blob: e486128aa1b584ce6bcf10f4ae3fe3104dde8bbd [file] [log] [blame]
/*
* NVDIMM ACPI Implementation
*
* Copyright(C) 2015 Intel Corporation.
*
* Author:
* Xiao Guangrong <guangrong.xiao@linux.intel.com>
*
* NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
* and the DSM specification can be found at:
* http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
*
* Currently, it only supports PMEM Virtualization.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>
*/
#include "qemu/osdep.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/aml-build.h"
#include "hw/acpi/bios-linker-loader.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/mem/nvdimm.h"
static int nvdimm_plugged_device_list(Object *obj, void *opaque)
{
GSList **list = opaque;
if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
DeviceState *dev = DEVICE(obj);
if (dev->realized) { /* only realized NVDIMMs matter */
*list = g_slist_append(*list, DEVICE(obj));
}
}
object_child_foreach(obj, nvdimm_plugged_device_list, opaque);
return 0;
}
/*
* inquire plugged NVDIMM devices and link them into the list which is
* returned to the caller.
*
* Note: it is the caller's responsibility to free the list to avoid
* memory leak.
*/
static GSList *nvdimm_get_plugged_device_list(void)
{
GSList *list = NULL;
object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list,
&list);
return list;
}
#define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
{ (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
(b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
/*
* define Byte Addressable Persistent Memory (PM) Region according to
* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
*/
static const uint8_t nvdimm_nfit_spa_uuid[] =
NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
0x18, 0xb7, 0x8c, 0xdb);
/*
* NVDIMM Firmware Interface Table
* @signature: "NFIT"
*
* It provides information that allows OSPM to enumerate NVDIMM present in
* the platform and associate system physical address ranges created by the
* NVDIMMs.
*
* It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
*/
struct NvdimmNfitHeader {
ACPI_TABLE_HEADER_DEF
uint32_t reserved;
} QEMU_PACKED;
typedef struct NvdimmNfitHeader NvdimmNfitHeader;
/*
* define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
* Interface Table (NFIT).
*/
/*
* System Physical Address Range Structure
*
* It describes the system physical address ranges occupied by NVDIMMs and
* the types of the regions.
*/
struct NvdimmNfitSpa {
uint16_t type;
uint16_t length;
uint16_t spa_index;
uint16_t flags;
uint32_t reserved;
uint32_t proximity_domain;
uint8_t type_guid[16];
uint64_t spa_base;
uint64_t spa_length;
uint64_t mem_attr;
} QEMU_PACKED;
typedef struct NvdimmNfitSpa NvdimmNfitSpa;
/*
* Memory Device to System Physical Address Range Mapping Structure
*
* It enables identifying each NVDIMM region and the corresponding SPA
* describing the memory interleave
*/
struct NvdimmNfitMemDev {
uint16_t type;
uint16_t length;
uint32_t nfit_handle;
uint16_t phys_id;
uint16_t region_id;
uint16_t spa_index;
uint16_t dcr_index;
uint64_t region_len;
uint64_t region_offset;
uint64_t region_dpa;
uint16_t interleave_index;
uint16_t interleave_ways;
uint16_t flags;
uint16_t reserved;
} QEMU_PACKED;
typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
/*
* NVDIMM Control Region Structure
*
* It describes the NVDIMM and if applicable, Block Control Window.
*/
struct NvdimmNfitControlRegion {
uint16_t type;
uint16_t length;
uint16_t dcr_index;
uint16_t vendor_id;
uint16_t device_id;
uint16_t revision_id;
uint16_t sub_vendor_id;
uint16_t sub_device_id;
uint16_t sub_revision_id;
uint8_t reserved[6];
uint32_t serial_number;
uint16_t fic;
uint16_t num_bcw;
uint64_t bcw_size;
uint64_t cmd_offset;
uint64_t cmd_size;
uint64_t status_offset;
uint64_t status_size;
uint16_t flags;
uint8_t reserved2[6];
} QEMU_PACKED;
typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
/*
* Module serial number is a unique number for each device. We use the
* slot id of NVDIMM device to generate this number so that each device
* associates with a different number.
*
* 0x123456 is a magic number we arbitrarily chose.
