blob: 87c6dc108df95a454843c203fcd1bf795bcb8e76 [file] [log] [blame]
/*
* SD Memory Card emulation as defined in the "SD Memory Card Physical
* layer specification, Version 1.10."
*
* Copyright (c) 2006 Andrzej Zaborowski <balrog@zabor.org>
* Copyright (c) 2007 CodeSourcery
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "hw/qdev.h"
#include "hw/hw.h"
#include "sysemu/block-backend.h"
#include "hw/sd/sd.h"
#include "qapi/error.h"
#include "qemu/bitmap.h"
#include "hw/qdev-properties.h"
#include "qemu/error-report.h"
#include "qemu/timer.h"
#include "qemu/log.h"
//#define DEBUG_SD 1
#ifdef DEBUG_SD
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, "SD: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do {} while(0)
#endif
#define ACMD41_ENQUIRY_MASK 0x00ffffff
#define OCR_POWER_UP 0x80000000
#define OCR_POWER_DELAY_NS 500000 /* 0.5ms */
typedef enum {
sd_r0 = 0, /* no response */
sd_r1, /* normal response command */
sd_r2_i, /* CID register */
sd_r2_s, /* CSD register */
sd_r3, /* OCR register */
sd_r6 = 6, /* Published RCA response */
sd_r7, /* Operating voltage */
sd_r1b = -1,
sd_illegal = -2,
} sd_rsp_type_t;
enum SDCardModes {
sd_inactive,
sd_card_identification_mode,
sd_data_transfer_mode,
};
enum SDCardStates {
sd_inactive_state = -1,
sd_idle_state = 0,
sd_ready_state,
sd_identification_state,
sd_standby_state,
sd_transfer_state,
sd_sendingdata_state,
sd_receivingdata_state,
sd_programming_state,
sd_disconnect_state,
};
struct SDState {
DeviceState parent_obj;
uint32_t mode; /* current card mode, one of SDCardModes */
int32_t state; /* current card state, one of SDCardStates */
uint32_t ocr;
QEMUTimer *ocr_power_timer;
uint8_t scr[8];
uint8_t cid[16];
uint8_t csd[16];
uint16_t rca;
uint32_t card_status;
uint8_t sd_status[64];
uint32_t vhs;
bool wp_switch;
unsigned long *wp_groups;
int32_t wpgrps_size;
uint64_t size;
uint32_t blk_len;
uint32_t multi_blk_cnt;
uint32_t erase_start;
uint32_t erase_end;
uint8_t pwd[16];
uint32_t pwd_len;
uint8_t function_group[6];
bool spi;
uint8_t current_cmd;
/* True if we will handle the next command as an ACMD. Note that this does
* *not* track the APP_CMD status bit!
*/
bool expecting_acmd;
uint32_t blk_written;
uint64_t data_start;
uint32_t data_offset;
uint8_t data[512];
qemu_irq readonly_cb;
qemu_irq inserted_cb;
BlockBackend *blk;
bool enable;
};
static void sd_set_mode(SDState *sd)
{
switch (sd->state) {
case sd_inactive_state:
sd->mode = sd_inactive;
break;
case sd_idle_state:
case sd_ready_state:
case sd_identification_state:
sd->mode = sd_card_identification_mode;
break;
case sd_standby_state:
case sd_transfer_state:
case sd_sendingdata_state:
case sd_receivingdata_state:
case sd_programming_state:
case sd_disconnect_state:
sd->mode = sd_data_transfer_mode;
break;
}
}
static const sd_cmd_type_t sd_cmd_type[64] = {
sd_bc, sd_none, sd_bcr, sd_bcr, sd_none, sd_none, sd_none, sd_ac,
sd_bcr, sd_ac, sd_ac, sd_adtc, sd_ac, sd_ac, sd_none, sd_ac,
sd_ac, sd_adtc, sd_adtc, sd_none, sd_none, sd_none, sd_none, sd_none,
sd_adtc, sd_adtc, sd_adtc, sd_adtc, sd_ac, sd_ac, sd_adtc, sd_none,
sd_ac, sd_ac, sd_none, sd_none, sd_none, sd_none, sd_ac, sd_none,
sd_none, sd_none, sd_bc, sd_none, sd_none, sd_none, sd_none, sd_none,
sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, sd_ac,
sd_adtc, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none,
};
static const int sd_cmd_class[64] = {
0, 0, 0, 0, 0, 9, 10, 0, 0, 0, 0, 1, 0, 0, 0, 0,
2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 6, 6, 6, 6,
5, 5, 10, 10, 10, 10, 5, 9, 9, 9, 7, 7, 7, 7, 7, 7,
7, 7, 10, 7, 9, 9, 9, 8, 8, 10, 8, 8, 8, 8, 8, 8,
};
static uint8_t sd_crc7(void *message, size_t width)
{
int i, bit;
uint8_t shift_reg = 0x00;
uint8_t *msg = (uint8_t *) message;
for (i = 0; i < width; i ++, msg ++)
for (bit = 7; bit >= 0; bit --) {
shift_reg <<= 1;
if ((shift_reg >> 7) ^ ((*msg >> bit) & 1))
shift_reg ^= 0x89;
}
return shift_reg;
}
static uint16_t sd_crc16(void *message, size_t width)
{
int i, bit;
uint16_t shift_reg = 0x0000;
uint16_t *msg = (uint16_t *) message;
width <<= 1;
for (i = 0; i < width; i ++, msg ++)
for (bit = 15; bit >= 0; bit --) {
shift_reg <<= 1;
if ((shift_reg >> 15) ^ ((*msg >> bit) & 1))
shift_reg ^= 0x1011;
}
return shift_reg;
}
static void sd_set_ocr(SDState *sd)
{
/* All voltages OK, Standard Capacity SD Memory Card, not yet powered up */
sd->ocr = 0x00ffff00;
}
static void sd_ocr_powerup(void *opaque)
{
SDState *sd = opaque;
/* Set powered up bit in OCR */
assert(!(sd->ocr & OCR_POWER_UP));
sd->ocr |= OCR_POWER_UP;
}
static void sd_set_scr(SDState *sd)
{
sd->scr[0] = 0x00; /* SCR Structure */
sd->scr[1] = 0x2f; /* SD Security Support */
sd->scr[2] = 0x00;
sd->scr[3] = 0x00;
sd->scr[4] = 0x00;
sd->scr[5] = 0x00;
sd->scr[6] = 0x00;
sd->scr[7] = 0x00;
}
#define MID 0xaa
#define OID "XY"
#define PNM "QEMU!"
