blob: 7f800908f48a1a595b3681c3db2926fc109e58b6 [file] [log] [blame]
/*
* ARM virtual CPU header
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CPU_ARM_H
#define CPU_ARM_H
#include "config.h"
#include "kvm-consts.h"
#if defined(TARGET_AARCH64)
/* AArch64 definitions */
# define TARGET_LONG_BITS 64
# define ELF_MACHINE EM_AARCH64
#else
# define TARGET_LONG_BITS 32
# define ELF_MACHINE EM_ARM
#endif
#define CPUArchState struct CPUARMState
#include "qemu-common.h"
#include "exec/cpu-defs.h"
#include "fpu/softfloat.h"
#define TARGET_HAS_ICE 1
#define EXCP_UDEF 1 /* undefined instruction */
#define EXCP_SWI 2 /* software interrupt */
#define EXCP_PREFETCH_ABORT 3
#define EXCP_DATA_ABORT 4
#define EXCP_IRQ 5
#define EXCP_FIQ 6
#define EXCP_BKPT 7
#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
#define EXCP_STREX 10
#define EXCP_HVC 11 /* HyperVisor Call */
#define EXCP_HYP_TRAP 12
#define EXCP_SMC 13 /* Secure Monitor Call */
#define EXCP_VIRQ 14
#define EXCP_VFIQ 15
#define ARMV7M_EXCP_RESET 1
#define ARMV7M_EXCP_NMI 2
#define ARMV7M_EXCP_HARD 3
#define ARMV7M_EXCP_MEM 4
#define ARMV7M_EXCP_BUS 5
#define ARMV7M_EXCP_USAGE 6
#define ARMV7M_EXCP_SVC 11
#define ARMV7M_EXCP_DEBUG 12
#define ARMV7M_EXCP_PENDSV 14
#define ARMV7M_EXCP_SYSTICK 15
/* ARM-specific interrupt pending bits. */
#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
/* The usual mapping for an AArch64 system register to its AArch32
* counterpart is for the 32 bit world to have access to the lower
* half only (with writes leaving the upper half untouched). It's
* therefore useful to be able to pass TCG the offset of the least
* significant half of a uint64_t struct member.
*/
#ifdef HOST_WORDS_BIGENDIAN
#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
#define offsetofhigh32(S, M) offsetof(S, M)
#else
#define offsetoflow32(S, M) offsetof(S, M)
#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
#endif
/* Meanings of the ARMCPU object's four inbound GPIO lines */
#define ARM_CPU_IRQ 0
#define ARM_CPU_FIQ 1
#define ARM_CPU_VIRQ 2
#define ARM_CPU_VFIQ 3
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
int srcreg, int operand, uint32_t value);
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
int dstreg, int operand);
struct arm_boot_info;
#define NB_MMU_MODES 4
/* We currently assume float and double are IEEE single and double
precision respectively.
Doing runtime conversions is tricky because VFP registers may contain
integer values (eg. as the result of a FTOSI instruction).
s<2n> maps to the least significant half of d<n>
s<2n+1> maps to the most significant half of d<n>
*/
/* CPU state for each instance of a generic timer (in cp15 c14) */
typedef struct ARMGenericTimer {
uint64_t cval; /* Timer CompareValue register */
uint64_t ctl; /* Timer Control register */
} ARMGenericTimer;
#define GTIMER_PHYS 0
#define GTIMER_VIRT 1
#define NUM_GTIMERS 2
typedef struct CPUARMState {
/* Regs for current mode. */
uint32_t regs[16];
/* 32/64 switch only happens when taking and returning from
* exceptions so the overlap semantics are taken care of then
* instead of having a complicated union.
*/
/* Regs for A64 mode. */
uint64_t xregs[32];
uint64_t pc;
/* PSTATE isn't an architectural register for ARMv8. However, it is
* convenient for us to assemble the underlying state into a 32 bit format
* identical to the architectural format used for the SPSR. (This is also
* what the Linux kernel's 'pstate' field in signal handlers and KVM's
* 'pstate' register are.) Of the PSTATE bits:
* NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
* semantics as for AArch32, as described in the comments on each field)
* nRW (also known as M[4]) is kept, inverted, in env->aarch64
* DAIF (exception masks) are kept in env->daif
* all other bits are stored in their correct places in env->pstate
*/
uint32_t pstate;
uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
/* Frequently accessed CPSR bits are stored separately for efficiency.
