blob: 2dff4ffb191cfa55eb38a038bda0a4d5e1229119 [file] [log] [blame] [edit]
/*
* QEMU ARM CPU -- internal functions and types
*
* Copyright (c) 2014 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*
* This header defines functions, types, etc which need to be shared
* between different source files within target-arm/ but which are
* private to it and not required by the rest of QEMU.
*/
#ifndef TARGET_ARM_INTERNALS_H
#define TARGET_ARM_INTERNALS_H
static inline bool excp_is_internal(int excp)
{
/* Return true if this exception number represents a QEMU-internal
* exception that will not be passed to the guest.
*/
return excp == EXCP_INTERRUPT
|| excp == EXCP_HLT
|| excp == EXCP_DEBUG
|| excp == EXCP_HALTED
|| excp == EXCP_EXCEPTION_EXIT
|| excp == EXCP_KERNEL_TRAP
|| excp == EXCP_STREX;
}
/* Exception names for debug logging; note that not all of these
* precisely correspond to architectural exceptions.
*/
static const char * const excnames[] = {
[EXCP_UDEF] = "Undefined Instruction",
[EXCP_SWI] = "SVC",
[EXCP_PREFETCH_ABORT] = "Prefetch Abort",
[EXCP_DATA_ABORT] = "Data Abort",
[EXCP_IRQ] = "IRQ",
[EXCP_FIQ] = "FIQ",
[EXCP_BKPT] = "Breakpoint",
[EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
[EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
[EXCP_STREX] = "QEMU intercept of STREX",
[EXCP_HVC] = "Hypervisor Call",
[EXCP_HYP_TRAP] = "Hypervisor Trap",
[EXCP_SMC] = "Secure Monitor Call",
[EXCP_VIRQ] = "Virtual IRQ",
[EXCP_VFIQ] = "Virtual FIQ",
};
static inline void arm_log_exception(int idx)
{
if (qemu_loglevel_mask(CPU_LOG_INT)) {
const char *exc = NULL;
if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
exc = excnames[idx];
}
if (!exc) {
exc = "unknown";
}
qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
}
}
/* Scale factor for generic timers, ie number of ns per tick.
* This gives a 62.5MHz timer.
*/
#define GTIMER_SCALE 16
/*
* For AArch64, map a given EL to an index in the banked_spsr array.
*/
static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
{
static const unsigned int map[4] = {
[1] = 0, /* EL1. */
[2] = 6, /* EL2. */
[3] = 7, /* EL3. */
};
assert(el >= 1 && el <= 3);
return map[el];
}
int bank_number(int mode);
void switch_mode(CPUARMState *, int);
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
void arm_translate_init(void);
enum arm_fprounding {
FPROUNDING_TIEEVEN,
FPROUNDING_POSINF,
FPROUNDING_NEGINF,
FPROUNDING_ZERO,
FPROUNDING_TIEAWAY,
FPROUNDING_ODD
};
int arm_rmode_to_sf(int rmode);
static inline void aarch64_save_sp(CPUARMState *env, int el)
{
if (env->pstate & PSTATE_SP) {
env->sp_el[el] = env->xregs[31];
} else {
env->sp_el[0] = env->xregs[31];
}
}
static inline void aarch64_restore_sp(CPUARMState *env, int el)
{
if (env->pstate & PSTATE_SP) {
env->xregs[31] = env->sp_el[el];
} else {
env->xregs[31] = env->sp_el[0];
}
}
static inline void update_spsel(CPUARMState *env, uint32_t imm)
{
unsigned int cur_el = arm_current_el(env);
/* Update PSTATE SPSel bit; this requires us to update the
* working stack pointer in xregs[31].
*/
if (!((imm ^ env->pstate) & PSTATE_SP)) {
return;
}
aarch64_save_sp(env, cur_el);
env->pstate = deposit32(env->pstate, 0, 1, imm);
/* We rely on illegal updates to SPsel from EL0 to get trapped
* at translation time.
*/
assert(cur_el >= 1 && cur_el <= 3);
aarch64_restore_sp(env, cur_el);
}
/* Return true if extended addresses are enabled.
* This is always the case if our translation regime is 64 bit,
* but depends on TTBCR.EAE for 32 bit.