*/
static uint32_t nvdimm_slot_to_sn(int slot)
{
return 0x123456 + slot;
}
/*
* handle is used to uniquely associate nfit_memdev structure with NVDIMM
* ACPI device - nfit_memdev.nfit_handle matches with the value returned
* by ACPI device _ADR method.
*
* We generate the handle with the slot id of NVDIMM device and reserve
* 0 for NVDIMM root device.
*/
static uint32_t nvdimm_slot_to_handle(int slot)
{
return slot + 1;
}
/*
* index uniquely identifies the structure, 0 is reserved which indicates
* that the structure is not valid or the associated structure is not
* present.
*
* Each NVDIMM device needs two indexes, one for nfit_spa and another for
* nfit_dc which are generated by the slot id of NVDIMM device.
*/
static uint16_t nvdimm_slot_to_spa_index(int slot)
{
return (slot + 1) << 1;
}
/* See the comments of nvdimm_slot_to_spa_index(). */
static uint32_t nvdimm_slot_to_dcr_index(int slot)
{
return nvdimm_slot_to_spa_index(slot) + 1;
}
static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
{
NVDIMMDevice *nvdimm = NULL;
GSList *list, *device_list = nvdimm_get_plugged_device_list();
for (list = device_list; list; list = list->next) {
NVDIMMDevice *nvd = list->data;
int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
NULL);
if (nvdimm_slot_to_handle(slot) == handle) {
nvdimm = nvd;
break;
}
}
g_slist_free(device_list);
return nvdimm;
}
/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
static void
nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
{
NvdimmNfitSpa *nfit_spa;
uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
NULL);
uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
NULL);
uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
NULL);
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
NULL);
nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
Structure */);
nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
/*
* Control region is strict as all the device info, such as SN, index,
* is associated with slot id.
*/
nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
management during hot add/online
operation */ |
2 /* Data in Proximity Domain field is
valid*/);
/* NUMA node. */
nfit_spa->proximity_domain = cpu_to_le32(node);
/* the region reported as PMEM. */
memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
sizeof(nvdimm_nfit_spa_uuid));
nfit_spa->spa_base = cpu_to_le64(addr);
nfit_spa->spa_length = cpu_to_le64(size);
/* It is the PMEM and can be cached as writeback. */
nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
0x8000ULL /* EFI_MEMORY_NV */);
}
/*
* ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
* Structure
*/
static void
nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
{
NvdimmNfitMemDev *nfit_memdev;
uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
NULL);
uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
NULL);
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
NULL);
uint32_t handle = nvdimm_slot_to_handle(slot);
nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
Range Map Structure*/);
nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
nfit_memdev->nfit_handle = cpu_to_le32(handle);
/*
* associate memory device with System Physical Address Range
* Structure.
*/
nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
/* associate memory device with Control Region Structure. */
nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
/* The memory region on the device. */
nfit_memdev->region_len = cpu_to_le64(size);
nfit_memdev->region_dpa = cpu_to_le64(addr);
/* Only one interleave for PMEM. */
nfit_memdev->interleave_ways = cpu_to_le16(1);
}
/*
* ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
*/
static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
{
NvdimmNfitControlRegion *nfit_dcr;
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
NULL);
uint32_t sn = nvdimm_slot_to_sn(slot);
nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
/* vendor: Intel. */
nfit_dcr->vendor_id = cpu_to_le16(0x8086);
nfit_dcr->device_id = cpu_to_le16(1);
/* The _DSM method is following Intel's DSM specification. */
nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
in ACPI 6.0 is 1. */);
nfit_dcr->serial_number = cpu_to_le32(sn);
nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
2: NVDIMM Device Specific Method
(DSM) in DSM Spec Rev1.*/);
}
static GArray *nvdimm_build_device_structure(GSList *device_list)
{
GArray *structures = g_array_new(false, true /* clear */, 1);
for (; device_list; device_list = device_list->next) {
DeviceState *dev = device_list->data;
/* build System Physical Address Range Structure. */
nvdimm_build_structure_spa(structures, dev);
/*
* build Memory Device to System Physical Address Range Mapping
* Structure.
