blob: 5d6c4a030868583189aeb17f2842ea03b6231c0d [file] [log] [blame]
/*
* QEMU MC146818 RTC emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/hw.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "hw/i386/pc.h"
#include "hw/isa/isa.h"
//#include "hpet_emul.h"
//#define DEBUG_CMOS
#define RTC_SECONDS 0
#define RTC_SECONDS_ALARM 1
#define RTC_MINUTES 2
#define RTC_MINUTES_ALARM 3
#define RTC_HOURS 4
#define RTC_HOURS_ALARM 5
#define RTC_ALARM_DONT_CARE 0xC0
#define RTC_DAY_OF_WEEK 6
#define RTC_DAY_OF_MONTH 7
#define RTC_MONTH 8
#define RTC_YEAR 9
#define RTC_REG_A 10
#define RTC_REG_B 11
#define RTC_REG_C 12
#define RTC_REG_D 13
#define REG_A_UIP 0x80
#define REG_B_SET 0x80
#define REG_B_PIE 0x40
#define REG_B_AIE 0x20
#define REG_B_UIE 0x10
#define REG_B_SQWE 0x08
#define REG_B_DM 0x04
#define REG_C_UF 0x10
#define REG_C_IRQF 0x80
#define REG_C_PF 0x40
#define REG_C_AF 0x20
struct RTCState {
uint8_t cmos_data[128];
uint8_t cmos_index;
struct tm current_tm;
int base_year;
qemu_irq irq;
qemu_irq sqw_irq;
int it_shift;
/* periodic timer */
QEMUTimer *periodic_timer;
int64_t next_periodic_time;
/* second update */
int64_t next_second_time;
#ifdef TARGET_I386
uint32_t irq_coalesced;
uint32_t period;
QEMUTimer *coalesced_timer;
#endif
QEMUTimer *second_timer;
QEMUTimer *second_timer2;
};
static void rtc_irq_raise(qemu_irq irq) {
/* When HPET is operating in legacy mode, RTC interrupts are disabled
* We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
* mode is established while interrupt is raised. We want it to
* be lowered in any case
*/
#ifndef CONFIG_ANDROID
#if defined TARGET_I386 || defined TARGET_X86_64
if (!hpet_in_legacy_mode())
#endif
#endif
qemu_irq_raise(irq);
}
static void rtc_set_time(RTCState *s);
static void rtc_copy_date(RTCState *s);
#ifdef TARGET_I386
static void rtc_coalesced_timer_update(RTCState *s)
{
if (s->irq_coalesced == 0) {
timer_del(s->coalesced_timer);
} else {
/* divide each RTC interval to 2 - 8 smaller intervals */
int c = MIN(s->irq_coalesced, 7) + 1;
int64_t next_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
muldiv64(s->period / c, get_ticks_per_sec(), 32768);
timer_mod(s->coalesced_timer, next_clock);
}
}
static void rtc_coalesced_timer(void *opaque)
{
RTCState *s = opaque;
if (s->irq_coalesced != 0) {
apic_reset_irq_delivered();
s->cmos_data[RTC_REG_C] |= 0xc0;
rtc_irq_raise(s->irq);
if (apic_get_irq_delivered()) {
s->irq_coalesced--;
}
}
rtc_coalesced_timer_update(s);
}
#endif
static void rtc_timer_update(RTCState *s, int64_t current_time)
{
int period_code, period;
int64_t cur_clock, next_irq_clock;
int enable_pie;
period_code = s->cmos_data[RTC_REG_A] & 0x0f;
#ifndef CONFIG_ANDROID
#if defined TARGET_I386 || defined TARGET_X86_64
/* disable periodic timer if hpet is in legacy mode, since interrupts are
* disabled anyway.
*/
enable_pie = !hpet_in_legacy_mode();
#else
enable_pie = 1;
#endif
#endif
enable_pie = 1;
if (period_code != 0
&& (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
|| ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
if (period_code <= 2)
period_code += 7;
/* period in 32 Khz cycles */
period = 1 << (period_code - 1);
#ifdef TARGET_I386
if(period != s->period)
s->irq_coalesced = (s->irq_coalesced * s->period) / period;
s->period = period;
#endif
/* compute 32 khz clock */
cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
next_irq_clock = (cur_clock & ~(period - 1)) + period;
s->next_periodic_time = muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
timer_mod(s->periodic_timer, s->next_periodic_time);
} else {
#ifdef TARGET_I386
s->irq_coalesced = 0;
#endif
timer_del(s->periodic_timer);
}
}
static void rtc_periodic_timer(void *opaque)
{
RTCState *s = opaque;
rtc_timer_update(s, s->next_periodic_time);
if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
s->cmos_data[RTC_REG_C] |= 0xc0;
#ifdef TARGET_I386
if(rtc_td_hack) {
apic_reset_irq_delivered();
rtc_irq_raise(s->irq);
if (!apic_get_irq_delivered()) {
s->irq_coalesced++;
rtc_coalesced_timer_update(s);
}
} else
#endif
rtc_irq_raise(s->irq);
}
if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
/* Not square wave at all but we don't want 2048Hz interrupts!