This contains all the other bits. Use cpsr_{read,write} to access
the whole CPSR. */
uint32_t uncached_cpsr;
uint32_t spsr;
/* Banked registers. */
uint64_t banked_spsr[8];
uint32_t banked_r13[8];
uint32_t banked_r14[8];
/* These hold r8-r12. */
uint32_t usr_regs[5];
uint32_t fiq_regs[5];
/* cpsr flag cache for faster execution */
uint32_t CF; /* 0 or 1 */
uint32_t VF; /* V is the bit 31. All other bits are undefined */
uint32_t NF; /* N is bit 31. All other bits are undefined. */
uint32_t ZF; /* Z set if zero. */
uint32_t QF; /* 0 or 1 */
uint32_t GE; /* cpsr[19:16] */
uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
uint64_t elr_el[4]; /* AArch64 exception link regs */
uint64_t sp_el[4]; /* AArch64 banked stack pointers */
/* System control coprocessor (cp15) */
struct {
uint32_t c0_cpuid;
uint64_t c0_cssel; /* Cache size selection. */
uint64_t c1_sys; /* System control register. */
uint64_t c1_coproc; /* Coprocessor access register. */
uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
uint64_t ttbr0_el1; /* MMU translation table base 0. */
uint64_t ttbr1_el1; /* MMU translation table base 1. */
uint64_t c2_control; /* MMU translation table base control. */
uint32_t c2_mask; /* MMU translation table base selection mask. */
uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
uint32_t c2_data; /* MPU data cachable bits. */
uint32_t c2_insn; /* MPU instruction cachable bits. */
uint32_t c3; /* MMU domain access control register
MPU write buffer control. */
uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
uint64_t hcr_el2; /* Hypervisor configuration register */
uint64_t scr_el3; /* Secure configuration register. */
uint32_t ifsr_el2; /* Fault status registers. */
uint64_t esr_el[4];
uint32_t c6_region[8]; /* MPU base/size registers. */
uint64_t far_el[4]; /* Fault address registers. */
uint64_t par_el1; /* Translation result. */
uint32_t c9_insn; /* Cache lockdown registers. */
uint32_t c9_data;
uint64_t c9_pmcr; /* performance monitor control register */
uint64_t c9_pmcnten; /* perf monitor counter enables */
uint32_t c9_pmovsr; /* perf monitor overflow status */
uint32_t c9_pmxevtyper; /* perf monitor event type */
uint32_t c9_pmuserenr; /* perf monitor user enable */
uint32_t c9_pminten; /* perf monitor interrupt enables */
uint64_t mair_el1;
uint64_t vbar_el[4]; /* vector base address register */
uint32_t c13_fcse; /* FCSE PID. */
uint64_t contextidr_el1; /* Context ID. */
uint64_t tpidr_el0; /* User RW Thread register. */
uint64_t tpidrro_el0; /* User RO Thread register. */
uint64_t tpidr_el1; /* Privileged Thread register. */
uint64_t c14_cntfrq; /* Counter Frequency register */
uint64_t c14_cntkctl; /* Timer Control register */
ARMGenericTimer c14_timer[NUM_GTIMERS];
uint32_t c15_cpar; /* XScale Coprocessor Access Register */
uint32_t c15_ticonfig; /* TI925T configuration byte. */
uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
uint32_t c15_threadid; /* TI debugger thread-ID. */
uint32_t c15_config_base_address; /* SCU base address. */
uint32_t c15_diagnostic; /* diagnostic register */
uint32_t c15_power_diagnostic;
uint32_t c15_power_control; /* power control */
uint64_t dbgbvr[16]; /* breakpoint value registers */
uint64_t dbgbcr[16]; /* breakpoint control registers */
uint64_t dbgwvr[16]; /* watchpoint value registers */
uint64_t dbgwcr[16]; /* watchpoint control registers */
uint64_t mdscr_el1;
/* If the counter is enabled, this stores the last time the counter
* was reset. Otherwise it stores the counter value
*/
uint64_t c15_ccnt;
uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
} cp15;
struct {
uint32_t other_sp;
uint32_t vecbase;
uint32_t basepri;
uint32_t control;
int current_sp;
int exception;
int pending_exception;
} v7m;
/* Information associated with an exception about to be taken:
* code which raises an exception must set cs->exception_index and
* the relevant parts of this structure; the cpu_do_interrupt function
* will then set the guest-visible registers as part of the exception
* entry process.
*/
struct {
uint32_t syndrome; /* AArch64 format syndrome register */
uint32_t fsr; /* AArch32 format fault status register info */
uint64_t vaddress; /* virtual addr associated with exception, if any */
/* If we implement EL2 we will also need to store information
* about the intermediate physical address for stage 2 faults.
*/
} exception;
/* Thumb-2 EE state. */
uint32_t teecr;
uint32_t teehbr;
/* VFP coprocessor state. */
struct {
/* VFP/Neon register state. Note that the mapping between S, D and Q
* views of the register bank differs between AArch64 and AArch32:
* In AArch32:
* Qn = regs[2n+1]:regs[2n]
* Dn = regs[n]
* Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
* (and regs[32] to regs[63] are inaccessible)
* In AArch64:
* Qn = regs[2n+1]:regs[2n]
* Dn = regs[2n]
* Sn = regs[2n] bits 31..0
* This corresponds to the architecturally defined mapping between
* the two execution states, and means we do not need to explicitly
* map these registers when changing states.
*/
float64 regs[64];
uint32_t xregs[16];
/* We store these fpcsr fields separately for convenience. */
int vec_len;
int vec_stride;
/* scratch space when Tn are not sufficient. */
uint32_t scratch[8];
/* fp_status is the "normal" fp status. standard_fp_status retains
* values corresponding to the ARM "Standard FPSCR Value", ie
* default-NaN, flush-to-zero, round-to-nearest and is used by
* any operations (generally Neon) which the architecture defines
* as controlled by the standard FPSCR value rather than the FPSCR.
*
* To avoid having to transfer exception bits around, we simply
* say that the FPSCR cumulative exception flags are the logical
* OR of the flags in the two fp statuses. This relies on the
* only thing which needs to read the exception flags being
* an explicit FPSCR read.
*/
float_status fp_status;
float_status standard_fp_status;
} vfp;
uint64_t exclusive_addr;
uint64_t exclusive_val;
uint64_t exclusive_high;
#if defined(CONFIG_USER_ONLY)
uint64_t exclusive_test;
uint32_t exclusive_info;
#endif
/* iwMMXt coprocessor state. */
struct {
uint64_t regs[16];
uint64_t val;
uint32_t cregs[16];
} iwmmxt;
/* For mixed endian mode. */
bool bswap_code;
#if defined(CONFIG_USER_ONLY)
/* For usermode syscall translation. */
int eabi;
#endif
struct CPUBreakpoint *cpu_breakpoint[16];
struct CPUWatchpoint *cpu_watchpoint[16];
CPU_COMMON
/* These fields after the common ones so they are preserved on reset. */
/* Internal CPU feature flags. */
uint64_t features;
void *nvic;
const struct arm_boot_info *boot_info;
} CPUARMState;
#include "cpu-qom.h"
ARMCPU *cpu_arm_init(const char *cpu_model);
int cpu_arm_exec(CPUARMState *s);
uint32_t do_arm_semihosting(CPUARMState *env);
static inline bool is_a64(CPUARMState *env)
{
return env->aarch64;
}
/* you can call this signal handler from your SIGBUS and SIGSEGV
signal handlers to inform the virtual CPU of exceptions. non zero
is returned if the signal was handled by the virtual CPU. */
int cpu_arm_signal_handler(int host_signum, void *pinfo,
void *puc);
int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
int mmu_idx);
/**
* pmccntr_sync
* @env: CPUARMState
*
* Synchronises the counter in the PMCCNTR. This must always be called twice,
* once before any action that might affect the timer and again afterwards.