*/
static inline bool extended_addresses_enabled(CPUARMState *env)
{
return arm_el_is_aa64(env, 1)
|| ((arm_feature(env, ARM_FEATURE_LPAE)
&& (env->cp15.c2_control & TTBCR_EAE)));
}
/* Valid Syndrome Register EC field values */
enum arm_exception_class {
EC_UNCATEGORIZED = 0x00,
EC_WFX_TRAP = 0x01,
EC_CP15RTTRAP = 0x03,
EC_CP15RRTTRAP = 0x04,
EC_CP14RTTRAP = 0x05,
EC_CP14DTTRAP = 0x06,
EC_ADVSIMDFPACCESSTRAP = 0x07,
EC_FPIDTRAP = 0x08,
EC_CP14RRTTRAP = 0x0c,
EC_ILLEGALSTATE = 0x0e,
EC_AA32_SVC = 0x11,
EC_AA32_HVC = 0x12,
EC_AA32_SMC = 0x13,
EC_AA64_SVC = 0x15,
EC_AA64_HVC = 0x16,
EC_AA64_SMC = 0x17,
EC_SYSTEMREGISTERTRAP = 0x18,
EC_INSNABORT = 0x20,
EC_INSNABORT_SAME_EL = 0x21,
EC_PCALIGNMENT = 0x22,
EC_DATAABORT = 0x24,
EC_DATAABORT_SAME_EL = 0x25,
EC_SPALIGNMENT = 0x26,
EC_AA32_FPTRAP = 0x28,
EC_AA64_FPTRAP = 0x2c,
EC_SERROR = 0x2f,
EC_BREAKPOINT = 0x30,
EC_BREAKPOINT_SAME_EL = 0x31,
EC_SOFTWARESTEP = 0x32,
EC_SOFTWARESTEP_SAME_EL = 0x33,
EC_WATCHPOINT = 0x34,
EC_WATCHPOINT_SAME_EL = 0x35,
EC_AA32_BKPT = 0x38,
EC_VECTORCATCH = 0x3a,
EC_AA64_BKPT = 0x3c,
};
#define ARM_EL_EC_SHIFT 26
#define ARM_EL_IL_SHIFT 25
#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
/* Utility functions for constructing various kinds of syndrome value.
* Note that in general we follow the AArch64 syndrome values; in a
* few cases the value in HSR for exceptions taken to AArch32 Hyp
* mode differs slightly, so if we ever implemented Hyp mode then the
* syndrome value would need some massaging on exception entry.
* (One example of this is that AArch64 defaults to IL bit set for
* exceptions which don't specifically indicate information about the
* trapping instruction, whereas AArch32 defaults to IL bit clear.)
*/
static inline uint32_t syn_uncategorized(void)
{
return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
}
static inline uint32_t syn_aa64_svc(uint32_t imm16)
{
return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
}
static inline uint32_t syn_aa64_hvc(uint32_t imm16)
{
return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
}
static inline uint32_t syn_aa64_smc(uint32_t imm16)
{
return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
}
static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_thumb)
{
return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
| (is_thumb ? 0 : ARM_EL_IL);
}
static inline uint32_t syn_aa32_hvc(uint32_t imm16)
{
return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
}
static inline uint32_t syn_aa32_smc(void)
{
return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
}
static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
{
return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
}
static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_thumb)
{
return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
| (is_thumb ? 0 : ARM_EL_IL);
}
static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
int crn, int crm, int rt,
int isread)
{
return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
| (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
| (crm << 1) | isread;
}
static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
int crn, int crm, int rt, int isread,
bool is_thumb)
{
return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
| (is_thumb ? 0 : ARM_EL_IL)
| (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
| (crn << 10) | (rt << 5) | (crm << 1) | isread;
}
static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
int crn, int crm, int rt, int isread,
bool is_thumb)
{
return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
| (is_thumb ? 0 : ARM_EL_IL)
| (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
| (crn << 10) | (rt << 5) | (crm << 1) | isread;
}
static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
int rt, int rt2, int isread,
bool is_thumb)
{
return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
| (is_thumb ? 0 : ARM_EL_IL)
| (cv << 24) | (cond << 20) | (opc1 << 16)
| (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
}
static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
int rt, int rt2, int isread,
bool is_thumb)
{
return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
| (is_thumb ? 0 : ARM_EL_IL)
| (cv << 24) | (cond << 20) | (opc1 << 16)
| (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
}
static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_thumb)
{
return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
| (is_thumb ? 0 : ARM_EL_IL)
| (cv << 24) | (cond << 20);
}
static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
{
return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| (ea << 9) | (s1ptw << 7) | fsc;
}
static inline uint32_t syn_data_abort(int same_el, int ea, int cm, int s1ptw,
int wnr, int fsc)
{
return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
}
static inline uint32_t syn_swstep(int same_el, int isv, int ex)
{
return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| (isv << 24) | (ex << 6) | 0x22;
}
static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
{
return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| (cm << 8) | (wnr << 6) | 0x22;
}
static inline uint32_t syn_breakpoint(int same_el)
{
return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| ARM_EL_IL | 0x22;
}
/* Update a QEMU watchpoint based on the information the guest has set in the
* DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
*/
void hw_watchpoint_update(ARMCPU *cpu, int n);
/* Update the QEMU watchpoints for every guest watchpoint. This does a
* complete delete-and-reinstate of the QEMU watchpoint list and so is
* suitable for use after migration or on reset.
*/
void hw_watchpoint_update_all(ARMCPU *cpu);
/* Update a QEMU breakpoint based on the information the guest has set in the
* DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
*/
void hw_breakpoint_update(ARMCPU *cpu, int n);
/* Update the QEMU breakpoints for every guest breakpoint. This does a
* complete delete-and-reinstate of the QEMU breakpoint list and so is
* suitable for use after migration or on reset.
*/
void hw_breakpoint_update_all(ARMCPU *cpu);
/* Callback function for when a watchpoint or breakpoint triggers. */
void arm_debug_excp_handler(CPUState *cs);
#ifdef CONFIG_USER_ONLY
static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
{
return false;
}
#else
/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
/* Actually handle a PSCI call */
void arm_handle_psci_call(ARMCPU *cpu);
#endif
#endif