blob: 8c8738aa82a35ca61f9e7c2026399fe215062124 [file] [log] [blame]
/*
* QEMU System Emulator
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* the following is needed on Linux to define ptsname() in stdlib.h */
#if defined(__linux__)
#define _GNU_SOURCE 1
#endif
#include "qemu-common.h"
#include "hw/hw.h"
#include "hw/boards.h"
#include "hw/i386/pc.h"
#include "hw/audiodev.h"
#include "hw/isa/isa.h"
#include "hw/loader.h"
#include "hw/android/goldfish/nand.h"
#include "net/net.h"
#include "ui/console.h"
#include "sysemu/sysemu.h"
#include "exec/gdbstub.h"
#include "qemu/log.h"
#include "qemu/timer.h"
#include "sysemu/char.h"
#include "sysemu/blockdev.h"
#include "audio/audio.h"
#include "migration/qemu-file.h"
#include "android/android.h"
#include "android/charpipe.h"
#include "android/log-rotate.h"
#include "modem_driver.h"
#include "android/filesystems/ext4_utils.h"
#include "android/filesystems/fstab_parser.h"
#include "android/filesystems/partition_types.h"
#include "android/filesystems/ramdisk_extractor.h"
#include "android/gps.h"
#include "android/hw-kmsg.h"
#include "android/hw-pipe-net.h"
#include "android/hw-qemud.h"
#include "android/camera/camera-service.h"
#include "android/multitouch-port.h"
#include "android/charmap.h"
#include "android/globals.h"
#include "android/utils/bufprint.h"
#include "android/utils/debug.h"
#include "android/utils/filelock.h"
#include "android/utils/path.h"
#include "android/utils/stralloc.h"
#include "android/utils/tempfile.h"
#include "android/display-core.h"
#include "android/utils/timezone.h"
#include "android/snapshot.h"
#include "android/opengles.h"
#include "android/multitouch-screen.h"
#include "exec/hwaddr.h"
#include "android/tcpdump.h"
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <errno.h>
#include <sys/time.h>
#include <zlib.h>
/* Needed early for CONFIG_BSD etc. */
#include "config-host.h"
#ifndef _WIN32
#include <libgen.h>
#include <sys/times.h>
#include <sys/wait.h>
#include <termios.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <net/if.h>
#if defined(__NetBSD__)
#include <net/if_tap.h>
#endif
#ifdef __linux__
#include <linux/if_tun.h>
#endif
#include <arpa/inet.h>
#include <dirent.h>
#include <netdb.h>
#include <sys/select.h>
#ifdef CONFIG_BSD
#include <sys/stat.h>
#if defined(__FreeBSD__) || defined(__DragonFly__)
#include <libutil.h>
#else
#include <util.h>
#endif
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
#include <freebsd/stdlib.h>
#else
#ifdef __linux__
#include <pty.h>
#include <malloc.h>
#include <linux/rtc.h>
/* For the benefit of older linux systems which don't supply it,
we use a local copy of hpet.h. */
/* #include <linux/hpet.h> */
#include "hw/timer/hpet.h"
#include <linux/ppdev.h>
#include <linux/parport.h>
#endif
#ifdef __sun__
#include <sys/stat.h>
#include <sys/ethernet.h>
#include <sys/sockio.h>
#include <netinet/arp.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h> // must come after ip.h
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <net/if.h>
#include <syslog.h>
#include <stropts.h>
#endif
#endif
#endif
#if defined(__OpenBSD__)
#include <util.h>
#endif
#if defined(CONFIG_VDE)
#include <libvdeplug.h>
#endif
#ifdef _WIN32
#include <windows.h>
#include <malloc.h>
#include <sys/timeb.h>
#include <mmsystem.h>
#define getopt_long_only getopt_long
#define memalign(align, size) malloc(size)
#endif
#include "sysemu/cpus.h"
#include "sysemu/arch_init.h"
#ifdef CONFIG_COCOA
int qemu_main(int argc, char **argv, char **envp);
#undef main
#define main qemu_main
#endif /* CONFIG_COCOA */
#include "hw/hw.h"
#include "hw/boards.h"
#include "hw/i386/pc.h"
#include "hw/isa/isa.h"
#include "sysemu/watchdog.h"
#include "hw/i386/smbios.h"
#include "hw/xen/xen.h"
#include "net/net.h"
#include "monitor/monitor.h"
#include "ui/console.h"
#include "sysemu/sysemu.h"
#include "exec/gdbstub.h"
#include "qemu/timer.h"
#include "sysemu/char.h"
#include "qemu/cache-utils.h"
#include "block/block.h"
#include "sysemu/dma.h"
#include "audio/audio.h"
#include "migration/migration.h"
#include "sysemu/kvm.h"
#include "exec/hax.h"
#ifdef CONFIG_KVM
#include "android/kvm.h"
#endif
#include "sysemu/balloon.h"
#include "android/hw-lcd.h"
#include "android/boot-properties.h"
#include "android/hw-control.h"
#include "android/core-init-utils.h"
#include "android/audio-test.h"
#include "android/snaphost-android.h"
#if !defined(CONFIG_STANDALONE_CORE)
/* in android/qemulator.c */
extern void android_emulator_set_base_port(int port);
#endif
#if defined(CONFIG_SKINS) && !defined(CONFIG_STANDALONE_CORE)
#undef main
#define main qemu_main
#endif
#include "disas/disas.h"
#include "qemu/sockets.h"
#if defined(CONFIG_SLIRP)
#include "libslirp.h"
#endif
#define DEFAULT_RAM_SIZE 128
/* Max number of USB devices that can be specified on the commandline. */
#define MAX_USB_CMDLINE 8
/* Max number of bluetooth switches on the commandline. */
#define MAX_BT_CMDLINE 10
/* XXX: use a two level table to limit memory usage */
static const char *data_dir;
const char *bios_name = NULL;
static void *ioport_opaque[MAX_IOPORTS];
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
#ifdef MAX_DRIVES
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
to store the VM snapshots */
DriveInfo drives_table[MAX_DRIVES+1];
int nb_drives;
#endif
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
DisplayType display_type = DT_DEFAULT;
const char* keyboard_layout = NULL;
int64_t ticks_per_sec;
ram_addr_t ram_size;
bool xen_allowed;
const char *mem_path = NULL;
#ifdef MAP_POPULATE
int mem_prealloc = 0; /* force preallocation of physical target memory */
#endif
int nb_nics;
NICInfo nd_table[MAX_NICS];
int vm_running;
int autostart;
static int rtc_utc = 1;
static int rtc_date_offset = -1; /* -1 means no change */
int cirrus_vga_enabled = 1;
int std_vga_enabled = 0;
int vmsvga_enabled = 0;
int xenfb_enabled = 0;
static int full_screen = 0;
#ifdef CONFIG_SDL
static int no_frame = 0;
#endif
int no_quit = 0;
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
int serial_hds_count;
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
#ifdef TARGET_I386
int win2k_install_hack = 0;
int rtc_td_hack = 0;
#endif
int usb_enabled = 0;
int singlestep = 0;
int smp_cpus = 1;
const char *vnc_display;
int acpi_enabled = 1;
int no_hpet = 0;
int hax_disabled = 1;
int no_virtio_balloon = 0;
int fd_bootchk = 1;
int no_reboot = 0;
int no_shutdown = 0;
int cursor_hide = 1;
int graphic_rotate = 0;
WatchdogTimerModel *watchdog = NULL;
int watchdog_action = WDT_RESET;
const char *option_rom[MAX_OPTION_ROMS];
int nb_option_roms;
int semihosting_enabled = 0;
#ifdef TARGET_ARM
int old_param = 0;
#endif
const char *qemu_name;
int alt_grab = 0;
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
unsigned int nb_prom_envs = 0;
const char *prom_envs[MAX_PROM_ENVS];
#endif
#ifdef MAX_DRIVES
int nb_drives_opt;
struct drive_opt drives_opt[MAX_DRIVES];
#endif
int nb_numa_nodes;
uint64_t node_mem[MAX_NODES];
uint64_t node_cpumask[MAX_NODES];
static QEMUTimer *nographic_timer;
uint8_t qemu_uuid[16];
int qemu_cpu_delay;
extern char* audio_input_source;
extern char* android_op_ports;
extern char* android_op_port;
extern char* android_op_report_console;
extern char* op_http_proxy;
// Path to the file containing specific key character map.
char* op_charmap_file = NULL;
/* Path to hardware initialization file passed with -android-hw option. */
char* android_op_hwini = NULL;
/* Memory checker options. */
char* android_op_memcheck = NULL;
/* -dns-server option value. */
char* android_op_dns_server = NULL;
/* -radio option value. */
char* android_op_radio = NULL;
/* -gps option value. */
char* android_op_gps = NULL;
/* -audio option value. */
char* android_op_audio = NULL;
/* -cpu-delay option value. */
char* android_op_cpu_delay = NULL;
#ifdef CONFIG_NAND_LIMITS
/* -nand-limits option value. */
char* android_op_nand_limits = NULL;
#endif // CONFIG_NAND_LIMITS
/* -netspeed option value. */
char* android_op_netspeed = NULL;
/* -netdelay option value. */
char* android_op_netdelay = NULL;
/* -netfast option value. */
int android_op_netfast = 0;
/* -tcpdump option value. */
char* android_op_tcpdump = NULL;
/* -lcd-density option value. */
char* android_op_lcd_density = NULL;
/* -ui-port option value. This port will be used to report the core
* initialization completion.
*/
char* android_op_ui_port = NULL;
/* -ui-settings option value. This value will be passed to the UI when new UI
* process is attaching to the core.
*/
char* android_op_ui_settings = NULL;
/* -android-avdname option value. */
char* android_op_avd_name = "unknown";
bool android_op_wipe_data = false;
extern int android_display_width;
extern int android_display_height;
extern int android_display_bpp;
extern void dprint( const char* format, ... );
const char* dns_log_filename = NULL;
const char* drop_log_filename = NULL;
const char* savevm_on_exit = NULL;
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
/* Reports the core initialization failure to the error stdout and to the UI
* socket before exiting the application.
* Parameters that are passed to this macro are used to format the error
* mesage using sprintf routine.
*/
#ifdef CONFIG_ANDROID
#define PANIC(...) android_core_init_failure(__VA_ARGS__)
#else
#define PANIC(...) do { fprintf(stderr, __VA_ARGS__); \
exit(1); \
} while (0)
#endif // CONFIG_ANDROID
/* Exits the core during initialization. */
#ifdef CONFIG_ANDROID
#define QEMU_EXIT(exit_code) android_core_init_exit(exit_code)
#else
#define QEMU_EXIT(exit_code) exit(exit_code)
#endif // CONFIG_ANDROID
/***********************************************************/
/* x86 ISA bus support */
hwaddr isa_mem_base = 0;
PicState2 *isa_pic;
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
static uint32_t ioport_read(int index, uint32_t address)
{
static IOPortReadFunc *default_func[3] = {
default_ioport_readb,
default_ioport_readw,
default_ioport_readl
};
IOPortReadFunc *func = ioport_read_table[index][address];
if (!func)
func = default_func[index];
return func(ioport_opaque[address], address);
}
static void ioport_write(int index, uint32_t address, uint32_t data)
{
static IOPortWriteFunc *default_func[3] = {
default_ioport_writeb,
default_ioport_writew,
default_ioport_writel
};
IOPortWriteFunc *func = ioport_write_table[index][address];
if (!func)
func = default_func[index];
func(ioport_opaque[address], address, data);
}
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "unused inb: port=0x%04x\n", address);
#endif
return 0xff;
}
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
#endif
}
/* default is to make two byte accesses */
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
{
uint32_t data;
data = ioport_read(0, address);
address = (address + 1) & (MAX_IOPORTS - 1);
data |= ioport_read(0, address) << 8;
return data;
}
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
{
ioport_write(0, address, data & 0xff);
address = (address + 1) & (MAX_IOPORTS - 1);
ioport_write(0, address, (data >> 8) & 0xff);
}
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "unused inl: port=0x%04x\n", address);
#endif
return 0xffffffff;
}
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
#endif
}
/***************/
/* ballooning */
static QEMUBalloonEvent *qemu_balloon_event;
void *qemu_balloon_event_opaque;
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
{
qemu_balloon_event = func;
qemu_balloon_event_opaque = opaque;
}
void qemu_balloon(ram_addr_t target)
{
if (qemu_balloon_event)
qemu_balloon_event(qemu_balloon_event_opaque, target);
}
ram_addr_t qemu_balloon_status(void)
{
if (qemu_balloon_event)
return qemu_balloon_event(qemu_balloon_event_opaque, 0);
return 0;
}
/***********************************************************/
/* host time/date access */
void qemu_get_timedate(struct tm *tm, int offset)
{
time_t ti;
struct tm *ret;
time(&ti);
ti += offset;
if (rtc_date_offset == -1) {
if (rtc_utc)
ret = gmtime(&ti);
else
ret = localtime(&ti);
} else {
ti -= rtc_date_offset;
ret = gmtime(&ti);
}
memcpy(tm, ret, sizeof(struct tm));
}
int qemu_timedate_diff(struct tm *tm)
{
time_t seconds;
if (rtc_date_offset == -1)
if (rtc_utc)
seconds = mktimegm(tm);
else
seconds = mktime(tm);
else
seconds = mktimegm(tm) + rtc_date_offset;
return seconds - time(NULL);
}
/***********************************************************/
/* QEMU Block devices */
#define HD_ALIAS "index=%d,media=disk"
#define CDROM_ALIAS "index=2,media=cdrom"
#define FD_ALIAS "index=%d,if=floppy"
#define PFLASH_ALIAS "if=pflash"
#define MTD_ALIAS "if=mtd"
#define SD_ALIAS "index=0,if=sd"
static int drive_init_func(QemuOpts *opts, void *opaque)
{
int *use_scsi = opaque;
int fatal_error = 0;
if (drive_init(opts, *use_scsi, &fatal_error) == NULL) {
if (fatal_error)
return 1;
}
return 0;
}
static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
{
if (NULL == qemu_opt_get(opts, "snapshot")) {
qemu_opt_set(opts, "snapshot", "on");
}
return 0;
}
#ifdef MAX_DRIVES
static int drive_opt_get_free_idx(void)
{
int index;
for (index = 0; index < MAX_DRIVES; index++)
if (!drives_opt[index].used) {
drives_opt[index].used = 1;
return index;
}
return -1;
}
static int drive_get_free_idx(void)
{
int index;
for (index = 0; index < MAX_DRIVES; index++)
if (!drives_table[index].used) {
drives_table[index].used = 1;
return index;
}
return -1;
}
int drive_add(const char *file, const char *fmt, ...)