* The function is used to swap the state of the register if required.
* This only happens when not in user mode (!CONFIG_USER_ONLY)
*/
void pmccntr_sync(CPUARMState *env);
/* SCTLR bit meanings. Several bits have been reused in newer
* versions of the architecture; in that case we define constants
* for both old and new bit meanings. Code which tests against those
* bits should probably check or otherwise arrange that the CPU
* is the architectural version it expects.
*/
#define SCTLR_M (1U << 0)
#define SCTLR_A (1U << 1)
#define SCTLR_C (1U << 2)
#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
#define SCTLR_SA (1U << 3)
#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
#define SCTLR_ITD (1U << 7) /* v8 onward */
#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
#define SCTLR_SED (1U << 8) /* v8 onward */
#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
#define SCTLR_F (1U << 10) /* up to v6 */
#define SCTLR_SW (1U << 10) /* v7 onward */
#define SCTLR_Z (1U << 11)
#define SCTLR_I (1U << 12)
#define SCTLR_V (1U << 13)
#define SCTLR_RR (1U << 14) /* up to v7 */
#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWI (1U << 16) /* v8 onward */
#define SCTLR_HA (1U << 17)
#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWE (1U << 18) /* v8 onward */
#define SCTLR_WXN (1U << 19)
#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
#define SCTLR_UWXN (1U << 20) /* v7 onward */
#define SCTLR_FI (1U << 21)
#define SCTLR_U (1U << 22)
#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
#define SCTLR_VE (1U << 24) /* up to v7 */
#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
#define SCTLR_EE (1U << 25)
#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
#define SCTLR_NMFI (1U << 27)
#define SCTLR_TRE (1U << 28)
#define SCTLR_AFE (1U << 29)
#define SCTLR_TE (1U << 30)
#define CPSR_M (0x1fU)
#define CPSR_T (1U << 5)
#define CPSR_F (1U << 6)
#define CPSR_I (1U << 7)
#define CPSR_A (1U << 8)
#define CPSR_E (1U << 9)
#define CPSR_IT_2_7 (0xfc00U)
#define CPSR_GE (0xfU << 16)
#define CPSR_IL (1U << 20)
/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
* an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
* env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
* where it is live state but not accessible to the AArch32 code.
*/
#define CPSR_RESERVED (0x7U << 21)
#define CPSR_J (1U << 24)
#define CPSR_IT_0_1 (3U << 25)
#define CPSR_Q (1U << 27)
#define CPSR_V (1U << 28)
#define CPSR_C (1U << 29)
#define CPSR_Z (1U << 30)
#define CPSR_N (1U << 31)
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
| CPSR_NZCV)
/* Bits writable in user mode. */
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
/* Execution state bits. MRS read as zero, MSR writes ignored. */
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
/* Mask of bits which may be set by exception return copying them from SPSR */
#define CPSR_ERET_MASK (~CPSR_RESERVED)
#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
#define TTBCR_PD0 (1U << 4)
#define TTBCR_PD1 (1U << 5)
#define TTBCR_EPD0 (1U << 7)
#define TTBCR_IRGN0 (3U << 8)
#define TTBCR_ORGN0 (3U << 10)
#define TTBCR_SH0 (3U << 12)
#define TTBCR_T1SZ (3U << 16)
#define TTBCR_A1 (1U << 22)
#define TTBCR_EPD1 (1U << 23)
#define TTBCR_IRGN1 (3U << 24)
#define TTBCR_ORGN1 (3U << 26)
#define TTBCR_SH1 (1U << 28)
#define TTBCR_EAE (1U << 31)
/* Bit definitions for ARMv8 SPSR (PSTATE) format.
* Only these are valid when in AArch64 mode; in
* AArch32 mode SPSRs are basically CPSR-format.
*/
#define PSTATE_SP (1U)
#define PSTATE_M (0xFU)
#define PSTATE_nRW (1U << 4)
#define PSTATE_F (1U << 6)
#define PSTATE_I (1U << 7)
#define PSTATE_A (1U << 8)
#define PSTATE_D (1U << 9)
#define PSTATE_IL (1U << 20)
#define PSTATE_SS (1U << 21)
#define PSTATE_V (1U << 28)
#define PSTATE_C (1U << 29)
#define PSTATE_Z (1U << 30)
#define PSTATE_N (1U << 31)
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
/* Mode values for AArch64 */
#define PSTATE_MODE_EL3h 13
#define PSTATE_MODE_EL3t 12
#define PSTATE_MODE_EL2h 9
#define PSTATE_MODE_EL2t 8
#define PSTATE_MODE_EL1h 5
#define PSTATE_MODE_EL1t 4
#define PSTATE_MODE_EL0t 0
/* Map EL and handler into a PSTATE_MODE. */
static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
{
return (el << 2) | handler;
}
/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
* interprocessing, so we don't attempt to sync with the cpsr state used by
* the 32 bit decoder.