*/
nvdimm_build_structure_memdev(structures, dev);
/* build NVDIMM Control Region Structure. */
nvdimm_build_structure_dcr(structures, dev);
}
return structures;
}
static void nvdimm_build_nfit(GSList *device_list, GArray *table_offsets,
GArray *table_data, BIOSLinker *linker)
{
GArray *structures = nvdimm_build_device_structure(device_list);
unsigned int header;
acpi_add_table(table_offsets, table_data);
/* NFIT header. */
header = table_data->len;
acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
/* NVDIMM device structures. */
g_array_append_vals(table_data, structures->data, structures->len);
build_header(linker, table_data,
(void *)(table_data->data + header), "NFIT",
sizeof(NvdimmNfitHeader) + structures->len, 1, NULL, NULL);
g_array_free(structures, true);
}
struct NvdimmDsmIn {
uint32_t handle;
uint32_t revision;
uint32_t function;
/* the remaining size in the page is used by arg3. */
union {
uint8_t arg3[4084];
};
} QEMU_PACKED;
typedef struct NvdimmDsmIn NvdimmDsmIn;
QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096);
struct NvdimmDsmOut {
/* the size of buffer filled by QEMU. */
uint32_t len;
uint8_t data[4092];
} QEMU_PACKED;
typedef struct NvdimmDsmOut NvdimmDsmOut;
QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096);
struct NvdimmDsmFunc0Out {
/* the size of buffer filled by QEMU. */
uint32_t len;
uint32_t supported_func;
} QEMU_PACKED;
typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
struct NvdimmDsmFuncNoPayloadOut {
/* the size of buffer filled by QEMU. */
uint32_t len;
uint32_t func_ret_status;
} QEMU_PACKED;
typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
struct NvdimmFuncGetLabelSizeOut {
/* the size of buffer filled by QEMU. */
uint32_t len;
uint32_t func_ret_status; /* return status code. */
uint32_t label_size; /* the size of label data area. */
/*
* Maximum size of the namespace label data length supported by
* the platform in Get/Set Namespace Label Data functions.
*/
uint32_t max_xfer;
} QEMU_PACKED;
typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096);
struct NvdimmFuncGetLabelDataIn {
uint32_t offset; /* the offset in the namespace label data area. */
uint32_t length; /* the size of data is to be read via the function. */
} QEMU_PACKED;
typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
offsetof(NvdimmDsmIn, arg3) > 4096);
struct NvdimmFuncGetLabelDataOut {
/* the size of buffer filled by QEMU. */
uint32_t len;
uint32_t func_ret_status; /* return status code. */
uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
} QEMU_PACKED;
typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096);
struct NvdimmFuncSetLabelDataIn {
uint32_t offset; /* the offset in the namespace label data area. */
uint32_t length; /* the size of data is to be written via the function. */
uint8_t in_buf[0]; /* the data written to label data area. */
} QEMU_PACKED;
typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
offsetof(NvdimmDsmIn, arg3) > 4096);
static void
nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
{
NvdimmDsmFunc0Out func0 = {
.len = cpu_to_le32(sizeof(func0)),
.supported_func = cpu_to_le32(supported_func),
};
cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
}
static void
nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
{
NvdimmDsmFuncNoPayloadOut out = {
.len = cpu_to_le32(sizeof(out)),
.func_ret_status = cpu_to_le32(func_ret_status),
};
cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
}
static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
{
/*
* function 0 is called to inquire which functions are supported by
* OSPM
*/
if (!in->function) {
nvdimm_dsm_function0(0 /* No function supported other than
function 0 */, dsm_mem_addr);
return;
}
/* No function except function 0 is supported yet. */
nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
}
/*
* the max transfer size is the max size transferred by both a
* 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
* function.
*/
static uint32_t nvdimm_get_max_xfer_label_size(void)
{
uint32_t max_get_size, max_set_size, dsm_memory_size = 4096;
/*
* the max data ACPI can read one time which is transferred by
* the response of 'Get Namespace Label Data' function.
*/
max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
/*
* the max data ACPI can write one time which is transferred by
* 'Set Namespace Label Data' function.
*/
max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
sizeof(NvdimmFuncSetLabelDataIn);
return MIN(max_get_size, max_set_size);
}
/*
* DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
*
* It gets the size of Namespace Label data area and the max data size
* that Get/Set Namespace Label Data functions can transfer.