{
va_list ap;
int index = drive_opt_get_free_idx();
if (nb_drives_opt >= MAX_DRIVES || index == -1) {
fprintf(stderr, "qemu: too many drives\n");
return -1;
}
drives_opt[index].file = file;
va_start(ap, fmt);
vsnprintf(drives_opt[index].opt,
sizeof(drives_opt[0].opt), fmt, ap);
va_end(ap);
nb_drives_opt++;
return index;
}
void drive_remove(int index)
{
drives_opt[index].used = 0;
nb_drives_opt--;
}
int drive_get_index(BlockInterfaceType type, int bus, int unit)
{
int index;
/* seek interface, bus and unit */
for (index = 0; index < MAX_DRIVES; index++)
if (drives_table[index].type == type &&
drives_table[index].bus == bus &&
drives_table[index].unit == unit &&
drives_table[index].used)
return index;
return -1;
}
int drive_get_max_bus(BlockInterfaceType type)
{
int max_bus;
int index;
max_bus = -1;
for (index = 0; index < nb_drives; index++) {
if(drives_table[index].type == type &&
drives_table[index].bus > max_bus)
max_bus = drives_table[index].bus;
}
return max_bus;
}
const char *drive_get_serial(BlockDriverState *bdrv)
{
int index;
for (index = 0; index < nb_drives; index++)
if (drives_table[index].bdrv == bdrv)
return drives_table[index].serial;
return "\0";
}
BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
{
int index;
for (index = 0; index < nb_drives; index++)
if (drives_table[index].bdrv == bdrv)
return drives_table[index].onerror;
return BLOCK_ERR_STOP_ENOSPC;
}
static void bdrv_format_print(void *opaque, const char *name)
{
fprintf(stderr, " %s", name);
}
void drive_uninit(BlockDriverState *bdrv)
{
int i;
for (i = 0; i < MAX_DRIVES; i++)
if (drives_table[i].bdrv == bdrv) {
drives_table[i].bdrv = NULL;
drives_table[i].used = 0;
drive_remove(drives_table[i].drive_opt_idx);
nb_drives--;
break;
}
}
int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
{
char buf[128];
char file[1024];
char devname[128];
char serial[21];
const char *mediastr = "";
BlockInterfaceType type;
enum { MEDIA_DISK, MEDIA_CDROM } media;
int bus_id, unit_id;
int cyls, heads, secs, translation;
BlockDriverState *bdrv;
BlockDriver *drv = NULL;
QEMUMachine *machine = opaque;
int max_devs;
int index;
int cache;
int bdrv_flags, onerror;
int drives_table_idx;
char *str = arg->opt;
static const char * const params[] = { "bus", "unit", "if", "index",
"cyls", "heads", "secs", "trans",
"media", "snapshot", "file",
"cache", "format", "serial", "werror",
NULL };
if (check_params(buf, sizeof(buf), params, str) < 0) {
fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
buf, str);
return -1;
}
file[0] = 0;
cyls = heads = secs = 0;
bus_id = 0;
unit_id = -1;
translation = BIOS_ATA_TRANSLATION_AUTO;
index = -1;
cache = 3;
if (machine->use_scsi) {
type = IF_SCSI;
max_devs = MAX_SCSI_DEVS;
pstrcpy(devname, sizeof(devname), "scsi");
} else {
type = IF_IDE;
max_devs = MAX_IDE_DEVS;
pstrcpy(devname, sizeof(devname), "ide");
}
media = MEDIA_DISK;
/* extract parameters */
if (get_param_value(buf, sizeof(buf), "bus", str)) {
bus_id = strtol(buf, NULL, 0);
if (bus_id < 0) {
fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
return -1;
}
}
if (get_param_value(buf, sizeof(buf), "unit", str)) {
unit_id = strtol(buf, NULL, 0);
if (unit_id < 0) {
fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
return -1;
}
}
if (get_param_value(buf, sizeof(buf), "if", str)) {
pstrcpy(devname, sizeof(devname), buf);
if (!strcmp(buf, "ide")) {
type = IF_IDE;
max_devs = MAX_IDE_DEVS;
} else if (!strcmp(buf, "scsi")) {
type = IF_SCSI;
max_devs = MAX_SCSI_DEVS;
} else if (!strcmp(buf, "floppy")) {
type = IF_FLOPPY;
max_devs = 0;
} else if (!strcmp(buf, "pflash")) {
type = IF_PFLASH;
max_devs = 0;
} else if (!strcmp(buf, "mtd")) {
type = IF_MTD;
max_devs = 0;
} else if (!strcmp(buf, "sd")) {
type = IF_SD;
max_devs = 0;
} else if (!strcmp(buf, "virtio")) {
type = IF_VIRTIO;
max_devs = 0;
} else if (!strcmp(buf, "xen")) {
type = IF_XEN;
max_devs = 0;
} else {
fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
return -1;
}
}
if (get_param_value(buf, sizeof(buf), "index", str)) {
index = strtol(buf, NULL, 0);
if (index < 0) {
fprintf(stderr, "qemu: '%s' invalid index\n", str);
return -1;
}
}
if (get_param_value(buf, sizeof(buf), "cyls", str)) {
cyls = strtol(buf, NULL, 0);
}
if (get_param_value(buf, sizeof(buf), "heads", str)) {
heads = strtol(buf, NULL, 0);
}
if (get_param_value(buf, sizeof(buf), "secs", str)) {
secs = strtol(buf, NULL, 0);
}
if (cyls || heads || secs) {
if (cyls < 1 || cyls > 16383) {
fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
return -1;
}
if (heads < 1 || heads > 16) {
fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
return -1;
}
if (secs < 1 || secs > 63) {
fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
return -1;
}
}
if (get_param_value(buf, sizeof(buf), "trans", str)) {
if (!cyls) {
fprintf(stderr,
"qemu: '%s' trans must be used with cyls,heads and secs\n",
str);
return -1;
}
if (!strcmp(buf, "none"))
translation = BIOS_ATA_TRANSLATION_NONE;
else if (!strcmp(buf, "lba"))
translation = BIOS_ATA_TRANSLATION_LBA;
else if (!strcmp(buf, "auto"))
translation = BIOS_ATA_TRANSLATION_AUTO;
else {
fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
return -1;
}
}
if (get_param_value(buf, sizeof(buf), "media", str)) {
if (!strcmp(buf, "disk")) {
media = MEDIA_DISK;
} else if (!strcmp(buf, "cdrom")) {
if (cyls || secs || heads) {
fprintf(stderr,
"qemu: '%s' invalid physical CHS format\n", str);
return -1;
}
media = MEDIA_CDROM;
} else {
fprintf(stderr, "qemu: '%s' invalid media\n", str);
return -1;
}
}
if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
if (!strcmp(buf, "on"))
snapshot = 1;
else if (!strcmp(buf, "off"))
snapshot = 0;
else {
fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
return -1;
}
}
if (get_param_value(buf, sizeof(buf), "cache", str)) {
if (!strcmp(buf, "off") || !strcmp(buf, "none"))
cache = 0;
else if (!strcmp(buf, "writethrough"))
cache = 1;
else if (!strcmp(buf, "writeback"))
cache = 2;
else {
fprintf(stderr, "qemu: invalid cache option\n");
return -1;
}
}
if (get_param_value(buf, sizeof(buf), "format", str)) {
if (strcmp(buf, "?") == 0) {
fprintf(stderr, "qemu: Supported formats:");
bdrv_iterate_format(bdrv_format_print, NULL);
fprintf(stderr, "\n");
return -1;
}
drv = bdrv_find_format(buf);
if (!drv) {
fprintf(stderr, "qemu: '%s' invalid format\n", buf);
return -1;
}
}
if (arg->file == NULL)
get_param_value(file, sizeof(file), "file", str);
else
pstrcpy(file, sizeof(file), arg->file);
if (!get_param_value(serial, sizeof(serial), "serial", str))
memset(serial, 0, sizeof(serial));
onerror = BLOCK_ERR_STOP_ENOSPC;
if (get_param_value(buf, sizeof(serial), "werror", str)) {
if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
fprintf(stderr, "werror is no supported by this format\n");
return -1;
}
if (!strcmp(buf, "ignore"))
onerror = BLOCK_ERR_IGNORE;
else if (!strcmp(buf, "enospc"))
onerror = BLOCK_ERR_STOP_ENOSPC;
else if (!strcmp(buf, "stop"))
onerror = BLOCK_ERR_STOP_ANY;
else if (!strcmp(buf, "report"))
onerror = BLOCK_ERR_REPORT;
else {
fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
return -1;
}
}
/* compute bus and unit according index */
if (index != -1) {
if (bus_id != 0 || unit_id != -1) {
fprintf(stderr,
"qemu: '%s' index cannot be used with bus and unit\n", str);
return -1;
}
if (max_devs == 0)
{
unit_id = index;
bus_id = 0;
} else {
unit_id = index % max_devs;
bus_id = index / max_devs;
}
}
/* if user doesn't specify a unit_id,
* try to find the first free
*/
if (unit_id == -1) {
unit_id = 0;
while (drive_get_index(type, bus_id, unit_id) != -1) {
unit_id++;
if (max_devs && unit_id >= max_devs) {
unit_id -= max_devs;
bus_id++;
}
}
}
/* check unit id */
if (max_devs && unit_id >= max_devs) {
fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
str, unit_id, max_devs - 1);
return -1;
}
/*
* ignore multiple definitions
*/
if (drive_get_index(type, bus_id, unit_id) != -1)
return -2;
/* init */
if (type == IF_IDE || type == IF_SCSI)
mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
if (max_devs)
snprintf(buf, sizeof(buf), "%s%i%s%i",
devname, bus_id, mediastr, unit_id);
else
snprintf(buf, sizeof(buf), "%s%s%i",
devname, mediastr, unit_id);
bdrv = bdrv_new(buf);
drives_table_idx = drive_get_free_idx();
drives_table[drives_table_idx].bdrv = bdrv;
drives_table[drives_table_idx].type = type;
drives_table[drives_table_idx].bus = bus_id;
drives_table[drives_table_idx].unit = unit_id;
drives_table[drives_table_idx].onerror = onerror;
drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
nb_drives++;
switch(type) {
case IF_IDE:
case IF_SCSI:
case IF_XEN:
switch(media) {
case MEDIA_DISK:
if (cyls != 0) {
bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
bdrv_set_translation_hint(bdrv, translation);
}
break;
case MEDIA_CDROM:
bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
break;
}
break;
case IF_SD:
/* FIXME: This isn't really a floppy, but it's a reasonable
approximation. */
case IF_FLOPPY:
bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
break;
case IF_PFLASH:
case IF_MTD:
case IF_VIRTIO:
break;
case IF_COUNT:
case IF_NONE:
abort();
}
if (!file[0])
return -2;
bdrv_flags = 0;
if (snapshot) {
bdrv_flags |= BDRV_O_SNAPSHOT;
cache = 2; /* always use write-back with snapshot */
}
if (cache == 0) /* no caching */
bdrv_flags |= BDRV_O_NOCACHE;
else if (cache == 2) /* write-back */
bdrv_flags |= BDRV_O_CACHE_WB;
else if (cache == 3) /* not specified */
bdrv_flags |= BDRV_O_CACHE_DEF;
if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
fprintf(stderr, "qemu: could not open disk image %s\n",
file);
return -1;
}
if (bdrv_key_required(bdrv))
autostart = 0;
return drives_table_idx;
}
#endif /* MAX_DRIVES */
static void numa_add(const char *optarg)
{
char option[128];
char *endptr;
unsigned long long value, endvalue;
int nodenr;
optarg = get_opt_name(option, 128, optarg, ',') + 1;
if (!strcmp(option, "node")) {
if (get_param_value(option, 128, "nodeid", optarg) == 0) {
nodenr = nb_numa_nodes;
} else {
nodenr = strtoull(option, NULL, 10);
}
if (get_param_value(option, 128, "mem", optarg) == 0) {
node_mem[nodenr] = 0;
} else {
value = strtoull(option, &endptr, 0);
switch (*endptr) {
case 0: case 'M': case 'm':
value <<= 20;
break;
