blob: dba979e60b2cecd33968a9eeb49f115211bdc4e4 [file] [log] [blame]
/*
* QEMU/MIPS pseudo-board
*
* emulates a simple machine with ISA-like bus.
* ISA IO space mapped to the 0x14000000 (PHYS) and
* ISA memory at the 0x10000000 (PHYS, 16Mb in size).
* All peripherial devices are attached to this "bus" with
* the standard PC ISA addresses.
*/
#include "hw/hw.h"
#include "hw/mips/mips.h"
#include "hw/i386/pc.h"
#include "hw/isa/isa.h"
#include "net/net.h"
#include "sysemu/sysemu.h"
#include "hw/boards.h"
#include "flash.h"
#include "qemu/log.h"
#include "hw/mips/bios.h"
#include "ide.h"
#include "loader.h"
#include "elf.h"
#define PHYS_TO_VIRT(x) ((x) | ~(target_ulong)0x7fffffff)
#define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
#define MAX_IDE_BUS 2
static const int ide_iobase[2] = { 0x1f0, 0x170 };
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
static const int ide_irq[2] = { 14, 15 };
static PITState *pit; /* PIT i8254 */
/* i8254 PIT is attached to the IRQ0 at PIC i8259 */
static struct _loaderparams {
int ram_size;
const char *kernel_filename;
const char *kernel_cmdline;
const char *initrd_filename;
} loaderparams;
static void mips_qemu_writel (void *opaque, hwaddr addr,
uint32_t val)
{
if ((addr & 0xffff) == 0 && val == 42)
qemu_system_reset_request ();
else if ((addr & 0xffff) == 4 && val == 42)
qemu_system_shutdown_request ();
}
static uint32_t mips_qemu_readl (void *opaque, hwaddr addr)
{
return 0;
}
static CPUWriteMemoryFunc * const mips_qemu_write[] = {
&mips_qemu_writel,
&mips_qemu_writel,
&mips_qemu_writel,
};
static CPUReadMemoryFunc * const mips_qemu_read[] = {
&mips_qemu_readl,
&mips_qemu_readl,
&mips_qemu_readl,
};
static int mips_qemu_iomemtype = 0;
typedef struct ResetData {
CPUOldState *env;
uint64_t vector;
} ResetData;
static int64_t load_kernel(void)
{
int64_t entry, kernel_low, kernel_high;
long kernel_size, initrd_size, params_size;
ram_addr_t initrd_offset;
uint32_t *params_buf;
int big_endian;
#ifdef TARGET_WORDS_BIGENDIAN
big_endian = 1;
#else
big_endian = 0;
#endif
kernel_size = load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
(uint64_t *)&entry, (uint64_t *)&kernel_low,
(uint64_t *)&kernel_high, big_endian, ELF_MACHINE, 1);
if (kernel_size >= 0) {
if ((entry & ~0x7fffffffULL) == 0x80000000)
entry = (int32_t)entry;
} else {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
loaderparams.kernel_filename);
exit(1);
}
/* load initrd */
initrd_size = 0;
initrd_offset = 0;
if (loaderparams.initrd_filename) {
initrd_size = get_image_size (loaderparams.initrd_filename);
if (initrd_size > 0) {
initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
if (initrd_offset + initrd_size > ram_size) {
fprintf(stderr,
"qemu: memory too small for initial ram disk '%s'\n",
loaderparams.initrd_filename);
exit(1);
}
initrd_size = load_image_targphys(loaderparams.initrd_filename,
initrd_offset,
ram_size - initrd_offset);
}
if (initrd_size == (target_ulong) -1) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
loaderparams.initrd_filename);
exit(1);
}
}
/* Store command line. */
params_size = 264;
params_buf = g_malloc(params_size);
params_buf[0] = tswap32(ram_size);
params_buf[1] = tswap32(0x12345678);
if (initrd_size > 0) {
snprintf((char *)params_buf + 8, 256, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
PHYS_TO_VIRT((uint32_t)initrd_offset),
initrd_size, loaderparams.kernel_cmdline);
} else {
snprintf((char *)params_buf + 8, 256, "%s", loaderparams.kernel_cmdline);
}
rom_add_blob_fixed("params", params_buf, params_size,
(16 << 20) - 264);
return entry;
}
static void main_cpu_reset(void *opaque)