*/
static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
{
NvdimmFuncGetLabelSizeOut label_size_out = {
.len = cpu_to_le32(sizeof(label_size_out)),
};
uint32_t label_size, mxfer;
label_size = nvdimm->label_size;
mxfer = nvdimm_get_max_xfer_label_size();
nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
label_size_out.func_ret_status = cpu_to_le32(0 /* Success */);
label_size_out.label_size = cpu_to_le32(label_size);
label_size_out.max_xfer = cpu_to_le32(mxfer);
cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
sizeof(label_size_out));
}
static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
uint32_t offset, uint32_t length)
{
uint32_t ret = 3 /* Invalid Input Parameters */;
if (offset + length < offset) {
nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
length);
return ret;
}
if (nvdimm->label_size < offset + length) {
nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
offset + length, nvdimm->label_size);
return ret;
}
if (length > nvdimm_get_max_xfer_label_size()) {
nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
length, nvdimm_get_max_xfer_label_size());
return ret;
}
return 0 /* Success */;
}
/*
* DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
*/
static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
hwaddr dsm_mem_addr)
{
NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
NvdimmFuncGetLabelDataIn *get_label_data;
NvdimmFuncGetLabelDataOut *get_label_data_out;
uint32_t status;
int size;
get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
le32_to_cpus(&get_label_data->offset);
le32_to_cpus(&get_label_data->length);
nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
get_label_data->offset, get_label_data->length);
status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
get_label_data->length);
if (status != 0 /* Success */) {
nvdimm_dsm_no_payload(status, dsm_mem_addr);
return;
}
size = sizeof(*get_label_data_out) + get_label_data->length;
assert(size <= 4096);
get_label_data_out = g_malloc(size);
get_label_data_out->len = cpu_to_le32(size);
get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */);
nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
get_label_data->length, get_label_data->offset);
cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
g_free(get_label_data_out);
}
/*
* DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
*/
static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
hwaddr dsm_mem_addr)
{
NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
NvdimmFuncSetLabelDataIn *set_label_data;
uint32_t status;
set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
le32_to_cpus(&set_label_data->offset);
le32_to_cpus(&set_label_data->length);
nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
set_label_data->offset, set_label_data->length);
status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
set_label_data->length);
if (status != 0 /* Success */) {
nvdimm_dsm_no_payload(status, dsm_mem_addr);
return;
}
assert(sizeof(*in) + sizeof(*set_label_data) + set_label_data->length <=
4096);
nvc->write_label_data(nvdimm, set_label_data->in_buf,
set_label_data->length, set_label_data->offset);
nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr);
}
static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
{
NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
/* See the comments in nvdimm_dsm_root(). */
if (!in->function) {
uint32_t supported_func = 0;
if (nvdimm && nvdimm->label_size) {
supported_func |= 0x1 /* Bit 0 indicates whether there is
support for any functions other
than function 0. */ |
1 << 4 /* Get Namespace Label Size */ |
1 << 5 /* Get Namespace Label Data */ |
1 << 6 /* Set Namespace Label Data */;
}
nvdimm_dsm_function0(supported_func, dsm_mem_addr);
return;
}
if (!nvdimm) {
nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */,
dsm_mem_addr);
return;
}
/* Encode DSM function according to DSM Spec Rev1. */
switch (in->function) {
case 4 /* Get Namespace Label Size */:
if (nvdimm->label_size) {
nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
return;
}
break;
case 5 /* Get Namespace Label Data */:
if (nvdimm->label_size) {
nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
return;
}
break;
case 0x6 /* Set Namespace Label Data */:
if (nvdimm->label_size) {
nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
return;
}
break;
}
nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
}
static uint64_t
nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
{
nvdimm_debug("BUG: we never read _DSM IO Port.\n");
return 0;
}
static void
nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
{
NvdimmDsmIn *in;
hwaddr dsm_mem_addr = val;
nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
/*
* The DSM memory is mapped to guest address space so an evil guest
* can change its content while we are doing DSM emulation. Avoid
* this by copying DSM memory to QEMU local memory.
