blob: 91ef4dfefc75da7acb26974e61cb873226b9cf5b [file] [log] [blame]
/*
* Block driver for the QCOW version 2 format
*
* Copyright (c) 2004-2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "block/block_int.h"
#include "sysemu/block-backend.h"
#include "qemu/module.h"
#include <zlib.h>
#include "block/qcow2.h"
#include "qemu/error-report.h"
#include "qapi/qmp/qerror.h"
#include "qapi/qmp/qbool.h"
#include "qapi/util.h"
#include "qapi/qmp/types.h"
#include "qapi-event.h"
#include "trace.h"
#include "qemu/option_int.h"
#include "qemu/cutils.h"
#include "qemu/bswap.h"
/*
Differences with QCOW:
- Support for multiple incremental snapshots.
- Memory management by reference counts.
- Clusters which have a reference count of one have the bit
QCOW_OFLAG_COPIED to optimize write performance.
- Size of compressed clusters is stored in sectors to reduce bit usage
in the cluster offsets.
- Support for storing additional data (such as the VM state) in the
snapshots.
- If a backing store is used, the cluster size is not constrained
(could be backported to QCOW).
- L2 tables have always a size of one cluster.
*/
typedef struct {
uint32_t magic;
uint32_t len;
} QEMU_PACKED QCowExtension;
#define QCOW2_EXT_MAGIC_END 0
#define QCOW2_EXT_MAGIC_BACKING_FORMAT 0xE2792ACA
#define QCOW2_EXT_MAGIC_FEATURE_TABLE 0x6803f857
static int qcow2_probe(const uint8_t *buf, int buf_size, const char *filename)
{
const QCowHeader *cow_header = (const void *)buf;
if (buf_size >= sizeof(QCowHeader) &&
be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
be32_to_cpu(cow_header->version) >= 2)
return 100;
else
return 0;
}
/*
* read qcow2 extension and fill bs
* start reading from start_offset
* finish reading upon magic of value 0 or when end_offset reached
* unknown magic is skipped (future extension this version knows nothing about)
* return 0 upon success, non-0 otherwise
*/
static int qcow2_read_extensions(BlockDriverState *bs, uint64_t start_offset,
uint64_t end_offset, void **p_feature_table,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
QCowExtension ext;
uint64_t offset;
int ret;
#ifdef DEBUG_EXT
printf("qcow2_read_extensions: start=%ld end=%ld\n", start_offset, end_offset);
#endif
offset = start_offset;
while (offset < end_offset) {
#ifdef DEBUG_EXT
/* Sanity check */
if (offset > s->cluster_size)
printf("qcow2_read_extension: suspicious offset %lu\n", offset);
printf("attempting to read extended header in offset %lu\n", offset);
#endif
ret = bdrv_pread(bs->file, offset, &ext, sizeof(ext));
if (ret < 0) {
error_setg_errno(errp, -ret, "qcow2_read_extension: ERROR: "
"pread fail from offset %" PRIu64, offset);
return 1;
}
be32_to_cpus(&ext.magic);
be32_to_cpus(&ext.len);
offset += sizeof(ext);
#ifdef DEBUG_EXT
printf("ext.magic = 0x%x\n", ext.magic);
#endif
if (offset > end_offset || ext.len > end_offset - offset) {
error_setg(errp, "Header extension too large");
return -EINVAL;
}
switch (ext.magic) {
case QCOW2_EXT_MAGIC_END:
return 0;
case QCOW2_EXT_MAGIC_BACKING_FORMAT:
if (ext.len >= sizeof(bs->backing_format)) {
error_setg(errp, "ERROR: ext_backing_format: len=%" PRIu32
" too large (>=%zu)", ext.len,
sizeof(bs->backing_format));
return 2;
}
ret = bdrv_pread(bs->file, offset, bs->backing_format, ext.len);
if (ret < 0) {
error_setg_errno(errp, -ret, "ERROR: ext_backing_format: "
"Could not read format name");
return 3;
}
bs->backing_format[ext.len] = '\0';
s->image_backing_format = g_strdup(bs->backing_format);
#ifdef DEBUG_EXT
printf("Qcow2: Got format extension %s\n", bs->backing_format);
#endif
break;
case QCOW2_EXT_MAGIC_FEATURE_TABLE:
if (p_feature_table != NULL) {
void* feature_table = g_malloc0(ext.len + 2 * sizeof(Qcow2Feature));
ret = bdrv_pread(bs->file, offset , feature_table, ext.len);
if (ret < 0) {
error_setg_errno(errp, -ret, "ERROR: ext_feature_table: "
"Could not read table");
return ret;
}
*p_feature_table = feature_table;
}
break;
default:
/* unknown magic - save it in case we need to rewrite the header */
{
Qcow2UnknownHeaderExtension *uext;
uext = g_malloc0(sizeof(*uext) + ext.len);
uext->magic = ext.magic;
uext->len = ext.len;
QLIST_INSERT_HEAD(&s->unknown_header_ext, uext, next);
ret = bdrv_pread(bs->file, offset , uext->data, uext->len);
if (ret < 0) {
error_setg_errno(errp, -ret, "ERROR: unknown extension: "
"Could not read data");
return ret;
}
}
break;
}
offset += ((ext.len + 7) & ~7);
}
return 0;
}
static void cleanup_unknown_header_ext(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
Qcow2UnknownHeaderExtension *uext, *next;
QLIST_FOREACH_SAFE(uext, &s->unknown_header_ext, next, next) {
QLIST_REMOVE(uext, next);
g_free(uext);
}
}
static void report_unsupported_feature(Error **errp, Qcow2Feature *table,
uint64_t mask)
{
char *features = g_strdup("");
char *old;
while (table && table->name[0] != '\0') {
if (table->type == QCOW2_FEAT_TYPE_INCOMPATIBLE) {
if (mask & (1ULL << table->bit)) {
old = features;
features = g_strdup_printf("%s%s%.46s", old, *old ? ", " : "",
table->name);
g_free(old);
mask &= ~(1ULL << table->bit);
}
}
table++;
}
if (mask) {
old = features;
features = g_strdup_printf("%s%sUnknown incompatible feature: %" PRIx64,
old, *old ? ", " : "", mask);
g_free(old);
}
error_setg(errp, "Unsupported qcow2 feature(s): %s", features);
g_free(features);
}
/*
* Sets the dirty bit and flushes afterwards if necessary.
*
* The incompatible_features bit is only set if the image file header was
* updated successfully. Therefore it is not required to check the return
* value of this function.
*/
int qcow2_mark_dirty(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
uint64_t val;
int ret;
assert(s->qcow_version >= 3);
if (s->incompatible_features & QCOW2_INCOMPAT_DIRTY) {
return 0; /* already dirty */
}
val = cpu_to_be64(s->incompatible_features | QCOW2_INCOMPAT_DIRTY);
ret = bdrv_pwrite(bs->file, offsetof(QCowHeader, incompatible_features),
&val, sizeof(val));
if (ret < 0) {
return ret;
}
ret = bdrv_flush(bs->file->bs);
if (ret < 0) {
return ret;
}
/* Only treat image as dirty if the header was updated successfully */
s->incompatible_features |= QCOW2_INCOMPAT_DIRTY;
return 0;
}
/*
* Clears the dirty bit and flushes before if necessary. Only call this
* function when there are no pending requests, it does not guard against
* concurrent requests dirtying the image.
*/
static int qcow2_mark_clean(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
if (s->incompatible_features & QCOW2_INCOMPAT_DIRTY) {
int ret;
s->incompatible_features &= ~QCOW2_INCOMPAT_DIRTY;
ret = bdrv_flush(bs);
if (ret < 0) {
return ret;
}
return qcow2_update_header(bs);
}
return 0;
}
/*
* Marks the image as corrupt.
*/
int qcow2_mark_corrupt(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
s->incompatible_features |= QCOW2_INCOMPAT_CORRUPT;
return qcow2_update_header(bs);
}
/*
* Marks the image as consistent, i.e., unsets the corrupt bit, and flushes
* before if necessary.
*/
int qcow2_mark_consistent(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
if (s->incompatible_features & QCOW2_INCOMPAT_CORRUPT) {
int ret = bdrv_flush(bs);
if (ret < 0) {
return ret;
}
s->incompatible_features &= ~QCOW2_INCOMPAT_CORRUPT;
return qcow2_update_header(bs);
}
return 0;
}
static int qcow2_check(BlockDriverState *bs, BdrvCheckResult *result,
BdrvCheckMode fix)
{
int ret = qcow2_check_refcounts(bs, result, fix);
if (ret < 0) {
return ret;
}
if (fix && result->check_errors == 0 && result->corruptions == 0) {
ret = qcow2_mark_clean(bs);
if (ret < 0) {
return ret;
}
return qcow2_mark_consistent(bs);
}
return ret;
}
static int validate_table_offset(BlockDriverState *bs, uint64_t offset,
uint64_t entries, size_t entry_len)
{
BDRVQcow2State *s = bs->opaque;
uint64_t size;
/* Use signed INT64_MAX as the maximum even for uint64_t header fields,
* because values will be passed to qemu functions taking int64_t. */
if (entries > INT64_MAX / entry_len) {
return -EINVAL;
}
size = entries * entry_len;
if (INT64_MAX - size < offset) {
return -EINVAL;
}
/* Tables must be cluster aligned */
if (offset & (s->cluster_size - 1)) {
return -EINVAL;
}
return 0;
}
static QemuOptsList qcow2_runtime_opts = {
.name = "qcow2",
.head = QTAILQ_HEAD_INITIALIZER(qcow2_runtime_opts.head),
.desc = {
{
.name = QCOW2_OPT_LAZY_REFCOUNTS,
.type = QEMU_OPT_BOOL,
.help = "Postpone refcount updates",
},
{
.name = QCOW2_OPT_DISCARD_REQUEST,
.type = QEMU_OPT_BOOL,
.help = "Pass guest discard requests to the layer below",
},
{
.name = QCOW2_OPT_DISCARD_SNAPSHOT,
.type = QEMU_OPT_BOOL,
.help = "Generate discard requests when snapshot related space "
"is freed",
},
{
.name = QCOW2_OPT_DISCARD_OTHER,
.type = QEMU_OPT_BOOL,
.help = "Generate discard requests when other clusters are freed",
},
{
.name = QCOW2_OPT_OVERLAP,
.type = QEMU_OPT_STRING,
.help = "Selects which overlap checks to perform from a range of "
"templates (none, constant, cached, all)",
},
{
.name = QCOW2_OPT_OVERLAP_TEMPLATE,
.type = QEMU_OPT_STRING,
.help = "Selects which overlap checks to perform from a range of "
"templates (none, constant, cached, all)",
},
{
.name = QCOW2_OPT_OVERLAP_MAIN_HEADER,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into the main qcow2 header",
},
{
.name = QCOW2_OPT_OVERLAP_ACTIVE_L1,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into the active L1 table",
},
{
.name = QCOW2_OPT_OVERLAP_ACTIVE_L2,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into an active L2 table",
},
{
.name = QCOW2_OPT_OVERLAP_REFCOUNT_TABLE,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into the refcount table",
},
{
.name = QCOW2_OPT_OVERLAP_REFCOUNT_BLOCK,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into a refcount block",
},
{
.name = QCOW2_OPT_OVERLAP_SNAPSHOT_TABLE,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into the snapshot table",
},
{
.name = QCOW2_OPT_OVERLAP_INACTIVE_L1,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into an inactive L1 table",
},
{
.name = QCOW2_OPT_OVERLAP_INACTIVE_L2,
.type = QEMU_OPT_BOOL,
.help = "Check for unintended writes into an inactive L2 table",
},
{
.name = QCOW2_OPT_CACHE_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Maximum combined metadata (L2 tables and refcount blocks) "
"cache size",
},
{
.name = QCOW2_OPT_L2_CACHE_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Maximum L2 table cache size",
},
{
.name = QCOW2_OPT_REFCOUNT_CACHE_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Maximum refcount block cache size",
},
{
.name = QCOW2_OPT_CACHE_CLEAN_INTERVAL,
.type = QEMU_OPT_NUMBER,
.help = "Clean unused cache entries after this time (in seconds)",
},
{ /* end of list */ }
},
};
static const char *overlap_bool_option_names[QCOW2_OL_MAX_BITNR] = {
[QCOW2_OL_MAIN_HEADER_BITNR] = QCOW2_OPT_OVERLAP_MAIN_HEADER,
[QCOW2_OL_ACTIVE_L1_BITNR] = QCOW2_OPT_OVERLAP_ACTIVE_L1,
[QCOW2_OL_ACTIVE_L2_BITNR] = QCOW2_OPT_OVERLAP_ACTIVE_L2,
[QCOW2_OL_REFCOUNT_TABLE_BITNR] = QCOW2_OPT_OVERLAP_REFCOUNT_TABLE,
[QCOW2_OL_REFCOUNT_BLOCK_BITNR] = QCOW2_OPT_OVERLAP_REFCOUNT_BLOCK,
[QCOW2_OL_SNAPSHOT_TABLE_BITNR] = QCOW2_OPT_OVERLAP_SNAPSHOT_TABLE,
[QCOW2_OL_INACTIVE_L1_BITNR] = QCOW2_OPT_OVERLAP_INACTIVE_L1,
[QCOW2_OL_INACTIVE_L2_BITNR] = QCOW2_OPT_OVERLAP_INACTIVE_L2,
};
static void cache_clean_timer_cb(void *opaque)
{
BlockDriverState *bs = opaque;
BDRVQcow2State *s = bs->opaque;
qcow2_cache_clean_unused(bs, s->l2_table_cache);