*/
static inline uint32_t pstate_read(CPUARMState *env)
{
int ZF;
ZF = (env->ZF == 0);
return (env->NF & 0x80000000) | (ZF << 30)
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
| env->pstate | env->daif;
}
static inline void pstate_write(CPUARMState *env, uint32_t val)
{
env->ZF = (~val) & PSTATE_Z;
env->NF = val;
env->CF = (val >> 29) & 1;
env->VF = (val << 3) & 0x80000000;
env->daif = val & PSTATE_DAIF;
env->pstate = val & ~CACHED_PSTATE_BITS;
}
/* Return the current CPSR value. */
uint32_t cpsr_read(CPUARMState *env);
/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
/* Return the current xPSR value. */
static inline uint32_t xpsr_read(CPUARMState *env)
{
int ZF;
ZF = (env->ZF == 0);
return (env->NF & 0x80000000) | (ZF << 30)
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
| (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
| ((env->condexec_bits & 0xfc) << 8)
| env->v7m.exception;
}
/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
if (mask & CPSR_NZCV) {
env->ZF = (~val) & CPSR_Z;
env->NF = val;
env->CF = (val >> 29) & 1;
env->VF = (val << 3) & 0x80000000;
}
if (mask & CPSR_Q)
env->QF = ((val & CPSR_Q) != 0);
if (mask & (1 << 24))
env->thumb = ((val & (1 << 24)) != 0);
if (mask & CPSR_IT_0_1) {
env->condexec_bits &= ~3;
env->condexec_bits |= (val >> 25) & 3;
}
if (mask & CPSR_IT_2_7) {
env->condexec_bits &= 3;
env->condexec_bits |= (val >> 8) & 0xfc;
}
if (mask & 0x1ff) {
env->v7m.exception = val & 0x1ff;
}
}
#define HCR_VM (1ULL << 0)
#define HCR_SWIO (1ULL << 1)
#define HCR_PTW (1ULL << 2)
#define HCR_FMO (1ULL << 3)
#define HCR_IMO (1ULL << 4)
#define HCR_AMO (1ULL << 5)
#define HCR_VF (1ULL << 6)
#define HCR_VI (1ULL << 7)
#define HCR_VSE (1ULL << 8)
#define HCR_FB (1ULL << 9)
#define HCR_BSU_MASK (3ULL << 10)
#define HCR_DC (1ULL << 12)
#define HCR_TWI (1ULL << 13)
#define HCR_TWE (1ULL << 14)
#define HCR_TID0 (1ULL << 15)
#define HCR_TID1 (1ULL << 16)
#define HCR_TID2 (1ULL << 17)
#define HCR_TID3 (1ULL << 18)
#define HCR_TSC (1ULL << 19)
#define HCR_TIDCP (1ULL << 20)
#define HCR_TACR (1ULL << 21)
#define HCR_TSW (1ULL << 22)
#define HCR_TPC (1ULL << 23)
#define HCR_TPU (1ULL << 24)
#define HCR_TTLB (1ULL << 25)
#define HCR_TVM (1ULL << 26)
#define HCR_TGE (1ULL << 27)
#define HCR_TDZ (1ULL << 28)
#define HCR_HCD (1ULL << 29)
#define HCR_TRVM (1ULL << 30)
#define HCR_RW (1ULL << 31)
#define HCR_CD (1ULL << 32)
#define HCR_ID (1ULL << 33)
#define HCR_MASK ((1ULL << 34) - 1)
#define SCR_NS (1U << 0)
#define SCR_IRQ (1U << 1)
#define SCR_FIQ (1U << 2)
#define SCR_EA (1U << 3)
#define SCR_FW (1U << 4)
#define SCR_AW (1U << 5)
#define SCR_NET (1U << 6)
#define SCR_SMD (1U << 7)
#define SCR_HCE (1U << 8)
#define SCR_SIF (1U << 9)
#define SCR_RW (1U << 10)
#define SCR_ST (1U << 11)
#define SCR_TWI (1U << 12)
#define SCR_TWE (1U << 13)
#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
/* Return the current FPSCR value. */
uint32_t vfp_get_fpscr(CPUARMState *env);
void vfp_set_fpscr(CPUARMState *env, uint32_t val);
/* For A64 the FPSCR is split into two logically distinct registers,
* FPCR and FPSR. However since they still use non-overlapping bits
* we store the underlying state in fpscr and just mask on read/write.
*/
#define FPSR_MASK 0xf800009f
#define FPCR_MASK 0x07f79f00
static inline uint32_t vfp_get_fpsr(CPUARMState *env)
{
return vfp_get_fpscr(env) & FPSR_MASK;
}
static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
{
uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
vfp_set_fpscr(env, new_fpscr);
}
static inline uint32_t vfp_get_fpcr(CPUARMState *env)
{
return vfp_get_fpscr(env) & FPCR_MASK;
}
static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
{
uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
vfp_set_fpscr(env, new_fpscr);
}
enum arm_cpu_mode {
ARM_CPU_MODE_USR = 0x10,
ARM_CPU_MODE_FIQ = 0x11,
ARM_CPU_MODE_IRQ = 0x12,
ARM_CPU_MODE_SVC = 0x13,
ARM_CPU_MODE_MON = 0x16,
ARM_CPU_MODE_ABT = 0x17,
ARM_CPU_MODE_HYP = 0x1a,
ARM_CPU_MODE_UND = 0x1b,
ARM_CPU_MODE_SYS = 0x1f
};
/* VFP system registers. */
#define ARM_VFP_FPSID 0
#define ARM_VFP_FPSCR 1
#define ARM_VFP_MVFR2 5
#define ARM_VFP_MVFR1 6
#define ARM_VFP_MVFR0 7
#define ARM_VFP_FPEXC 8
#define ARM_VFP_FPINST 9
#define ARM_VFP_FPINST2 10
/* iwMMXt coprocessor control registers. */
#define ARM_IWMMXT_wCID 0
#define ARM_IWMMXT_wCon 1
#define ARM_IWMMXT_wCSSF 2
#define ARM_IWMMXT_wCASF 3
#define ARM_IWMMXT_wCGR0 8
#define ARM_IWMMXT_wCGR1 9
#define ARM_IWMMXT_wCGR2 10
#define ARM_IWMMXT_wCGR3 11
/* If adding a feature bit which corresponds to a Linux ELF
* HWCAP bit, remember to update the feature-bit-to-hwcap
* mapping in linux-user/elfload.c:get_elf_hwcap().
