PDPEs contain
illegal state, the processor causes a shutdown. */
/* Disables all breakpoints in the host DR7 register. */
/* Checks the reloaded host state for consistency. */
/* If the host's rIP reloaded by #VMEXIT is outside the limit of the
host's code segment or non-canonical (in the case of long mode), a
#GP fault is delivered inside the host. */
/* remove any pending exception */
cs->exception_index = -1;
env->error_code = 0;
env->old_exception = -1;
cpu_loop_exit(cs);
}
void cpu_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1)
{
helper_vmexit(env, exit_code, exit_info_1);
}
#endif