qcow2_cache_clean_unused(bs, s->refcount_block_cache);
timer_mod(s->cache_clean_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) +
(int64_t) s->cache_clean_interval * 1000);
}
static void cache_clean_timer_init(BlockDriverState *bs, AioContext *context)
{
BDRVQcow2State *s = bs->opaque;
if (s->cache_clean_interval > 0) {
s->cache_clean_timer = aio_timer_new(context, QEMU_CLOCK_VIRTUAL,
SCALE_MS, cache_clean_timer_cb,
bs);
timer_mod(s->cache_clean_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) +
(int64_t) s->cache_clean_interval * 1000);
}
}
static void cache_clean_timer_del(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
if (s->cache_clean_timer) {
timer_del(s->cache_clean_timer);
timer_free(s->cache_clean_timer);
s->cache_clean_timer = NULL;
}
}
static void qcow2_detach_aio_context(BlockDriverState *bs)
{
cache_clean_timer_del(bs);
}
static void qcow2_attach_aio_context(BlockDriverState *bs,
AioContext *new_context)
{
cache_clean_timer_init(bs, new_context);
}
static void read_cache_sizes(BlockDriverState *bs, QemuOpts *opts,
uint64_t *l2_cache_size,
uint64_t *refcount_cache_size, Error **errp)
{
BDRVQcow2State *s = bs->opaque;
uint64_t combined_cache_size;
bool l2_cache_size_set, refcount_cache_size_set, combined_cache_size_set;
combined_cache_size_set = qemu_opt_get(opts, QCOW2_OPT_CACHE_SIZE);
l2_cache_size_set = qemu_opt_get(opts, QCOW2_OPT_L2_CACHE_SIZE);
refcount_cache_size_set = qemu_opt_get(opts, QCOW2_OPT_REFCOUNT_CACHE_SIZE);
combined_cache_size = qemu_opt_get_size(opts, QCOW2_OPT_CACHE_SIZE, 0);
*l2_cache_size = qemu_opt_get_size(opts, QCOW2_OPT_L2_CACHE_SIZE, 0);
*refcount_cache_size = qemu_opt_get_size(opts,
QCOW2_OPT_REFCOUNT_CACHE_SIZE, 0);
if (combined_cache_size_set) {
if (l2_cache_size_set && refcount_cache_size_set) {
error_setg(errp, QCOW2_OPT_CACHE_SIZE ", " QCOW2_OPT_L2_CACHE_SIZE
" and " QCOW2_OPT_REFCOUNT_CACHE_SIZE " may not be set "
"the same time");
return;
} else if (*l2_cache_size > combined_cache_size) {
error_setg(errp, QCOW2_OPT_L2_CACHE_SIZE " may not exceed "
QCOW2_OPT_CACHE_SIZE);
return;
} else if (*refcount_cache_size > combined_cache_size) {
error_setg(errp, QCOW2_OPT_REFCOUNT_CACHE_SIZE " may not exceed "
QCOW2_OPT_CACHE_SIZE);
return;
}
if (l2_cache_size_set) {
*refcount_cache_size = combined_cache_size - *l2_cache_size;
} else if (refcount_cache_size_set) {
*l2_cache_size = combined_cache_size - *refcount_cache_size;
} else {
*refcount_cache_size = combined_cache_size
/ (DEFAULT_L2_REFCOUNT_SIZE_RATIO + 1);
*l2_cache_size = combined_cache_size - *refcount_cache_size;
}
} else {
if (!l2_cache_size_set && !refcount_cache_size_set) {
*l2_cache_size = MAX(DEFAULT_L2_CACHE_BYTE_SIZE,
(uint64_t)DEFAULT_L2_CACHE_CLUSTERS
* s->cluster_size);
*refcount_cache_size = *l2_cache_size
/ DEFAULT_L2_REFCOUNT_SIZE_RATIO;
} else if (!l2_cache_size_set) {
*l2_cache_size = *refcount_cache_size
* DEFAULT_L2_REFCOUNT_SIZE_RATIO;
} else if (!refcount_cache_size_set) {
*refcount_cache_size = *l2_cache_size
/ DEFAULT_L2_REFCOUNT_SIZE_RATIO;
}
}
}
typedef struct Qcow2ReopenState {
Qcow2Cache *l2_table_cache;
Qcow2Cache *refcount_block_cache;
bool use_lazy_refcounts;
int overlap_check;
bool discard_passthrough[QCOW2_DISCARD_MAX];
uint64_t cache_clean_interval;
} Qcow2ReopenState;
static int qcow2_update_options_prepare(BlockDriverState *bs,
Qcow2ReopenState *r,
QDict *options, int flags,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
QemuOpts *opts = NULL;
const char *opt_overlap_check, *opt_overlap_check_template;
int overlap_check_template = 0;
uint64_t l2_cache_size, refcount_cache_size;
int i;
Error *local_err = NULL;
int ret;
opts = qemu_opts_create(&qcow2_runtime_opts, NULL, 0, &error_abort);
qemu_opts_absorb_qdict(opts, options, &local_err);
if (local_err) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto fail;
}
/* get L2 table/refcount block cache size from command line options */
read_cache_sizes(bs, opts, &l2_cache_size, &refcount_cache_size,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto fail;
}
l2_cache_size /= s->cluster_size;
if (l2_cache_size < MIN_L2_CACHE_SIZE) {
l2_cache_size = MIN_L2_CACHE_SIZE;
}
if (l2_cache_size > INT_MAX) {
error_setg(errp, "L2 cache size too big");
ret = -EINVAL;
goto fail;
}
refcount_cache_size /= s->cluster_size;
if (refcount_cache_size < MIN_REFCOUNT_CACHE_SIZE) {
refcount_cache_size = MIN_REFCOUNT_CACHE_SIZE;
}
if (refcount_cache_size > INT_MAX) {
error_setg(errp, "Refcount cache size too big");
ret = -EINVAL;
goto fail;
}
/* alloc new L2 table/refcount block cache, flush old one */
if (s->l2_table_cache) {
ret = qcow2_cache_flush(bs, s->l2_table_cache);
if (ret) {
error_setg_errno(errp, -ret, "Failed to flush the L2 table cache");
goto fail;
}
}
if (s->refcount_block_cache) {
ret = qcow2_cache_flush(bs, s->refcount_block_cache);
if (ret) {
error_setg_errno(errp, -ret,
"Failed to flush the refcount block cache");
goto fail;
}
}
r->l2_table_cache = qcow2_cache_create(bs, l2_cache_size);
r->refcount_block_cache = qcow2_cache_create(bs, refcount_cache_size);
if (r->l2_table_cache == NULL || r->refcount_block_cache == NULL) {
error_setg(errp, "Could not allocate metadata caches");
ret = -ENOMEM;
goto fail;
}
/* New interval for cache cleanup timer */
r->cache_clean_interval =
qemu_opt_get_number(opts, QCOW2_OPT_CACHE_CLEAN_INTERVAL,
s->cache_clean_interval);
if (r->cache_clean_interval > UINT_MAX) {
error_setg(errp, "Cache clean interval too big");
ret = -EINVAL;
goto fail;
}
/* lazy-refcounts; flush if going from enabled to disabled */
r->use_lazy_refcounts = qemu_opt_get_bool(opts, QCOW2_OPT_LAZY_REFCOUNTS,
(s->compatible_features & QCOW2_COMPAT_LAZY_REFCOUNTS));
if (r->use_lazy_refcounts && s->qcow_version < 3) {
error_setg(errp, "Lazy refcounts require a qcow2 image with at least "
"qemu 1.1 compatibility level");
ret = -EINVAL;
goto fail;
}
if (s->use_lazy_refcounts && !r->use_lazy_refcounts) {
ret = qcow2_mark_clean(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to disable lazy refcounts");
goto fail;
}
}
/* Overlap check options */
opt_overlap_check = qemu_opt_get(opts, QCOW2_OPT_OVERLAP);
opt_overlap_check_template = qemu_opt_get(opts, QCOW2_OPT_OVERLAP_TEMPLATE);
if (opt_overlap_check_template && opt_overlap_check &&
strcmp(opt_overlap_check_template, opt_overlap_check))
{
error_setg(errp, "Conflicting values for qcow2 options '"
QCOW2_OPT_OVERLAP "' ('%s') and '" QCOW2_OPT_OVERLAP_TEMPLATE
"' ('%s')", opt_overlap_check, opt_overlap_check_template);
ret = -EINVAL;
goto fail;
}
if (!opt_overlap_check) {
opt_overlap_check = opt_overlap_check_template ?: "cached";
}
if (!strcmp(opt_overlap_check, "none")) {
overlap_check_template = 0;
} else if (!strcmp(opt_overlap_check, "constant")) {
overlap_check_template = QCOW2_OL_CONSTANT;
} else if (!strcmp(opt_overlap_check, "cached")) {
overlap_check_template = QCOW2_OL_CACHED;
} else if (!strcmp(opt_overlap_check, "all")) {
overlap_check_template = QCOW2_OL_ALL;
} else {
error_setg(errp, "Unsupported value '%s' for qcow2 option "
"'overlap-check'. Allowed are any of the following: "
"none, constant, cached, all", opt_overlap_check);
ret = -EINVAL;
goto fail;
}
r->overlap_check = 0;
for (i = 0; i < QCOW2_OL_MAX_BITNR; i++) {
/* overlap-check defines a template bitmask, but every flag may be
* overwritten through the associated boolean option */
r->overlap_check |=
qemu_opt_get_bool(opts, overlap_bool_option_names[i],
overlap_check_template & (1 << i)) << i;
}
r->discard_passthrough[QCOW2_DISCARD_NEVER] = false;
r->discard_passthrough[QCOW2_DISCARD_ALWAYS] = true;
r->discard_passthrough[QCOW2_DISCARD_REQUEST] =
qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_REQUEST,
flags & BDRV_O_UNMAP);
r->discard_passthrough[QCOW2_DISCARD_SNAPSHOT] =
qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_SNAPSHOT, true);
r->discard_passthrough[QCOW2_DISCARD_OTHER] =
qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_OTHER, false);
ret = 0;
fail:
qemu_opts_del(opts);
opts = NULL;
return ret;
}
static void qcow2_update_options_commit(BlockDriverState *bs,
Qcow2ReopenState *r)
{
BDRVQcow2State *s = bs->opaque;
int i;
if (s->l2_table_cache) {
qcow2_cache_destroy(bs, s->l2_table_cache);
}
if (s->refcount_block_cache) {
qcow2_cache_destroy(bs, s->refcount_block_cache);
}
s->l2_table_cache = r->l2_table_cache;
s->refcount_block_cache = r->refcount_block_cache;
s->overlap_check = r->overlap_check;
s->use_lazy_refcounts = r->use_lazy_refcounts;
for (i = 0; i < QCOW2_DISCARD_MAX; i++) {
s->discard_passthrough[i] = r->discard_passthrough[i];
}
if (s->cache_clean_interval != r->cache_clean_interval) {
cache_clean_timer_del(bs);
s->cache_clean_interval = r->cache_clean_interval;
cache_clean_timer_init(bs, bdrv_get_aio_context(bs));
}
}
static void qcow2_update_options_abort(BlockDriverState *bs,
Qcow2ReopenState *r)
{
if (r->l2_table_cache) {
qcow2_cache_destroy(bs, r->l2_table_cache);
}
if (r->refcount_block_cache) {
qcow2_cache_destroy(bs, r->refcount_block_cache);
}
}
static int qcow2_update_options(BlockDriverState *bs, QDict *options,
int flags, Error **errp)
{
Qcow2ReopenState r = {};
int ret;
ret = qcow2_update_options_prepare(bs, &r, options, flags, errp);
if (ret >= 0) {
qcow2_update_options_commit(bs, &r);
} else {
qcow2_update_options_abort(bs, &r);
}
return ret;
}
static int qcow2_open(BlockDriverState *bs, QDict *options, int flags,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
unsigned int len, i;
int ret = 0;
QCowHeader header;
Error *local_err = NULL;
uint64_t ext_end;
uint64_t l1_vm_state_index;
ret = bdrv_pread(bs->file, 0, &header, sizeof(header));
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read qcow2 header");
goto fail;
}
be32_to_cpus(&header.magic);
be32_to_cpus(&header.version);
be64_to_cpus(&header.backing_file_offset);
be32_to_cpus(&header.backing_file_size);
be64_to_cpus(&header.size);
be32_to_cpus(&header.cluster_bits);
be32_to_cpus(&header.crypt_method);
be64_to_cpus(&header.l1_table_offset);
be32_to_cpus(&header.l1_size);
be64_to_cpus(&header.refcount_table_offset);
be32_to_cpus(&header.refcount_table_clusters);
be64_to_cpus(&header.snapshots_offset);
be32_to_cpus(&header.nb_snapshots);
if (header.magic != QCOW_MAGIC) {
error_setg(errp, "Image is not in qcow2 format");
ret = -EINVAL;
goto fail;
}
if (header.version < 2 || header.version > 3) {
error_setg(errp, "Unsupported qcow2 version %" PRIu32, header.version);
ret = -ENOTSUP;
goto fail;
}
s->qcow_version = header.version;
/* Initialise cluster size */
if (header.cluster_bits < MIN_CLUSTER_BITS ||
header.cluster_bits > MAX_CLUSTER_BITS) {
error_setg(errp, "Unsupported cluster size: 2^%" PRIu32,
header.cluster_bits);
ret = -EINVAL;
goto fail;
}
s->cluster_bits = header.cluster_bits;
s->cluster_size = 1 << s->cluster_bits;
s->cluster_sectors = 1 << (s->cluster_bits - 9);
/* Initialise version 3 header fields */
if (header.version == 2) {
header.incompatible_features = 0;
header.compatible_features = 0;
header.autoclear_features = 0;
header.refcount_order = 4;
header.header_length = 72;
} else {
be64_to_cpus(&header.incompatible_features);
be64_to_cpus(&header.compatible_features);
be64_to_cpus(&header.autoclear_features);
be32_to_cpus(&header.refcount_order);
be32_to_cpus(&header.header_length);
if (header.header_length < 104) {
error_setg(errp, "qcow2 header too short");
ret = -EINVAL;
goto fail;
}
}
if (header.header_length > s->cluster_size) {