*/
enum arm_features {
ARM_FEATURE_VFP,
ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
ARM_FEATURE_V6,
ARM_FEATURE_V6K,
ARM_FEATURE_V7,
ARM_FEATURE_THUMB2,
ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
ARM_FEATURE_VFP3,
ARM_FEATURE_VFP_FP16,
ARM_FEATURE_NEON,
ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
ARM_FEATURE_M, /* Microcontroller profile. */
ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
ARM_FEATURE_THUMB2EE,
ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
ARM_FEATURE_V4T,
ARM_FEATURE_V5,
ARM_FEATURE_STRONGARM,
ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
ARM_FEATURE_GENERIC_TIMER,
ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
ARM_FEATURE_V8,
ARM_FEATURE_AARCH64, /* supports 64 bit mode */
ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
ARM_FEATURE_CBAR, /* has cp15 CBAR */
ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
ARM_FEATURE_EL2, /* has EL2 Virtualization support */
ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
};
static inline int arm_feature(CPUARMState *env, int feature)
{
return (env->features & (1ULL << feature)) != 0;
}
#if !defined(CONFIG_USER_ONLY)
/* Return true if exception levels below EL3 are in secure state,
* or would be following an exception return to that level.
* Unlike arm_is_secure() (which is always a question about the
* _current_ state of the CPU) this doesn't care about the current
* EL or mode.
*/
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
if (arm_feature(env, ARM_FEATURE_EL3)) {
return !(env->cp15.scr_el3 & SCR_NS);
} else {
/* If EL2 is not supported then the secure state is implementation
* defined, in which case QEMU defaults to non-secure.
*/
return false;
}
}
/* Return true if the processor is in secure state */
static inline bool arm_is_secure(CPUARMState *env)
{
if (arm_feature(env, ARM_FEATURE_EL3)) {
if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
/* CPU currently in AArch64 state and EL3 */
return true;
} else if (!is_a64(env) &&
(env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
/* CPU currently in AArch32 state and monitor mode */
return true;
}
}
return arm_is_secure_below_el3(env);
}
#else
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
return false;
}
static inline bool arm_is_secure(CPUARMState *env)
{
return false;
}
#endif
/* Return true if the specified exception level is running in AArch64 state. */
static inline bool arm_el_is_aa64(CPUARMState *env, int el)
{
/* We don't currently support EL2, and this isn't valid for EL0
* (if we're in EL0, is_a64() is what you want, and if we're not in EL0
* then the state of EL0 isn't well defined.)
*/
assert(el == 1 || el == 3);
/* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
* is a QEMU-imposed simplification which we may wish to change later.
* If we in future support EL2 and/or EL3, then the state of lower
* exception levels is controlled by the HCR.RW and SCR.RW bits.
*/
return arm_feature(env, ARM_FEATURE_AARCH64);
}
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx);
/* Interface between CPU and Interrupt controller. */
void armv7m_nvic_set_pending(void *opaque, int irq);
int armv7m_nvic_acknowledge_irq(void *opaque);
void armv7m_nvic_complete_irq(void *opaque, int irq);
/* Interface for defining coprocessor registers.
* Registers are defined in tables of arm_cp_reginfo structs
* which are passed to define_arm_cp_regs().
*/
/* When looking up a coprocessor register we look for it
* via an integer which encodes all of:
* coprocessor number
* Crn, Crm, opc1, opc2 fields
* 32 or 64 bit register (ie is it accessed via MRC/MCR
* or via MRRC/MCRR?)
* We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
* (In this case crn and opc2 should be zero.)
* For AArch64, there is no 32/64 bit size distinction;
* instead all registers have a 2 bit op0, 3 bit op1 and op2,
* and 4 bit CRn and CRm. The encoding patterns are chosen
* to be easy to convert to and from the KVM encodings, and also
* so that the hashtable can contain both AArch32 and AArch64
* registers (to allow for interprocessing where we might run
* 32 bit code on a 64 bit core).
*/
/* This bit is private to our hashtable cpreg; in KVM register
* IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
* in the upper bits of the 64 bit ID.
*/
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
(((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
((crm) << 7) | ((opc1) << 3) | (opc2))
#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
(CP_REG_AA64_MASK | \
((cp) << CP_REG_ARM_COPROC_SHIFT) | \
((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
* version used as a key for the coprocessor register hashtable
*/
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
uint32_t cpregid = kvmid;
if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
cpregid |= CP_REG_AA64_MASK;
} else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
cpregid |= (1 << 15);
}
return cpregid;
}
/* Convert a truncated 32 bit hashtable key into the full
* 64 bit KVM register ID.
*/
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
uint64_t kvmid;
if (cpregid & CP_REG_AA64_MASK) {
kvmid = cpregid & ~CP_REG_AA64_MASK;
kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
} else {
kvmid = cpregid & ~(1 << 15);
if (cpregid & (1 << 15)) {
kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
} else {
kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
}
}
return kvmid;
}
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
* special-behaviour cp reg and bits [15..8] indicate what behaviour
* it has. Otherwise it is a simple cp reg, where CONST indicates that
* TCG can assume the value to be constant (ie load at translate time)
* and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
* indicates that the TB should not be ended after a write to this register
* (the default is that the TB ends after cp writes). OVERRIDE permits
* a register definition to override a previous definition for the
* same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
* old must have the OVERRIDE bit set.
* NO_MIGRATE indicates that this register should be ignored for migration;
* (eg because any state is accessed via some other coprocessor register).
* IO indicates that this register does I/O and therefore its accesses
* need to be surrounded by gen_io_start()/gen_io_end(). In particular,
* registers which implement clocks or timers require this.