Must be seen as a pulse. */
qemu_irq_raise(s->sqw_irq);
}
}
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
{
RTCState *s = opaque;
if ((addr & 1) == 0) {
s->cmos_index = data & 0x7f;
} else {
#ifdef DEBUG_CMOS
printf("cmos: write index=0x%02x val=0x%02x\n",
s->cmos_index, data);
#endif
switch(s->cmos_index) {
case RTC_SECONDS_ALARM:
case RTC_MINUTES_ALARM:
case RTC_HOURS_ALARM:
/* XXX: not supported */
s->cmos_data[s->cmos_index] = data;
break;
case RTC_SECONDS:
case RTC_MINUTES:
case RTC_HOURS:
case RTC_DAY_OF_WEEK:
case RTC_DAY_OF_MONTH:
case RTC_MONTH:
case RTC_YEAR:
s->cmos_data[s->cmos_index] = data;
/* if in set mode, do not update the time */
if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
rtc_set_time(s);
}
break;
case RTC_REG_A:
/* UIP bit is read only */
s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
(s->cmos_data[RTC_REG_A] & REG_A_UIP);
rtc_timer_update(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
break;
case RTC_REG_B:
if (data & REG_B_SET) {
/* set mode: reset UIP mode */
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
data &= ~REG_B_UIE;
} else {
/* if disabling set mode, update the time */
if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
rtc_set_time(s);
}
}
s->cmos_data[RTC_REG_B] = data;
rtc_timer_update(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
break;
case RTC_REG_C:
case RTC_REG_D:
/* cannot write to them */
break;
default:
s->cmos_data[s->cmos_index] = data;
break;
}
}
}
static inline int rtc_to_bcd(RTCState *s, int a)
{
if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
return a;
} else {
return ((a / 10) << 4) | (a % 10);
}
}
static inline int rtc_from_bcd(RTCState *s, int a)
{
if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
return a;
} else {
return ((a >> 4) * 10) + (a & 0x0f);
}
}
static void rtc_set_time(RTCState *s)
{
struct tm *tm = &s->current_tm;
tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
(s->cmos_data[RTC_HOURS] & 0x80)) {
tm->tm_hour += 12;
}
tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
}
static void rtc_copy_date(RTCState *s)
{
const struct tm *tm = &s->current_tm;
int year;
s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
if (s->cmos_data[RTC_REG_B] & 0x02) {
/* 24 hour format */
s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
} else {
/* 12 hour format */
s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12);
if (tm->tm_hour >= 12)
s->cmos_data[RTC_HOURS] |= 0x80;
}
s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
year = (tm->tm_year - s->base_year) % 100;
if (year < 0)
year += 100;
s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
}
/* month is between 0 and 11. */
static int get_days_in_month(int month, int year)
{
static const int days_tab[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
int d;
if ((unsigned )month >= 12)
return 31;
d = days_tab[month];
if (month == 1) {
if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
d++;
}
return d;
}
/* update 'tm' to the next second */
static void rtc_next_second(struct tm *tm)
{
int days_in_month;
tm->tm_sec++;
if ((unsigned)tm->tm_sec >= 60) {
tm->tm_sec = 0;
tm->tm_min++;
if ((unsigned)tm->tm_min >= 60) {
tm->tm_min = 0;
tm->tm_hour++;
if ((unsigned)tm->tm_hour >= 24) {
tm->tm_hour = 0;
/* next day */
tm->tm_wday++;
if ((unsigned)tm->tm_wday >= 7)
tm->tm_wday = 0;
days_in_month = get_days_in_month(tm->tm_mon,
tm->tm_year + 1900);
tm->tm_mday++;
if (tm->tm_mday < 1) {
tm->tm_mday = 1;
} else if (tm->tm_mday > days_in_month) {
tm->tm_mday = 1;
tm->tm_mon++;
if (tm->tm_mon >= 12) {
tm->tm_mon = 0;
tm->tm_year++;
}
}
}
}
}
}
static void rtc_update_second(void *opaque)
{
RTCState *s = opaque;
int64_t delay;
/* if the oscillator is not in normal operation, we do not update */
if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
s->next_second_time += get_ticks_per_sec();