case 'G': case 'g':
value <<= 30;
break;
}
node_mem[nodenr] = value;
}
if (get_param_value(option, 128, "cpus", optarg) == 0) {
node_cpumask[nodenr] = 0;
} else {
value = strtoull(option, &endptr, 10);
if (value >= 64) {
value = 63;
fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
} else {
if (*endptr == '-') {
endvalue = strtoull(endptr+1, &endptr, 10);
if (endvalue >= 63) {
endvalue = 62;
fprintf(stderr,
"only 63 CPUs in NUMA mode supported.\n");
}
value = (1 << (endvalue + 1)) - (1 << value);
} else {
value = 1 << value;
}
}
node_cpumask[nodenr] = value;
}
nb_numa_nodes++;
}
return;
}
/***********************************************************/
/* machine registration */
static QEMUMachine *first_machine = NULL;
QEMUMachine *current_machine = NULL;
int qemu_register_machine(QEMUMachine *m)
{
QEMUMachine **pm;
pm = &first_machine;
while (*pm != NULL)
pm = &(*pm)->next;
m->next = NULL;
*pm = m;
return 0;
}
static QEMUMachine *find_machine(const char *name)
{
QEMUMachine *m;
for(m = first_machine; m != NULL; m = m->next) {
if (!strcmp(m->name, name))
return m;
}
return NULL;
}
static QEMUMachine *find_default_machine(void)
{
QEMUMachine *m;
for(m = first_machine; m != NULL; m = m->next) {
if (m->is_default) {
return m;
}
}
return NULL;
}
/***********************************************************/
/* main execution loop */
static void gui_update(void *opaque)
{
uint64_t interval = GUI_REFRESH_INTERVAL;
DisplayState *ds = opaque;
DisplayChangeListener *dcl = ds->listeners;
dpy_refresh(ds);
while (dcl != NULL) {
if (dcl->gui_timer_interval &&
dcl->gui_timer_interval < interval)
interval = dcl->gui_timer_interval;
dcl = dcl->next;
}
timer_mod(ds->gui_timer, interval + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
}
static void nographic_update(void *opaque)
{
uint64_t interval = GUI_REFRESH_INTERVAL;
timer_mod(nographic_timer, interval + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
}
struct vm_change_state_entry {
VMChangeStateHandler *cb;
void *opaque;
QLIST_ENTRY (vm_change_state_entry) entries;
};
static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
void *opaque)
{
VMChangeStateEntry *e;
e = g_malloc0(sizeof (*e));
e->cb = cb;
e->opaque = opaque;
QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
return e;
}
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
{
QLIST_REMOVE (e, entries);
g_free (e);
}
void vm_state_notify(int running, int reason)
{
VMChangeStateEntry *e;
for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
e->cb(e->opaque, running, reason);
}
}
void vm_start(void)
{
if (!vm_running) {
cpu_enable_ticks();
vm_running = 1;
vm_state_notify(1, 0);
//qemu_rearm_alarm_timer(alarm_timer);
resume_all_vcpus();
}
}
/* reset/shutdown handler */
typedef struct QEMUResetEntry {
QTAILQ_ENTRY(QEMUResetEntry) entry;
QEMUResetHandler *func;
void *opaque;
} QEMUResetEntry;
static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
QTAILQ_HEAD_INITIALIZER(reset_handlers);
static int reset_requested;
static int shutdown_requested, shutdown_signal = -1;
static pid_t shutdown_pid;
static int powerdown_requested;
int debug_requested;
static int vmstop_requested;
int qemu_shutdown_requested(void)
{
int r = shutdown_requested;
shutdown_requested = 0;
return r;
}
int qemu_reset_requested(void)
{
int r = reset_requested;
reset_requested = 0;
return r;
}
int qemu_powerdown_requested(void)
{
int r = powerdown_requested;
powerdown_requested = 0;
return r;
}
int qemu_debug_requested(void)
{
int r = debug_requested;
debug_requested = 0;
return r;
}
int qemu_vmstop_requested(void)
{
int r = vmstop_requested;
vmstop_requested = 0;
return r;
}
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
{
QEMUResetEntry *re = g_malloc0(sizeof(QEMUResetEntry));
re->func = func;
re->opaque = opaque;
QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
}
void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
{
QEMUResetEntry *re;
QTAILQ_FOREACH(re, &reset_handlers, entry) {
if (re->func == func && re->opaque == opaque) {
QTAILQ_REMOVE(&reset_handlers, re, entry);
g_free(re);
return;
}
}
}
void qemu_devices_reset(void)
{
QEMUResetEntry *re, *nre;
/* reset all devices */
QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
re->func(re->opaque);
}
}
void qemu_system_reset(void)
{
qemu_devices_reset();
}
void qemu_system_reset_request(void)
{
if (no_reboot) {
shutdown_requested = 1;
} else {
reset_requested = 1;
}
qemu_notify_event();
}
void qemu_system_killed(int signal, pid_t pid)
{
shutdown_signal = signal;
shutdown_pid = pid;
qemu_system_shutdown_request();
}
void qemu_system_shutdown_request(void)
{
shutdown_requested = 1;
qemu_notify_event();
}
void qemu_system_powerdown_request(void)
{
powerdown_requested = 1;
qemu_notify_event();
}
int vm_can_run(void)
{
if (powerdown_requested)
return 0;
if (reset_requested)
return 0;
if (shutdown_requested)
return 0;
if (debug_requested)
return 0;
return 1;
}
void version(void)
{
printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
}
void qemu_help(int exitcode)
{
version();
printf("usage: %s [options] [disk_image]\n"
"\n"
"'disk_image' is a raw hard image image for IDE hard disk 0\n"
"\n"
#define DEF(option, opt_arg, opt_enum, opt_help) \
opt_help
#define DEFHEADING(text) stringify(text) "\n"
#include "qemu-options.def"
#undef DEF
#undef DEFHEADING
#undef GEN_DOCS
"\n"
"During emulation, the following keys are useful:\n"
"ctrl-alt-f toggle full screen\n"
"ctrl-alt-n switch to virtual console 'n'\n"
"ctrl-alt toggle mouse and keyboard grab\n"
"\n"
"When using -nographic, press 'ctrl-a h' to get some help.\n"
,
"qemu",
DEFAULT_RAM_SIZE,
#ifndef _WIN32
DEFAULT_NETWORK_SCRIPT,
DEFAULT_NETWORK_DOWN_SCRIPT,
#endif
DEFAULT_GDBSTUB_PORT,
"/tmp/qemu.log");
QEMU_EXIT(exitcode);
}
#define HAS_ARG 0x0001
enum {
#define DEF(option, opt_arg, opt_enum, opt_help) \
opt_enum,
#define DEFHEADING(text)
#include "qemu-options.def"
#undef DEF
#undef DEFHEADING
#undef GEN_DOCS
};
typedef struct QEMUOption {
const char *name;
int flags;
int index;
} QEMUOption;
static const QEMUOption qemu_options[] = {
{ "h", 0, QEMU_OPTION_h },
#define DEF(option, opt_arg, opt_enum, opt_help) \
{ option, opt_arg, opt_enum },
#define DEFHEADING(text)
#include "qemu-options.def"
#undef DEF
#undef DEFHEADING
#undef GEN_DOCS
{ NULL, 0, 0 },
};
static void select_vgahw (const char *p)
{
const char *opts;
cirrus_vga_enabled = 0;
std_vga_enabled = 0;
vmsvga_enabled = 0;
xenfb_enabled = 0;
if (strstart(p, "std", &opts)) {
std_vga_enabled = 1;
} else if (strstart(p, "cirrus", &opts)) {
cirrus_vga_enabled = 1;
} else if (strstart(p, "vmware", &opts)) {
vmsvga_enabled = 1;
} else if (strstart(p, "xenfb", &opts)) {
xenfb_enabled = 1;
} else if (!strstart(p, "none", &opts)) {
invalid_vga:
PANIC("Unknown vga type: %s", p);
}
while (*opts) {
const char *nextopt;
if (strstart(opts, ",retrace=", &nextopt)) {
opts = nextopt;
if (strstart(opts, "dumb", &nextopt))
vga_retrace_method = VGA_RETRACE_DUMB;
else if (strstart(opts, "precise", &nextopt))
vga_retrace_method = VGA_RETRACE_PRECISE;
else goto invalid_vga;
} else goto invalid_vga;
opts = nextopt;
}
}
#define MAX_NET_CLIENTS 32
#ifdef _WIN32
/* Look for support files in the same directory as the executable. */
static char *find_datadir(const char *argv0)
{
char *p;
char buf[MAX_PATH];
DWORD len;
len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
if (len == 0) {
return NULL;
}
buf[len] = 0;
p = buf + len - 1;
while (p != buf && *p != '\\')
p--;
*p = 0;
if (access(buf, R_OK) == 0) {
return g_strdup(buf);
}
return NULL;
}
#else /* !_WIN32 */
/* Similarly, return the location of the executable */
static char *find_datadir(const char *argv0)
{
char *p = NULL;
char buf[PATH_MAX];
#if defined(__linux__)
{
int len;
len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
if (len > 0) {
buf[len] = 0;
p = buf;
}
}
#elif defined(__FreeBSD__)
{
int len;
len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
if (len > 0) {
buf[len] = 0;
p = buf;
}
}
#endif
/* If we don't have any way of figuring out the actual executable
location then try argv[0]. */
if (!p) {
p = realpath(argv0, buf);
if (!p) {
return NULL;
}
}
return g_strdup(dirname(buf));
}
#endif
static char*
qemu_find_file_with_subdir(const char* data_dir, const char* subdir, const char* name)
{
int len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
char* buf = g_malloc0(len);
snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
VERBOSE_PRINT(init," trying to find: %s\n", buf);
if (access(buf, R_OK)) {
g_free(buf);
return NULL;
}
return buf;
}
char *qemu_find_file(int type, const char *name)
{
const char *subdir;
char *buf;
/* If name contains path separators then try it as a straight path. */
if ((strchr(name, '/') || strchr(name, '\\'))
&& access(name, R_OK) == 0) {
return strdup(name);
}
switch (type) {
case QEMU_FILE_TYPE_BIOS:
subdir = "";
break;
case QEMU_FILE_TYPE_KEYMAP:
subdir = "keymaps/";
break;
default:
abort();
}
buf = qemu_find_file_with_subdir(data_dir, subdir, name);
#ifdef CONFIG_ANDROID
if (type == QEMU_FILE_TYPE_BIOS) {
/* This case corresponds to the emulator being used as part of an
* SDK installation. NOTE: data_dir is really $bindir. */
if (buf == NULL)
buf = qemu_find_file_with_subdir(data_dir, "lib/pc-bios/", name);
/* This case corresponds to platform builds. */
if (buf == NULL)
buf = qemu_find_file_with_subdir(data_dir, "../usr/share/pc-bios/", name);
/* Finally, try this for standalone builds under external/qemu */
if (buf == NULL)
buf = qemu_find_file_with_subdir(data_dir, "../../../prebuilts/qemu-kernel/x86/pc-bios/", name);
}
#endif
return buf;
}
static int
add_dns_server( const char* server_name )
{
SockAddress addr;
if (sock_address_init_resolve( &addr, server_name, 55, 0 ) < 0) {
fprintf(stdout,
"### WARNING: can't resolve DNS server name '%s'\n",
server_name );
return -1;
}
fprintf(stderr,
"DNS server name '%s' resolved to %s\n", server_name, sock_address_to_string(&addr) );
if ( slirp_add_dns_server( &addr ) < 0 ) {
fprintf(stderr,
"### WARNING: could not add DNS server '%s' to the network stack\n", server_name);
return -1;
}
return 0;
}
/* Parses an integer
* Pararm:
* str String containing a number to be parsed.