*/
#define ARM_CP_SPECIAL 1
#define ARM_CP_CONST 2
#define ARM_CP_64BIT 4
#define ARM_CP_SUPPRESS_TB_END 8
#define ARM_CP_OVERRIDE 16
#define ARM_CP_NO_MIGRATE 32
#define ARM_CP_IO 64
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
/* Used only as a terminator for ARMCPRegInfo lists */
#define ARM_CP_SENTINEL 0xffff
/* Mask of only the flag bits in a type field */
#define ARM_CP_FLAG_MASK 0x7f
/* Valid values for ARMCPRegInfo state field, indicating which of
* the AArch32 and AArch64 execution states this register is visible in.
* If the reginfo doesn't explicitly specify then it is AArch32 only.
* If the reginfo is declared to be visible in both states then a second
* reginfo is synthesised for the AArch32 view of the AArch64 register,
* such that the AArch32 view is the lower 32 bits of the AArch64 one.
* Note that we rely on the values of these enums as we iterate through
* the various states in some places.
*/
enum {
ARM_CP_STATE_AA32 = 0,
ARM_CP_STATE_AA64 = 1,
ARM_CP_STATE_BOTH = 2,
};
/* Return true if cptype is a valid type field. This is used to try to
* catch errors where the sentinel has been accidentally left off the end
* of a list of registers.
*/
static inline bool cptype_valid(int cptype)
{
return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
|| ((cptype & ARM_CP_SPECIAL) &&
((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
}
/* Access rights:
* We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
* defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
* PL2 (hyp). The other level which has Read and Write bits is Secure PL1
* (ie any of the privileged modes in Secure state, or Monitor mode).
* If a register is accessible in one privilege level it's always accessible
* in higher privilege levels too. Since "Secure PL1" also follows this rule
* (ie anything visible in PL2 is visible in S-PL1, some things are only
* visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
* terminology a little and call this PL3.
* In AArch64 things are somewhat simpler as the PLx bits line up exactly
* with the ELx exception levels.
*
* If access permissions for a register are more complex than can be
* described with these bits, then use a laxer set of restrictions, and
* do the more restrictive/complex check inside a helper function.
*/
#define PL3_R 0x80
#define PL3_W 0x40
#define PL2_R (0x20 | PL3_R)
#define PL2_W (0x10 | PL3_W)
#define PL1_R (0x08 | PL2_R)
#define PL1_W (0x04 | PL2_W)
#define PL0_R (0x02 | PL1_R)
#define PL0_W (0x01 | PL1_W)
#define PL3_RW (PL3_R | PL3_W)
#define PL2_RW (PL2_R | PL2_W)
#define PL1_RW (PL1_R | PL1_W)
#define PL0_RW (PL0_R | PL0_W)
/* Return the current Exception Level (as per ARMv8; note that this differs
* from the ARMv7 Privilege Level).
*/
static inline int arm_current_el(CPUARMState *env)
{
if (is_a64(env)) {
return extract32(env->pstate, 2, 2);
}
switch (env->uncached_cpsr & 0x1f) {
case ARM_CPU_MODE_USR:
return 0;
case ARM_CPU_MODE_HYP:
return 2;
case ARM_CPU_MODE_MON:
return 3;
default:
if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
/* If EL3 is 32-bit then all secure privileged modes run in
* EL3
*/
return 3;
}
return 1;
}
}
typedef struct ARMCPRegInfo ARMCPRegInfo;
typedef enum CPAccessResult {
/* Access is permitted */
CP_ACCESS_OK = 0,
/* Access fails due to a configurable trap or enable which would
* result in a categorized exception syndrome giving information about
* the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
* 0xc or 0x18).
*/
CP_ACCESS_TRAP = 1,
/* Access fails and results in an exception syndrome 0x0 ("uncategorized").
* Note that this is not a catch-all case -- the set of cases which may
* result in this failure is specifically defined by the architecture.
*/
CP_ACCESS_TRAP_UNCATEGORIZED = 2,
} CPAccessResult;
/* Access functions for coprocessor registers. These cannot fail and
* may not raise exceptions.
*/
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
uint64_t value);
/* Access permission check functions for coprocessor registers. */
typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
#define CP_ANY 0xff
/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
/* Name of register (useful mainly for debugging, need not be unique) */
const char *name;
/* Location of register: coprocessor number and (crn,crm,opc1,opc2)
* tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
* 'wildcard' field -- any value of that field in the MRC/MCR insn
* will be decoded to this register. The register read and write
* callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
* used by the program, so it is possible to register a wildcard and
* then behave differently on read/write if necessary.
* For 64 bit registers, only crm and opc1 are relevant; crn and opc2
* must both be zero.
* For AArch64-visible registers, opc0 is also used.
* Since there are no "coprocessors" in AArch64, cp is purely used as a
* way to distinguish (for KVM's benefit) guest-visible system registers
* from demuxed ones provided to preserve the "no side effects on
* KVM register read/write from QEMU" semantics. cp==0x13 is guest
* visible (to match KVM's encoding); cp==0 will be converted to
* cp==0x13 when the ARMCPRegInfo is registered, for convenience.
*/
uint8_t cp;
uint8_t crn;
uint8_t crm;
uint8_t opc0;
uint8_t opc1;
uint8_t opc2;
/* Execution state in which this register is visible: ARM_CP_STATE_* */
int state;
/* Register type: ARM_CP_* bits/values */
int type;
/* Access rights: PL*_[RW] */
int access;
/* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
* this register was defined: can be used to hand data through to the
* register read/write functions, since they are passed the ARMCPRegInfo*.
*/
void *opaque;
/* Value of this register, if it is ARM_CP_CONST. Otherwise, if
* fieldoffset is non-zero, the reset value of the register.
*/
uint64_t resetvalue;
/* Offset of the field in CPUARMState for this register. This is not
* needed if either:
* 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
* 2. both readfn and writefn are specified
*/
ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
/* Function for making any access checks for this register in addition to
* those specified by the 'access' permissions bits. If NULL, no extra
* checks required. The access check is performed at runtime, not at
* translate time.