*/
in = g_new(NvdimmDsmIn, 1);
cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
le32_to_cpus(&in->revision);
le32_to_cpus(&in->function);
le32_to_cpus(&in->handle);
nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
in->handle, in->function);
if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
in->revision, 0x1);
nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
goto exit;
}
/* Handle 0 is reserved for NVDIMM Root Device. */
if (!in->handle) {
nvdimm_dsm_root(in, dsm_mem_addr);
goto exit;
}
nvdimm_dsm_device(in, dsm_mem_addr);
exit:
g_free(in);
}
static const MemoryRegionOps nvdimm_dsm_ops = {
.read = nvdimm_dsm_read,
.write = nvdimm_dsm_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
FWCfgState *fw_cfg, Object *owner)
{
memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
"nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
state->dsm_mem = g_array_new(false, true /* clear */, 1);
acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
state->dsm_mem->len);
}
#define NVDIMM_COMMON_DSM "NCAL"
#define NVDIMM_ACPI_MEM_ADDR "MEMA"
static void nvdimm_build_common_dsm(Aml *dev)
{
Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *result_size;
Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
Aml *pckg, *pckg_index, *pckg_buf;
uint8_t byte_list[1];
method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
uuid = aml_arg(0);
function = aml_arg(2);
handle = aml_arg(4);
dsm_mem = aml_name(NVDIMM_ACPI_MEM_ADDR);
/*
* do not support any method if DSM memory address has not been
* patched.
*/
unpatched = aml_equal(dsm_mem, aml_int(0x0));
expected_uuid = aml_local(0);
ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
aml_append(ifctx, aml_store(
aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
/* UUID for NVDIMM Root Device */, expected_uuid));
aml_append(method, ifctx);
elsectx = aml_else();
aml_append(elsectx, aml_store(
aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
/* UUID for NVDIMM Devices */, expected_uuid));
aml_append(method, elsectx);
uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
/*
* function 0 is called to inquire what functions are supported by
* OSPM
*/
ifctx = aml_if(aml_equal(function, aml_int(0)));
byte_list[0] = 0 /* No function Supported */;
aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
aml_append(unsupport, ifctx);
/* No function is supported yet. */
byte_list[0] = 1 /* Not Supported */;
aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
aml_append(method, unsupport);
/*
* The HDLE indicates the DSM function is issued from which device,
* it reserves 0 for root device and is the handle for NVDIMM devices.
* See the comments in nvdimm_slot_to_handle().
*/
aml_append(method, aml_store(handle, aml_name("HDLE")));
aml_append(method, aml_store(aml_arg(1), aml_name("REVS")));
aml_append(method, aml_store(aml_arg(2), aml_name("FUNC")));
/*
* The fourth parameter (Arg3) of _DSM is a package which contains
* a buffer, the layout of the buffer is specified by UUID (Arg0),
* Revision ID (Arg1) and Function Index (Arg2) which are documented
* in the DSM Spec.
*/
pckg = aml_arg(3);
ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
aml_int(4 /* Package */)) /* It is a Package? */,
aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
NULL));
pckg_index = aml_local(2);
pckg_buf = aml_local(3);
aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
aml_append(ifctx, aml_store(pckg_buf, aml_name("ARG3")));
aml_append(method, ifctx);
/*
* tell QEMU about the real address of DSM memory, then QEMU
* gets the control and fills the result in DSM memory.
*/
aml_append(method, aml_store(dsm_mem, aml_name("NTFI")));
result_size = aml_local(1);
aml_append(method, aml_store(aml_name("RLEN"), result_size));
aml_append(method, aml_store(aml_shiftleft(result_size, aml_int(3)),
result_size));
aml_append(method, aml_create_field(aml_name("ODAT"), aml_int(0),
result_size, "OBUF"));
aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
aml_arg(6)));
aml_append(method, aml_return(aml_arg(6)));
aml_append(dev, method);
}
static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
{
Aml *method;
method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
aml_arg(1), aml_arg(2), aml_arg(3),
aml_int(handle))));
aml_append(dev, method);
}
static void nvdimm_build_nvdimm_devices(GSList *device_list, Aml *root_dev)
{
for (; device_list; device_list = device_list->next) {
DeviceState *dev = device_list->data;
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
NULL);
uint32_t handle = nvdimm_slot_to_handle(slot);
Aml *nvdimm_dev;
nvdimm_dev = aml_device("NV%02X", slot);
/*
* ACPI 6.0: 9.20 NVDIMM Devices:
*
* _ADR object that is used to supply OSPM with unique address
* of the NVDIMM device. This is done by returning the NFIT Device
* handle that is used to identify the associated entries in ACPI
* table NFIT or _FIT.