#define PRV 0x01
#define MDT_YR 2006
#define MDT_MON 2
static void sd_set_cid(SDState *sd)
{
sd->cid[0] = MID; /* Fake card manufacturer ID (MID) */
sd->cid[1] = OID[0]; /* OEM/Application ID (OID) */
sd->cid[2] = OID[1];
sd->cid[3] = PNM[0]; /* Fake product name (PNM) */
sd->cid[4] = PNM[1];
sd->cid[5] = PNM[2];
sd->cid[6] = PNM[3];
sd->cid[7] = PNM[4];
sd->cid[8] = PRV; /* Fake product revision (PRV) */
sd->cid[9] = 0xde; /* Fake serial number (PSN) */
sd->cid[10] = 0xad;
sd->cid[11] = 0xbe;
sd->cid[12] = 0xef;
sd->cid[13] = 0x00 | /* Manufacture date (MDT) */
((MDT_YR - 2000) / 10);
sd->cid[14] = ((MDT_YR % 10) << 4) | MDT_MON;
sd->cid[15] = (sd_crc7(sd->cid, 15) << 1) | 1;
}
#define HWBLOCK_SHIFT 9 /* 512 bytes */
#define SECTOR_SHIFT 5 /* 16 kilobytes */
#define WPGROUP_SHIFT 7 /* 2 megs */
#define CMULT_SHIFT 9 /* 512 times HWBLOCK_SIZE */
#define WPGROUP_SIZE (1 << (HWBLOCK_SHIFT + SECTOR_SHIFT + WPGROUP_SHIFT))
static const uint8_t sd_csd_rw_mask[16] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfc, 0xfe,
};
static void sd_set_csd(SDState *sd, uint64_t size)
{
uint32_t csize = (size >> (CMULT_SHIFT + HWBLOCK_SHIFT)) - 1;
uint32_t sectsize = (1 << (SECTOR_SHIFT + 1)) - 1;
uint32_t wpsize = (1 << (WPGROUP_SHIFT + 1)) - 1;
if (size <= 0x40000000) { /* Standard Capacity SD */
sd->csd[0] = 0x00; /* CSD structure */
sd->csd[1] = 0x26; /* Data read access-time-1 */
sd->csd[2] = 0x00; /* Data read access-time-2 */
sd->csd[3] = 0x5a; /* Max. data transfer rate */
sd->csd[4] = 0x5f; /* Card Command Classes */
sd->csd[5] = 0x50 | /* Max. read data block length */
HWBLOCK_SHIFT;
sd->csd[6] = 0xe0 | /* Partial block for read allowed */
((csize >> 10) & 0x03);
sd->csd[7] = 0x00 | /* Device size */
((csize >> 2) & 0xff);
sd->csd[8] = 0x3f | /* Max. read current */
((csize << 6) & 0xc0);
sd->csd[9] = 0xfc | /* Max. write current */
((CMULT_SHIFT - 2) >> 1);
sd->csd[10] = 0x40 | /* Erase sector size */
(((CMULT_SHIFT - 2) << 7) & 0x80) | (sectsize >> 1);
sd->csd[11] = 0x00 | /* Write protect group size */
((sectsize << 7) & 0x80) | wpsize;
sd->csd[12] = 0x90 | /* Write speed factor */
(HWBLOCK_SHIFT >> 2);
sd->csd[13] = 0x20 | /* Max. write data block length */
((HWBLOCK_SHIFT << 6) & 0xc0);
sd->csd[14] = 0x00; /* File format group */
sd->csd[15] = (sd_crc7(sd->csd, 15) << 1) | 1;
} else { /* SDHC */
size /= 512 * 1024;
size -= 1;
sd->csd[0] = 0x40;
sd->csd[1] = 0x0e;
sd->csd[2] = 0x00;
sd->csd[3] = 0x32;
sd->csd[4] = 0x5b;
sd->csd[5] = 0x59;
sd->csd[6] = 0x00;
sd->csd[7] = (size >> 16) & 0xff;
sd->csd[8] = (size >> 8) & 0xff;
sd->csd[9] = (size & 0xff);
sd->csd[10] = 0x7f;
sd->csd[11] = 0x80;
sd->csd[12] = 0x0a;
sd->csd[13] = 0x40;
sd->csd[14] = 0x00;
sd->csd[15] = 0x00;
sd->ocr |= 1 << 30; /* High Capacity SD Memory Card */
}
}
static void sd_set_rca(SDState *sd)
{
sd->rca += 0x4567;
}
/* Card status bits, split by clear condition:
* A : According to the card current state
* B : Always related to the previous command
* C : Cleared by read
*/
#define CARD_STATUS_A 0x02004100
#define CARD_STATUS_B 0x00c01e00
#define CARD_STATUS_C 0xfd39a028
static void sd_set_cardstatus(SDState *sd)
{
sd->card_status = 0x00000100;
}
static void sd_set_sdstatus(SDState *sd)
{
memset(sd->sd_status, 0, 64);
}
static int sd_req_crc_validate(SDRequest *req)
{
uint8_t buffer[5];
buffer[0] = 0x40 | req->cmd;
buffer[1] = (req->arg >> 24) & 0xff;
buffer[2] = (req->arg >> 16) & 0xff;
buffer[3] = (req->arg >> 8) & 0xff;
buffer[4] = (req->arg >> 0) & 0xff;
return 0;
return sd_crc7(buffer, 5) != req->crc; /* TODO */
}
static void sd_response_r1_make(SDState *sd, uint8_t *response)
{
uint32_t status = sd->card_status;
/* Clear the "clear on read" status bits */
sd->card_status &= ~CARD_STATUS_C;
response[0] = (status >> 24) & 0xff;
response[1] = (status >> 16) & 0xff;
response[2] = (status >> 8) & 0xff;
response[3] = (status >> 0) & 0xff;
}
static void sd_response_r3_make(SDState *sd, uint8_t *response)
{
response[0] = (sd->ocr >> 24) & 0xff;
response[1] = (sd->ocr >> 16) & 0xff;
response[2] = (sd->ocr >> 8) & 0xff;
response[3] = (sd->ocr >> 0) & 0xff;
}
static void sd_response_r6_make(SDState *sd, uint8_t *response)
{
uint16_t arg;
uint16_t status;
arg = sd->rca;
status = ((sd->card_status >> 8) & 0xc000) |
((sd->card_status >> 6) & 0x2000) |
(sd->card_status & 0x1fff);
sd->card_status &= ~(CARD_STATUS_C & 0xc81fff);
response[0] = (arg >> 8) & 0xff;
response[1] = arg & 0xff;
response[2] = (status >> 8) & 0xff;
response[3] = status & 0xff;
}
static void sd_response_r7_make(SDState *sd, uint8_t *response)
{
response[0] = (sd->vhs >> 24) & 0xff;
response[1] = (sd->vhs >> 16) & 0xff;
response[2] = (sd->vhs >> 8) & 0xff;
response[3] = (sd->vhs >> 0) & 0xff;
}
static inline uint64_t sd_addr_to_wpnum(uint64_t addr)
{
return addr >> (HWBLOCK_SHIFT + SECTOR_SHIFT + WPGROUP_SHIFT);
}
static void sd_reset(DeviceState *dev)
{
SDState *sd = SD_CARD(dev);
uint64_t size;
uint64_t sect;
if (sd->blk) {
blk_get_geometry(sd->blk, &sect);
} else {
sect = 0;
}
size = sect << 9;
sect = sd_addr_to_wpnum(size) + 1;
sd->state = sd_idle_state;
sd->rca = 0x0000;
sd_set_ocr(sd);
sd_set_scr(sd);
sd_set_cid(sd);
sd_set_csd(sd, size);
sd_set_cardstatus(sd);
sd_set_sdstatus(sd);
g_free(sd->wp_groups);
sd->wp_switch = sd->blk ? blk_is_read_only(sd->blk) : false;
sd->wpgrps_size = sect;
sd->wp_groups = bitmap_new(sd->wpgrps_size);