error_setg(errp, "qcow2 header exceeds cluster size");
ret = -EINVAL;
goto fail;
}
if (header.header_length > sizeof(header)) {
s->unknown_header_fields_size = header.header_length - sizeof(header);
s->unknown_header_fields = g_malloc(s->unknown_header_fields_size);
ret = bdrv_pread(bs->file, sizeof(header), s->unknown_header_fields,
s->unknown_header_fields_size);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read unknown qcow2 header "
"fields");
goto fail;
}
}
if (header.backing_file_offset > s->cluster_size) {
error_setg(errp, "Invalid backing file offset");
ret = -EINVAL;
goto fail;
}
if (header.backing_file_offset) {
ext_end = header.backing_file_offset;
} else {
ext_end = 1 << header.cluster_bits;
}
/* Handle feature bits */
s->incompatible_features = header.incompatible_features;
s->compatible_features = header.compatible_features;
s->autoclear_features = header.autoclear_features;
if (s->incompatible_features & ~QCOW2_INCOMPAT_MASK) {
void *feature_table = NULL;
qcow2_read_extensions(bs, header.header_length, ext_end,
&feature_table, NULL);
report_unsupported_feature(errp, feature_table,
s->incompatible_features &
~QCOW2_INCOMPAT_MASK);
ret = -ENOTSUP;
g_free(feature_table);
goto fail;
}
if (s->incompatible_features & QCOW2_INCOMPAT_CORRUPT) {
/* Corrupt images may not be written to unless they are being repaired
*/
if ((flags & BDRV_O_RDWR) && !(flags & BDRV_O_CHECK)) {
error_setg(errp, "qcow2: Image is corrupt; cannot be opened "
"read/write");
ret = -EACCES;
goto fail;
}
}
/* Check support for various header values */
if (header.refcount_order > 6) {
error_setg(errp, "Reference count entry width too large; may not "
"exceed 64 bits");
ret = -EINVAL;
goto fail;
}
s->refcount_order = header.refcount_order;
s->refcount_bits = 1 << s->refcount_order;
s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
s->refcount_max += s->refcount_max - 1;
if (header.crypt_method > QCOW_CRYPT_AES) {
error_setg(errp, "Unsupported encryption method: %" PRIu32,
header.crypt_method);
ret = -EINVAL;
goto fail;
}
if (!qcrypto_cipher_supports(QCRYPTO_CIPHER_ALG_AES_128)) {
error_setg(errp, "AES cipher not available");
ret = -EINVAL;
goto fail;
}
s->crypt_method_header = header.crypt_method;
if (s->crypt_method_header) {
if (bdrv_uses_whitelist() &&
s->crypt_method_header == QCOW_CRYPT_AES) {
error_setg(errp,
"Use of AES-CBC encrypted qcow2 images is no longer "
"supported in system emulators");
error_append_hint(errp,
"You can use 'qemu-img convert' to convert your "
"image to an alternative supported format, such "
"as unencrypted qcow2, or raw with the LUKS "
"format instead.\n");
ret = -ENOSYS;
goto fail;
}
bs->encrypted = true;
}
s->l2_bits = s->cluster_bits - 3; /* L2 is always one cluster */
s->l2_size = 1 << s->l2_bits;
/* 2^(s->refcount_order - 3) is the refcount width in bytes */
s->refcount_block_bits = s->cluster_bits - (s->refcount_order - 3);
s->refcount_block_size = 1 << s->refcount_block_bits;
bs->total_sectors = header.size / 512;
s->csize_shift = (62 - (s->cluster_bits - 8));
s->csize_mask = (1 << (s->cluster_bits - 8)) - 1;
s->cluster_offset_mask = (1LL << s->csize_shift) - 1;
s->refcount_table_offset = header.refcount_table_offset;
s->refcount_table_size =
header.refcount_table_clusters << (s->cluster_bits - 3);
if (header.refcount_table_clusters > qcow2_max_refcount_clusters(s)) {
error_setg(errp, "Reference count table too large");
ret = -EINVAL;
goto fail;
}
ret = validate_table_offset(bs, s->refcount_table_offset,
s->refcount_table_size, sizeof(uint64_t));
if (ret < 0) {
error_setg(errp, "Invalid reference count table offset");
goto fail;
}
/* Snapshot table offset/length */
if (header.nb_snapshots > QCOW_MAX_SNAPSHOTS) {
error_setg(errp, "Too many snapshots");
ret = -EINVAL;
goto fail;
}
ret = validate_table_offset(bs, header.snapshots_offset,
header.nb_snapshots,
sizeof(QCowSnapshotHeader));
if (ret < 0) {
error_setg(errp, "Invalid snapshot table offset");
goto fail;
}
/* read the level 1 table */
if (header.l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
error_setg(errp, "Active L1 table too large");
ret = -EFBIG;
goto fail;
}
s->l1_size = header.l1_size;
l1_vm_state_index = size_to_l1(s, header.size);
if (l1_vm_state_index > INT_MAX) {
error_setg(errp, "Image is too big");
ret = -EFBIG;
goto fail;
}
s->l1_vm_state_index = l1_vm_state_index;
/* the L1 table must contain at least enough entries to put
header.size bytes */
if (s->l1_size < s->l1_vm_state_index) {
error_setg(errp, "L1 table is too small");
ret = -EINVAL;
goto fail;
}
ret = validate_table_offset(bs, header.l1_table_offset,
header.l1_size, sizeof(uint64_t));
if (ret < 0) {
error_setg(errp, "Invalid L1 table offset");
goto fail;
}
s->l1_table_offset = header.l1_table_offset;
if (s->l1_size > 0) {
s->l1_table = qemu_try_blockalign(bs->file->bs,
align_offset(s->l1_size * sizeof(uint64_t), 512));
if (s->l1_table == NULL) {
error_setg(errp, "Could not allocate L1 table");
ret = -ENOMEM;
goto fail;
}
ret = bdrv_pread(bs->file, s->l1_table_offset, s->l1_table,
s->l1_size * sizeof(uint64_t));
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read L1 table");
goto fail;
}
for(i = 0;i < s->l1_size; i++) {
be64_to_cpus(&s->l1_table[i]);
}
}
/* Parse driver-specific options */
ret = qcow2_update_options(bs, options, flags, errp);
if (ret < 0) {
goto fail;
}
s->cluster_cache = g_malloc(s->cluster_size);
/* one more sector for decompressed data alignment */
s->cluster_data = qemu_try_blockalign(bs->file->bs, QCOW_MAX_CRYPT_CLUSTERS
* s->cluster_size + 512);
if (s->cluster_data == NULL) {
error_setg(errp, "Could not allocate temporary cluster buffer");
ret = -ENOMEM;
goto fail;
}
s->cluster_cache_offset = -1;
s->flags = flags;
ret = qcow2_refcount_init(bs);
if (ret != 0) {
error_setg_errno(errp, -ret, "Could not initialize refcount handling");
goto fail;
}
QLIST_INIT(&s->cluster_allocs);
QTAILQ_INIT(&s->discards);
/* read qcow2 extensions */
if (qcow2_read_extensions(bs, header.header_length, ext_end, NULL,
&local_err)) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto fail;
}
/* read the backing file name */
if (header.backing_file_offset != 0) {
len = header.backing_file_size;
if (len > MIN(1023, s->cluster_size - header.backing_file_offset) ||
len >= sizeof(bs->backing_file)) {
error_setg(errp, "Backing file name too long");
ret = -EINVAL;
goto fail;
}
ret = bdrv_pread(bs->file, header.backing_file_offset,
bs->backing_file, len);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read backing file name");
goto fail;
}
bs->backing_file[len] = '\0';
s->image_backing_file = g_strdup(bs->backing_file);
}
/* Internal snapshots */
s->snapshots_offset = header.snapshots_offset;
s->nb_snapshots = header.nb_snapshots;
ret = qcow2_read_snapshots(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read snapshots");
goto fail;
}
/* Clear unknown autoclear feature bits */
if (!bs->read_only && !(flags & BDRV_O_INACTIVE) && s->autoclear_features) {
s->autoclear_features = 0;
ret = qcow2_update_header(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not update qcow2 header");
goto fail;
}
}
/* Initialise locks */
qemu_co_mutex_init(&s->lock);
/* Repair image if dirty */
if (!(flags & (BDRV_O_CHECK | BDRV_O_INACTIVE)) && !bs->read_only &&
(s->incompatible_features & QCOW2_INCOMPAT_DIRTY)) {
BdrvCheckResult result = {0};
ret = qcow2_check(bs, &result, BDRV_FIX_ERRORS | BDRV_FIX_LEAKS);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not repair dirty image");
goto fail;
}
}
#ifdef DEBUG_ALLOC
{
BdrvCheckResult result = {0};
qcow2_check_refcounts(bs, &result, 0);
}
#endif
return ret;
fail:
g_free(s->unknown_header_fields);
cleanup_unknown_header_ext(bs);
qcow2_free_snapshots(bs);
qcow2_refcount_close(bs);
qemu_vfree(s->l1_table);
/* else pre-write overlap checks in cache_destroy may crash */
s->l1_table = NULL;
cache_clean_timer_del(bs);
if (s->l2_table_cache) {
qcow2_cache_destroy(bs, s->l2_table_cache);
}
if (s->refcount_block_cache) {
qcow2_cache_destroy(bs, s->refcount_block_cache);
}
g_free(s->cluster_cache);
qemu_vfree(s->cluster_data);
return ret;
}
static void qcow2_refresh_limits(BlockDriverState *bs, Error **errp)
{
BDRVQcow2State *s = bs->opaque;
if (bs->encrypted) {
/* Encryption works on a sector granularity */
bs->bl.request_alignment = BDRV_SECTOR_SIZE;
}
bs->bl.pwrite_zeroes_alignment = s->cluster_size;
}
static int qcow2_set_key(BlockDriverState *bs, const char *key)
{
BDRVQcow2State *s = bs->opaque;
uint8_t keybuf[16];
int len, i;
Error *err = NULL;
memset(keybuf, 0, 16);
len = strlen(key);
if (len > 16)
len = 16;
/* XXX: we could compress the chars to 7 bits to increase
entropy */
for(i = 0;i < len;i++) {
keybuf[i] = key[i];
}
assert(bs->encrypted);
qcrypto_cipher_free(s->cipher);
s->cipher = qcrypto_cipher_new(
QCRYPTO_CIPHER_ALG_AES_128,
QCRYPTO_CIPHER_MODE_CBC,
keybuf, G_N_ELEMENTS(keybuf),
&err);
if (!s->cipher) {
/* XXX would be nice if errors in this method could
* be properly propagate to the caller. Would need
* the bdrv_set_key() API signature to be fixed. */
error_free(err);
return -1;
}
return 0;
}
static int qcow2_reopen_prepare(BDRVReopenState *state,
BlockReopenQueue *queue, Error **errp)
{
Qcow2ReopenState *r;
int ret;
r = g_new0(Qcow2ReopenState, 1);
state->opaque = r;
ret = qcow2_update_options_prepare(state->bs, r, state->options,
state->flags, errp);
if (ret < 0) {
goto fail;
}
/* We need to write out any unwritten data if we reopen read-only. */
if ((state->flags & BDRV_O_RDWR) == 0) {
ret = bdrv_flush(state->bs);
if (ret < 0) {
goto fail;
}
ret = qcow2_mark_clean(state->bs);
if (ret < 0) {
goto fail;
}
}
return 0;
fail:
qcow2_update_options_abort(state->bs, r);
g_free(r);
return ret;
}
static void qcow2_reopen_commit(BDRVReopenState *state)
{
qcow2_update_options_commit(state->bs, state->opaque);
g_free(state->opaque);
}
static void qcow2_reopen_abort(BDRVReopenState *state)
{
qcow2_update_options_abort(state->bs, state->opaque);
g_free(state->opaque);
}
static void qcow2_join_options(QDict *options, QDict *old_options)
{
bool has_new_overlap_template =
qdict_haskey(options, QCOW2_OPT_OVERLAP) ||
qdict_haskey(options, QCOW2_OPT_OVERLAP_TEMPLATE);
bool has_new_total_cache_size =
qdict_haskey(options, QCOW2_OPT_CACHE_SIZE);
bool has_all_cache_options;
/* New overlap template overrides all old overlap options */
if (has_new_overlap_template) {
qdict_del(old_options, QCOW2_OPT_OVERLAP);
qdict_del(old_options, QCOW2_OPT_OVERLAP_TEMPLATE);
qdict_del(old_options, QCOW2_OPT_OVERLAP_MAIN_HEADER);
qdict_del(old_options, QCOW2_OPT_OVERLAP_ACTIVE_L1);
qdict_del(old_options, QCOW2_OPT_OVERLAP_ACTIVE_L2);
qdict_del(old_options, QCOW2_OPT_OVERLAP_REFCOUNT_TABLE);
qdict_del(old_options, QCOW2_OPT_OVERLAP_REFCOUNT_BLOCK);
qdict_del(old_options, QCOW2_OPT_OVERLAP_SNAPSHOT_TABLE);
qdict_del(old_options, QCOW2_OPT_OVERLAP_INACTIVE_L1);
qdict_del(old_options, QCOW2_OPT_OVERLAP_INACTIVE_L2);
}
/* New total cache size overrides all old options */
if (qdict_haskey(options, QCOW2_OPT_CACHE_SIZE)) {
qdict_del(old_options, QCOW2_OPT_L2_CACHE_SIZE);
qdict_del(old_options, QCOW2_OPT_REFCOUNT_CACHE_SIZE);
}
qdict_join(options, old_options, false);
/*
* If after merging all cache size options are set, an old total size is
* overwritten. Do keep all options, however, if all three are new. The
* resulting error message is what we want to happen.