* result Passes the parsed integer in this argument
* returns 0 if ok, -1 if failed
*/
int
parse_int(const char *str, int *result)
{
char* r;
*result = strtol(str, &r, 0);
if (r == NULL || *r != '\0')
return -1;
return 0;
}
/* parses a null-terminated string specifying a network port (e.g., "80") or
* port range (e.g., "[6666-7000]"). In case of a single port, lport and hport
* are the same. Returns 0 on success, -1 on error. */
int parse_port_range(const char *str, unsigned short *lport,
unsigned short *hport) {
unsigned int low = 0, high = 0;
char *p, *arg = strdup(str);
if ((*arg == '[') && ((p = strrchr(arg, ']')) != NULL)) {
p = arg + 1; /* skip '[' */
low = atoi(strtok(p, "-"));
high = atoi(strtok(NULL, "-"));
if ((low > 0) && (high > 0) && (low < high) && (high < 65535)) {
*lport = low;
*hport = high;
}
}
else {
low = atoi(arg);
if ((0 < low) && (low < 65535)) {
*lport = low;
*hport = low;
}
}
free(arg);
if (low != 0)
return 0;
return -1;
}
/*
* Implements the generic port forwarding option
*/
void
net_slirp_forward(const char *optarg)
{
/*
* we expect the following format:
* dst_net:dst_mask:dst_port:redirect_ip:redirect_port OR
* dst_net:dst_mask:[dp_range_start-dp_range_end]:redirect_ip:redirect_port
*/
char *argument = strdup(optarg), *p = argument;
char *dst_net, *dst_mask, *dst_port;
char *redirect_ip, *redirect_port;
uint32_t dnet, dmask, rip;
unsigned short dlport = 0, dhport = 0, rport;
dst_net = strtok(p, ":");
dst_mask = strtok(NULL, ":");
dst_port = strtok(NULL, ":");
redirect_ip = strtok(NULL, ":");
redirect_port = strtok(NULL, ":");
if (dst_net == NULL || dst_mask == NULL || dst_port == NULL ||
redirect_ip == NULL || redirect_port == NULL) {
fprintf(stderr,
"Invalid argument for -net-forward, we expect "
"dst_net:dst_mask:dst_port:redirect_ip:redirect_port or "
"dst_net:dst_mask:[dp_range_start-dp_range_end]"
":redirect_ip:redirect_port: %s\n",
optarg);
exit(1);
}
/* inet_strtoip converts dotted address to host byte order */
if (inet_strtoip(dst_net, &dnet) == -1) {
fprintf(stderr, "Invalid destination IP net: %s\n", dst_net);
exit(1);
}
if (inet_strtoip(dst_mask, &dmask) == -1) {
fprintf(stderr, "Invalid destination IP mask: %s\n", dst_mask);
exit(1);
}
if (inet_strtoip(redirect_ip, &rip) == -1) {
fprintf(stderr, "Invalid redirect IP address: %s\n", redirect_ip);
exit(1);
}
if (parse_port_range(dst_port, &dlport, &dhport) == -1) {
fprintf(stderr, "Invalid destination port or port range\n");
exit(1);
}
rport = atoi(redirect_port);
if (!rport) {
fprintf(stderr, "Invalid redirect port: %s\n", redirect_port);
exit(1);
}
dnet &= dmask;
slirp_add_net_forward(dnet, dmask, dlport, dhport,
rip, rport);
free(argument);
}
/* Parses an -allow-tcp or -allow-udp argument and inserts a corresponding
* entry in the allows list */
void
slirp_allow(const char *optarg, u_int8_t proto)
{
/*
* we expect the following format:
* dst_ip:dst_port OR dst_ip:[dst_lport-dst_hport]
*/
char *argument = strdup(optarg), *p = argument;
char *dst_ip_str, *dst_port_str;
uint32_t dst_ip;
unsigned short dst_lport = 0, dst_hport = 0;
dst_ip_str = strtok(p, ":");
dst_port_str = strtok(NULL, ":");
if (dst_ip_str == NULL || dst_port_str == NULL) {
fprintf(stderr,
"Invalid argument %s for -allow. We expect "
"dst_ip:dst_port or dst_ip:[dst_lport-dst_hport]\n",
optarg);
exit(1);
}
if (inet_strtoip(dst_ip_str, &dst_ip) == -1) {
fprintf(stderr, "Invalid destination IP address: %s\n", dst_ip_str);
exit(1);
}
if (parse_port_range(dst_port_str, &dst_lport, &dst_hport) == -1) {
fprintf(stderr, "Invalid destination port or port range\n");
exit(1);
}
slirp_add_allow(dst_ip, dst_lport, dst_hport, proto);
free(argument);
}
/* Add a serial device at a given location in the emulated hardware table.
* On failure, this function aborts the program with an error message.
*/
static void
serial_hds_add_at(int index, const char* devname)
{
char label[32];
if (!devname || !strcmp(devname,"none"))
return;
if (index >= MAX_SERIAL_PORTS) {
PANIC("qemu: invalid serial index for %s (%d >= %d)",
devname, index, MAX_SERIAL_PORTS);
}
if (serial_hds[index] != NULL) {
PANIC("qemu: invalid serial index for %s (%d: already taken!)",
devname, index);
}
snprintf(label, sizeof(label), "serial%d", index);
serial_hds[index] = qemu_chr_open(label, devname, NULL);
if (!serial_hds[index]) {
PANIC("qemu: could not open serial device '%s'", devname);
}
}
/* Find a free slot in the emulated serial device table, and register
* it. Return the allocated table index.
*/
static int
serial_hds_add(const char* devname)
{
int index;
/* Find first free slot */
for (index = 0; index < MAX_SERIAL_PORTS; index++) {
if (serial_hds[index] == NULL) {
serial_hds_add_at(index, devname);
return index;
}
}
PANIC("qemu: too many serial devices registered (%d)", index);
return -1; /* shouldn't happen */
}
// Extract the partition type/format of a given partition image
// from the content of fstab.goldfish.
// |fstab| is the address of the fstab.goldfish data in memory.
// |fstabSize| is its size in bytes.
// |partitionName| is the name of the partition for debugging
// purposes (e.g. 'userdata').
// |partitionPath| is the partition path as it appears in the
// fstab file (e.g. '/data').
// On success, sets |*partitionType| to an appropriate value,
// on failure (i.e. |partitionPath| does not appear in the fstab
// file), leave the value untouched.
void android_extractPartitionFormat(const char* fstab,
size_t fstabSize,
const char* partitionName,
const char* partitionPath,
AndroidPartitionType* partitionType) {
char* partFormat = NULL;
if (!android_parseFstabPartitionFormat(fstab, fstabSize, partitionPath,
&partFormat)) {
VERBOSE_PRINT(init, "Could not extract format of %s partition!",
partitionName);
return;
}
VERBOSE_PRINT(init, "Found format of %s partition: '%s'",
partitionName, partFormat);
*partitionType = androidPartitionType_fromString(partFormat);
free(partFormat);
}
// List of value describing how to handle partition images in
// android_nand_add_image() below, when no initiali partition image
// file is provided.
//
// MUST_EXIST means that the partition image must exist, otherwise
// dump an error message and exit.
//
// CREATE_IF_NEEDED means that if the partition image doesn't exist, an
// empty partition file should be created on demand.
//
// MUST_WIPE means that the partition image should be wiped cleaned,
// even if it exists. This is useful to implement the -wipe-data option.
typedef enum {
ANDROID_PARTITION_OPEN_MODE_MUST_EXIST,
ANDROID_PARTITION_OPEN_MODE_CREATE_IF_NEEDED,
ANDROID_PARTITION_OPEN_MODE_MUST_WIPE,
} AndroidPartitionOpenMode;
// Add a NAND partition image to the hardware configuration.
// |part_name| is a string indicating the type of partition, i.e. "system",
// "userdata" or "cache".
// |part_type| is an enum describing the type of partition. If it is
// DISK_PARTITION_TYPE_PROBE, then try to auto-detect the type directly
// from the content of |part_file| or |part_init_file|.
// |part_size| is the partition size in bytes.
// |part_file| is the partition file path, can be NULL if |path_init_file|
// is not NULL.
// |part_init_file| is an optional path to the initialization partition file.
// |is_ext4| is true if the partition is formatted as EXT4, false for YAFFS2.
//
// The NAND partition will be backed by |path_file|, except in the following
// cases:
// - |part_file| is NULL, or its value is "<temp>", indicating that a
// new temporary image file must be used instead.
//
// - |part_file| is not NULL, but the function fails to lock the file,
// indicating it's already used by another instance. A warning should
// be printed to warn the user, and a new temporary image should be
// used.
//
// If |part_file| is not NULL and can be locked, if the partition image does
// not exit, then the file must be created as an empty partition.
//
// When a new partition image is created, what happens depends on the
// value of |is_ext4|:
//
// - If |is_ext4| is false, a simple empty file is created, since that's
// enough to create an empty YAFFS2 partition.
//
// - If |is_ext4| is true, an "empty ext4" partition image is created
// instead, which will _not_ be backed by an empty file.
//
// If |part_init_file| is not NULL, its content will be used to erase
// the content of the main partition image. This is automatically handled
// by the NAND code though.
//
void android_nand_add_image(const char* part_name,
AndroidPartitionType part_type,
AndroidPartitionOpenMode part_mode,
uint64_t part_size,
const char* part_file,
const char* part_init_file)
{
char tmp[PATH_MAX * 2 + 32];
// Sanitize parameters, an empty string must be the same as NULL.
if (part_file && !*part_file) {
part_file = NULL;
}
if (part_init_file && !*part_init_file) {
part_init_file = NULL;
}
// Sanity checks.
if (part_size == 0) {
PANIC("Invalid %s partition size 0x%" PRIx64, part_size);
}
if (part_init_file && !path_exists(part_init_file)) {
PANIC("Missing initial %s image: %s", part_name, part_init_file);
}
// As a special case, a |part_file| of '<temp>' means a temporary
// partition is needed.
if (part_file && !strcmp(part_file, "<temp>")) {
part_file = NULL;
}
// Verify partition type, or probe it if needed.
{
const char* image_file = NULL;
if (part_file && path_exists(part_file)) {
image_file = part_file;
} else if (part_init_file) {
image_file = part_init_file;
} else if (part_type == ANDROID_PARTITION_TYPE_UNKNOWN) {
PANIC("Cannot determine type of %s partition: no image files!",
part_name);
}
if (part_type == ANDROID_PARTITION_TYPE_UNKNOWN) {
VERBOSE_PRINT(init, "Probing %s image file for partition type: %s",
part_name, image_file);
part_type = androidPartitionType_probeFile(image_file);
} else {
// Probe the current image file to check that it is of the
// right partition format.
if (image_file) {
AndroidPartitionType image_type =
androidPartitionType_probeFile(image_file);
if (image_type == ANDROID_PARTITION_TYPE_UNKNOWN) {
PANIC("Cannot determine %s partition type of: %s",
part_name,
image_file);
}
if (image_type != part_type) {
PANIC("Invalid %s partition image type: %s (expected %s)",
part_name,
androidPartitionType_toString(image_type),
androidPartitionType_toString(part_type));
}
}
}
}
VERBOSE_PRINT(init, "%s partition format: %s", part_name,
androidPartitionType_toString(part_type));
snprintf(tmp, sizeof tmp, "%s,size=0x%" PRIx64, part_name, part_size);
bool need_temp_partition = true;
bool need_make_empty =
(part_mode == ANDROID_PARTITION_OPEN_MODE_MUST_WIPE);
if (part_file) {
if (filelock_create(part_file) == NULL) {
fprintf(stderr,
"WARNING: %s image already in use, changes will not persist!\n",
part_name);
} else {
need_temp_partition = false;
// If the partition image is missing, create it.
if (!path_exists(part_file)) {
if (part_mode == ANDROID_PARTITION_OPEN_MODE_MUST_EXIST) {
PANIC("Missing %s partition image: %s", part_name,
part_file);
}
if (path_empty_file(part_file) < 0) {
PANIC("Cannot create %s image file at %s: %s",
part_name,
part_file,
strerror(errno));
}
need_make_empty = true;
}
}
}
// Do we need a temporary partition image ?
if (need_temp_partition) {
TempFile* temp_file = tempfile_create();
if (temp_file == NULL) {
PANIC("Could not create temp file for %s partition image: %s\n",
part_name);
}
part_file = tempfile_path(temp_file);
VERBOSE_PRINT(init,
"Mapping '%s' partition image to %s",
part_name,
part_file);
need_make_empty = true;
}
pstrcat(tmp, sizeof tmp, ",file=");
pstrcat(tmp, sizeof tmp, part_file);
// Do we need to make the partition image empty?