{
ResetData *s = (ResetData *)opaque;
CPUOldState *env = s->env;
cpu_reset(env);
env->active_tc.PC = s->vector;
}
static const int sector_len = 32 * 1024;
static
void mips_r4k_init (ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
char *filename;
ram_addr_t ram_offset;
ram_addr_t bios_offset;
int bios_size;
CPUOldState *env;
ResetData *reset_info;
RTCState *rtc_state;
int i;
qemu_irq *i8259;
DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
DriveInfo *dinfo;
/* init CPUs */
if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
cpu_model = "R4000";
#else
cpu_model = "24Kf";
#endif
}
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
reset_info = g_malloc0(sizeof(ResetData));
reset_info->env = env;
reset_info->vector = env->active_tc.PC;
qemu_register_reset(main_cpu_reset, reset_info);
/* allocate RAM */
if (ram_size > (256 << 20)) {
fprintf(stderr,
"qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
((unsigned int)ram_size / (1 << 20)));
exit(1);
}
ram_offset = qemu_ram_alloc(ram_size);
cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
if (!mips_qemu_iomemtype) {
mips_qemu_iomemtype = cpu_register_io_memory(mips_qemu_read,
mips_qemu_write, NULL);
}
cpu_register_physical_memory(0x1fbf0000, 0x10000, mips_qemu_iomemtype);
/* Try to load a BIOS image. If this fails, we continue regardless,
but initialize the hardware ourselves. When a kernel gets
preloaded we also initialize the hardware, since the BIOS wasn't
run. */
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = get_image_size(filename);
} else {
bios_size = -1;
}
if ((bios_size > 0) && (bios_size <= BIOS_SIZE)) {
bios_offset = qemu_ram_alloc(BIOS_SIZE);
cpu_register_physical_memory(0x1fc00000, BIOS_SIZE,
bios_offset | IO_MEM_ROM);
load_image_targphys(filename, 0x1fc00000, BIOS_SIZE);
} else if ((dinfo = drive_get(IF_PFLASH, 0, 0)) != NULL) {
uint32_t mips_rom = 0x00400000;
bios_offset = qemu_ram_alloc(mips_rom);
if (!pflash_cfi01_register(0x1fc00000, bios_offset,
dinfo->bdrv, sector_len, mips_rom / sector_len,
4, 0, 0, 0, 0)) {
fprintf(stderr, "qemu: Error registering flash memory.\n");
}
}
else {
/* not fatal */
fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
bios_name);
}
if (filename) {
g_free(filename);
}
if (kernel_filename) {
loaderparams.ram_size = ram_size;
loaderparams.kernel_filename = kernel_filename;
loaderparams.kernel_cmdline = kernel_cmdline;
loaderparams.initrd_filename = initrd_filename;
reset_info->vector = load_kernel();
}
/* Init CPU internal devices */
cpu_mips_irq_init_cpu(env);
cpu_mips_clock_init(env);
/* The PIC is attached to the MIPS CPU INT0 pin */
i8259 = i8259_init(env->irq[2]);
isa_bus_new(NULL);
isa_bus_irqs(i8259);
rtc_state = rtc_init(2000);
/* Register 64 KB of ISA IO space at 0x14000000 */
isa_mmio_init(0x14000000, 0x00010000);
isa_mem_base = 0x10000000;
pit = pit_init(0x40, i8259[0]);
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
serial_isa_init(i, serial_hds[i]);
}
}
isa_vga_init();
if (nd_table[0].vlan)
isa_ne2000_init(0x300, 9, &nd_table[0]);
if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
fprintf(stderr, "qemu: too many IDE bus\n");
exit(1);
}
for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
}
for(i = 0; i < MAX_IDE_BUS; i++)
isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
hd[MAX_IDE_DEVS * i],
hd[MAX_IDE_DEVS * i + 1]);
isa_create_simple("i8042");
}
static QEMUMachine mips_machine = {
.name = "mips",
.desc = "mips r4k platform",
.init = mips_r4k_init,
};
static void mips_machine_init(void)
{
qemu_register_machine(&mips_machine);
}
machine_init(mips_machine_init);