memset(sd->function_group, 0, sizeof(sd->function_group));
sd->erase_start = 0;
sd->erase_end = 0;
sd->size = size;
sd->blk_len = 0x200;
sd->pwd_len = 0;
sd->expecting_acmd = false;
sd->multi_blk_cnt = 0;
}
static bool sd_get_inserted(SDState *sd)
{
return sd->blk && blk_is_inserted(sd->blk);
}
static bool sd_get_readonly(SDState *sd)
{
return sd->wp_switch;
}
static void sd_cardchange(void *opaque, bool load)
{
SDState *sd = opaque;
DeviceState *dev = DEVICE(sd);
SDBus *sdbus = SD_BUS(qdev_get_parent_bus(dev));
bool inserted = sd_get_inserted(sd);
bool readonly = sd_get_readonly(sd);
if (inserted) {
sd_reset(dev);
}
/* The IRQ notification is for legacy non-QOM SD controller devices;
* QOMified controllers use the SDBus APIs.
*/
if (sdbus) {
sdbus_set_inserted(sdbus, inserted);
if (inserted) {
sdbus_set_readonly(sdbus, readonly);
}
} else {
qemu_set_irq(sd->inserted_cb, inserted);
if (inserted) {
qemu_set_irq(sd->readonly_cb, readonly);
}
}
}
static const BlockDevOps sd_block_ops = {
.change_media_cb = sd_cardchange,
};
static bool sd_ocr_vmstate_needed(void *opaque)
{
SDState *sd = opaque;
/* Include the OCR state (and timer) if it is not yet powered up */
return !(sd->ocr & OCR_POWER_UP);
}
static const VMStateDescription sd_ocr_vmstate = {
.name = "sd-card/ocr-state",
.version_id = 1,
.minimum_version_id = 1,
.needed = sd_ocr_vmstate_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ocr, SDState),
VMSTATE_TIMER_PTR(ocr_power_timer, SDState),
VMSTATE_END_OF_LIST()
},
};
static int sd_vmstate_pre_load(void *opaque)
{
SDState *sd = opaque;
/* If the OCR state is not included (prior versions, or not
* needed), then the OCR must be set as powered up. If the OCR state
* is included, this will be replaced by the state restore.
*/
sd_ocr_powerup(sd);
return 0;
}
static const VMStateDescription sd_vmstate = {
.name = "sd-card",
.version_id = 1,
.minimum_version_id = 1,
.pre_load = sd_vmstate_pre_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(mode, SDState),
VMSTATE_INT32(state, SDState),
VMSTATE_UINT8_ARRAY(cid, SDState, 16),
VMSTATE_UINT8_ARRAY(csd, SDState, 16),
VMSTATE_UINT16(rca, SDState),
VMSTATE_UINT32(card_status, SDState),
VMSTATE_PARTIAL_BUFFER(sd_status, SDState, 1),
VMSTATE_UINT32(vhs, SDState),
VMSTATE_BITMAP(wp_groups, SDState, 0, wpgrps_size),
VMSTATE_UINT32(blk_len, SDState),
VMSTATE_UINT32(multi_blk_cnt, SDState),
VMSTATE_UINT32(erase_start, SDState),
VMSTATE_UINT32(erase_end, SDState),
VMSTATE_UINT8_ARRAY(pwd, SDState, 16),
VMSTATE_UINT32(pwd_len, SDState),
VMSTATE_UINT8_ARRAY(function_group, SDState, 6),
VMSTATE_UINT8(current_cmd, SDState),
VMSTATE_BOOL(expecting_acmd, SDState),
VMSTATE_UINT32(blk_written, SDState),
VMSTATE_UINT64(data_start, SDState),
VMSTATE_UINT32(data_offset, SDState),
VMSTATE_UINT8_ARRAY(data, SDState, 512),
VMSTATE_UNUSED_V(1, 512),
VMSTATE_BOOL(enable, SDState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&sd_ocr_vmstate,
NULL
},
};
/* Legacy initialization function for use by non-qdevified callers */
SDState *sd_init(BlockBackend *blk, bool is_spi)
{
Object *obj;
DeviceState *dev;
Error *err = NULL;
obj = object_new(TYPE_SD_CARD);
dev = DEVICE(obj);
qdev_prop_set_drive(dev, "drive", blk, &err);
if (err) {
error_report("sd_init failed: %s", error_get_pretty(err));
return NULL;
}
qdev_prop_set_bit(dev, "spi", is_spi);
object_property_set_bool(obj, true, "realized", &err);
if (err) {
error_report("sd_init failed: %s", error_get_pretty(err));
return NULL;
}
return SD_CARD(dev);
}
void sd_set_cb(SDState *sd, qemu_irq readonly, qemu_irq insert)
{
sd->readonly_cb = readonly;
sd->inserted_cb = insert;
qemu_set_irq(readonly, sd->blk ? blk_is_read_only(sd->blk) : 0);
qemu_set_irq(insert, sd->blk ? blk_is_inserted(sd->blk) : 0);
}
static void sd_erase(SDState *sd)
{
int i;
uint64_t erase_start = sd->erase_start;
uint64_t erase_end = sd->erase_end;
if (!sd->erase_start || !sd->erase_end) {
sd->card_status |= ERASE_SEQ_ERROR;
return;
}
if (extract32(sd->ocr, OCR_CCS_BITN, 1)) {
/* High capacity memory card: erase units are 512 byte blocks */
erase_start *= 512;
erase_end *= 512;
}
erase_start = sd_addr_to_wpnum(erase_start);
erase_end = sd_addr_to_wpnum(erase_end);
sd->erase_start = 0;
sd->erase_end = 0;
sd->csd[14] |= 0x40;
for (i = erase_start; i <= erase_end; i++) {
if (test_bit(i, sd->wp_groups)) {
sd->card_status |= WP_ERASE_SKIP;
}
}
}
static uint32_t sd_wpbits(SDState *sd, uint64_t addr)
{
uint32_t i, wpnum;
uint32_t ret = 0;
wpnum = sd_addr_to_wpnum(addr);
for (i = 0; i < 32; i++, wpnum++, addr += WPGROUP_SIZE) {
if (addr < sd->size && test_bit(wpnum, sd->wp_groups)) {
ret |= (1 << i);
}
}
return ret;
}
static void sd_function_switch(SDState *sd, uint32_t arg)
{
int i, mode, new_func, crc;
mode = !!(arg & 0x80000000);
sd->data[0] = 0x00; /* Maximum current consumption */
sd->data[1] = 0x01;
sd->data[2] = 0x80; /* Supported group 6 functions */
sd->data[3] = 0x01;
sd->data[4] = 0x80; /* Supported group 5 functions */
sd->data[5] = 0x01;
sd->data[6] = 0x80; /* Supported group 4 functions */
sd->data[7] = 0x01;
sd->data[8] = 0x80; /* Supported group 3 functions */
sd->data[9] = 0x01;
sd->data[10] = 0x80; /* Supported group 2 functions */
sd->data[11] = 0x43;
sd->data[12] = 0x80; /* Supported group 1 functions */
sd->data[13] = 0x03;
for (i = 0; i < 6; i ++) {
new_func = (arg >> (i * 4)) & 0x0f;