// Do not do it if there is an initial file though since it will
// get copied directly by the NAND code into the image.
if (need_make_empty && !part_init_file) {
VERBOSE_PRINT(init,
"Creating empty %s partition image at: %s",
part_name,
part_file);
int ret = androidPartitionType_makeEmptyFile(part_type,
part_size,
part_file);
if (ret < 0) {
PANIC("Could not create %s image file at %s: %s",
part_name,
part_file,
strerror(-ret));
}
}
if (part_init_file) {
pstrcat(tmp, sizeof tmp, ",initfile=");
pstrcat(tmp, sizeof tmp, part_init_file);
}
if (part_type == ANDROID_PARTITION_TYPE_EXT4) {
// Using a nand device to approximate a block device until full
// support is added.
pstrcat(tmp, sizeof tmp,",pagesize=512,extrasize=0");
}
nand_add_dev(tmp);
}
int main(int argc, char **argv, char **envp)
{
const char *gdbstub_dev = NULL;
uint32_t boot_devices_bitmap = 0;
int i;
int snapshot, linux_boot, __attribute__((unused)) net_boot;
const char *icount_option = NULL;
const char *initrd_filename;
const char *kernel_filename, *kernel_cmdline;
const char *boot_devices = "";
DisplayState *ds;
DisplayChangeListener *dcl;
int cyls, heads, secs, translation;
QemuOpts *hda_opts = NULL;
QemuOpts *hdb_opts = NULL;
const char *net_clients[MAX_NET_CLIENTS];
int nb_net_clients;
int optind;
const char *r, *optarg;
CharDriverState *monitor_hd = NULL;
const char *monitor_device;
const char *serial_devices[MAX_SERIAL_PORTS];
int serial_device_index;
const char *parallel_devices[MAX_PARALLEL_PORTS];
int parallel_device_index;
const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
int virtio_console_index;
const char *loadvm = NULL;
QEMUMachine *machine;
const char *cpu_model;
int tb_size;
const char *pid_file = NULL;
const char *incoming = NULL;
const char* log_mask = NULL;
const char* log_file = NULL;
CPUState *cpu;
int show_vnc_port = 0;
IniFile* hw_ini = NULL;
STRALLOC_DEFINE(kernel_params);
STRALLOC_DEFINE(kernel_config);
int dns_count = 0;
/* Initialize sockets before anything else, so we can properly report
* initialization failures back to the UI. */
#ifdef _WIN32
socket_init();
#endif
init_clocks();
qemu_cache_utils_init();
QLIST_INIT (&vm_change_state_head);
os_setup_early_signal_handling();
module_call_init(MODULE_INIT_MACHINE);
machine = find_default_machine();
cpu_model = NULL;
initrd_filename = NULL;
ram_size = 0;
snapshot = 0;
kernel_filename = NULL;
kernel_cmdline = "";
cyls = heads = secs = 0;
translation = BIOS_ATA_TRANSLATION_AUTO;
monitor_device = "vc:80Cx24C";
serial_devices[0] = "vc:80Cx24C";
for(i = 1; i < MAX_SERIAL_PORTS; i++)
serial_devices[i] = NULL;
serial_device_index = 0;
parallel_devices[0] = "vc:80Cx24C";
for(i = 1; i < MAX_PARALLEL_PORTS; i++)
parallel_devices[i] = NULL;
parallel_device_index = 0;
for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
virtio_consoles[i] = NULL;
virtio_console_index = 0;
for (i = 0; i < MAX_NODES; i++) {
node_mem[i] = 0;
node_cpumask[i] = 0;
}
nb_net_clients = 0;
#ifdef MAX_DRIVES
nb_drives = 0;
nb_drives_opt = 0;
#endif
nb_numa_nodes = 0;
nb_nics = 0;
tb_size = 0;
autostart= 1;
register_watchdogs();
/* Initialize boot properties. */
boot_property_init_service();
android_hw_control_init();
android_net_pipes_init();
#ifdef CONFIG_KVM
/* By default, force auto-detection for kvm */
kvm_allowed = -1;
#endif
optind = 1;
for(;;) {
if (optind >= argc)
break;
r = argv[optind];
if (r[0] != '-') {
hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
} else {
const QEMUOption *popt;
optind++;
/* Treat --foo the same as -foo. */
if (r[1] == '-')
r++;
popt = qemu_options;
for(;;) {
if (!popt->name) {
PANIC("%s: invalid option -- '%s'",
argv[0], r);
}
if (!strcmp(popt->name, r + 1))
break;
popt++;
}
if (popt->flags & HAS_ARG) {
if (optind >= argc) {
PANIC("%s: option '%s' requires an argument",
argv[0], r);
}
optarg = argv[optind++];
} else {
optarg = NULL;
}
switch(popt->index) {
case QEMU_OPTION_M:
machine = find_machine(optarg);
if (!machine) {
QEMUMachine *m;
printf("Supported machines are:\n");
for(m = first_machine; m != NULL; m = m->next) {
printf("%-10s %s%s\n",
m->name, m->desc,
m->is_default ? " (default)" : "");
}
if (*optarg != '?') {
PANIC("Invalid machine parameter: %s",
optarg);
} else {
QEMU_EXIT(0);
}
}
break;
case QEMU_OPTION_cpu:
/* hw initialization will check this */
if (*optarg == '?') {
/* XXX: implement xxx_cpu_list for targets that still miss it */
#if defined(cpu_list)
cpu_list(stdout, &fprintf);
#endif
QEMU_EXIT(0);
} else {
cpu_model = optarg;
}
break;
case QEMU_OPTION_initrd:
initrd_filename = optarg;
break;
case QEMU_OPTION_hda:
if (cyls == 0)
hda_opts = drive_add(optarg, HD_ALIAS, 0);
else
hda_opts = drive_add(optarg, HD_ALIAS
",cyls=%d,heads=%d,secs=%d%s",
0, cyls, heads, secs,
translation == BIOS_ATA_TRANSLATION_LBA ?
",trans=lba" :
translation == BIOS_ATA_TRANSLATION_NONE ?
",trans=none" : "");
break;
case QEMU_OPTION_hdb:
hdb_opts = drive_add(optarg, HD_ALIAS, 1);
break;
case QEMU_OPTION_hdc:
case QEMU_OPTION_hdd:
drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
break;
case QEMU_OPTION_drive:
drive_add(NULL, "%s", optarg);
break;
case QEMU_OPTION_mtdblock:
drive_add(optarg, MTD_ALIAS);
break;
case QEMU_OPTION_sd:
drive_add(optarg, SD_ALIAS);
break;
case QEMU_OPTION_pflash:
drive_add(optarg, PFLASH_ALIAS);
break;
case QEMU_OPTION_snapshot:
snapshot = 1;
break;
case QEMU_OPTION_hdachs:
{
const char *p;
p = optarg;
cyls = strtol(p, (char **)&p, 0);
if (cyls < 1 || cyls > 16383)
goto chs_fail;
if (*p != ',')
goto chs_fail;
p++;
heads = strtol(p, (char **)&p, 0);
if (heads < 1 || heads > 16)
goto chs_fail;
if (*p != ',')
goto chs_fail;
p++;
secs = strtol(p, (char **)&p, 0);
if (secs < 1 || secs > 63)
goto chs_fail;
if (*p == ',') {
p++;
if (!strcmp(p, "none"))
translation = BIOS_ATA_TRANSLATION_NONE;
else if (!strcmp(p, "lba"))
translation = BIOS_ATA_TRANSLATION_LBA;
else if (!strcmp(p, "auto"))
translation = BIOS_ATA_TRANSLATION_AUTO;
else
goto chs_fail;
} else if (*p != '\0') {
chs_fail:
PANIC("qemu: invalid physical CHS format");
}
if (hda_opts != NULL) {
char num[16];
snprintf(num, sizeof(num), "%d", cyls);
qemu_opt_set(hda_opts, "cyls", num);
snprintf(num, sizeof(num), "%d", heads);
qemu_opt_set(hda_opts, "heads", num);
snprintf(num, sizeof(num), "%d", secs);
qemu_opt_set(hda_opts, "secs", num);
if (translation == BIOS_ATA_TRANSLATION_LBA)
qemu_opt_set(hda_opts, "trans", "lba");
if (translation == BIOS_ATA_TRANSLATION_NONE)
qemu_opt_set(hda_opts, "trans", "none");
}
}
break;
case QEMU_OPTION_numa:
if (nb_numa_nodes >= MAX_NODES) {
PANIC("qemu: too many NUMA nodes");
}
numa_add(optarg);
break;
case QEMU_OPTION_nographic:
display_type = DT_NOGRAPHIC;
break;
#ifdef CONFIG_CURSES
case QEMU_OPTION_curses:
display_type = DT_CURSES;
break;
#endif
case QEMU_OPTION_portrait:
graphic_rotate = 1;
break;
case QEMU_OPTION_kernel:
kernel_filename = optarg;
break;
case QEMU_OPTION_append:
kernel_cmdline = optarg;
break;
case QEMU_OPTION_cdrom:
drive_add(optarg, CDROM_ALIAS);
break;
case QEMU_OPTION_boot:
boot_devices = optarg;
/* We just do some generic consistency checks */
{
/* Could easily be extended to 64 devices if needed */
const char *p;
boot_devices_bitmap = 0;
for (p = boot_devices; *p != '\0'; p++) {
/* Allowed boot devices are:
* a b : floppy disk drives
* c ... f : IDE disk drives
* g ... m : machine implementation dependant drives
* n ... p : network devices
* It's up to each machine implementation to check
* if the given boot devices match the actual hardware
* implementation and firmware features.
*/
if (*p < 'a' || *p > 'q') {
PANIC("Invalid boot device '%c'", *p);
}
if (boot_devices_bitmap & (1 << (*p - 'a'))) {
PANIC(
"Boot device '%c' was given twice",*p);
}
boot_devices_bitmap |= 1 << (*p - 'a');
}
}
break;
case QEMU_OPTION_fda:
case QEMU_OPTION_fdb:
drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
break;
#ifdef TARGET_I386
case QEMU_OPTION_no_fd_bootchk:
fd_bootchk = 0;
break;
#endif
case QEMU_OPTION_net:
if (nb_net_clients >= MAX_NET_CLIENTS) {
PANIC("qemu: too many network clients");
}
net_clients[nb_net_clients] = optarg;
nb_net_clients++;
break;
#ifdef CONFIG_SLIRP
case QEMU_OPTION_tftp:
tftp_prefix = optarg;
break;
case QEMU_OPTION_bootp:
bootp_filename = optarg;
break;
case QEMU_OPTION_redir:
net_slirp_redir(NULL, optarg, NULL);
break;
#endif
#ifdef HAS_AUDIO
case QEMU_OPTION_audio_help:
AUD_help ();
QEMU_EXIT(0);
break;
case QEMU_OPTION_soundhw:
select_soundhw (optarg);
break;
#endif
case QEMU_OPTION_h:
qemu_help(0);
break;
case QEMU_OPTION_version:
version();
QEMU_EXIT(0);
break;
case QEMU_OPTION_m: {
uint64_t value;
char *ptr;
value = strtoul(optarg, &ptr, 10);
switch (*ptr) {
case 0: case 'M': case 'm':
value <<= 20;
break;
case 'G': case 'g':
value <<= 30;
break;
default:
PANIC("qemu: invalid ram size: %s", optarg);
}
/* On 32-bit hosts, QEMU is limited by virtual address space */
if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
PANIC("qemu: at most 2047 MB RAM can be simulated");
}
if (value != (uint64_t)(ram_addr_t)value) {
PANIC("qemu: ram size too large");
}
ram_size = value;
break;
}
case QEMU_OPTION_d:
log_mask = optarg;
break;
case QEMU_OPTION_s:
gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
break;
case QEMU_OPTION_gdb:
gdbstub_dev = optarg;
break;
case QEMU_OPTION_L:
data_dir = optarg;
break;
case QEMU_OPTION_bios:
bios_name = optarg;
break;
case QEMU_OPTION_singlestep:
singlestep = 1;
break;
case QEMU_OPTION_S:
autostart = 0;
break;
#ifndef _WIN32
case QEMU_OPTION_k:
keyboard_layout = optarg;
break;
#endif
case QEMU_OPTION_localtime:
rtc_utc = 0;
break;
case QEMU_OPTION_vga:
select_vgahw (optarg);
break;
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
case QEMU_OPTION_g:
{
const char *p;
int w, h, depth;
p = optarg;
w = strtol(p, (char **)&p, 10);
if (w <= 0) {
graphic_error:
PANIC("qemu: invalid resolution or depth");
}
if (*p != 'x')
goto graphic_error;
p++;
h = strtol(p, (char **)&p, 10);
if (h <= 0)
goto graphic_error;
if (*p == 'x') {
p++;
depth = strtol(p, (char **)&p, 10);
if (depth != 8 && depth != 15 && depth != 16 &&
depth != 24 && depth != 32)
goto graphic_error;
} else if (*p == '\0') {
depth = graphic_depth;
} else {
goto graphic_error;
}
graphic_width = w;
graphic_height = h;
graphic_depth = depth;
}
break;
#endif
case QEMU_OPTION_echr:
{
char *r;
term_escape_char = strtol(optarg, &r, 0);
if (r == optarg)
printf("Bad argument to echr\n");
break;
}
case QEMU_OPTION_monitor:
monitor_device = optarg;
break;
case QEMU_OPTION_serial:
if (serial_device_index >= MAX_SERIAL_PORTS) {
PANIC("qemu: too many serial ports");
}
serial_devices[serial_device_index] = optarg;