*/
has_all_cache_options =
qdict_haskey(options, QCOW2_OPT_CACHE_SIZE) ||
qdict_haskey(options, QCOW2_OPT_L2_CACHE_SIZE) ||
qdict_haskey(options, QCOW2_OPT_REFCOUNT_CACHE_SIZE);
if (has_all_cache_options && !has_new_total_cache_size) {
qdict_del(options, QCOW2_OPT_CACHE_SIZE);
}
}
static int64_t coroutine_fn qcow2_co_get_block_status(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, int *pnum, BlockDriverState **file)
{
BDRVQcow2State *s = bs->opaque;
uint64_t cluster_offset;
int index_in_cluster, ret;
unsigned int bytes;
int64_t status = 0;
bytes = MIN(INT_MAX, nb_sectors * BDRV_SECTOR_SIZE);
qemu_co_mutex_lock(&s->lock);
ret = qcow2_get_cluster_offset(bs, sector_num << 9, &bytes,
&cluster_offset);
qemu_co_mutex_unlock(&s->lock);
if (ret < 0) {
return ret;
}
*pnum = bytes >> BDRV_SECTOR_BITS;
if (cluster_offset != 0 && ret != QCOW2_CLUSTER_COMPRESSED &&
!s->cipher) {
index_in_cluster = sector_num & (s->cluster_sectors - 1);
cluster_offset |= (index_in_cluster << BDRV_SECTOR_BITS);
*file = bs->file->bs;
status |= BDRV_BLOCK_OFFSET_VALID | cluster_offset;
}
if (ret == QCOW2_CLUSTER_ZERO) {
status |= BDRV_BLOCK_ZERO;
} else if (ret != QCOW2_CLUSTER_UNALLOCATED) {
status |= BDRV_BLOCK_DATA;
}
return status;
}
/* handle reading after the end of the backing file */
int qcow2_backing_read1(BlockDriverState *bs, QEMUIOVector *qiov,
int64_t offset, int bytes)
{
uint64_t bs_size = bs->total_sectors * BDRV_SECTOR_SIZE;
int n1;
if ((offset + bytes) <= bs_size) {
return bytes;
}
if (offset >= bs_size) {
n1 = 0;
} else {
n1 = bs_size - offset;
}
qemu_iovec_memset(qiov, n1, 0, bytes - n1);
return n1;
}
static coroutine_fn int qcow2_co_preadv(BlockDriverState *bs, uint64_t offset,
uint64_t bytes, QEMUIOVector *qiov,
int flags)
{
BDRVQcow2State *s = bs->opaque;
int offset_in_cluster, n1;
int ret;
unsigned int cur_bytes; /* number of bytes in current iteration */
uint64_t cluster_offset = 0;
uint64_t bytes_done = 0;
QEMUIOVector hd_qiov;
uint8_t *cluster_data = NULL;
qemu_iovec_init(&hd_qiov, qiov->niov);
qemu_co_mutex_lock(&s->lock);
while (bytes != 0) {
/* prepare next request */
cur_bytes = MIN(bytes, INT_MAX);
if (s->cipher) {
cur_bytes = MIN(cur_bytes,
QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
}
ret = qcow2_get_cluster_offset(bs, offset, &cur_bytes, &cluster_offset);
if (ret < 0) {
goto fail;
}
offset_in_cluster = offset_into_cluster(s, offset);
qemu_iovec_reset(&hd_qiov);
qemu_iovec_concat(&hd_qiov, qiov, bytes_done, cur_bytes);
switch (ret) {
case QCOW2_CLUSTER_UNALLOCATED:
if (bs->backing) {
/* read from the base image */
n1 = qcow2_backing_read1(bs->backing->bs, &hd_qiov,
offset, cur_bytes);
if (n1 > 0) {
QEMUIOVector local_qiov;
qemu_iovec_init(&local_qiov, hd_qiov.niov);
qemu_iovec_concat(&local_qiov, &hd_qiov, 0, n1);
BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING_AIO);
qemu_co_mutex_unlock(&s->lock);
ret = bdrv_co_preadv(bs->backing, offset, n1,
&local_qiov, 0);
qemu_co_mutex_lock(&s->lock);
qemu_iovec_destroy(&local_qiov);
if (ret < 0) {
goto fail;
}
}
} else {
/* Note: in this case, no need to wait */
qemu_iovec_memset(&hd_qiov, 0, 0, cur_bytes);
}
break;
case QCOW2_CLUSTER_ZERO:
qemu_iovec_memset(&hd_qiov, 0, 0, cur_bytes);
break;
case QCOW2_CLUSTER_COMPRESSED:
/* add AIO support for compressed blocks ? */
ret = qcow2_decompress_cluster(bs, cluster_offset);
if (ret < 0) {
goto fail;
}
qemu_iovec_from_buf(&hd_qiov, 0,
s->cluster_cache + offset_in_cluster,
cur_bytes);
break;
case QCOW2_CLUSTER_NORMAL:
if ((cluster_offset & 511) != 0) {
ret = -EIO;
goto fail;
}
if (bs->encrypted) {
assert(s->cipher);
/*
* For encrypted images, read everything into a temporary
* contiguous buffer on which the AES functions can work.
*/
if (!cluster_data) {
cluster_data =
qemu_try_blockalign(bs->file->bs,
QCOW_MAX_CRYPT_CLUSTERS
* s->cluster_size);
if (cluster_data == NULL) {
ret = -ENOMEM;
goto fail;
}
}
assert(cur_bytes <= QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
qemu_iovec_reset(&hd_qiov);
qemu_iovec_add(&hd_qiov, cluster_data, cur_bytes);
}
BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
qemu_co_mutex_unlock(&s->lock);
ret = bdrv_co_preadv(bs->file,
cluster_offset + offset_in_cluster,
cur_bytes, &hd_qiov, 0);
qemu_co_mutex_lock(&s->lock);
if (ret < 0) {
goto fail;
}
if (bs->encrypted) {
assert(s->cipher);
assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
assert((cur_bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
Error *err = NULL;
if (qcow2_encrypt_sectors(s, offset >> BDRV_SECTOR_BITS,
cluster_data, cluster_data,
cur_bytes >> BDRV_SECTOR_BITS,
false, &err) < 0) {
error_free(err);
ret = -EIO;
goto fail;
}
qemu_iovec_from_buf(qiov, bytes_done, cluster_data, cur_bytes);
}
break;
default:
g_assert_not_reached();
ret = -EIO;
goto fail;
}
bytes -= cur_bytes;
offset += cur_bytes;
bytes_done += cur_bytes;
}
ret = 0;
fail:
qemu_co_mutex_unlock(&s->lock);
qemu_iovec_destroy(&hd_qiov);
qemu_vfree(cluster_data);
return ret;
}
static coroutine_fn int qcow2_co_pwritev(BlockDriverState *bs, uint64_t offset,
uint64_t bytes, QEMUIOVector *qiov,
int flags)
{
BDRVQcow2State *s = bs->opaque;
int offset_in_cluster;
int ret;
unsigned int cur_bytes; /* number of sectors in current iteration */
uint64_t cluster_offset;
QEMUIOVector hd_qiov;
uint64_t bytes_done = 0;
uint8_t *cluster_data = NULL;
QCowL2Meta *l2meta = NULL;
trace_qcow2_writev_start_req(qemu_coroutine_self(), offset, bytes);
qemu_iovec_init(&hd_qiov, qiov->niov);
s->cluster_cache_offset = -1; /* disable compressed cache */
qemu_co_mutex_lock(&s->lock);
while (bytes != 0) {
l2meta = NULL;
trace_qcow2_writev_start_part(qemu_coroutine_self());
offset_in_cluster = offset_into_cluster(s, offset);
cur_bytes = MIN(bytes, INT_MAX);
if (bs->encrypted) {
cur_bytes = MIN(cur_bytes,
QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size
- offset_in_cluster);
}
ret = qcow2_alloc_cluster_offset(bs, offset, &cur_bytes,
&cluster_offset, &l2meta);
if (ret < 0) {
goto fail;
}
assert((cluster_offset & 511) == 0);
qemu_iovec_reset(&hd_qiov);
qemu_iovec_concat(&hd_qiov, qiov, bytes_done, cur_bytes);
if (bs->encrypted) {
Error *err = NULL;
assert(s->cipher);
if (!cluster_data) {
cluster_data = qemu_try_blockalign(bs->file->bs,
QCOW_MAX_CRYPT_CLUSTERS
* s->cluster_size);
if (cluster_data == NULL) {
ret = -ENOMEM;
goto fail;
}
}
assert(hd_qiov.size <=
QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
qemu_iovec_to_buf(&hd_qiov, 0, cluster_data, hd_qiov.size);
if (qcow2_encrypt_sectors(s, offset >> BDRV_SECTOR_BITS,
cluster_data, cluster_data,
cur_bytes >>BDRV_SECTOR_BITS,
true, &err) < 0) {
error_free(err);
ret = -EIO;
goto fail;
}
qemu_iovec_reset(&hd_qiov);
qemu_iovec_add(&hd_qiov, cluster_data, cur_bytes);
}
ret = qcow2_pre_write_overlap_check(bs, 0,
cluster_offset + offset_in_cluster, cur_bytes);
if (ret < 0) {
goto fail;
}
qemu_co_mutex_unlock(&s->lock);
BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
trace_qcow2_writev_data(qemu_coroutine_self(),
cluster_offset + offset_in_cluster);
ret = bdrv_co_pwritev(bs->file,
cluster_offset + offset_in_cluster,
cur_bytes, &hd_qiov, 0);
qemu_co_mutex_lock(&s->lock);
if (ret < 0) {
goto fail;
}
while (l2meta != NULL) {
QCowL2Meta *next;
ret = qcow2_alloc_cluster_link_l2(bs, l2meta);
if (ret < 0) {
goto fail;
}
/* Take the request off the list of running requests */
if (l2meta->nb_clusters != 0) {
QLIST_REMOVE(l2meta, next_in_flight);
}
qemu_co_queue_restart_all(&l2meta->dependent_requests);
next = l2meta->next;
g_free(l2meta);
l2meta = next;
}
bytes -= cur_bytes;
offset += cur_bytes;
bytes_done += cur_bytes;
trace_qcow2_writev_done_part(qemu_coroutine_self(), cur_bytes);
}
ret = 0;
fail:
qemu_co_mutex_unlock(&s->lock);
while (l2meta != NULL) {
QCowL2Meta *next;
if (l2meta->nb_clusters != 0) {
QLIST_REMOVE(l2meta, next_in_flight);
}
qemu_co_queue_restart_all(&l2meta->dependent_requests);
next = l2meta->next;
g_free(l2meta);
l2meta = next;
}
qemu_iovec_destroy(&hd_qiov);
qemu_vfree(cluster_data);
trace_qcow2_writev_done_req(qemu_coroutine_self(), ret);
return ret;
}
static int qcow2_inactivate(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
int ret, result = 0;
ret = qcow2_cache_flush(bs, s->l2_table_cache);
if (ret) {
result = ret;
error_report("Failed to flush the L2 table cache: %s",
strerror(-ret));
}
ret = qcow2_cache_flush(bs, s->refcount_block_cache);
if (ret) {
result = ret;
error_report("Failed to flush the refcount block cache: %s",
strerror(-ret));
}
if (result == 0) {
qcow2_mark_clean(bs);
}
return result;
}
static void qcow2_close(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
qemu_vfree(s->l1_table);
/* else pre-write overlap checks in cache_destroy may crash */
s->l1_table = NULL;
if (!(s->flags & BDRV_O_INACTIVE)) {
qcow2_inactivate(bs);
}
cache_clean_timer_del(bs);
qcow2_cache_destroy(bs, s->l2_table_cache);
qcow2_cache_destroy(bs, s->refcount_block_cache);
qcrypto_cipher_free(s->cipher);
s->cipher = NULL;
g_free(s->unknown_header_fields);
cleanup_unknown_header_ext(bs);
g_free(s->image_backing_file);
g_free(s->image_backing_format);
g_free(s->cluster_cache);
qemu_vfree(s->cluster_data);
qcow2_refcount_close(bs);
qcow2_free_snapshots(bs);
}
static void qcow2_invalidate_cache(BlockDriverState *bs, Error **errp)
{
BDRVQcow2State *s = bs->opaque;
int flags = s->flags;
QCryptoCipher *cipher = NULL;
QDict *options;
Error *local_err = NULL;
int ret;
/*
* Backing files are read-only which makes all of their metadata immutable,
* that means we don't have to worry about reopening them here.