if (mode && new_func != 0x0f)
sd->function_group[i] = new_func;
sd->data[14 + (i >> 1)] = new_func << ((i * 4) & 4);
}
memset(&sd->data[17], 0, 47);
crc = sd_crc16(sd->data, 64);
sd->data[65] = crc >> 8;
sd->data[66] = crc & 0xff;
}
static inline bool sd_wp_addr(SDState *sd, uint64_t addr)
{
return test_bit(sd_addr_to_wpnum(addr), sd->wp_groups);
}
static void sd_lock_command(SDState *sd)
{
int erase, lock, clr_pwd, set_pwd, pwd_len;
erase = !!(sd->data[0] & 0x08);
lock = sd->data[0] & 0x04;
clr_pwd = sd->data[0] & 0x02;
set_pwd = sd->data[0] & 0x01;
if (sd->blk_len > 1)
pwd_len = sd->data[1];
else
pwd_len = 0;
if (erase) {
if (!(sd->card_status & CARD_IS_LOCKED) || sd->blk_len > 1 ||
set_pwd || clr_pwd || lock || sd->wp_switch ||
(sd->csd[14] & 0x20)) {
sd->card_status |= LOCK_UNLOCK_FAILED;
return;
}
bitmap_zero(sd->wp_groups, sd->wpgrps_size);
sd->csd[14] &= ~0x10;
sd->card_status &= ~CARD_IS_LOCKED;
sd->pwd_len = 0;
/* Erasing the entire card here! */
fprintf(stderr, "SD: Card force-erased by CMD42\n");
return;
}
if (sd->blk_len < 2 + pwd_len ||
pwd_len <= sd->pwd_len ||
pwd_len > sd->pwd_len + 16) {
sd->card_status |= LOCK_UNLOCK_FAILED;
return;
}
if (sd->pwd_len && memcmp(sd->pwd, sd->data + 2, sd->pwd_len)) {
sd->card_status |= LOCK_UNLOCK_FAILED;
return;
}
pwd_len -= sd->pwd_len;
if ((pwd_len && !set_pwd) ||
(clr_pwd && (set_pwd || lock)) ||
(lock && !sd->pwd_len && !set_pwd) ||
(!set_pwd && !clr_pwd &&
(((sd->card_status & CARD_IS_LOCKED) && lock) ||
(!(sd->card_status & CARD_IS_LOCKED) && !lock)))) {
sd->card_status |= LOCK_UNLOCK_FAILED;
return;
}
if (set_pwd) {
memcpy(sd->pwd, sd->data + 2 + sd->pwd_len, pwd_len);
sd->pwd_len = pwd_len;
}
if (clr_pwd) {
sd->pwd_len = 0;
}
if (lock)
sd->card_status |= CARD_IS_LOCKED;
else
sd->card_status &= ~CARD_IS_LOCKED;
}
static sd_rsp_type_t sd_normal_command(SDState *sd,
SDRequest req)
{
uint32_t rca = 0x0000;
uint64_t addr = (sd->ocr & (1 << 30)) ? (uint64_t) req.arg << 9 : req.arg;
/* Not interpreting this as an app command */
sd->card_status &= ~APP_CMD;
if (sd_cmd_type[req.cmd & 0x3F] == sd_ac
|| sd_cmd_type[req.cmd & 0x3F] == sd_adtc) {
rca = req.arg >> 16;
}
/* CMD23 (set block count) must be immediately followed by CMD18 or CMD25
* if not, its effects are cancelled */
if (sd->multi_blk_cnt != 0 && !(req.cmd == 18 || req.cmd == 25)) {
sd->multi_blk_cnt = 0;
}
DPRINTF("CMD%d 0x%08x state %d\n", req.cmd, req.arg, sd->state);
switch (req.cmd) {
/* Basic commands (Class 0 and Class 1) */
case 0: /* CMD0: GO_IDLE_STATE */
switch (sd->state) {
case sd_inactive_state:
return sd->spi ? sd_r1 : sd_r0;
default:
sd->state = sd_idle_state;
sd_reset(DEVICE(sd));
return sd->spi ? sd_r1 : sd_r0;
}
break;
case 1: /* CMD1: SEND_OP_CMD */
if (!sd->spi)
goto bad_cmd;
sd->state = sd_transfer_state;
return sd_r1;
case 2: /* CMD2: ALL_SEND_CID */
if (sd->spi)
goto bad_cmd;
switch (sd->state) {
case sd_ready_state:
sd->state = sd_identification_state;
return sd_r2_i;
default:
break;
}
break;
case 3: /* CMD3: SEND_RELATIVE_ADDR */
if (sd->spi)
goto bad_cmd;
switch (sd->state) {
case sd_identification_state:
case sd_standby_state:
sd->state = sd_standby_state;
sd_set_rca(sd);
return sd_r6;
default:
break;
}
break;
case 4: /* CMD4: SEND_DSR */
if (sd->spi)
goto bad_cmd;
switch (sd->state) {
case sd_standby_state:
break;
default:
break;
}
break;
case 5: /* CMD5: reserved for SDIO cards */
return sd_illegal;
case 6: /* CMD6: SWITCH_FUNCTION */
if (sd->spi)
goto bad_cmd;
switch (sd->mode) {
case sd_data_transfer_mode:
sd_function_switch(sd, req.arg);
sd->state = sd_sendingdata_state;
sd->data_start = 0;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
case 7: /* CMD7: SELECT/DESELECT_CARD */
if (sd->spi)
goto bad_cmd;
switch (sd->state) {
case sd_standby_state:
if (sd->rca != rca)
return sd_r0;
sd->state = sd_transfer_state;
return sd_r1b;
case sd_transfer_state:
case sd_sendingdata_state:
if (sd->rca == rca)
break;
sd->state = sd_standby_state;
return sd_r1b;
case sd_disconnect_state:
if (sd->rca != rca)
return sd_r0;
sd->state = sd_programming_state;
return sd_r1b;
case sd_programming_state:
if (sd->rca == rca)
break;
sd->state = sd_disconnect_state;
return sd_r1b;
default:
break;
}
break;
case 8: /* CMD8: SEND_IF_COND */
/* Physical Layer Specification Version 2.00 command */
switch (sd->state) {
case sd_idle_state:
sd->vhs = 0;
/* No response if not exactly one VHS bit is set. */
if (!(req.arg >> 8) || (req.arg >> (ctz32(req.arg & ~0xff) + 1))) {
return sd->spi ? sd_r7 : sd_r0;
}
/* Accept. */
sd->vhs = req.arg;
return sd_r7;
default:
break;
}
break;
case 9: /* CMD9: SEND_CSD */
switch (sd->state) {
case sd_standby_state:
if (sd->rca != rca)
return sd_r0;
return sd_r2_s;
case sd_transfer_state:
if (!sd->spi)
break;
sd->state = sd_sendingdata_state;
memcpy(sd->data, sd->csd, 16);
sd->data_start = addr;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
case 10: /* CMD10: SEND_CID */
switch (sd->state) {
case sd_standby_state:
if (sd->rca != rca)
return sd_r0;
return sd_r2_i;
case sd_transfer_state:
if (!sd->spi)
break;
sd->state = sd_sendingdata_state;
memcpy(sd->data, sd->cid, 16);
sd->data_start = addr;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
case 11: /* CMD11: READ_DAT_UNTIL_STOP */
if (sd->spi)
goto bad_cmd;
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_sendingdata_state;
sd->data_start = req.arg;