serial_device_index++;
break;
case QEMU_OPTION_watchdog:
i = select_watchdog(optarg);
if (i > 0) {
if (i == 1) {
PANIC("Invalid watchdog parameter: %s",
optarg);
} else {
QEMU_EXIT(0);
}
}
break;
case QEMU_OPTION_watchdog_action:
if (select_watchdog_action(optarg) == -1) {
PANIC("Unknown -watchdog-action parameter");
}
break;
case QEMU_OPTION_virtiocon:
if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
PANIC("qemu: too many virtio consoles");
}
virtio_consoles[virtio_console_index] = optarg;
virtio_console_index++;
break;
case QEMU_OPTION_parallel:
if (parallel_device_index >= MAX_PARALLEL_PORTS) {
PANIC("qemu: too many parallel ports");
}
parallel_devices[parallel_device_index] = optarg;
parallel_device_index++;
break;
case QEMU_OPTION_loadvm:
loadvm = optarg;
break;
case QEMU_OPTION_savevm_on_exit:
savevm_on_exit = optarg;
break;
case QEMU_OPTION_full_screen:
full_screen = 1;
break;
#ifdef CONFIG_SDL
case QEMU_OPTION_no_frame:
no_frame = 1;
break;
case QEMU_OPTION_alt_grab:
alt_grab = 1;
break;
case QEMU_OPTION_no_quit:
no_quit = 1;
break;
case QEMU_OPTION_sdl:
display_type = DT_SDL;
break;
#endif
case QEMU_OPTION_pidfile:
pid_file = optarg;
break;
#ifdef TARGET_I386
case QEMU_OPTION_win2k_hack:
win2k_install_hack = 1;
break;
case QEMU_OPTION_rtc_td_hack:
rtc_td_hack = 1;
break;
#ifndef CONFIG_ANDROID
case QEMU_OPTION_acpitable:
if(acpi_table_add(optarg) < 0) {
PANIC("Wrong acpi table provided");
}
break;
#endif
case QEMU_OPTION_smbios:
do_smbios_option(optarg);
break;
#endif
#ifdef CONFIG_KVM
case QEMU_OPTION_enable_kvm:
kvm_allowed = 1;
break;
case QEMU_OPTION_disable_kvm:
kvm_allowed = 0;
break;
#endif /* CONFIG_KVM */
case QEMU_OPTION_smp:
smp_cpus = atoi(optarg);
if (smp_cpus < 1) {
PANIC("Invalid number of CPUs");
}
break;
case QEMU_OPTION_vnc:
display_type = DT_VNC;
vnc_display = optarg;
break;
#ifdef TARGET_I386
case QEMU_OPTION_no_acpi:
acpi_enabled = 0;
break;
case QEMU_OPTION_no_hpet:
no_hpet = 1;
break;
case QEMU_OPTION_no_virtio_balloon:
no_virtio_balloon = 1;
break;
#endif
case QEMU_OPTION_no_reboot:
no_reboot = 1;
break;
case QEMU_OPTION_no_shutdown:
no_shutdown = 1;
break;
case QEMU_OPTION_show_cursor:
cursor_hide = 0;
break;
case QEMU_OPTION_uuid:
if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
PANIC("Fail to parse UUID string. Wrong format.");
}
break;
case QEMU_OPTION_option_rom:
if (nb_option_roms >= MAX_OPTION_ROMS) {
PANIC("Too many option ROMs");
}
option_rom[nb_option_roms] = optarg;
nb_option_roms++;
break;
#if defined(TARGET_ARM) || defined(TARGET_M68K)
case QEMU_OPTION_semihosting:
semihosting_enabled = 1;
break;
#endif
case QEMU_OPTION_name:
qemu_name = optarg;
break;
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
case QEMU_OPTION_prom_env:
if (nb_prom_envs >= MAX_PROM_ENVS) {
PANIC("Too many prom variables");
}
prom_envs[nb_prom_envs] = optarg;
nb_prom_envs++;
break;
#endif
#ifdef TARGET_ARM
case QEMU_OPTION_old_param:
old_param = 1;
break;
#endif
case QEMU_OPTION_clock:
configure_alarms(optarg);
break;
case QEMU_OPTION_startdate:
{
struct tm tm;
time_t rtc_start_date = 0;
if (!strcmp(optarg, "now")) {
rtc_date_offset = -1;
} else {
if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
&tm.tm_year,
&tm.tm_mon,
&tm.tm_mday,
&tm.tm_hour,
&tm.tm_min,
&tm.tm_sec) == 6) {
/* OK */
} else if (sscanf(optarg, "%d-%d-%d",
&tm.tm_year,
&tm.tm_mon,
&tm.tm_mday) == 3) {
tm.tm_hour = 0;
tm.tm_min = 0;
tm.tm_sec = 0;
} else {
goto date_fail;
}
tm.tm_year -= 1900;
tm.tm_mon--;
rtc_start_date = mktimegm(&tm);
if (rtc_start_date == -1) {
date_fail:
PANIC("Invalid date format. Valid format are:\n"
"'now' or '2006-06-17T16:01:21' or '2006-06-17'");
}
rtc_date_offset = time(NULL) - rtc_start_date;
}
}
break;
/* -------------------------------------------------------*/
/* User mode network stack restrictions */
case QEMU_OPTION_drop_udp:
slirp_drop_udp();
break;
case QEMU_OPTION_drop_tcp:
slirp_drop_tcp();
break;
case QEMU_OPTION_allow_tcp:
slirp_allow(optarg, IPPROTO_TCP);
break;
case QEMU_OPTION_allow_udp:
slirp_allow(optarg, IPPROTO_UDP);
break;
case QEMU_OPTION_drop_log:
{
FILE* drop_log_fd;
drop_log_filename = optarg;
drop_log_fd = fopen(optarg, "w+");
if (!drop_log_fd) {
fprintf(stderr, "Cannot open drop log: %s\n", optarg);
exit(1);
}
slirp_drop_log_fd(drop_log_fd);
}
break;
case QEMU_OPTION_dns_log:
{
FILE* dns_log_fd;
dns_log_filename = optarg;
dns_log_fd = fopen(optarg, "wb+");
if (dns_log_fd == NULL) {
fprintf(stderr, "Cannot open dns log: %s\n", optarg);
exit(1);
}
slirp_dns_log_fd(dns_log_fd);
}
break;
case QEMU_OPTION_max_dns_conns:
{
int max_dns_conns = 0;
if (parse_int(optarg, &max_dns_conns)) {
fprintf(stderr,
"qemu: syntax: -max-dns-conns max_connections\n");
exit(1);
}
if (max_dns_conns <= 0 || max_dns_conns == LONG_MAX) {
fprintf(stderr,
"Invalid arg for max dns connections: %s\n",
optarg);
exit(1);
}
slirp_set_max_dns_conns(max_dns_conns);
}
break;
case QEMU_OPTION_net_forward:
net_slirp_forward(optarg);
break;
case QEMU_OPTION_net_forward_tcp2sink:
{
SockAddress saddr;
if (parse_host_port(&saddr, optarg)) {
fprintf(stderr,
"Invalid ip/port %s for "
"-forward-dropped-tcp2sink. "
"We expect 'sink_ip:sink_port'\n",
optarg);
exit(1);
}
slirp_forward_dropped_tcp2sink(saddr.u.inet.address,
saddr.u.inet.port);
}
break;
/* -------------------------------------------------------*/
case QEMU_OPTION_tb_size:
tb_size = strtol(optarg, NULL, 0);
if (tb_size < 0)
tb_size = 0;
break;
case QEMU_OPTION_icount:
icount_option = optarg;
break;
case QEMU_OPTION_incoming:
incoming = optarg;
break;
#ifdef CONFIG_XEN
case QEMU_OPTION_xen_domid:
xen_domid = atoi(optarg);
break;
case QEMU_OPTION_xen_create:
xen_mode = XEN_CREATE;
break;
case QEMU_OPTION_xen_attach:
xen_mode = XEN_ATTACH;
break;
#endif
case QEMU_OPTION_mic:
audio_input_source = (char*)optarg;
break;
#ifdef CONFIG_NAND
case QEMU_OPTION_nand:
nand_add_dev(optarg);
break;
#endif
#ifdef CONFIG_HAX
case QEMU_OPTION_enable_hax:
hax_disabled = 0;
break;
case QEMU_OPTION_disable_hax:
hax_disabled = 1;
break;
#endif
case QEMU_OPTION_android_ports:
android_op_ports = (char*)optarg;
break;
case QEMU_OPTION_android_port:
android_op_port = (char*)optarg;
break;
case QEMU_OPTION_android_report_console:
android_op_report_console = (char*)optarg;
break;
case QEMU_OPTION_http_proxy:
op_http_proxy = (char*)optarg;
break;
case QEMU_OPTION_charmap:
op_charmap_file = (char*)optarg;
break;
case QEMU_OPTION_android_hw:
android_op_hwini = (char*)optarg;
break;
case QEMU_OPTION_dns_server:
android_op_dns_server = (char*)optarg;
break;
case QEMU_OPTION_radio:
android_op_radio = (char*)optarg;
break;
case QEMU_OPTION_gps:
android_op_gps = (char*)optarg;
break;
case QEMU_OPTION_audio:
android_op_audio = (char*)optarg;
break;
case QEMU_OPTION_cpu_delay:
android_op_cpu_delay = (char*)optarg;
break;
case QEMU_OPTION_show_kernel:
android_kmsg_init(ANDROID_KMSG_PRINT_MESSAGES);
break;
#ifdef CONFIG_NAND_LIMITS
case QEMU_OPTION_nand_limits:
android_op_nand_limits = (char*)optarg;
break;
#endif // CONFIG_NAND_LIMITS
case QEMU_OPTION_netspeed:
android_op_netspeed = (char*)optarg;
break;
case QEMU_OPTION_netdelay:
android_op_netdelay = (char*)optarg;
break;
case QEMU_OPTION_netfast:
android_op_netfast = 1;
break;
case QEMU_OPTION_tcpdump:
android_op_tcpdump = (char*)optarg;
break;
case QEMU_OPTION_boot_property:
boot_property_parse_option((char*)optarg);
break;
case QEMU_OPTION_lcd_density:
android_op_lcd_density = (char*)optarg;
break;
case QEMU_OPTION_ui_port:
android_op_ui_port = (char*)optarg;
break;
case QEMU_OPTION_ui_settings:
android_op_ui_settings = (char*)optarg;
break;
case QEMU_OPTION_audio_test_out:
android_audio_test_start_out();
break;
case QEMU_OPTION_android_avdname:
android_op_avd_name = (char*)optarg;
break;
case QEMU_OPTION_timezone:
if (timezone_set((char*)optarg)) {
fprintf(stderr, "emulator: it seems the timezone '%s' is not in zoneinfo format\n",
(char*)optarg);
}
break;
case QEMU_OPTION_snapshot_no_time_update:
android_snapshot_update_time = 0;
break;
case QEMU_OPTION_list_webcam:
android_list_web_cameras();
exit(0);
default:
os_parse_cmd_args(popt->index, optarg);
}
}
}
/* Initialize character map. */
if (android_charmap_setup(op_charmap_file)) {
if (op_charmap_file) {
PANIC(
"Unable to initialize character map from file %s.",
op_charmap_file);
} else {
PANIC(
"Unable to initialize default character map.");
}
}
/* If no data_dir is specified then try to find it relative to the
executable path. */
if (!data_dir) {
data_dir = find_datadir(argv[0]);
}
/* If all else fails use the install patch specified when building. */
if (!data_dir) {
data_dir = CONFIG_QEMU_SHAREDIR;
}
if (!android_op_hwini) {
PANIC("Missing -android-hw <file> option!");
}
hw_ini = iniFile_newFromFile(android_op_hwini);
if (hw_ini == NULL) {
PANIC("Could not find %s file.", android_op_hwini);
}
androidHwConfig_init(android_hw, 0);
androidHwConfig_read(android_hw, hw_ini);
/* If we're loading VM from a snapshot, make sure that the current HW config
* matches the one with which the VM has been saved. */
if (loadvm && *loadvm && !snaphost_match_configs(hw_ini, loadvm)) {
exit(0);
}
iniFile_free(hw_ini);
const char* kernelSerialDevicePrefix =
androidHwConfig_getKernelSerialPrefix(android_hw);
VERBOSE_PRINT(init, "Using kernel serial device prefix: %s",
kernelSerialDevicePrefix);
{
int width = android_hw->hw_lcd_width;
int height = android_hw->hw_lcd_height;
int depth = android_hw->hw_lcd_depth;
/* A bit of sanity checking */
if (width <= 0 || height <= 0 ||
(depth != 16 && depth != 32) ||
(((width|height) & 3) != 0) )
{
PANIC("Invalid display configuration (%d,%d,%d)",
width, height, depth);
}
android_display_width = width;
android_display_height = height;
android_display_bpp = depth;
}
#ifdef CONFIG_NAND_LIMITS
/* Init nand stuff. */
if (android_op_nand_limits) {
parse_nand_limits(android_op_nand_limits);
}
#endif // CONFIG_NAND_LIMITS
/* Initialize AVD name from hardware configuration if needed */
if (!android_op_avd_name) {
if (android_hw->avd_name && *android_hw->avd_name) {
android_op_avd_name = android_hw->avd_name;
VERBOSE_PRINT(init,"AVD Name: %s", android_op_avd_name);
}
}
// Determine format of all partition images, if possible.
// Note that _UNKNOWN means the file, if it exists, will be probed.
AndroidPartitionType system_partition_type =
ANDROID_PARTITION_TYPE_UNKNOWN;
AndroidPartitionType userdata_partition_type =
ANDROID_PARTITION_TYPE_UNKNOWN;
AndroidPartitionType cache_partition_type =
ANDROID_PARTITION_TYPE_UNKNOWN;
{
// Starting with Android 4.4.x, the ramdisk.img contains
// an fstab.goldfish file that lists the format of each partition.