*/
cipher = s->cipher;
s->cipher = NULL;
qcow2_close(bs);
memset(s, 0, sizeof(BDRVQcow2State));
options = qdict_clone_shallow(bs->options);
flags &= ~BDRV_O_INACTIVE;
ret = qcow2_open(bs, options, flags, &local_err);
QDECREF(options);
if (local_err) {
error_propagate(errp, local_err);
error_prepend(errp, "Could not reopen qcow2 layer: ");
bs->drv = NULL;
return;
} else if (ret < 0) {
error_setg_errno(errp, -ret, "Could not reopen qcow2 layer");
bs->drv = NULL;
return;
}
s->cipher = cipher;
}
static size_t header_ext_add(char *buf, uint32_t magic, const void *s,
size_t len, size_t buflen)
{
QCowExtension *ext_backing_fmt = (QCowExtension*) buf;
size_t ext_len = sizeof(QCowExtension) + ((len + 7) & ~7);
if (buflen < ext_len) {
return -ENOSPC;
}
*ext_backing_fmt = (QCowExtension) {
.magic = cpu_to_be32(magic),
.len = cpu_to_be32(len),
};
memcpy(buf + sizeof(QCowExtension), s, len);
return ext_len;
}
/*
* Updates the qcow2 header, including the variable length parts of it, i.e.
* the backing file name and all extensions. qcow2 was not designed to allow
* such changes, so if we run out of space (we can only use the first cluster)
* this function may fail.
*
* Returns 0 on success, -errno in error cases.
*/
int qcow2_update_header(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
QCowHeader *header;
char *buf;
size_t buflen = s->cluster_size;
int ret;
uint64_t total_size;
uint32_t refcount_table_clusters;
size_t header_length;
Qcow2UnknownHeaderExtension *uext;
buf = qemu_blockalign(bs, buflen);
/* Header structure */
header = (QCowHeader*) buf;
if (buflen < sizeof(*header)) {
ret = -ENOSPC;
goto fail;
}
header_length = sizeof(*header) + s->unknown_header_fields_size;
total_size = bs->total_sectors * BDRV_SECTOR_SIZE;
refcount_table_clusters = s->refcount_table_size >> (s->cluster_bits - 3);
*header = (QCowHeader) {
/* Version 2 fields */
.magic = cpu_to_be32(QCOW_MAGIC),
.version = cpu_to_be32(s->qcow_version),
.backing_file_offset = 0,
.backing_file_size = 0,
.cluster_bits = cpu_to_be32(s->cluster_bits),
.size = cpu_to_be64(total_size),
.crypt_method = cpu_to_be32(s->crypt_method_header),
.l1_size = cpu_to_be32(s->l1_size),
.l1_table_offset = cpu_to_be64(s->l1_table_offset),
.refcount_table_offset = cpu_to_be64(s->refcount_table_offset),
.refcount_table_clusters = cpu_to_be32(refcount_table_clusters),
.nb_snapshots = cpu_to_be32(s->nb_snapshots),
.snapshots_offset = cpu_to_be64(s->snapshots_offset),
/* Version 3 fields */
.incompatible_features = cpu_to_be64(s->incompatible_features),
.compatible_features = cpu_to_be64(s->compatible_features),
.autoclear_features = cpu_to_be64(s->autoclear_features),
.refcount_order = cpu_to_be32(s->refcount_order),
.header_length = cpu_to_be32(header_length),
};
/* For older versions, write a shorter header */
switch (s->qcow_version) {
case 2:
ret = offsetof(QCowHeader, incompatible_features);
break;
case 3:
ret = sizeof(*header);
break;
default:
ret = -EINVAL;
goto fail;
}
buf += ret;
buflen -= ret;
memset(buf, 0, buflen);
/* Preserve any unknown field in the header */
if (s->unknown_header_fields_size) {
if (buflen < s->unknown_header_fields_size) {
ret = -ENOSPC;
goto fail;
}
memcpy(buf, s->unknown_header_fields, s->unknown_header_fields_size);
buf += s->unknown_header_fields_size;
buflen -= s->unknown_header_fields_size;
}
/* Backing file format header extension */
if (s->image_backing_format) {
ret = header_ext_add(buf, QCOW2_EXT_MAGIC_BACKING_FORMAT,
s->image_backing_format,
strlen(s->image_backing_format),
buflen);
if (ret < 0) {
goto fail;
}
buf += ret;
buflen -= ret;
}
/* Feature table */
if (s->qcow_version >= 3) {
Qcow2Feature features[] = {
{
.type = QCOW2_FEAT_TYPE_INCOMPATIBLE,
.bit = QCOW2_INCOMPAT_DIRTY_BITNR,
.name = "dirty bit",
},
{
.type = QCOW2_FEAT_TYPE_INCOMPATIBLE,
.bit = QCOW2_INCOMPAT_CORRUPT_BITNR,
.name = "corrupt bit",
},
{
.type = QCOW2_FEAT_TYPE_COMPATIBLE,
.bit = QCOW2_COMPAT_LAZY_REFCOUNTS_BITNR,
.name = "lazy refcounts",
},
};
ret = header_ext_add(buf, QCOW2_EXT_MAGIC_FEATURE_TABLE,
features, sizeof(features), buflen);
if (ret < 0) {
goto fail;
}
buf += ret;
buflen -= ret;
}
/* Keep unknown header extensions */
QLIST_FOREACH(uext, &s->unknown_header_ext, next) {
ret = header_ext_add(buf, uext->magic, uext->data, uext->len, buflen);
if (ret < 0) {
goto fail;
}
buf += ret;
buflen -= ret;
}
/* End of header extensions */
ret = header_ext_add(buf, QCOW2_EXT_MAGIC_END, NULL, 0, buflen);
if (ret < 0) {
goto fail;
}
buf += ret;
buflen -= ret;
/* Backing file name */
if (s->image_backing_file) {
size_t backing_file_len = strlen(s->image_backing_file);
if (buflen < backing_file_len) {
ret = -ENOSPC;
goto fail;
}
/* Using strncpy is ok here, since buf is not NUL-terminated. */
strncpy(buf, s->image_backing_file, buflen);
header->backing_file_offset = cpu_to_be64(buf - ((char*) header));
header->backing_file_size = cpu_to_be32(backing_file_len);
}
/* Write the new header */
ret = bdrv_pwrite(bs->file, 0, header, s->cluster_size);
if (ret < 0) {
goto fail;
}
ret = 0;
fail:
qemu_vfree(header);
return ret;
}
static int qcow2_change_backing_file(BlockDriverState *bs,
const char *backing_file, const char *backing_fmt)
{
BDRVQcow2State *s = bs->opaque;
if (backing_file && strlen(backing_file) > 1023) {
return -EINVAL;
}
pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
g_free(s->image_backing_file);
g_free(s->image_backing_format);
s->image_backing_file = backing_file ? g_strdup(bs->backing_file) : NULL;
s->image_backing_format = backing_fmt ? g_strdup(bs->backing_format) : NULL;
return qcow2_update_header(bs);
}
static int preallocate(BlockDriverState *bs)
{
uint64_t bytes;
uint64_t offset;
uint64_t host_offset = 0;
unsigned int cur_bytes;
int ret;
QCowL2Meta *meta;
bytes = bdrv_getlength(bs);
offset = 0;
while (bytes) {
cur_bytes = MIN(bytes, INT_MAX);
ret = qcow2_alloc_cluster_offset(bs, offset, &cur_bytes,
&host_offset, &meta);
if (ret < 0) {
return ret;
}
while (meta) {
QCowL2Meta *next = meta->next;
ret = qcow2_alloc_cluster_link_l2(bs, meta);
if (ret < 0) {
qcow2_free_any_clusters(bs, meta->alloc_offset,
meta->nb_clusters, QCOW2_DISCARD_NEVER);
return ret;
}
/* There are no dependent requests, but we need to remove our
* request from the list of in-flight requests */
QLIST_REMOVE(meta, next_in_flight);
g_free(meta);
meta = next;
}
/* TODO Preallocate data if requested */
bytes -= cur_bytes;
offset += cur_bytes;
}
/*
* It is expected that the image file is large enough to actually contain
* all of the allocated clusters (otherwise we get failing reads after
* EOF). Extend the image to the last allocated sector.
*/
if (host_offset != 0) {
uint8_t data = 0;
ret = bdrv_pwrite(bs->file, (host_offset + cur_bytes) - 1,
&data, 1);
if (ret < 0) {
return ret;
}
}
return 0;
}
static int qcow2_create2(const char *filename, int64_t total_size,
const char *backing_file, const char *backing_format,
int flags, size_t cluster_size, PreallocMode prealloc,
QemuOpts *opts, int version, int refcount_order,
Error **errp)
{
int cluster_bits;
QDict *options;
/* Calculate cluster_bits */
cluster_bits = ctz32(cluster_size);
if (cluster_bits < MIN_CLUSTER_BITS || cluster_bits > MAX_CLUSTER_BITS ||
(1 << cluster_bits) != cluster_size)
{
error_setg(errp, "Cluster size must be a power of two between %d and "
"%dk", 1 << MIN_CLUSTER_BITS, 1 << (MAX_CLUSTER_BITS - 10));
return -EINVAL;
}
/*
* Open the image file and write a minimal qcow2 header.
*
* We keep things simple and start with a zero-sized image. We also
* do without refcount blocks or a L1 table for now. We'll fix the
* inconsistency later.
*
* We do need a refcount table because growing the refcount table means
* allocating two new refcount blocks - the seconds of which would be at
* 2 GB for 64k clusters, and we don't want to have a 2 GB initial file
* size for any qcow2 image.
*/
BlockBackend *blk;
QCowHeader *header;
uint64_t* refcount_table;
Error *local_err = NULL;
int ret;
if (prealloc == PREALLOC_MODE_FULL || prealloc == PREALLOC_MODE_FALLOC) {
/* Note: The following calculation does not need to be exact; if it is a
* bit off, either some bytes will be "leaked" (which is fine) or we
* will need to increase the file size by some bytes (which is fine,
* too, as long as the bulk is allocated here). Therefore, using
* floating point arithmetic is fine. */
int64_t meta_size = 0;
uint64_t nreftablee, nrefblocke, nl1e, nl2e;
int64_t aligned_total_size = align_offset(total_size, cluster_size);
int refblock_bits, refblock_size;
/* refcount entry size in bytes */
double rces = (1 << refcount_order) / 8.;
/* see qcow2_open() */
refblock_bits = cluster_bits - (refcount_order - 3);
refblock_size = 1 << refblock_bits;
/* header: 1 cluster */
meta_size += cluster_size;
/* total size of L2 tables */
nl2e = aligned_total_size / cluster_size;
nl2e = align_offset(nl2e, cluster_size / sizeof(uint64_t));
meta_size += nl2e * sizeof(uint64_t);
/* total size of L1 tables */
nl1e = nl2e * sizeof(uint64_t) / cluster_size;
nl1e = align_offset(nl1e, cluster_size / sizeof(uint64_t));
meta_size += nl1e * sizeof(uint64_t);
/* total size of refcount blocks
*
* note: every host cluster is reference-counted, including metadata
* (even refcount blocks are recursively included).