sd->data_offset = 0;
if (sd->data_start + sd->blk_len > sd->size)
sd->card_status |= ADDRESS_ERROR;
return sd_r0;
default:
break;
}
break;
case 12: /* CMD12: STOP_TRANSMISSION */
switch (sd->state) {
case sd_sendingdata_state:
sd->state = sd_transfer_state;
return sd_r1b;
case sd_receivingdata_state:
sd->state = sd_programming_state;
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
return sd_r1b;
default:
break;
}
break;
case 13: /* CMD13: SEND_STATUS */
switch (sd->mode) {
case sd_data_transfer_mode:
if (sd->rca != rca)
return sd_r0;
return sd_r1;
default:
break;
}
break;
case 15: /* CMD15: GO_INACTIVE_STATE */
if (sd->spi)
goto bad_cmd;
switch (sd->mode) {
case sd_data_transfer_mode:
if (sd->rca != rca)
return sd_r0;
sd->state = sd_inactive_state;
return sd_r0;
default:
break;
}
break;
/* Block read commands (Classs 2) */
case 16: /* CMD16: SET_BLOCKLEN */
switch (sd->state) {
case sd_transfer_state:
if (req.arg > (1 << HWBLOCK_SHIFT))
sd->card_status |= BLOCK_LEN_ERROR;
else
sd->blk_len = req.arg;
return sd_r1;
default:
break;
}
break;
case 17: /* CMD17: READ_SINGLE_BLOCK */
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_sendingdata_state;
sd->data_start = addr;
sd->data_offset = 0;
if (sd->data_start + sd->blk_len > sd->size)
sd->card_status |= ADDRESS_ERROR;
return sd_r1;
default:
break;
}
break;
case 18: /* CMD18: READ_MULTIPLE_BLOCK */
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_sendingdata_state;
sd->data_start = addr;
sd->data_offset = 0;
if (sd->data_start + sd->blk_len > sd->size)
sd->card_status |= ADDRESS_ERROR;
return sd_r1;
default:
break;
}
break;
case 23: /* CMD23: SET_BLOCK_COUNT */
switch (sd->state) {
case sd_transfer_state:
sd->multi_blk_cnt = req.arg;
return sd_r1;
default:
break;
}
break;
/* Block write commands (Class 4) */
case 24: /* CMD24: WRITE_SINGLE_BLOCK */
if (sd->spi)
goto unimplemented_cmd;
switch (sd->state) {
case sd_transfer_state:
/* Writing in SPI mode not implemented. */
if (sd->spi)
break;
sd->state = sd_receivingdata_state;
sd->data_start = addr;
sd->data_offset = 0;
sd->blk_written = 0;
if (sd->data_start + sd->blk_len > sd->size)
sd->card_status |= ADDRESS_ERROR;
if (sd_wp_addr(sd, sd->data_start))
sd->card_status |= WP_VIOLATION;
if (sd->csd[14] & 0x30)
sd->card_status |= WP_VIOLATION;
return sd_r1;
default:
break;
}
break;
case 25: /* CMD25: WRITE_MULTIPLE_BLOCK */
if (sd->spi)
goto unimplemented_cmd;
switch (sd->state) {
case sd_transfer_state:
/* Writing in SPI mode not implemented. */
if (sd->spi)
break;
sd->state = sd_receivingdata_state;
sd->data_start = addr;
sd->data_offset = 0;
sd->blk_written = 0;
if (sd->data_start + sd->blk_len > sd->size)
sd->card_status |= ADDRESS_ERROR;
if (sd_wp_addr(sd, sd->data_start))
sd->card_status |= WP_VIOLATION;
if (sd->csd[14] & 0x30)
sd->card_status |= WP_VIOLATION;
return sd_r1;
default:
break;
}
break;
case 26: /* CMD26: PROGRAM_CID */
if (sd->spi)
goto bad_cmd;
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_receivingdata_state;
sd->data_start = 0;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
case 27: /* CMD27: PROGRAM_CSD */
if (sd->spi)
goto unimplemented_cmd;
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_receivingdata_state;
sd->data_start = 0;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
/* Write protection (Class 6) */
case 28: /* CMD28: SET_WRITE_PROT */
switch (sd->state) {
case sd_transfer_state:
if (addr >= sd->size) {
sd->card_status |= ADDRESS_ERROR;
return sd_r1b;
}
sd->state = sd_programming_state;
set_bit(sd_addr_to_wpnum(addr), sd->wp_groups);
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
return sd_r1b;
default:
break;
}
break;
case 29: /* CMD29: CLR_WRITE_PROT */
switch (sd->state) {
case sd_transfer_state:
if (addr >= sd->size) {
sd->card_status |= ADDRESS_ERROR;
return sd_r1b;
}
sd->state = sd_programming_state;
clear_bit(sd_addr_to_wpnum(addr), sd->wp_groups);
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
return sd_r1b;
default:
break;
}
break;
case 30: /* CMD30: SEND_WRITE_PROT */
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_sendingdata_state;
*(uint32_t *) sd->data = sd_wpbits(sd, req.arg);
sd->data_start = addr;
sd->data_offset = 0;
return sd_r1b;
default:
break;
}
break;
/* Erase commands (Class 5) */
case 32: /* CMD32: ERASE_WR_BLK_START */
switch (sd->state) {
case sd_transfer_state:
sd->erase_start = req.arg;
return sd_r1;
default:
break;
}
break;
case 33: /* CMD33: ERASE_WR_BLK_END */
switch (sd->state) {
case sd_transfer_state:
sd->erase_end = req.arg;
return sd_r1;
default:
break;
}
break;
case 38: /* CMD38: ERASE */
switch (sd->state) {
case sd_transfer_state:
if (sd->csd[14] & 0x30) {
sd->card_status |= WP_VIOLATION;
return sd_r1b;
}
sd->state = sd_programming_state;
sd_erase(sd);
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
return sd_r1b;
default:
break;
}
break;
/* Lock card commands (Class 7) */
case 42: /* CMD42: LOCK_UNLOCK */
if (sd->spi)
goto unimplemented_cmd;
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_receivingdata_state;
sd->data_start = 0;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
case 52:
case 53:
/* CMD52, CMD53: reserved for SDIO cards
* (see the SDIO Simplified Specification V2.0)
* Handle as illegal command but do not complain
* on stderr, as some OSes may use these in their
* probing for presence of an SDIO card.