*/
CPAccessFn *accessfn;
/* Function for handling reads of this register. If NULL, then reads
* will be done by loading from the offset into CPUARMState specified
* by fieldoffset.
*/
CPReadFn *readfn;
/* Function for handling writes of this register. If NULL, then writes
* will be done by writing to the offset into CPUARMState specified
* by fieldoffset.
*/
CPWriteFn *writefn;
/* Function for doing a "raw" read; used when we need to copy
* coprocessor state to the kernel for KVM or out for
* migration. This only needs to be provided if there is also a
* readfn and it has side effects (for instance clear-on-read bits).
*/
CPReadFn *raw_readfn;
/* Function for doing a "raw" write; used when we need to copy KVM
* kernel coprocessor state into userspace, or for inbound
* migration. This only needs to be provided if there is also a
* writefn and it masks out "unwritable" bits or has write-one-to-clear
* or similar behaviour.
*/
CPWriteFn *raw_writefn;
/* Function for resetting the register. If NULL, then reset will be done
* by writing resetvalue to the field specified in fieldoffset. If
* fieldoffset is 0 then no reset will be done.
*/
CPResetFn *resetfn;
};
/* Macros which are lvalues for the field in CPUARMState for the
* ARMCPRegInfo *ri.
*/
#define CPREG_FIELD32(env, ri) \
(*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
(*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
const ARMCPRegInfo *regs, void *opaque);
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
const ARMCPRegInfo *regs, void *opaque);
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
define_arm_cp_regs_with_opaque(cpu, regs, 0);
}
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
}
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
/* CPWriteFn that can be used to implement writes-ignored behaviour */
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value);
/* CPReadFn that can be used for read-as-zero behaviour */
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
/* CPResetFn that does nothing, for use if no reset is required even
* if fieldoffset is non zero.
*/
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
/* Return true if this reginfo struct's field in the cpu state struct
* is 64 bits wide.
*/
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}
static inline bool cp_access_ok(int current_el,
const ARMCPRegInfo *ri, int isread)
{
return (ri->access >> ((current_el * 2) + isread)) & 1;
}
/**
* write_list_to_cpustate
* @cpu: ARMCPU
*
* For each register listed in the ARMCPU cpreg_indexes list, write
* its value from the cpreg_values list into the ARMCPUState structure.
* This updates TCG's working data structures from KVM data or
* from incoming migration state.
*
* Returns: true if all register values were updated correctly,
* false if some register was unknown or could not be written.
* Note that we do not stop early on failure -- we will attempt
* writing all registers in the list.
*/
bool write_list_to_cpustate(ARMCPU *cpu);
/**
* write_cpustate_to_list:
* @cpu: ARMCPU
*
* For each register listed in the ARMCPU cpreg_indexes list, write
* its value from the ARMCPUState structure into the cpreg_values list.
* This is used to copy info from TCG's working data structures into
* KVM or for outbound migration.
*
* Returns: true if all register values were read correctly,
* false if some register was unknown or could not be read.
* Note that we do not stop early on failure -- we will attempt
* reading all registers in the list.
*/
bool write_cpustate_to_list(ARMCPU *cpu);
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
conventional cores (ie. Application or Realtime profile). */
#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
#define ARM_CPUID_TI915T 0x54029152
#define ARM_CPUID_TI925T 0x54029252
#if defined(CONFIG_USER_ONLY)
#define TARGET_PAGE_BITS 12
#else
/* The ARM MMU allows 1k pages. */
/* ??? Linux doesn't actually use these, and they're deprecated in recent
architecture revisions. Maybe a configure option to disable them. */
#define TARGET_PAGE_BITS 10
#endif
#if defined(TARGET_AARCH64)
# define TARGET_PHYS_ADDR_SPACE_BITS 48
# define TARGET_VIRT_ADDR_SPACE_BITS 64
#else
# define TARGET_PHYS_ADDR_SPACE_BITS 40
# define TARGET_VIRT_ADDR_SPACE_BITS 32
#endif
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx)
{
CPUARMState *env = cs->env_ptr;
unsigned int cur_el = arm_current_el(env);
unsigned int target_el = arm_excp_target_el(cs, excp_idx);
/* FIXME: Use actual secure state. */
bool secure = false;
/* If in EL1/0, Physical IRQ routing to EL2 only happens from NS state. */
bool irq_can_hyp = !secure && cur_el < 2 && target_el == 2;
/* Don't take exceptions if they target a lower EL. */
if (cur_el > target_el) {
return false;
}
switch (excp_idx) {
case EXCP_FIQ:
if (irq_can_hyp && (env->cp15.hcr_el2 & HCR_FMO)) {
return true;
}
return !(env->daif & PSTATE_F);
case EXCP_IRQ:
if (irq_can_hyp && (env->cp15.hcr_el2 & HCR_IMO)) {
return true;
}
return !(env->daif & PSTATE_I);
case EXCP_VFIQ:
if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
/* VFIQs are only taken when hypervized and non-secure. */
return false;
}
return !(env->daif & PSTATE_F);
case EXCP_VIRQ:
if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
/* VIRQs are only taken when hypervized and non-secure. */
return false;
}
return !(env->daif & PSTATE_I);
default:
g_assert_not_reached();
}
}
static inline CPUARMState *cpu_init(const char *cpu_model)
{
ARMCPU *cpu = cpu_arm_init(cpu_model);
if (cpu) {
return &cpu->env;
}
return NULL;
}
#define cpu_exec cpu_arm_exec
#define cpu_gen_code cpu_arm_gen_code
#define cpu_signal_handler cpu_arm_signal_handler
#define cpu_list arm_cpu_list
/* MMU modes definitions */
#define MMU_MODE0_SUFFIX _user
#define MMU_MODE1_SUFFIX _kernel
#define MMU_USER_IDX 0
static inline int cpu_mmu_index (CPUARMState *env)
{
return arm_current_el(env);
}
/* Return the Exception Level targeted by debug exceptions;
* currently always EL1 since we don't implement EL2 or EL3.