* Let:
* a = total_size (this is the guest disk size)
* m = meta size not including refcount blocks and refcount tables
* c = cluster size
* y1 = number of refcount blocks entries
* y2 = meta size including everything
* rces = refcount entry size in bytes
* then,
* y1 = (y2 + a)/c
* y2 = y1 * rces + y1 * rces * sizeof(u64) / c + m
* we can get y1:
* y1 = (a + m) / (c - rces - rces * sizeof(u64) / c)
*/
nrefblocke = (aligned_total_size + meta_size + cluster_size)
/ (cluster_size - rces - rces * sizeof(uint64_t)
/ cluster_size);
meta_size += DIV_ROUND_UP(nrefblocke, refblock_size) * cluster_size;
/* total size of refcount tables */
nreftablee = nrefblocke / refblock_size;
nreftablee = align_offset(nreftablee, cluster_size / sizeof(uint64_t));
meta_size += nreftablee * sizeof(uint64_t);
qemu_opt_set_number(opts, BLOCK_OPT_SIZE,
aligned_total_size + meta_size, &error_abort);
qemu_opt_set(opts, BLOCK_OPT_PREALLOC, PreallocMode_lookup[prealloc],
&error_abort);
}
ret = bdrv_create_file(filename, opts, &local_err);
if (ret < 0) {
error_propagate(errp, local_err);
return ret;
}
blk = blk_new_open(filename, NULL, NULL,
BDRV_O_RDWR | BDRV_O_PROTOCOL, &local_err);
if (blk == NULL) {
error_propagate(errp, local_err);
return -EIO;
}
blk_set_allow_write_beyond_eof(blk, true);
/* Write the header */
QEMU_BUILD_BUG_ON((1 << MIN_CLUSTER_BITS) < sizeof(*header));
header = g_malloc0(cluster_size);
*header = (QCowHeader) {
.magic = cpu_to_be32(QCOW_MAGIC),
.version = cpu_to_be32(version),
.cluster_bits = cpu_to_be32(cluster_bits),
.size = cpu_to_be64(0),
.l1_table_offset = cpu_to_be64(0),
.l1_size = cpu_to_be32(0),
.refcount_table_offset = cpu_to_be64(cluster_size),
.refcount_table_clusters = cpu_to_be32(1),
.refcount_order = cpu_to_be32(refcount_order),
.header_length = cpu_to_be32(sizeof(*header)),
};
if (flags & BLOCK_FLAG_ENCRYPT) {
header->crypt_method = cpu_to_be32(QCOW_CRYPT_AES);
} else {
header->crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
}
if (flags & BLOCK_FLAG_LAZY_REFCOUNTS) {
header->compatible_features |=
cpu_to_be64(QCOW2_COMPAT_LAZY_REFCOUNTS);
}
ret = blk_pwrite(blk, 0, header, cluster_size, 0);
g_free(header);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not write qcow2 header");
goto out;
}
/* Write a refcount table with one refcount block */
refcount_table = g_malloc0(2 * cluster_size);
refcount_table[0] = cpu_to_be64(2 * cluster_size);
ret = blk_pwrite(blk, cluster_size, refcount_table, 2 * cluster_size, 0);
g_free(refcount_table);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not write refcount table");
goto out;
}
blk_unref(blk);
blk = NULL;
/*
* And now open the image and make it consistent first (i.e. increase the
* refcount of the cluster that is occupied by the header and the refcount
* table)
*/
options = qdict_new();
qdict_put(options, "driver", qstring_from_str("qcow2"));
blk = blk_new_open(filename, NULL, options,
BDRV_O_RDWR | BDRV_O_NO_FLUSH, &local_err);
if (blk == NULL) {
error_propagate(errp, local_err);
ret = -EIO;
goto out;
}
ret = qcow2_alloc_clusters(blk_bs(blk), 3 * cluster_size);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not allocate clusters for qcow2 "
"header and refcount table");
goto out;
} else if (ret != 0) {
error_report("Huh, first cluster in empty image is already in use?");
abort();
}
/* Create a full header (including things like feature table) */
ret = qcow2_update_header(blk_bs(blk));
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not update qcow2 header");
goto out;
}
/* Okay, now that we have a valid image, let's give it the right size */
ret = blk_truncate(blk, total_size);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not resize image");
goto out;
}
/* Want a backing file? There you go.*/
if (backing_file) {
ret = bdrv_change_backing_file(blk_bs(blk), backing_file, backing_format);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not assign backing file '%s' "
"with format '%s'", backing_file, backing_format);
goto out;
}
}
/* And if we're supposed to preallocate metadata, do that now */
if (prealloc != PREALLOC_MODE_OFF) {
BDRVQcow2State *s = blk_bs(blk)->opaque;
qemu_co_mutex_lock(&s->lock);
ret = preallocate(blk_bs(blk));
qemu_co_mutex_unlock(&s->lock);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not preallocate metadata");
goto out;
}
}
blk_unref(blk);
blk = NULL;
/* Reopen the image without BDRV_O_NO_FLUSH to flush it before returning */
options = qdict_new();
qdict_put(options, "driver", qstring_from_str("qcow2"));
blk = blk_new_open(filename, NULL, options,
BDRV_O_RDWR | BDRV_O_NO_BACKING, &local_err);
if (blk == NULL) {
error_propagate(errp, local_err);
ret = -EIO;
goto out;
}
ret = 0;
out:
if (blk) {
blk_unref(blk);
}
return ret;
}
static int qcow2_create(const char *filename, QemuOpts *opts, Error **errp)
{
char *backing_file = NULL;
char *backing_fmt = NULL;
char *buf = NULL;
uint64_t size = 0;
int flags = 0;
size_t cluster_size = DEFAULT_CLUSTER_SIZE;
PreallocMode prealloc;
int version = 3;
uint64_t refcount_bits = 16;
int refcount_order;
Error *local_err = NULL;
int ret;
/* Read out options */
size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
BDRV_SECTOR_SIZE);
backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
if (qemu_opt_get_bool_del(opts, BLOCK_OPT_ENCRYPT, false)) {
flags |= BLOCK_FLAG_ENCRYPT;
}
cluster_size = qemu_opt_get_size_del(opts, BLOCK_OPT_CLUSTER_SIZE,
DEFAULT_CLUSTER_SIZE);
buf = qemu_opt_get_del(opts, BLOCK_OPT_PREALLOC);
prealloc = qapi_enum_parse(PreallocMode_lookup, buf,
PREALLOC_MODE__MAX, PREALLOC_MODE_OFF,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto finish;
}
g_free(buf);
buf = qemu_opt_get_del(opts, BLOCK_OPT_COMPAT_LEVEL);
if (!buf) {
/* keep the default */
} else if (!strcmp(buf, "0.10")) {
version = 2;
} else if (!strcmp(buf, "1.1")) {
version = 3;
} else {
error_setg(errp, "Invalid compatibility level: '%s'", buf);
ret = -EINVAL;
goto finish;
}
if (qemu_opt_get_bool_del(opts, BLOCK_OPT_LAZY_REFCOUNTS, false)) {
flags |= BLOCK_FLAG_LAZY_REFCOUNTS;
}
if (backing_file && prealloc != PREALLOC_MODE_OFF) {
error_setg(errp, "Backing file and preallocation cannot be used at "
"the same time");
ret = -EINVAL;
goto finish;
}
if (version < 3 && (flags & BLOCK_FLAG_LAZY_REFCOUNTS)) {
error_setg(errp, "Lazy refcounts only supported with compatibility "
"level 1.1 and above (use compat=1.1 or greater)");
ret = -EINVAL;
goto finish;
}
refcount_bits = qemu_opt_get_number_del(opts, BLOCK_OPT_REFCOUNT_BITS,
refcount_bits);
if (refcount_bits > 64 || !is_power_of_2(refcount_bits)) {
error_setg(errp, "Refcount width must be a power of two and may not "
"exceed 64 bits");
ret = -EINVAL;
goto finish;
}
if (version < 3 && refcount_bits != 16) {
error_setg(errp, "Different refcount widths than 16 bits require "
"compatibility level 1.1 or above (use compat=1.1 or "
"greater)");
ret = -EINVAL;
goto finish;
}
refcount_order = ctz32(refcount_bits);
ret = qcow2_create2(filename, size, backing_file, backing_fmt, flags,
cluster_size, prealloc, opts, version, refcount_order,
&local_err);
error_propagate(errp, local_err);
finish:
g_free(backing_file);
g_free(backing_fmt);
g_free(buf);
return ret;
}
static bool is_zero_sectors(BlockDriverState *bs, int64_t start,
uint32_t count)
{
int nr;
BlockDriverState *file;
int64_t res;
if (!count) {
return true;
}
res = bdrv_get_block_status_above(bs, NULL, start, count,
&nr, &file);
return res >= 0 && (res & BDRV_BLOCK_ZERO) && nr == count;
}
static coroutine_fn int qcow2_co_pwrite_zeroes(BlockDriverState *bs,
int64_t offset, int count, BdrvRequestFlags flags)
{
int ret;
BDRVQcow2State *s = bs->opaque;
uint32_t head = offset % s->cluster_size;
uint32_t tail = (offset + count) % s->cluster_size;
trace_qcow2_pwrite_zeroes_start_req(qemu_coroutine_self(), offset, count);
if (head || tail) {
int64_t cl_start = (offset - head) >> BDRV_SECTOR_BITS;
uint64_t off;
unsigned int nr;
assert(head + count <= s->cluster_size);
/* check whether remainder of cluster already reads as zero */
if (!(is_zero_sectors(bs, cl_start,
DIV_ROUND_UP(head, BDRV_SECTOR_SIZE)) &&
is_zero_sectors(bs, (offset + count) >> BDRV_SECTOR_BITS,
DIV_ROUND_UP(-tail & (s->cluster_size - 1),
BDRV_SECTOR_SIZE)))) {
return -ENOTSUP;
}
qemu_co_mutex_lock(&s->lock);
/* We can have new write after previous check */
offset = cl_start << BDRV_SECTOR_BITS;
count = s->cluster_size;
nr = s->cluster_size;
ret = qcow2_get_cluster_offset(bs, offset, &nr, &off);
if (ret != QCOW2_CLUSTER_UNALLOCATED && ret != QCOW2_CLUSTER_ZERO) {
qemu_co_mutex_unlock(&s->lock);
return -ENOTSUP;
}
} else {
qemu_co_mutex_lock(&s->lock);
}
trace_qcow2_pwrite_zeroes(qemu_coroutine_self(), offset, count);
/* Whatever is left can use real zero clusters */
ret = qcow2_zero_clusters(bs, offset, count >> BDRV_SECTOR_BITS);
qemu_co_mutex_unlock(&s->lock);
return ret;
}
static coroutine_fn int qcow2_co_pdiscard(BlockDriverState *bs,
int64_t offset, int count)
{
int ret;
BDRVQcow2State *s = bs->opaque;
qemu_co_mutex_lock(&s->lock);
ret = qcow2_discard_clusters(bs, offset, count >> BDRV_SECTOR_BITS,
QCOW2_DISCARD_REQUEST, false);
qemu_co_mutex_unlock(&s->lock);
return ret;
}
static int qcow2_truncate(BlockDriverState *bs, int64_t offset)
{
BDRVQcow2State *s = bs->opaque;
int64_t new_l1_size;
int ret;
if (offset & 511) {
error_report("The new size must be a multiple of 512");
return -EINVAL;
}
/* cannot proceed if image has snapshots */
if (s->nb_snapshots) {
error_report("Can't resize an image which has snapshots");
return -ENOTSUP;
}
/* shrinking is currently not supported */
if (offset < bs->total_sectors * 512) {
error_report("qcow2 doesn't support shrinking images yet");
return -ENOTSUP;
}
new_l1_size = size_to_l1(s, offset);
ret = qcow2_grow_l1_table(bs, new_l1_size, true);
if (ret < 0) {
return ret;
}
/* write updated header.size */
offset = cpu_to_be64(offset);
ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, size),
&offset, sizeof(uint64_t));
if (ret < 0) {
return ret;
}
s->l1_vm_state_index = new_l1_size;
return 0;
}
typedef struct Qcow2WriteCo {
BlockDriverState *bs;
int64_t sector_num;
const uint8_t *buf;
int nb_sectors;
int ret;
} Qcow2WriteCo;
static void qcow2_write_co_entry(void *opaque)
{
Qcow2WriteCo *co = opaque;
QEMUIOVector qiov;
uint64_t offset = co->sector_num * BDRV_SECTOR_SIZE;
uint64_t bytes = co->nb_sectors * BDRV_SECTOR_SIZE;
struct iovec iov = (struct iovec) {
.iov_base = (uint8_t*) co->buf,
.iov_len = bytes,
};
qemu_iovec_init_external(&qiov, &iov, 1);
co->ret = qcow2_co_pwritev(co->bs, offset, bytes, &qiov, 0);
}
/* Wrapper for non-coroutine contexts */
static int qcow2_write(BlockDriverState *bs, int64_t sector_num,
const uint8_t *buf, int nb_sectors)
{
Coroutine *co;
AioContext *aio_context = bdrv_get_aio_context(bs);
Qcow2WriteCo data = {
.bs = bs,
.sector_num = sector_num,
.buf = buf,
.nb_sectors = nb_sectors,
.ret = -EINPROGRESS,
};
co = qemu_coroutine_create(qcow2_write_co_entry, &data);
qemu_coroutine_enter(co);