*/
return sd_illegal;
/* Application specific commands (Class 8) */
case 55: /* CMD55: APP_CMD */
if (sd->rca != rca)
return sd_r0;
sd->expecting_acmd = true;
sd->card_status |= APP_CMD;
return sd_r1;
case 56: /* CMD56: GEN_CMD */
fprintf(stderr, "SD: GEN_CMD 0x%08x\n", req.arg);
switch (sd->state) {
case sd_transfer_state:
sd->data_offset = 0;
if (req.arg & 1)
sd->state = sd_sendingdata_state;
else
sd->state = sd_receivingdata_state;
return sd_r1;
default:
break;
}
break;
default:
bad_cmd:
qemu_log_mask(LOG_GUEST_ERROR, "SD: Unknown CMD%i\n", req.cmd);
return sd_illegal;
unimplemented_cmd:
/* Commands that are recognised but not yet implemented in SPI mode. */
qemu_log_mask(LOG_UNIMP, "SD: CMD%i not implemented in SPI mode\n",
req.cmd);
return sd_illegal;
}
qemu_log_mask(LOG_GUEST_ERROR, "SD: CMD%i in a wrong state\n", req.cmd);
return sd_illegal;
}
static sd_rsp_type_t sd_app_command(SDState *sd,
SDRequest req)
{
DPRINTF("ACMD%d 0x%08x\n", req.cmd, req.arg);
sd->card_status |= APP_CMD;
switch (req.cmd) {
case 6: /* ACMD6: SET_BUS_WIDTH */
switch (sd->state) {
case sd_transfer_state:
sd->sd_status[0] &= 0x3f;
sd->sd_status[0] |= (req.arg & 0x03) << 6;
return sd_r1;
default:
break;
}
break;
case 13: /* ACMD13: SD_STATUS */
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_sendingdata_state;
sd->data_start = 0;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
case 22: /* ACMD22: SEND_NUM_WR_BLOCKS */
switch (sd->state) {
case sd_transfer_state:
*(uint32_t *) sd->data = sd->blk_written;
sd->state = sd_sendingdata_state;
sd->data_start = 0;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
case 23: /* ACMD23: SET_WR_BLK_ERASE_COUNT */
switch (sd->state) {
case sd_transfer_state:
return sd_r1;
default:
break;
}
break;
case 41: /* ACMD41: SD_APP_OP_COND */
if (sd->spi) {
/* SEND_OP_CMD */
sd->state = sd_transfer_state;
return sd_r1;
}
switch (sd->state) {
case sd_idle_state:
/* If it's the first ACMD41 since reset, we need to decide
* whether to power up. If this is not an enquiry ACMD41,
* we immediately report power on and proceed below to the
* ready state, but if it is, we set a timer to model a
* delay for power up. This works around a bug in EDK2
* UEFI, which sends an initial enquiry ACMD41, but
* assumes that the card is in ready state as soon as it
* sees the power up bit set. */
if (!(sd->ocr & OCR_POWER_UP)) {
if ((req.arg & ACMD41_ENQUIRY_MASK) != 0) {
timer_del(sd->ocr_power_timer);
sd_ocr_powerup(sd);
} else if (!timer_pending(sd->ocr_power_timer)) {
timer_mod_ns(sd->ocr_power_timer,
(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
+ OCR_POWER_DELAY_NS));
}
}
/* We accept any voltage. 10000 V is nothing.
*
* Once we're powered up, we advance straight to ready state
* unless it's an enquiry ACMD41 (bits 23:0 == 0).
*/
if (req.arg & ACMD41_ENQUIRY_MASK) {
sd->state = sd_ready_state;
}
return sd_r3;
default:
break;
}
break;
case 42: /* ACMD42: SET_CLR_CARD_DETECT */
switch (sd->state) {
case sd_transfer_state:
/* Bringing in the 50KOhm pull-up resistor... Done. */
return sd_r1;
default:
break;
}
break;
case 51: /* ACMD51: SEND_SCR */
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_sendingdata_state;
sd->data_start = 0;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
default:
/* Fall back to standard commands. */
return sd_normal_command(sd, req);
}
qemu_log_mask(LOG_GUEST_ERROR, "SD: ACMD%i in a wrong state\n", req.cmd);
return sd_illegal;
}
static int cmd_valid_while_locked(SDState *sd, SDRequest *req)
{
/* Valid commands in locked state:
* basic class (0)
* lock card class (7)
* CMD16
* implicitly, the ACMD prefix CMD55
* ACMD41 and ACMD42
* Anything else provokes an "illegal command" response.