timer_mod(s->second_timer, s->next_second_time);
} else {
rtc_next_second(&s->current_tm);
if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
/* update in progress bit */
s->cmos_data[RTC_REG_A] |= REG_A_UIP;
}
/* should be 244 us = 8 / 32768 seconds, but currently the
timers do not have the necessary resolution. */
delay = (get_ticks_per_sec() * 1) / 100;
if (delay < 1)
delay = 1;
timer_mod(s->second_timer2,
s->next_second_time + delay);
}
}
static void rtc_update_second2(void *opaque)
{
RTCState *s = opaque;
if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
rtc_copy_date(s);
}
/* check alarm */
if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
s->cmos_data[RTC_REG_C] |= 0xa0;
rtc_irq_raise(s->irq);
}
}
/* update ended interrupt */
if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
s->cmos_data[RTC_REG_C] |= 0x90;
rtc_irq_raise(s->irq);
}
/* clear update in progress bit */
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
s->next_second_time += get_ticks_per_sec();
timer_mod(s->second_timer, s->next_second_time);
}
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
{
RTCState *s = opaque;
int ret;
if ((addr & 1) == 0) {
return 0xff;
} else {
switch(s->cmos_index) {
case RTC_SECONDS:
case RTC_MINUTES:
case RTC_HOURS:
case RTC_DAY_OF_WEEK:
case RTC_DAY_OF_MONTH:
case RTC_MONTH:
case RTC_YEAR:
ret = s->cmos_data[s->cmos_index];
break;
case RTC_REG_A:
ret = s->cmos_data[s->cmos_index];
break;
case RTC_REG_C:
ret = s->cmos_data[s->cmos_index];
qemu_irq_lower(s->irq);
s->cmos_data[RTC_REG_C] = 0x00;
break;
default:
ret = s->cmos_data[s->cmos_index];
break;
}
#ifdef DEBUG_CMOS
printf("cmos: read index=0x%02x val=0x%02x\n",
s->cmos_index, ret);
#endif
return ret;
}
}
void rtc_set_memory(RTCState *s, int addr, int val)
{
if (addr >= 0 && addr <= 127)
s->cmos_data[addr] = val;
}
void rtc_set_date(RTCState *s, const struct tm *tm)
{
s->current_tm = *tm;
rtc_copy_date(s);
}
/* PC cmos mappings */
#define REG_IBM_CENTURY_BYTE 0x32
#define REG_IBM_PS2_CENTURY_BYTE 0x37
static void rtc_set_date_from_host(RTCState *s)
{
struct tm tm;
int val;
/* set the CMOS date */
qemu_get_timedate(&tm, 0);
rtc_set_date(s, &tm);
val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
}
static void rtc_save(QEMUFile *f, void *opaque)
{
RTCState *s = opaque;
qemu_put_buffer(f, s->cmos_data, 128);
qemu_put_8s(f, &s->cmos_index);
qemu_put_be32(f, s->current_tm.tm_sec);
qemu_put_be32(f, s->current_tm.tm_min);
qemu_put_be32(f, s->current_tm.tm_hour);
qemu_put_be32(f, s->current_tm.tm_wday);
qemu_put_be32(f, s->current_tm.tm_mday);
qemu_put_be32(f, s->current_tm.tm_mon);
qemu_put_be32(f, s->current_tm.tm_year);
timer_put(f, s->periodic_timer);
qemu_put_be64(f, s->next_periodic_time);
qemu_put_be64(f, s->next_second_time);
timer_put(f, s->second_timer);
timer_put(f, s->second_timer2);
}
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
{
RTCState *s = opaque;
if (version_id != 1)
return -EINVAL;
qemu_get_buffer(f, s->cmos_data, 128);
qemu_get_8s(f, &s->cmos_index);
s->current_tm.tm_sec=qemu_get_be32(f);
s->current_tm.tm_min=qemu_get_be32(f);
s->current_tm.tm_hour=qemu_get_be32(f);
s->current_tm.tm_wday=qemu_get_be32(f);
s->current_tm.tm_mday=qemu_get_be32(f);
s->current_tm.tm_mon=qemu_get_be32(f);
s->current_tm.tm_year=qemu_get_be32(f);
timer_get(f, s->periodic_timer);
s->next_periodic_time=qemu_get_be64(f);
s->next_second_time=qemu_get_be64(f);
timer_get(f, s->second_timer);
timer_get(f, s->second_timer2);
return 0;
}
#ifdef TARGET_I386
static void rtc_save_td(QEMUFile *f, void *opaque)
{
RTCState *s = opaque;
qemu_put_be32(f, s->irq_coalesced);
qemu_put_be32(f, s->period);
}
static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
{
RTCState *s = opaque;
if (version_id != 1)
return -EINVAL;
s->irq_coalesced = qemu_get_be32(f);
s->period = qemu_get_be32(f);
rtc_coalesced_timer_update(s);
return 0;
}
#endif