while (data.ret == -EINPROGRESS) {
aio_poll(aio_context, true);
}
return data.ret;
}
/* XXX: put compressed sectors first, then all the cluster aligned
tables to avoid losing bytes in alignment */
static int qcow2_write_compressed(BlockDriverState *bs, int64_t sector_num,
const uint8_t *buf, int nb_sectors)
{
BDRVQcow2State *s = bs->opaque;
z_stream strm;
int ret, out_len;
uint8_t *out_buf;
uint64_t cluster_offset;
if (nb_sectors == 0) {
/* align end of file to a sector boundary to ease reading with
sector based I/Os */
cluster_offset = bdrv_getlength(bs->file->bs);
return bdrv_truncate(bs->file->bs, cluster_offset);
}
if (nb_sectors != s->cluster_sectors) {
ret = -EINVAL;
/* Zero-pad last write if image size is not cluster aligned */
if (sector_num + nb_sectors == bs->total_sectors &&
nb_sectors < s->cluster_sectors) {
uint8_t *pad_buf = qemu_blockalign(bs, s->cluster_size);
memset(pad_buf, 0, s->cluster_size);
memcpy(pad_buf, buf, nb_sectors * BDRV_SECTOR_SIZE);
ret = qcow2_write_compressed(bs, sector_num,
pad_buf, s->cluster_sectors);
qemu_vfree(pad_buf);
}
return ret;
}
out_buf = g_malloc(s->cluster_size);
/* best compression, small window, no zlib header */
memset(&strm, 0, sizeof(strm));
ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION,
Z_DEFLATED, -12,
9, Z_DEFAULT_STRATEGY);
if (ret != 0) {
ret = -EINVAL;
goto fail;
}
strm.avail_in = s->cluster_size;
strm.next_in = (uint8_t *)buf;
strm.avail_out = s->cluster_size;
strm.next_out = out_buf;
ret = deflate(&strm, Z_FINISH);
if (ret != Z_STREAM_END && ret != Z_OK) {
deflateEnd(&strm);
ret = -EINVAL;
goto fail;
}
out_len = strm.next_out - out_buf;
deflateEnd(&strm);
if (ret != Z_STREAM_END || out_len >= s->cluster_size) {
/* could not compress: write normal cluster */
ret = qcow2_write(bs, sector_num, buf, s->cluster_sectors);
if (ret < 0) {
goto fail;
}
} else {
cluster_offset = qcow2_alloc_compressed_cluster_offset(bs,
sector_num << 9, out_len);
if (!cluster_offset) {
ret = -EIO;
goto fail;
}
cluster_offset &= s->cluster_offset_mask;
ret = qcow2_pre_write_overlap_check(bs, 0, cluster_offset, out_len);
if (ret < 0) {
goto fail;
}
BLKDBG_EVENT(bs->file, BLKDBG_WRITE_COMPRESSED);
ret = bdrv_pwrite(bs->file, cluster_offset, out_buf, out_len);
if (ret < 0) {
goto fail;
}
}
ret = 0;
fail:
g_free(out_buf);
return ret;
}
static int make_completely_empty(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
int ret, l1_clusters;
int64_t offset;
uint64_t *new_reftable = NULL;
uint64_t rt_entry, l1_size2;
struct {
uint64_t l1_offset;
uint64_t reftable_offset;
uint32_t reftable_clusters;
} QEMU_PACKED l1_ofs_rt_ofs_cls;
ret = qcow2_cache_empty(bs, s->l2_table_cache);
if (ret < 0) {
goto fail;
}
ret = qcow2_cache_empty(bs, s->refcount_block_cache);
if (ret < 0) {
goto fail;
}
/* Refcounts will be broken utterly */
ret = qcow2_mark_dirty(bs);
if (ret < 0) {
goto fail;
}
BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
l1_clusters = DIV_ROUND_UP(s->l1_size, s->cluster_size / sizeof(uint64_t));
l1_size2 = (uint64_t)s->l1_size * sizeof(uint64_t);
/* After this call, neither the in-memory nor the on-disk refcount
* information accurately describe the actual references */
ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset,
l1_clusters * s->cluster_size, 0);
if (ret < 0) {
goto fail_broken_refcounts;
}
memset(s->l1_table, 0, l1_size2);
BLKDBG_EVENT(bs->file, BLKDBG_EMPTY_IMAGE_PREPARE);
/* Overwrite enough clusters at the beginning of the sectors to place
* the refcount table, a refcount block and the L1 table in; this may
* overwrite parts of the existing refcount and L1 table, which is not
* an issue because the dirty flag is set, complete data loss is in fact
* desired and partial data loss is consequently fine as well */
ret = bdrv_pwrite_zeroes(bs->file, s->cluster_size,
(2 + l1_clusters) * s->cluster_size, 0);
/* This call (even if it failed overall) may have overwritten on-disk
* refcount structures; in that case, the in-memory refcount information
* will probably differ from the on-disk information which makes the BDS
* unusable */
if (ret < 0) {
goto fail_broken_refcounts;
}
BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_UPDATE);
/* "Create" an empty reftable (one cluster) directly after the image
* header and an empty L1 table three clusters after the image header;
* the cluster between those two will be used as the first refblock */
l1_ofs_rt_ofs_cls.l1_offset = cpu_to_be64(3 * s->cluster_size);
l1_ofs_rt_ofs_cls.reftable_offset = cpu_to_be64(s->cluster_size);
l1_ofs_rt_ofs_cls.reftable_clusters = cpu_to_be32(1);
ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_table_offset),
&l1_ofs_rt_ofs_cls, sizeof(l1_ofs_rt_ofs_cls));
if (ret < 0) {
goto fail_broken_refcounts;
}
s->l1_table_offset = 3 * s->cluster_size;
new_reftable = g_try_new0(uint64_t, s->cluster_size / sizeof(uint64_t));
if (!new_reftable) {
ret = -ENOMEM;
goto fail_broken_refcounts;
}
s->refcount_table_offset = s->cluster_size;
s->refcount_table_size = s->cluster_size / sizeof(uint64_t);
g_free(s->refcount_table);
s->refcount_table = new_reftable;
new_reftable = NULL;
/* Now the in-memory refcount information again corresponds to the on-disk
* information (reftable is empty and no refblocks (the refblock cache is
* empty)); however, this means some clusters (e.g. the image header) are
* referenced, but not refcounted, but the normal qcow2 code assumes that
* the in-memory information is always correct */
BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
/* Enter the first refblock into the reftable */
rt_entry = cpu_to_be64(2 * s->cluster_size);
ret = bdrv_pwrite_sync(bs->file, s->cluster_size,
&rt_entry, sizeof(rt_entry));
if (ret < 0) {
goto fail_broken_refcounts;
}
s->refcount_table[0] = 2 * s->cluster_size;
s->free_cluster_index = 0;
assert(3 + l1_clusters <= s->refcount_block_size);
offset = qcow2_alloc_clusters(bs, 3 * s->cluster_size + l1_size2);
if (offset < 0) {
ret = offset;
goto fail_broken_refcounts;
} else if (offset > 0) {
error_report("First cluster in emptied image is in use");
abort();
}
/* Now finally the in-memory information corresponds to the on-disk
* structures and is correct */
ret = qcow2_mark_clean(bs);
if (ret < 0) {
goto fail;
}
ret = bdrv_truncate(bs->file->bs, (3 + l1_clusters) * s->cluster_size);
if (ret < 0) {
goto fail;
}
return 0;
fail_broken_refcounts:
/* The BDS is unusable at this point. If we wanted to make it usable, we
* would have to call qcow2_refcount_close(), qcow2_refcount_init(),
* qcow2_check_refcounts(), qcow2_refcount_close() and qcow2_refcount_init()
* again. However, because the functions which could have caused this error
* path to be taken are used by those functions as well, it's very likely
* that that sequence will fail as well. Therefore, just eject the BDS. */
bs->drv = NULL;
fail:
g_free(new_reftable);
return ret;
}
static int qcow2_make_empty(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
uint64_t start_sector;
int sector_step = INT_MAX / BDRV_SECTOR_SIZE;
int l1_clusters, ret = 0;
l1_clusters = DIV_ROUND_UP(s->l1_size, s->cluster_size / sizeof(uint64_t));
if (s->qcow_version >= 3 && !s->snapshots &&
3 + l1_clusters <= s->refcount_block_size) {
/* The following function only works for qcow2 v3 images (it requires
* the dirty flag) and only as long as there are no snapshots (because
* it completely empties the image). Furthermore, the L1 table and three
* additional clusters (image header, refcount table, one refcount
* block) have to fit inside one refcount block. */
return make_completely_empty(bs);
}
/* This fallback code simply discards every active cluster; this is slow,
* but works in all cases */
for (start_sector = 0; start_sector < bs->total_sectors;
start_sector += sector_step)
{
/* As this function is generally used after committing an external
* snapshot, QCOW2_DISCARD_SNAPSHOT seems appropriate. Also, the
* default action for this kind of discard is to pass the discard,
* which will ideally result in an actually smaller image file, as
* is probably desired. */
ret = qcow2_discard_clusters(bs, start_sector * BDRV_SECTOR_SIZE,
MIN(sector_step,
bs->total_sectors - start_sector),
QCOW2_DISCARD_SNAPSHOT, true);
if (ret < 0) {
break;
}
}
return ret;
}
static coroutine_fn int qcow2_co_flush_to_os(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
int ret;
qemu_co_mutex_lock(&s->lock);
ret = qcow2_cache_write(bs, s->l2_table_cache);
if (ret < 0) {
qemu_co_mutex_unlock(&s->lock);
return ret;
}
if (qcow2_need_accurate_refcounts(s)) {
ret = qcow2_cache_write(bs, s->refcount_block_cache);
if (ret < 0) {
qemu_co_mutex_unlock(&s->lock);
return ret;
}
}
qemu_co_mutex_unlock(&s->lock);
return 0;
}
static int qcow2_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
{
BDRVQcow2State *s = bs->opaque;
bdi->unallocated_blocks_are_zero = true;
bdi->can_write_zeroes_with_unmap = (s->qcow_version >= 3);
bdi->cluster_size = s->cluster_size;
bdi->vm_state_offset = qcow2_vm_state_offset(s);
return 0;
}
static ImageInfoSpecific *qcow2_get_specific_info(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
ImageInfoSpecific *spec_info = g_new(ImageInfoSpecific, 1);
*spec_info = (ImageInfoSpecific){
.type = IMAGE_INFO_SPECIFIC_KIND_QCOW2,
.u.qcow2.data = g_new(ImageInfoSpecificQCow2, 1),
};
if (s->qcow_version == 2) {
*spec_info->u.qcow2.data = (ImageInfoSpecificQCow2){
.compat = g_strdup("0.10"),
.refcount_bits = s->refcount_bits,
};
} else if (s->qcow_version == 3) {
*spec_info->u.qcow2.data = (ImageInfoSpecificQCow2){
.compat = g_strdup("1.1"),
.lazy_refcounts = s->compatible_features &
QCOW2_COMPAT_LAZY_REFCOUNTS,
.has_lazy_refcounts = true,
.corrupt = s->incompatible_features &
QCOW2_INCOMPAT_CORRUPT,
.has_corrupt = true,
.refcount_bits = s->refcount_bits,
};
} else {
/* if this assertion fails, this probably means a new version was
* added without having it covered here */
assert(false);
}
return spec_info;
}
#if 0
static void dump_refcounts(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
int64_t nb_clusters, k, k1, size;
int refcount;
size = bdrv_getlength(bs->file->bs);
nb_clusters = size_to_clusters(s, size);
for(k = 0; k < nb_clusters;) {
k1 = k;
refcount = get_refcount(bs, k);
k++;
while (k < nb_clusters && get_refcount(bs, k) == refcount)
k++;
printf("%" PRId64 ": refcount=%d nb=%" PRId64 "\n", k, refcount,
k - k1);
}
}
#endif
static int qcow2_save_vmstate(BlockDriverState *bs, QEMUIOVector *qiov,
int64_t pos)
{
BDRVQcow2State *s = bs->opaque;
BLKDBG_EVENT(bs->file, BLKDBG_VMSTATE_SAVE);
return bs->drv->bdrv_co_pwritev(bs, qcow2_vm_state_offset(s) + pos,
qiov->size, qiov, 0);
}
static int qcow2_load_vmstate(BlockDriverState *bs, QEMUIOVector *qiov,
int64_t pos)
{
BDRVQcow2State *s = bs->opaque;
BLKDBG_EVENT(bs->file, BLKDBG_VMSTATE_LOAD);
return bs->drv->bdrv_co_preadv(bs, qcow2_vm_state_offset(s) + pos,
qiov->size, qiov, 0);
}
/*
* Downgrades an image's version. To achieve this, any incompatible features
* have to be removed.