*/
if (sd->expecting_acmd) {
return req->cmd == 41 || req->cmd == 42;
}
if (req->cmd == 16 || req->cmd == 55) {
return 1;
}
return sd_cmd_class[req->cmd & 0x3F] == 0
|| sd_cmd_class[req->cmd & 0x3F] == 7;
}
int sd_do_command(SDState *sd, SDRequest *req,
uint8_t *response) {
int last_state;
sd_rsp_type_t rtype;
int rsplen;
if (!sd->blk || !blk_is_inserted(sd->blk) || !sd->enable) {
return 0;
}
if (sd_req_crc_validate(req)) {
sd->card_status |= COM_CRC_ERROR;
rtype = sd_illegal;
goto send_response;
}
if (sd->card_status & CARD_IS_LOCKED) {
if (!cmd_valid_while_locked(sd, req)) {
sd->card_status |= ILLEGAL_COMMAND;
sd->expecting_acmd = false;
qemu_log_mask(LOG_GUEST_ERROR, "SD: Card is locked\n");
rtype = sd_illegal;
goto send_response;
}
}
last_state = sd->state;
sd_set_mode(sd);
if (sd->expecting_acmd) {
sd->expecting_acmd = false;
rtype = sd_app_command(sd, *req);
} else {
rtype = sd_normal_command(sd, *req);
}
if (rtype == sd_illegal) {
sd->card_status |= ILLEGAL_COMMAND;
} else {
/* Valid command, we can update the 'state before command' bits.
* (Do this now so they appear in r1 responses.)
*/
sd->current_cmd = req->cmd;
sd->card_status &= ~CURRENT_STATE;
sd->card_status |= (last_state << 9);
}
send_response:
switch (rtype) {
case sd_r1:
case sd_r1b:
sd_response_r1_make(sd, response);
rsplen = 4;
break;
case sd_r2_i:
memcpy(response, sd->cid, sizeof(sd->cid));
rsplen = 16;
break;
case sd_r2_s:
memcpy(response, sd->csd, sizeof(sd->csd));
rsplen = 16;
break;
case sd_r3:
sd_response_r3_make(sd, response);
rsplen = 4;
break;
case sd_r6:
sd_response_r6_make(sd, response);
rsplen = 4;
break;
case sd_r7:
sd_response_r7_make(sd, response);
rsplen = 4;
break;
case sd_r0:
case sd_illegal:
default:
rsplen = 0;
break;
}
if (rtype != sd_illegal) {
/* Clear the "clear on valid command" status bits now we've
* sent any response
*/
sd->card_status &= ~CARD_STATUS_B;
}
#ifdef DEBUG_SD
if (rsplen) {
int i;
DPRINTF("Response:");
for (i = 0; i < rsplen; i++)
fprintf(stderr, " %02x", response[i]);
fprintf(stderr, " state %d\n", sd->state);
} else {
DPRINTF("No response %d\n", sd->state);
}
#endif
return rsplen;
}
static void sd_blk_read(SDState *sd, uint64_t addr, uint32_t len)
{
DPRINTF("sd_blk_read: addr = 0x%08llx, len = %d\n",
(unsigned long long) addr, len);
if (!sd->blk || blk_pread(sd->blk, addr, sd->data, len) < 0) {
fprintf(stderr, "sd_blk_read: read error on host side\n");
}
}
static void sd_blk_write(SDState *sd, uint64_t addr, uint32_t len)
{
if (!sd->blk || blk_pwrite(sd->blk, addr, sd->data, len, 0) < 0) {
fprintf(stderr, "sd_blk_write: write error on host side\n");
}
}
#define BLK_READ_BLOCK(a, len) sd_blk_read(sd, a, len)
#define BLK_WRITE_BLOCK(a, len) sd_blk_write(sd, a, len)
#define APP_READ_BLOCK(a, len) memset(sd->data, 0xec, len)
#define APP_WRITE_BLOCK(a, len)
void sd_write_data(SDState *sd, uint8_t value)
{
int i;
if (!sd->blk || !blk_is_inserted(sd->blk) || !sd->enable)
return;
if (sd->state != sd_receivingdata_state) {
qemu_log_mask(LOG_GUEST_ERROR,
"sd_write_data: not in Receiving-Data state\n");
return;
}
if (sd->card_status & (ADDRESS_ERROR | WP_VIOLATION))
return;
switch (sd->current_cmd) {
case 24: /* CMD24: WRITE_SINGLE_BLOCK */
sd->data[sd->data_offset ++] = value;
if (sd->data_offset >= sd->blk_len) {
/* TODO: Check CRC before committing */
sd->state = sd_programming_state;
BLK_WRITE_BLOCK(sd->data_start, sd->data_offset);
sd->blk_written ++;
sd->csd[14] |= 0x40;
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
}
break;
case 25: /* CMD25: WRITE_MULTIPLE_BLOCK */
if (sd->data_offset == 0) {
/* Start of the block - let's check the address is valid */
if (sd->data_start + sd->blk_len > sd->size) {
sd->card_status |= ADDRESS_ERROR;
break;
}
if (sd_wp_addr(sd, sd->data_start)) {
sd->card_status |= WP_VIOLATION;
break;
}
}
sd->data[sd->data_offset++] = value;
if (sd->data_offset >= sd->blk_len) {
/* TODO: Check CRC before committing */
sd->state = sd_programming_state;
BLK_WRITE_BLOCK(sd->data_start, sd->data_offset);
sd->blk_written++;
sd->data_start += sd->blk_len;
sd->data_offset = 0;
sd->csd[14] |= 0x40;
/* Bzzzzzzztt .... Operation complete. */
if (sd->multi_blk_cnt != 0) {
if (--sd->multi_blk_cnt == 0) {
/* Stop! */
sd->state = sd_transfer_state;
break;
}
}
sd->state = sd_receivingdata_state;
}
break;
case 26: /* CMD26: PROGRAM_CID */
sd->data[sd->data_offset ++] = value;
if (sd->data_offset >= sizeof(sd->cid)) {
/* TODO: Check CRC before committing */
sd->state = sd_programming_state;
for (i = 0; i < sizeof(sd->cid); i ++)
if ((sd->cid[i] | 0x00) != sd->data[i])
sd->card_status |= CID_CSD_OVERWRITE;
if (!(sd->card_status & CID_CSD_OVERWRITE))
for (i = 0; i < sizeof(sd->cid); i ++) {
sd->cid[i] |= 0x00;
sd->cid[i] &= sd->data[i];
}
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
}
break;
case 27: /* CMD27: PROGRAM_CSD */
sd->data[sd->data_offset ++] = value;
if (sd->data_offset >= sizeof(sd->csd)) {
/* TODO: Check CRC before committing */
sd->state = sd_programming_state;
for (i = 0; i < sizeof(sd->csd); i ++)
if ((sd->csd[i] | sd_csd_rw_mask[i]) !=
(sd->data[i] | sd_csd_rw_mask[i]))
sd->card_status |= CID_CSD_OVERWRITE;
/* Copy flag (OTP) & Permanent write protect */