// If the file exists, parse it to get the appropriate values.
char* fstab = NULL;
size_t fstabSize = 0;
if (android_extractRamdiskFile(android_hw->disk_ramdisk_path,
"fstab.goldfish",
&fstab,
&fstabSize)) {
VERBOSE_PRINT(init, "Ramdisk image contains fstab.goldfish file");
android_extractPartitionFormat(fstab,
fstabSize,
"system",
"/system",
&system_partition_type);
android_extractPartitionFormat(fstab,
fstabSize,
"userdata",
"/data",
&userdata_partition_type);
android_extractPartitionFormat(fstab,
fstabSize,
"cache",
"/cache",
&cache_partition_type);
free(fstab);
} else {
VERBOSE_PRINT(init, "No fstab.goldfish file in ramdisk image");
}
}
/* Initialize system partition image */
android_nand_add_image("system",
system_partition_type,
ANDROID_PARTITION_OPEN_MODE_MUST_EXIST,
android_hw->disk_systemPartition_size,
android_hw->disk_systemPartition_path,
android_hw->disk_systemPartition_initPath);
/* Initialize data partition image */
android_nand_add_image("userdata",
userdata_partition_type,
ANDROID_PARTITION_OPEN_MODE_CREATE_IF_NEEDED,
android_hw->disk_dataPartition_size,
android_hw->disk_dataPartition_path,
android_hw->disk_dataPartition_initPath);
/* Initialize cache partition image, if any. Its type depends on the
* kernel version. For anything >= 3.10, it must be EXT4, or
* YAFFS2 otherwise.
*/
if (android_hw->disk_cachePartition != 0) {
if (cache_partition_type == ANDROID_PARTITION_TYPE_UNKNOWN) {
cache_partition_type =
(androidHwConfig_getKernelYaffs2Support(android_hw) >= 1) ?
ANDROID_PARTITION_TYPE_YAFFS2 :
ANDROID_PARTITION_TYPE_EXT4;
}
AndroidPartitionOpenMode cache_partition_mode =
(android_op_wipe_data ?
ANDROID_PARTITION_OPEN_MODE_MUST_WIPE :
ANDROID_PARTITION_OPEN_MODE_CREATE_IF_NEEDED);
android_nand_add_image("cache",
cache_partition_type,
cache_partition_mode,
android_hw->disk_cachePartition_size,
android_hw->disk_cachePartition_path,
NULL);
}
/* Init SD-Card stuff. For Android, it is always hda */
/* If the -hda option was used, ignore the Android-provided one */
if (hda_opts == NULL) {
const char* sdPath = android_hw->hw_sdCard_path;
if (sdPath && *sdPath) {
if (!path_exists(sdPath)) {
fprintf(stderr, "WARNING: SD Card image is missing: %s\n", sdPath);
} else if (filelock_create(sdPath) == NULL) {
fprintf(stderr, "WARNING: SD Card image already in use: %s\n", sdPath);
} else {
/* Successful locking */
hda_opts = drive_add(sdPath, HD_ALIAS, 0);
/* Set this property of any operation involving the SD Card
* will be x100 slower, due to the corresponding file being
* mounted as O_DIRECT. Note that this is only 'unsafe' in
* the context of an emulator crash. The data is already
* synced properly when the emulator exits (either normally or through ^C).
*/
qemu_opt_set(hda_opts, "cache", "unsafe");
}
}
}
if (hdb_opts == NULL) {
const char* spath = android_hw->disk_snapStorage_path;
if (spath && *spath) {
if (!path_exists(spath)) {
PANIC("Snapshot storage file does not exist: %s", spath);
}
if (filelock_create(spath) == NULL) {
PANIC("Snapshot storage already in use: %s", spath);
}
hdb_opts = drive_add(spath, HD_ALIAS, 1);
/* See comment above to understand why this is needed. */
qemu_opt_set(hdb_opts, "cache", "unsafe");
}
}
/* Set the VM's max heap size, passed as a boot property */
if (android_hw->vm_heapSize > 0) {
char tmp[64];
snprintf(tmp, sizeof(tmp), "%dm", android_hw->vm_heapSize);
boot_property_add("dalvik.vm.heapsize",tmp);
}
/* From API 19 and above, the platform provides an explicit property for low memory devices. */
if (android_hw->hw_ramSize <= 512) {
boot_property_add("ro.config.low_ram", "true");
}
/* Initialize net speed and delays stuff. */
if (android_parse_network_speed(android_op_netspeed) < 0 ) {
PANIC("invalid -netspeed parameter '%s'",
android_op_netspeed);
}
if ( android_parse_network_latency(android_op_netdelay) < 0 ) {
PANIC("invalid -netdelay parameter '%s'",
android_op_netdelay);
}
if (android_op_netfast) {
qemu_net_download_speed = 0;
qemu_net_upload_speed = 0;
qemu_net_min_latency = 0;
qemu_net_max_latency = 0;
}
/* Initialize LCD density */
if (android_hw->hw_lcd_density) {
long density = android_hw->hw_lcd_density;
if (density <= 0) {
PANIC("Invalid hw.lcd.density value: %ld", density);
}
hwLcd_setBootProperty(density);
}
/* Initialize presence of hardware nav button */
boot_property_add("qemu.hw.mainkeys", android_hw->hw_mainKeys ? "1" : "0");
/* Initialize TCP dump */
if (android_op_tcpdump) {
if (qemu_tcpdump_start(android_op_tcpdump) < 0) {
fprintf(stdout, "could not start packet capture: %s\n", strerror(errno));
}
}
/* Initialize modem */
if (android_op_radio) {
CharDriverState* cs = qemu_chr_open("radio", android_op_radio, NULL);
if (cs == NULL) {
PANIC("unsupported character device specification: %s\n"
"used -help-char-devices for list of available formats",
android_op_radio);
}
android_qemud_set_channel( ANDROID_QEMUD_GSM, cs);
} else if (android_hw->hw_gsmModem != 0 ) {
if ( android_qemud_get_channel( ANDROID_QEMUD_GSM, &android_modem_cs ) < 0 ) {
PANIC("could not initialize qemud 'gsm' channel");
}
}
/* Initialize GPS */
if (android_op_gps) {
CharDriverState* cs = qemu_chr_open("gps", android_op_gps, NULL);
if (cs == NULL) {
PANIC("unsupported character device specification: %s\n"
"used -help-char-devices for list of available formats",
android_op_gps);
}
android_qemud_set_channel( ANDROID_QEMUD_GPS, cs);
} else if (android_hw->hw_gps != 0) {
if ( android_qemud_get_channel( "gps", &android_gps_cs ) < 0 ) {
PANIC("could not initialize qemud 'gps' channel");
}
}
/* Initialize audio. */
if (android_op_audio) {
if ( !audio_check_backend_name( 0, android_op_audio ) ) {
PANIC("'%s' is not a valid audio output backend. see -help-audio-out",
android_op_audio);
}
setenv("QEMU_AUDIO_DRV", android_op_audio, 1);
}
/* Initialize OpenGLES emulation */
//android_hw_opengles_init();
/* Initialize fake camera */
if (strcmp(android_hw->hw_camera_back, "emulated") &&
strcmp(android_hw->hw_camera_front, "emulated")) {
/* Fake camera is not used for camera emulation. */
boot_property_add("qemu.sf.fake_camera", "none");
} else {
/* Fake camera is used for at least one camera emulation. */
if (!strcmp(android_hw->hw_camera_back, "emulated") &&
!strcmp(android_hw->hw_camera_front, "emulated")) {
/* Fake camera is used for both, front and back camera emulation. */
boot_property_add("qemu.sf.fake_camera", "both");
} else if (!strcmp(android_hw->hw_camera_back, "emulated")) {
boot_property_add("qemu.sf.fake_camera", "back");
} else {
boot_property_add("qemu.sf.fake_camera", "front");
}
}
/* Set LCD density (if required by -qemu, and AVD is missing it. */
if (android_op_lcd_density && !android_hw->hw_lcd_density) {
int density;
if (parse_int(android_op_lcd_density, &density) || density <= 0) {
PANIC("-lcd-density : %d", density);
}
hwLcd_setBootProperty(density);
}
/* Initialize camera emulation. */
android_camera_service_init();
if (android_op_cpu_delay) {
char* end;
long delay = strtol(android_op_cpu_delay, &end, 0);
if (end == NULL || *end || delay < 0 || delay > 1000 ) {
PANIC("option -cpu-delay must be an integer between 0 and 1000" );
}
if (delay > 0)
delay = (1000-delay);
qemu_cpu_delay = (int) delay;
}
if (android_op_dns_server) {
char* x = strchr(android_op_dns_server, ',');
dns_count = 0;
if (x == NULL)
{
if ( add_dns_server( android_op_dns_server ) == 0 )
dns_count = 1;
}
else
{
x = android_op_dns_server;
while (*x) {
char* y = strchr(x, ',');
if (y != NULL) {
*y = 0;
y++;
} else {
y = x + strlen(x);
}
if (y > x && add_dns_server( x ) == 0) {
dns_count += 1;
}
x = y;
}
}
if (dns_count == 0)
fprintf( stdout, "### WARNING: will use system default DNS server\n" );
}
if (dns_count == 0)
dns_count = slirp_get_system_dns_servers();
if (dns_count) {
stralloc_add_format(kernel_config, " ndns=%d", dns_count);
}
/* qemu.gles will be read by the OpenGL ES emulation libraries.
* If set to 0, the software GL ES renderer will be used as a fallback.
* If the parameter is undefined, this means the system image runs
* inside an emulator that doesn't support GPU emulation at all.
*
* We always start the GL ES renderer so we can gather stats on the
* underlying GL implementation. If GL ES acceleration is disabled,
* we just shut it down again once we have the strings. */
{
int qemu_gles = 0;
if (android_initOpenglesEmulation() == 0 &&
android_startOpenglesRenderer(android_hw->hw_lcd_width, android_hw->hw_lcd_height) == 0)
{
android_getOpenglesHardwareStrings(
android_gl_vendor, sizeof(android_gl_vendor),
android_gl_renderer, sizeof(android_gl_renderer),
android_gl_version, sizeof(android_gl_version));
if (android_hw->hw_gpu_enabled) {
qemu_gles = 1;
} else {
android_stopOpenglesRenderer();
qemu_gles = 0;
}
} else {
dwarning("Could not initialize OpenglES emulation, using software renderer.");
}
if (qemu_gles) {
stralloc_add_str(kernel_params, " qemu.gles=1");
} else {
stralloc_add_str(kernel_params, " qemu.gles=0");
}
}
/* We always force qemu=1 when running inside QEMU */
stralloc_add_str(kernel_params, " qemu=1");
/* We always initialize the first serial port for the android-kmsg
* character device (used to send kernel messages) */
serial_hds_add_at(0, "android-kmsg");
stralloc_add_format(kernel_params,
" console=%s0",
kernelSerialDevicePrefix);
/* We always initialize the second serial port for the android-qemud
* character device as well */
serial_hds_add_at(1, "android-qemud");
stralloc_add_format(kernel_params,
" android.qemud=%s1",
kernelSerialDevicePrefix);
if (pid_file && qemu_create_pidfile(pid_file) != 0) {
os_pidfile_error();
exit(1);
}
/* Open the logfile at this point, if necessary. We can't open the logfile
* when encountering either of the logging options (-d or -D) because the
* other one may be encountered later on the command line, changing the
* location or level of logging.