*/
static inline int arm_debug_target_el(CPUARMState *env)
{
return 1;
}
static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
{
if (arm_current_el(env) == arm_debug_target_el(env)) {
if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
|| (env->daif & PSTATE_D)) {
return false;
}
}
return true;
}
static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
{
if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
return aa64_generate_debug_exceptions(env);
}
return arm_current_el(env) != 2;
}
/* Return true if debugging exceptions are currently enabled.
* This corresponds to what in ARM ARM pseudocode would be
* if UsingAArch32() then
* return AArch32.GenerateDebugExceptions()
* else
* return AArch64.GenerateDebugExceptions()
* We choose to push the if() down into this function for clarity,
* since the pseudocode has it at all callsites except for the one in
* CheckSoftwareStep(), where it is elided because both branches would
* always return the same value.
*
* Parts of the pseudocode relating to EL2 and EL3 are omitted because we
* don't yet implement those exception levels or their associated trap bits.
*/
static inline bool arm_generate_debug_exceptions(CPUARMState *env)
{
if (env->aarch64) {
return aa64_generate_debug_exceptions(env);
} else {
return aa32_generate_debug_exceptions(env);
}
}
/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
* implicitly means this always returns false in pre-v8 CPUs.)
*/
static inline bool arm_singlestep_active(CPUARMState *env)
{
return extract32(env->cp15.mdscr_el1, 0, 1)
&& arm_el_is_aa64(env, arm_debug_target_el(env))
&& arm_generate_debug_exceptions(env);
}
#include "exec/cpu-all.h"
/* Bit usage in the TB flags field: bit 31 indicates whether we are
* in 32 or 64 bit mode. The meaning of the other bits depends on that.
*/
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
/* Bit usage when in AArch32 state: */
#define ARM_TBFLAG_THUMB_SHIFT 0
#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN_SHIFT 1
#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_PRIV_SHIFT 6
#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
#define ARM_TBFLAG_VFPEN_SHIFT 7
#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC_SHIFT 8
#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
#define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
#define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
#define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS_SHIFT 19
#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
/* We store the bottom two bits of the CPAR as TB flags and handle
* checks on the other bits at runtime
*/
#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 20
#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
/* Bit usage when in AArch64 state */
#define ARM_TBFLAG_AA64_EL_SHIFT 0
#define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
#define ARM_TBFLAG_AA64_FPEN_SHIFT 2
#define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
#define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
#define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
#define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
/* some convenience accessor macros */
#define ARM_TBFLAG_AARCH64_STATE(F) \
(((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
#define ARM_TBFLAG_THUMB(F) \
(((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN(F) \
(((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE(F) \
(((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_PRIV(F) \
(((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
#define ARM_TBFLAG_VFPEN(F) \
(((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC(F) \
(((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
#define ARM_TBFLAG_BSWAP_CODE(F) \
(((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
#define ARM_TBFLAG_CPACR_FPEN(F) \
(((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
#define ARM_TBFLAG_SS_ACTIVE(F) \
(((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS(F) \
(((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
#define ARM_TBFLAG_XSCALE_CPAR(F) \
(((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
#define ARM_TBFLAG_AA64_EL(F) \
(((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
#define ARM_TBFLAG_AA64_FPEN(F) \
(((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
#define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
(((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_AA64_PSTATE_SS(F) \
(((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
target_ulong *cs_base, int *flags)
{
int fpen;
if (arm_feature(env, ARM_FEATURE_V6)) {
fpen = extract32(env->cp15.c1_coproc, 20, 2);
} else {
/* CPACR doesn't exist before v6, so VFP is always accessible */
fpen = 3;
}
if (is_a64(env)) {
*pc = env->pc;
*flags = ARM_TBFLAG_AARCH64_STATE_MASK
| (arm_current_el(env) << ARM_TBFLAG_AA64_EL_SHIFT);
if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
*flags |= ARM_TBFLAG_AA64_FPEN_MASK;
}
/* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
* states defined in the ARM ARM for software singlestep:
* SS_ACTIVE PSTATE.SS State
* 0 x Inactive (the TB flag for SS is always 0)
* 1 0 Active-pending
* 1 1 Active-not-pending
*/
if (arm_singlestep_active(env)) {
*flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
if (env->pstate & PSTATE_SS) {
*flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
}
}
} else {
int privmode;
*pc = env->regs[15];
*flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
| (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
| (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
| (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
| (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
if (arm_feature(env, ARM_FEATURE_M)) {
privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
} else {
privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
}
if (privmode) {
*flags |= ARM_TBFLAG_PRIV_MASK;
}
if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
|| arm_el_is_aa64(env, 1)) {
*flags |= ARM_TBFLAG_VFPEN_MASK;
}
if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
*flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
}
/* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
* states defined in the ARM ARM for software singlestep:
* SS_ACTIVE PSTATE.SS State
* 0 x Inactive (the TB flag for SS is always 0)
* 1 0 Active-pending
* 1 1 Active-not-pending
*/
if (arm_singlestep_active(env)) {
*flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
if (env->uncached_cpsr & PSTATE_SS) {
*flags |= ARM_TBFLAG_PSTATE_SS_MASK;
}
}
*flags |= (extract32(env->cp15.c15_cpar, 0, 2)
<< ARM_TBFLAG_XSCALE_CPAR_SHIFT);
}
*cs_base = 0;
}
#include "exec/exec-all.h"
static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
{
if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
env->pc = tb->pc;
} else {
env->regs[15] = tb->pc;
}
}
enum {
QEMU_PSCI_CONDUIT_DISABLED = 0,
QEMU_PSCI_CONDUIT_SMC = 1,
QEMU_PSCI_CONDUIT_HVC = 2,
};
#endif