static void rtc_reset(void *opaque)
{
RTCState *s = opaque;
s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
qemu_irq_lower(s->irq);
#ifdef TARGET_I386
if (rtc_td_hack)
s->irq_coalesced = 0;
#endif
}
RTCState *rtc_init_sqw(int base, qemu_irq irq, qemu_irq sqw_irq, int base_year)
{
RTCState *s;
s = g_malloc0(sizeof(RTCState));
s->irq = irq;
s->sqw_irq = sqw_irq;
s->cmos_data[RTC_REG_A] = 0x26;
s->cmos_data[RTC_REG_B] = 0x02;
s->cmos_data[RTC_REG_C] = 0x00;
s->cmos_data[RTC_REG_D] = 0x80;
s->base_year = base_year;
rtc_set_date_from_host(s);
s->periodic_timer = timer_new(QEMU_CLOCK_VIRTUAL, SCALE_NS,
rtc_periodic_timer, s);
#ifdef TARGET_I386
if (rtc_td_hack)
s->coalesced_timer = timer_new(QEMU_CLOCK_VIRTUAL, SCALE_NS, rtc_coalesced_timer, s);
#endif
s->second_timer = timer_new(QEMU_CLOCK_VIRTUAL, SCALE_NS,
rtc_update_second, s);
s->second_timer2 = timer_new(QEMU_CLOCK_VIRTUAL, SCALE_NS,
rtc_update_second2, s);
s->next_second_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() * 99) / 100;
timer_mod(s->second_timer2, s->next_second_time);
register_ioport_write(base, 2, 1, cmos_ioport_write, s);
register_ioport_read(base, 2, 1, cmos_ioport_read, s);
register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
#ifdef TARGET_I386
if (rtc_td_hack)
register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
#endif
qemu_register_reset(rtc_reset, 0, s);
return s;
}
RTCState *rtc_init(int base, qemu_irq irq, int base_year)
{
return rtc_init_sqw(base, irq, NULL, base_year);
}
/* Memory mapped interface */
static uint32_t cmos_mm_readb (void *opaque, hwaddr addr)
{
RTCState *s = opaque;
return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
}
static void cmos_mm_writeb (void *opaque,
hwaddr addr, uint32_t value)
{
RTCState *s = opaque;
cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
}
static uint32_t cmos_mm_readw (void *opaque, hwaddr addr)
{
RTCState *s = opaque;
uint32_t val;
val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
return val;
}
static void cmos_mm_writew (void *opaque,
hwaddr addr, uint32_t value)
{
RTCState *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap16(value);
#endif
cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
}
static uint32_t cmos_mm_readl (void *opaque, hwaddr addr)
{
RTCState *s = opaque;
uint32_t val;
val = cmos_ioport_read(s, addr >> s->it_shift);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
static void cmos_mm_writel (void *opaque,
hwaddr addr, uint32_t value)
{
RTCState *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap32(value);
#endif
cmos_ioport_write(s, addr >> s->it_shift, value);
}
static CPUReadMemoryFunc *rtc_mm_read[] = {
&cmos_mm_readb,
&cmos_mm_readw,
&cmos_mm_readl,
};
static CPUWriteMemoryFunc *rtc_mm_write[] = {
&cmos_mm_writeb,
&cmos_mm_writew,
&cmos_mm_writel,
};
RTCState *rtc_mm_init(hwaddr base, int it_shift, qemu_irq irq,
int base_year)
{
RTCState *s;
int io_memory;
s = g_malloc0(sizeof(RTCState));
s->irq = irq;
s->cmos_data[RTC_REG_A] = 0x26;
s->cmos_data[RTC_REG_B] = 0x02;
s->cmos_data[RTC_REG_C] = 0x00;
s->cmos_data[RTC_REG_D] = 0x80;
s->base_year = base_year;
rtc_set_date_from_host(s);
s->periodic_timer = timer_new(QEMU_CLOCK_VIRTUAL, SCALE_NS,
rtc_periodic_timer, s);
s->second_timer = timer_new(QEMU_CLOCK_VIRTUAL, SCALE_NS,
rtc_update_second, s);
s->second_timer2 = timer_new(QEMU_CLOCK_VIRTUAL, SCALE_NS,
rtc_update_second2, s);
s->next_second_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() * 99) / 100;
timer_mod(s->second_timer2, s->next_second_time);
io_memory = cpu_register_io_memory(rtc_mm_read, rtc_mm_write, s);
cpu_register_physical_memory(base, 2 << it_shift, io_memory);
register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
#ifdef TARGET_I386
if (rtc_td_hack)
register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
#endif
qemu_register_reset(rtc_reset, 0, s);
return s;
}