if (sd->csd[14] & ~sd->data[14] & 0x60)
sd->card_status |= CID_CSD_OVERWRITE;
if (!(sd->card_status & CID_CSD_OVERWRITE))
for (i = 0; i < sizeof(sd->csd); i ++) {
sd->csd[i] |= sd_csd_rw_mask[i];
sd->csd[i] &= sd->data[i];
}
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
}
break;
case 42: /* CMD42: LOCK_UNLOCK */
sd->data[sd->data_offset ++] = value;
if (sd->data_offset >= sd->blk_len) {
/* TODO: Check CRC before committing */
sd->state = sd_programming_state;
sd_lock_command(sd);
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
}
break;
case 56: /* CMD56: GEN_CMD */
sd->data[sd->data_offset ++] = value;
if (sd->data_offset >= sd->blk_len) {
APP_WRITE_BLOCK(sd->data_start, sd->data_offset);
sd->state = sd_transfer_state;
}
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "sd_write_data: unknown command\n");
break;
}
}
uint8_t sd_read_data(SDState *sd)
{
/* TODO: Append CRCs */
uint8_t ret;
int io_len;
if (!sd->blk || !blk_is_inserted(sd->blk) || !sd->enable)
return 0x00;
if (sd->state != sd_sendingdata_state) {
qemu_log_mask(LOG_GUEST_ERROR,
"sd_read_data: not in Sending-Data state\n");
return 0x00;
}
if (sd->card_status & (ADDRESS_ERROR | WP_VIOLATION))
return 0x00;
io_len = (sd->ocr & (1 << 30)) ? 512 : sd->blk_len;
switch (sd->current_cmd) {
case 6: /* CMD6: SWITCH_FUNCTION */
ret = sd->data[sd->data_offset ++];
if (sd->data_offset >= 64)
sd->state = sd_transfer_state;
break;
case 9: /* CMD9: SEND_CSD */
case 10: /* CMD10: SEND_CID */
ret = sd->data[sd->data_offset ++];
if (sd->data_offset >= 16)
sd->state = sd_transfer_state;
break;
case 11: /* CMD11: READ_DAT_UNTIL_STOP */
if (sd->data_offset == 0)
BLK_READ_BLOCK(sd->data_start, io_len);
ret = sd->data[sd->data_offset ++];
if (sd->data_offset >= io_len) {
sd->data_start += io_len;
sd->data_offset = 0;
if (sd->data_start + io_len > sd->size) {
sd->card_status |= ADDRESS_ERROR;
break;
}
}
break;
case 13: /* ACMD13: SD_STATUS */
ret = sd->sd_status[sd->data_offset ++];
if (sd->data_offset >= sizeof(sd->sd_status))
sd->state = sd_transfer_state;
break;
case 17: /* CMD17: READ_SINGLE_BLOCK */
if (sd->data_offset == 0)
BLK_READ_BLOCK(sd->data_start, io_len);
ret = sd->data[sd->data_offset ++];
if (sd->data_offset >= io_len)
sd->state = sd_transfer_state;
break;
case 18: /* CMD18: READ_MULTIPLE_BLOCK */
if (sd->data_offset == 0)
BLK_READ_BLOCK(sd->data_start, io_len);
ret = sd->data[sd->data_offset ++];
if (sd->data_offset >= io_len) {
sd->data_start += io_len;
sd->data_offset = 0;
if (sd->multi_blk_cnt != 0) {
if (--sd->multi_blk_cnt == 0) {
/* Stop! */
sd->state = sd_transfer_state;
break;
}
}
if (sd->data_start + io_len > sd->size) {
sd->card_status |= ADDRESS_ERROR;
break;
}
}
break;
case 22: /* ACMD22: SEND_NUM_WR_BLOCKS */
ret = sd->data[sd->data_offset ++];
if (sd->data_offset >= 4)
sd->state = sd_transfer_state;
break;
case 30: /* CMD30: SEND_WRITE_PROT */
ret = sd->data[sd->data_offset ++];
if (sd->data_offset >= 4)
sd->state = sd_transfer_state;
break;
case 51: /* ACMD51: SEND_SCR */
ret = sd->scr[sd->data_offset ++];
if (sd->data_offset >= sizeof(sd->scr))
sd->state = sd_transfer_state;
break;
case 56: /* CMD56: GEN_CMD */
if (sd->data_offset == 0)
APP_READ_BLOCK(sd->data_start, sd->blk_len);
ret = sd->data[sd->data_offset ++];
if (sd->data_offset >= sd->blk_len)
sd->state = sd_transfer_state;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "sd_read_data: unknown command\n");
return 0x00;
}
return ret;
}
bool sd_data_ready(SDState *sd)
{
return sd->state == sd_sendingdata_state;
}
void sd_enable(SDState *sd, bool enable)
{
sd->enable = enable;
}
static void sd_instance_init(Object *obj)
{
SDState *sd = SD_CARD(obj);
sd->enable = true;
sd->ocr_power_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sd_ocr_powerup, sd);
}
static void sd_realize(DeviceState *dev, Error **errp)
{
SDState *sd = SD_CARD(dev);
if (sd->blk && blk_is_read_only(sd->blk)) {
error_setg(errp, "Cannot use read-only drive as SD card");
return;
}
if (sd->blk) {
blk_set_dev_ops(sd->blk, &sd_block_ops, sd);
}
}
static Property sd_properties[] = {
DEFINE_PROP_DRIVE("drive", SDState, blk),
/* We do not model the chip select pin, so allow the board to select
* whether card should be in SSI or MMC/SD mode. It is also up to the
* board to ensure that ssi transfers only occur when the chip select
* is asserted. */
DEFINE_PROP_BOOL("spi", SDState, spi, false),
DEFINE_PROP_END_OF_LIST()
};
static void sd_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SDCardClass *sc = SD_CARD_CLASS(klass);
dc->realize = sd_realize;
dc->props = sd_properties;
dc->vmsd = &sd_vmstate;
dc->reset = sd_reset;
dc->bus_type = TYPE_SD_BUS;
sc->do_command = sd_do_command;
sc->write_data = sd_write_data;
sc->read_data = sd_read_data;
sc->data_ready = sd_data_ready;
sc->enable = sd_enable;
sc->get_inserted = sd_get_inserted;
sc->get_readonly = sd_get_readonly;
}
static const TypeInfo sd_info = {
.name = TYPE_SD_CARD,
.parent = TYPE_DEVICE,
.instance_size = sizeof(SDState),
.class_size = sizeof(SDCardClass),
.class_init = sd_class_init,
.instance_init = sd_instance_init,
};
static void sd_register_types(void)
{
type_register_static(&sd_info);
}
type_init(sd_register_types)