*/
aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
nvdimm_build_device_dsm(nvdimm_dev, handle);
aml_append(root_dev, nvdimm_dev);
}
}
static void nvdimm_build_ssdt(GSList *device_list, GArray *table_offsets,
GArray *table_data, BIOSLinker *linker,
GArray *dsm_dma_arrea)
{
Aml *ssdt, *sb_scope, *dev, *field;
int mem_addr_offset, nvdimm_ssdt;
acpi_add_table(table_offsets, table_data);
ssdt = init_aml_allocator();
acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
sb_scope = aml_scope("\\_SB");
dev = aml_device("NVDR");
/*
* ACPI 6.0: 9.20 NVDIMM Devices:
*
* The ACPI Name Space device uses _HID of ACPI0012 to identify the root
* NVDIMM interface device. Platform firmware is required to contain one
* such device in _SB scope if NVDIMMs support is exposed by platform to
* OSPM.
* For each NVDIMM present or intended to be supported by platform,
* platform firmware also exposes an ACPI Namespace Device under the
* root device.
*/
aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
/* map DSM memory and IO into ACPI namespace. */
aml_append(dev, aml_operation_region("NPIO", AML_SYSTEM_IO,
aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
aml_append(dev, aml_operation_region("NRAM", AML_SYSTEM_MEMORY,
aml_name(NVDIMM_ACPI_MEM_ADDR), sizeof(NvdimmDsmIn)));
/*
* DSM notifier:
* NTFI: write the address of DSM memory and notify QEMU to emulate
* the access.
*
* It is the IO port so that accessing them will cause VM-exit, the
* control will be transferred to QEMU.
*/
field = aml_field("NPIO", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("NTFI",
sizeof(uint32_t) * BITS_PER_BYTE));
aml_append(dev, field);
/*
* DSM input:
* HDLE: store device's handle, it's zero if the _DSM call happens
* on NVDIMM Root Device.
* REVS: store the Arg1 of _DSM call.
* FUNC: store the Arg2 of _DSM call.
* ARG3: store the Arg3 of _DSM call.
*
* They are RAM mapping on host so that these accesses never cause
* VM-EXIT.
*/
field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("HDLE",
sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
aml_append(field, aml_named_field("REVS",
sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
aml_append(field, aml_named_field("FUNC",
sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
aml_append(field, aml_named_field("ARG3",
(sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
aml_append(dev, field);
/*
* DSM output:
* RLEN: the size of the buffer filled by QEMU.
* ODAT: the buffer QEMU uses to store the result.
*
* Since the page is reused by both input and out, the input data
* will be lost after storing new result into ODAT so we should fetch
* all the input data before writing the result.
*/
field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("RLEN",
sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
aml_append(field, aml_named_field("ODAT",
(sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
aml_append(dev, field);
nvdimm_build_common_dsm(dev);
/* 0 is reserved for root device. */
nvdimm_build_device_dsm(dev, 0);
nvdimm_build_nvdimm_devices(device_list, dev);
aml_append(sb_scope, dev);
aml_append(ssdt, sb_scope);
nvdimm_ssdt = table_data->len;
/* copy AML table into ACPI tables blob and patch header there */
g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
mem_addr_offset = build_append_named_dword(table_data,
NVDIMM_ACPI_MEM_ADDR);
bios_linker_loader_alloc(linker,
NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
sizeof(NvdimmDsmIn), false /* high memory */);
bios_linker_loader_add_pointer(linker,
ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
NVDIMM_DSM_MEM_FILE, 0);
build_header(linker, table_data,
(void *)(table_data->data + nvdimm_ssdt),
"SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
free_aml_allocator();
}
void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
BIOSLinker *linker, GArray *dsm_dma_arrea)
{
GSList *device_list;
/* no NVDIMM device is plugged. */
device_list = nvdimm_get_plugged_device_list();
if (!device_list) {
return;
}
nvdimm_build_nfit(device_list, table_offsets, table_data, linker);
nvdimm_build_ssdt(device_list, table_offsets, table_data, linker,
dsm_dma_arrea);
g_slist_free(device_list);
}