*/
static int qcow2_downgrade(BlockDriverState *bs, int target_version,
BlockDriverAmendStatusCB *status_cb, void *cb_opaque)
{
BDRVQcow2State *s = bs->opaque;
int current_version = s->qcow_version;
int ret;
if (target_version == current_version) {
return 0;
} else if (target_version > current_version) {
return -EINVAL;
} else if (target_version != 2) {
return -EINVAL;
}
if (s->refcount_order != 4) {
error_report("compat=0.10 requires refcount_bits=16");
return -ENOTSUP;
}
/* clear incompatible features */
if (s->incompatible_features & QCOW2_INCOMPAT_DIRTY) {
ret = qcow2_mark_clean(bs);
if (ret < 0) {
return ret;
}
}
/* with QCOW2_INCOMPAT_CORRUPT, it is pretty much impossible to get here in
* the first place; if that happens nonetheless, returning -ENOTSUP is the
* best thing to do anyway */
if (s->incompatible_features) {
return -ENOTSUP;
}
/* since we can ignore compatible features, we can set them to 0 as well */
s->compatible_features = 0;
/* if lazy refcounts have been used, they have already been fixed through
* clearing the dirty flag */
/* clearing autoclear features is trivial */
s->autoclear_features = 0;
ret = qcow2_expand_zero_clusters(bs, status_cb, cb_opaque);
if (ret < 0) {
return ret;
}
s->qcow_version = target_version;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->qcow_version = current_version;
return ret;
}
return 0;
}
typedef enum Qcow2AmendOperation {
/* This is the value Qcow2AmendHelperCBInfo::last_operation will be
* statically initialized to so that the helper CB can discern the first
* invocation from an operation change */
QCOW2_NO_OPERATION = 0,
QCOW2_CHANGING_REFCOUNT_ORDER,
QCOW2_DOWNGRADING,
} Qcow2AmendOperation;
typedef struct Qcow2AmendHelperCBInfo {
/* The code coordinating the amend operations should only modify
* these four fields; the rest will be managed by the CB */
BlockDriverAmendStatusCB *original_status_cb;
void *original_cb_opaque;
Qcow2AmendOperation current_operation;
/* Total number of operations to perform (only set once) */
int total_operations;
/* The following fields are managed by the CB */
/* Number of operations completed */
int operations_completed;
/* Cumulative offset of all completed operations */
int64_t offset_completed;
Qcow2AmendOperation last_operation;
int64_t last_work_size;
} Qcow2AmendHelperCBInfo;
static void qcow2_amend_helper_cb(BlockDriverState *bs,
int64_t operation_offset,
int64_t operation_work_size, void *opaque)
{
Qcow2AmendHelperCBInfo *info = opaque;
int64_t current_work_size;
int64_t projected_work_size;
if (info->current_operation != info->last_operation) {
if (info->last_operation != QCOW2_NO_OPERATION) {
info->offset_completed += info->last_work_size;
info->operations_completed++;
}
info->last_operation = info->current_operation;
}
assert(info->total_operations > 0);
assert(info->operations_completed < info->total_operations);
info->last_work_size = operation_work_size;
current_work_size = info->offset_completed + operation_work_size;
/* current_work_size is the total work size for (operations_completed + 1)
* operations (which includes this one), so multiply it by the number of
* operations not covered and divide it by the number of operations
* covered to get a projection for the operations not covered */
projected_work_size = current_work_size * (info->total_operations -
info->operations_completed - 1)
/ (info->operations_completed + 1);
info->original_status_cb(bs, info->offset_completed + operation_offset,
current_work_size + projected_work_size,
info->original_cb_opaque);
}
static int qcow2_amend_options(BlockDriverState *bs, QemuOpts *opts,
BlockDriverAmendStatusCB *status_cb,
void *cb_opaque)
{
BDRVQcow2State *s = bs->opaque;
int old_version = s->qcow_version, new_version = old_version;
uint64_t new_size = 0;
const char *backing_file = NULL, *backing_format = NULL;
bool lazy_refcounts = s->use_lazy_refcounts;
const char *compat = NULL;
uint64_t cluster_size = s->cluster_size;
bool encrypt;
int refcount_bits = s->refcount_bits;
int ret;
QemuOptDesc *desc = opts->list->desc;
Qcow2AmendHelperCBInfo helper_cb_info;
while (desc && desc->name) {
if (!qemu_opt_find(opts, desc->name)) {
/* only change explicitly defined options */
desc++;
continue;
}
if (!strcmp(desc->name, BLOCK_OPT_COMPAT_LEVEL)) {
compat = qemu_opt_get(opts, BLOCK_OPT_COMPAT_LEVEL);
if (!compat) {
/* preserve default */
} else if (!strcmp(compat, "0.10")) {
new_version = 2;
} else if (!strcmp(compat, "1.1")) {
new_version = 3;
} else {
error_report("Unknown compatibility level %s", compat);
return -EINVAL;
}
} else if (!strcmp(desc->name, BLOCK_OPT_PREALLOC)) {
error_report("Cannot change preallocation mode");
return -ENOTSUP;
} else if (!strcmp(desc->name, BLOCK_OPT_SIZE)) {
new_size = qemu_opt_get_size(opts, BLOCK_OPT_SIZE, 0);
} else if (!strcmp(desc->name, BLOCK_OPT_BACKING_FILE)) {
backing_file = qemu_opt_get(opts, BLOCK_OPT_BACKING_FILE);
} else if (!strcmp(desc->name, BLOCK_OPT_BACKING_FMT)) {
backing_format = qemu_opt_get(opts, BLOCK_OPT_BACKING_FMT);
} else if (!strcmp(desc->name, BLOCK_OPT_ENCRYPT)) {
encrypt = qemu_opt_get_bool(opts, BLOCK_OPT_ENCRYPT,
!!s->cipher);
if (encrypt != !!s->cipher) {
error_report("Changing the encryption flag is not supported");
return -ENOTSUP;
}
} else if (!strcmp(desc->name, BLOCK_OPT_CLUSTER_SIZE)) {
cluster_size = qemu_opt_get_size(opts, BLOCK_OPT_CLUSTER_SIZE,
cluster_size);
if (cluster_size != s->cluster_size) {
error_report("Changing the cluster size is not supported");
return -ENOTSUP;
}
} else if (!strcmp(desc->name, BLOCK_OPT_LAZY_REFCOUNTS)) {
lazy_refcounts = qemu_opt_get_bool(opts, BLOCK_OPT_LAZY_REFCOUNTS,
lazy_refcounts);
} else if (!strcmp(desc->name, BLOCK_OPT_REFCOUNT_BITS)) {
refcount_bits = qemu_opt_get_number(opts, BLOCK_OPT_REFCOUNT_BITS,
refcount_bits);
if (refcount_bits <= 0 || refcount_bits > 64 ||
!is_power_of_2(refcount_bits))
{
error_report("Refcount width must be a power of two and may "
"not exceed 64 bits");
return -EINVAL;
}
} else {
/* if this point is reached, this probably means a new option was
* added without having it covered here */
abort();
}
desc++;
}
helper_cb_info = (Qcow2AmendHelperCBInfo){
.original_status_cb = status_cb,
.original_cb_opaque = cb_opaque,
.total_operations = (new_version < old_version)
+ (s->refcount_bits != refcount_bits)
};
/* Upgrade first (some features may require compat=1.1) */
if (new_version > old_version) {
s->qcow_version = new_version;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->qcow_version = old_version;
return ret;
}
}
if (s->refcount_bits != refcount_bits) {
int refcount_order = ctz32(refcount_bits);
Error *local_error = NULL;
if (new_version < 3 && refcount_bits != 16) {
error_report("Different refcount widths than 16 bits require "
"compatibility level 1.1 or above (use compat=1.1 or "
"greater)");
return -EINVAL;
}
helper_cb_info.current_operation = QCOW2_CHANGING_REFCOUNT_ORDER;
ret = qcow2_change_refcount_order(bs, refcount_order,
&qcow2_amend_helper_cb,
&helper_cb_info, &local_error);
if (ret < 0) {
error_report_err(local_error);
return ret;
}
}
if (backing_file || backing_format) {
ret = qcow2_change_backing_file(bs,
backing_file ?: s->image_backing_file,
backing_format ?: s->image_backing_format);
if (ret < 0) {
return ret;
}
}
if (s->use_lazy_refcounts != lazy_refcounts) {
if (lazy_refcounts) {
if (new_version < 3) {
error_report("Lazy refcounts only supported with compatibility "
"level 1.1 and above (use compat=1.1 or greater)");
return -EINVAL;
}
s->compatible_features |= QCOW2_COMPAT_LAZY_REFCOUNTS;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->compatible_features &= ~QCOW2_COMPAT_LAZY_REFCOUNTS;
return ret;
}
s->use_lazy_refcounts = true;
} else {
/* make image clean first */
ret = qcow2_mark_clean(bs);
if (ret < 0) {
return ret;
}
/* now disallow lazy refcounts */
s->compatible_features &= ~QCOW2_COMPAT_LAZY_REFCOUNTS;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->compatible_features |= QCOW2_COMPAT_LAZY_REFCOUNTS;
return ret;
}
s->use_lazy_refcounts = false;
}
}
if (new_size) {
ret = bdrv_truncate(bs, new_size);
if (ret < 0) {
return ret;
}
}
/* Downgrade last (so unsupported features can be removed before) */
if (new_version < old_version) {
helper_cb_info.current_operation = QCOW2_DOWNGRADING;
ret = qcow2_downgrade(bs, new_version, &qcow2_amend_helper_cb,
&helper_cb_info);
if (ret < 0) {
return ret;
}
}
return 0;
}
/*
* If offset or size are negative, respectively, they will not be included in
* the BLOCK_IMAGE_CORRUPTED event emitted.
* fatal will be ignored for read-only BDS; corruptions found there will always
* be considered non-fatal.
*/
void qcow2_signal_corruption(BlockDriverState *bs, bool fatal, int64_t offset,
int64_t size, const char *message_format, ...)
{
BDRVQcow2State *s = bs->opaque;
const char *node_name;
char *message;
va_list ap;
fatal = fatal && !bs->read_only;
if (s->signaled_corruption &&
(!fatal || (s->incompatible_features & QCOW2_INCOMPAT_CORRUPT)))
{
return;
}
va_start(ap, message_format);
message = g_strdup_vprintf(message_format, ap);
va_end(ap);
if (fatal) {
fprintf(stderr, "qcow2: Marking image as corrupt: %s; further "
"corruption events will be suppressed\n", message);
} else {
fprintf(stderr, "qcow2: Image is corrupt: %s; further non-fatal "
"corruption events will be suppressed\n", message);
}
node_name = bdrv_get_node_name(bs);
qapi_event_send_block_image_corrupted(bdrv_get_device_name(bs),
*node_name != '\0', node_name,
message, offset >= 0, offset,
size >= 0, size,
fatal, &error_abort);
g_free(message);
if (fatal) {
qcow2_mark_corrupt(bs);
bs->drv = NULL; /* make BDS unusable */
}
s->signaled_corruption = true;
}
static QemuOptsList qcow2_create_opts = {
.name = "qcow2-create-opts",
.head = QTAILQ_HEAD_INITIALIZER(qcow2_create_opts.head),
.desc = {
{
.name = BLOCK_OPT_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Virtual disk size"
},
{
.name = BLOCK_OPT_COMPAT_LEVEL,
.type = QEMU_OPT_STRING,
.help = "Compatibility level (0.10 or 1.1)"
},
{
.name = BLOCK_OPT_BACKING_FILE,
.type = QEMU_OPT_STRING,
.help = "File name of a base image"
},
{
.name = BLOCK_OPT_BACKING_FMT,
.type = QEMU_OPT_STRING,
.help = "Image format of the base image"
},
{
.name = BLOCK_OPT_ENCRYPT,
.type = QEMU_OPT_BOOL,
.help = "Encrypt the image",
.def_value_str = "off"
},
{
.name = BLOCK_OPT_CLUSTER_SIZE,
.type = QEMU_OPT_SIZE,
.help = "qcow2 cluster size",
.def_value_str = stringify(DEFAULT_CLUSTER_SIZE)
},
{
.name = BLOCK_OPT_PREALLOC,
.type = QEMU_OPT_STRING,
.help = "Preallocation mode (allowed values: off, metadata, "
"falloc, full)"
},
{
.name = BLOCK_OPT_LAZY_REFCOUNTS,
.type = QEMU_OPT_BOOL,
.help = "Postpone refcount updates",
.def_value_str = "off"
},
{
.name = BLOCK_OPT_REFCOUNT_BITS,
.type = QEMU_OPT_NUMBER,
.help = "Width of a reference count entry in bits",
.def_value_str = "16"
},
{ /* end of list */ }
}
};
BlockDriver bdrv_qcow2 = {
.format_name = "qcow2",
.instance_size = sizeof(BDRVQcow2State),
.bdrv_probe = qcow2_probe,
.bdrv_open = qcow2_open,
.bdrv_close = qcow2_close,
.bdrv_reopen_prepare = qcow2_reopen_prepare,
.bdrv_reopen_commit = qcow2_reopen_commit,
.bdrv_reopen_abort = qcow2_reopen_abort,
.bdrv_join_options = qcow2_join_options,
.bdrv_create = qcow2_create,
.bdrv_has_zero_init = bdrv_has_zero_init_1,
.bdrv_co_get_block_status = qcow2_co_get_block_status,
.bdrv_set_key = qcow2_set_key,
.bdrv_co_preadv = qcow2_co_preadv,
.bdrv_co_pwritev = qcow2_co_pwritev,
.bdrv_co_flush_to_os = qcow2_co_flush_to_os,
.bdrv_co_pwrite_zeroes = qcow2_co_pwrite_zeroes,
.bdrv_co_pdiscard = qcow2_co_pdiscard,
.bdrv_truncate = qcow2_truncate,
.bdrv_write_compressed = qcow2_write_compressed,
.bdrv_make_empty = qcow2_make_empty,
.bdrv_snapshot_create = qcow2_snapshot_create,
.bdrv_snapshot_goto = qcow2_snapshot_goto,
.bdrv_snapshot_delete = qcow2_snapshot_delete,
.bdrv_snapshot_list = qcow2_snapshot_list,
.bdrv_snapshot_load_tmp = qcow2_snapshot_load_tmp,
.bdrv_get_info = qcow2_get_info,
.bdrv_get_specific_info = qcow2_get_specific_info,
.bdrv_save_vmstate = qcow2_save_vmstate,
.bdrv_load_vmstate = qcow2_load_vmstate,
.supports_backing = true,
.bdrv_change_backing_file = qcow2_change_backing_file,
.bdrv_refresh_limits = qcow2_refresh_limits,
.bdrv_invalidate_cache = qcow2_invalidate_cache,
.bdrv_inactivate = qcow2_inactivate,
.create_opts = &qcow2_create_opts,
.bdrv_check = qcow2_check,
.bdrv_amend_options = qcow2_amend_options,
.bdrv_detach_aio_context = qcow2_detach_aio_context,
.bdrv_attach_aio_context = qcow2_attach_aio_context,
};
static void bdrv_qcow2_init(void)
{
bdrv_register(&bdrv_qcow2);
}
block_init(bdrv_qcow2_init);