*/
if (log_mask) {
int mask;
if (log_file) {
qemu_set_log_filename(log_file);
}
mask = qemu_str_to_log_mask(log_mask);
if (!mask) {
qemu_print_log_usage(stdout);
exit(1);
}
qemu_set_log(mask);
}
#if defined(CONFIG_KVM)
if (kvm_allowed < 0) {
kvm_allowed = kvm_check_allowed();
}
#endif
machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
if (smp_cpus > machine->max_cpus) {
PANIC("Number of SMP cpus requested (%d), exceeds max cpus "
"supported by machine `%s' (%d)", smp_cpus, machine->name,
machine->max_cpus);
}
if (display_type == DT_NOGRAPHIC) {
if (serial_device_index == 0)
serial_devices[0] = "stdio";
if (parallel_device_index == 0)
parallel_devices[0] = "null";
if (strncmp(monitor_device, "vc", 2) == 0)
monitor_device = "stdio";
}
if (qemu_init_main_loop()) {
PANIC("qemu_init_main_loop failed");
}
if (kernel_filename == NULL) {
kernel_filename = android_hw->kernel_path;
}
if (initrd_filename == NULL) {
initrd_filename = android_hw->disk_ramdisk_path;
}
linux_boot = (kernel_filename != NULL);
net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
if (!linux_boot && *kernel_cmdline != '\0') {
PANIC("-append only allowed with -kernel option");
}
if (!linux_boot && initrd_filename != NULL) {
PANIC("-initrd only allowed with -kernel option");
}
/* boot to floppy or the default cd if no hard disk defined yet */
if (!boot_devices[0]) {
boot_devices = "cad";
}
os_set_line_buffering();
if (init_timer_alarm() < 0) {
PANIC("could not initialize alarm timer");
}
configure_icount(icount_option);
/* init network clients */
if (nb_net_clients == 0) {
/* if no clients, we use a default config */
net_clients[nb_net_clients++] = "nic";
#ifdef CONFIG_SLIRP
net_clients[nb_net_clients++] = "user";
#endif
}
for(i = 0;i < nb_net_clients; i++) {
if (net_client_parse(net_clients[i]) < 0) {
PANIC("Unable to parse net clients");
}
}
net_client_check();
#ifdef TARGET_I386
/* XXX: this should be moved in the PC machine instantiation code */
if (net_boot != 0) {
int netroms = 0;
for (i = 0; i < nb_nics && i < 4; i++) {
const char *model = nd_table[i].model;
char buf[1024];
char *filename;
if (net_boot & (1 << i)) {
if (model == NULL)
model = "ne2k_pci";
snprintf(buf, sizeof(buf), "pxe-%s.bin", model);
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf);
if (filename && get_image_size(filename) > 0) {
if (nb_option_roms >= MAX_OPTION_ROMS) {
PANIC("Too many option ROMs");
}
option_rom[nb_option_roms] = g_strdup(buf);
nb_option_roms++;
netroms++;
}
if (filename) {
g_free(filename);
}
}
}
if (netroms == 0) {
PANIC("No valid PXE rom found for network device");
}
}
#endif
/* init the memory */
if (ram_size == 0) {
ram_size = android_hw->hw_ramSize * 1024LL * 1024;
if (ram_size == 0) {
ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
}
}
/* Quite often (especially on older XP machines) attempts to allocate large
* VM RAM is going to fail, and crash the emulator. Since it's failing deep
* inside QEMU, it's not really possible to provide the user with a
* meaningful explanation for the crash. So, lets see if QEMU is going to be
* able to allocate requested amount of RAM, and if not, lets try to come up
* with a recomendation. */
{
ram_addr_t r_ram = ram_size;
void* alloc_check = malloc(r_ram);
while (alloc_check == NULL && r_ram > 1024 * 1024) {
/* Make it 25% less */
r_ram -= r_ram / 4;
alloc_check = malloc(r_ram);
}
if (alloc_check != NULL) {
free(alloc_check);
}
if (r_ram != ram_size) {
/* Requested RAM is too large. Report this, as well as calculated
* recomendation. */
dwarning("Requested RAM size of %dMB is too large for your environment, and is reduced to %dMB.",
(int)(ram_size / 1024 / 1024), (int)(r_ram / 1024 / 1024));
ram_size = r_ram;
}
}
#ifndef _WIN32
qemu_log_rotation_init();
#endif
/* init the dynamic translator */
cpu_exec_init_all(tb_size * 1024 * 1024);
bdrv_init();
/* we always create the cdrom drive, even if no disk is there */
#if 0
if (nb_drives_opt < MAX_DRIVES)
drive_add(NULL, CDROM_ALIAS);
/* we always create at least one floppy */
if (nb_drives_opt < MAX_DRIVES)
drive_add(NULL, FD_ALIAS, 0);
/* we always create one sd slot, even if no card is in it */
if (1) {
drive_add(NULL, SD_ALIAS);
}
#endif
/* open the virtual block devices */
if (snapshot)
qemu_opts_foreach(qemu_find_opts("drive"), drive_enable_snapshot, NULL, 0);
if (qemu_opts_foreach(qemu_find_opts("drive"), drive_init_func, &machine->use_scsi, 1) != 0)
exit(1);
//register_savevm(NULL, "timer", 0, 2, timer_save, timer_load, &timers_state);
SaveVMHandlers* ops = g_malloc0(sizeof(*ops));
ops->save_live_state = ram_save_live;
ops->load_state = ram_load;
register_savevm_live(NULL,
"ram",
0,
3,
ops,
NULL);
/* must be after terminal init, SDL library changes signal handlers */
os_setup_signal_handling();
/* Maintain compatibility with multiple stdio monitors */
if (!strcmp(monitor_device,"stdio")) {
for (i = 0; i < MAX_SERIAL_PORTS; i++) {
const char *devname = serial_devices[i];
if (devname && !strcmp(devname,"mon:stdio")) {
monitor_device = NULL;
break;
} else if (devname && !strcmp(devname,"stdio")) {
monitor_device = NULL;
serial_devices[i] = "mon:stdio";
break;
}
}
}
if (nb_numa_nodes > 0) {
int i;
if (nb_numa_nodes > smp_cpus) {
nb_numa_nodes = smp_cpus;
}
/* If no memory size if given for any node, assume the default case
* and distribute the available memory equally across all nodes
*/
for (i = 0; i < nb_numa_nodes; i++) {
if (node_mem[i] != 0)
break;
}
if (i == nb_numa_nodes) {
uint64_t usedmem = 0;
/* On Linux, the each node's border has to be 8MB aligned,
* the final node gets the rest.
*/
for (i = 0; i < nb_numa_nodes - 1; i++) {
node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
usedmem += node_mem[i];
}
node_mem[i] = ram_size - usedmem;
}
for (i = 0; i < nb_numa_nodes; i++) {
if (node_cpumask[i] != 0)
break;
}
/* assigning the VCPUs round-robin is easier to implement, guest OSes
* must cope with this anyway, because there are BIOSes out there in
* real machines which also use this scheme.
*/
if (i == nb_numa_nodes) {
for (i = 0; i < smp_cpus; i++) {
node_cpumask[i % nb_numa_nodes] |= 1 << i;
}
}
}
if (kvm_enabled()) {
int ret;
ret = kvm_init(smp_cpus);
if (ret < 0) {
PANIC("failed to initialize KVM");
}
}
#ifdef CONFIG_HAX
if (!hax_disabled)
{
int ret;
hax_set_ramsize(ram_size);
ret = hax_init(smp_cpus);
fprintf(stderr, "HAX is %s and emulator runs in %s mode\n",
!ret ? "working" :"not working", !ret ? "fast virt" : "emulation");
}
#endif
if (monitor_device) {
monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
if (!monitor_hd) {
PANIC("qemu: could not open monitor device '%s'",
monitor_device);
}
}
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
serial_hds_add(serial_devices[i]);
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
const char *devname = parallel_devices[i];
if (devname && strcmp(devname, "none")) {
char label[32];
snprintf(label, sizeof(label), "parallel%d", i);
parallel_hds[i] = qemu_chr_open(label, devname, NULL);
if (!parallel_hds[i]) {
PANIC("qemu: could not open parallel device '%s'",
devname);
}
}
}
for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
const char *devname = virtio_consoles[i];
if (devname && strcmp(devname, "none")) {
char label[32];
snprintf(label, sizeof(label), "virtcon%d", i);
virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
if (!virtcon_hds[i]) {
PANIC("qemu: could not open virtio console '%s'",
devname);
}
}
}
module_call_init(MODULE_INIT_DEVICE);
/* Check the CPU Architecture value */
{
static const char* kSupportedArchs[] = {
#if defined(TARGET_ARM)
"arm",
#endif
#if defined(TARGET_I386)
"x86",
#endif
#if defined(TARGET_X86_64)
"x86_64",
#endif
#if defined(TARGET_MIPS)
"mips",
#endif
};
const size_t kNumSupportedArchs =
sizeof(kSupportedArchs) / sizeof(kSupportedArchs[0]);
bool supported_arch = false;
size_t n;
for (n = 0; n < kNumSupportedArchs; ++n) {
if (!strcmp(android_hw->hw_cpu_arch, kSupportedArchs[n])) {
supported_arch = true;
break;
}
}
if (!supported_arch) {
fprintf(stderr, "-- Invalid CPU architecture: %s, valid values:",
android_hw->hw_cpu_arch);
for (n = 0; n < kNumSupportedArchs; ++n) {
fprintf(stderr, " %s", kSupportedArchs[n]);
}
fprintf(stderr, "\n");
exit(1);
}
}
/* Grab CPU model if provided in hardware.ini */
if ( !cpu_model
&& android_hw->hw_cpu_model
&& android_hw->hw_cpu_model[0] != '\0')
{
cpu_model = android_hw->hw_cpu_model;
}
/* Combine kernel command line passed from the UI with parameters
* collected during initialization.
*
* The order is the following:
* - parameters from the hw configuration (kernel.parameters)
* - additionnal parameters from options (e.g. -memcheck)
* - the -append parameters.
*/
{
const char* kernel_parameters;
if (android_hw->kernel_parameters) {
stralloc_add_c(kernel_params, ' ');
stralloc_add_str(kernel_params, android_hw->kernel_parameters);
}
/* If not empty, kernel_config always contains a leading space */
stralloc_append(kernel_params, kernel_config);
if (*kernel_cmdline) {
stralloc_add_c(kernel_params, ' ');
stralloc_add_str(kernel_params, kernel_cmdline);
}
/* Remove any leading/trailing spaces */
stralloc_strip(kernel_params);
kernel_parameters = stralloc_cstr(kernel_params);
VERBOSE_PRINT(init, "Kernel parameters: %s", kernel_parameters);
machine->init(ram_size,
boot_devices,
kernel_filename,
kernel_parameters,
initrd_filename,
cpu_model);
/* Initialize multi-touch emulation. */
if (androidHwConfig_isScreenMultiTouch(android_hw)) {
mts_port_create(NULL);
}
stralloc_reset(kernel_params);
stralloc_reset(kernel_config);
}
CPU_FOREACH(cpu) {
for (i = 0; i < nb_numa_nodes; i++) {
if (node_cpumask[i] & (1 << cpu->cpu_index)) {
cpu->numa_node = i;
}
}
}
current_machine = machine;
/* Set KVM's vcpu state to qemu's initial CPUOldState. */
if (kvm_enabled()) {
int ret;
ret = kvm_sync_vcpus();
if (ret < 0) {
PANIC("failed to initialize vcpus");
}
}
#ifdef CONFIG_HAX
if (hax_enabled())
hax_sync_vcpus();
#endif
/* just use the first displaystate for the moment */
ds = get_displaystate();
/* Initialize display from the command line parameters. */
android_display_reset(ds,
android_display_width,
android_display_height,
android_display_bpp);
if (display_type == DT_DEFAULT) {
#if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
display_type = DT_SDL;
#else
display_type = DT_VNC;
vnc_display = "localhost:0,to=99";
show_vnc_port = 1;
#endif
}
switch (display_type) {
case DT_NOGRAPHIC:
break;
#if defined(CONFIG_CURSES)
case DT_CURSES:
curses_display_init(ds, full_screen);
break;
#endif
#if defined(CONFIG_SDL) && !defined(CONFIG_STANDALONE_CORE)
case DT_SDL:
sdl_display_init(ds, full_screen, no_frame);
break;
#elif defined(CONFIG_COCOA)
case DT_SDL:
cocoa_display_init(ds, full_screen);
break;
#elif defined(CONFIG_STANDALONE_CORE)
case DT_SDL:
coredisplay_init(ds);
break;
#endif
case DT_VNC:
vnc_display_init(ds);
if (vnc_display_open(ds, vnc_display) < 0) {
PANIC("Unable to initialize VNC display");
}
if (show_vnc_port) {
printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
}
break;
default:
break;
}
dpy_resize(ds);
dcl = ds->listeners;
while (dcl != NULL) {
if (dcl->dpy_refresh != NULL) {
ds->gui_timer = timer_new(QEMU_CLOCK_REALTIME, SCALE_MS, gui_update, ds);
timer_mod(ds->gui_timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
}
dcl = dcl->next;
}
if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
nographic_timer = timer_new(QEMU_CLOCK_REALTIME, SCALE_MS, nographic_update, NULL);
timer_mod(nographic_timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
}
text_consoles_set_display(ds);
qemu_chr_initial_reset();
if (monitor_device && monitor_hd)
monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
const char *devname = serial_devices[i];
if (devname && strcmp(devname, "none")) {
if (strstart(devname, "vc", 0))
qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
}
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
const char *devname = parallel_devices[i];
if (devname && strcmp(devname, "none")) {
if (strstart(devname, "vc", 0))
qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
}
}
for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
const char *devname = virtio_consoles[i];
if (virtcon_hds[i] && devname) {
if (strstart(devname, "vc", 0))
qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
}
}
if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
PANIC("qemu: could not open gdbserver on device '%s'",
gdbstub_dev);
}
/* call android-specific setup function */
android_emulation_setup();
#if !defined(CONFIG_STANDALONE_CORE)
// For the standalone emulator (UI+core in one executable) we need to
// set the window title here.
android_emulator_set_base_port(android_base_port);
#endif
if (loadvm)
do_loadvm(cur_mon, loadvm);
if (incoming) {
autostart = 0; /* fixme how to deal with -daemonize */
qemu_start_incoming_migration(incoming);
}
if (autostart)
vm_start();
os_setup_post();
#ifdef CONFIG_ANDROID
// This will notify the UI that the core is successfuly initialized
android_core_init_completed();
#endif // CONFIG_ANDROID
main_loop();
quit_timers();
net_cleanup();
android_emulation_teardown();
return 0;
}
void
android_emulation_teardown(void)
{
android_charmap_done();
}