|  | // Copyright 2013, ARM Limited | 
|  | // All rights reserved. | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | //   * Redistributions of source code must retain the above copyright notice, | 
|  | //     this list of conditions and the following disclaimer. | 
|  | //   * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //     this list of conditions and the following disclaimer in the documentation | 
|  | //     and/or other materials provided with the distribution. | 
|  | //   * Neither the name of ARM Limited nor the names of its contributors may be | 
|  | //     used to endorse or promote products derived from this software without | 
|  | //     specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND | 
|  | // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
|  | // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
|  | // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE | 
|  | // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | 
|  | // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | 
|  | // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
|  | // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | #ifndef VIXL_UTILS_H | 
|  | #define VIXL_UTILS_H | 
|  |  | 
|  | #include <math.h> | 
|  | #include <string.h> | 
|  | #include "globals.h" | 
|  |  | 
|  | namespace vixl { | 
|  |  | 
|  | // Macros for compile-time format checking. | 
|  | #if defined(__GNUC__) | 
|  | #define PRINTF_CHECK(format_index, varargs_index) \ | 
|  | __attribute__((format(printf, format_index, varargs_index))) | 
|  | #else | 
|  | #define PRINTF_CHECK(format_index, varargs_index) | 
|  | #endif | 
|  |  | 
|  | // Check number width. | 
|  | inline bool is_intn(unsigned n, int64_t x) { | 
|  | VIXL_ASSERT((0 < n) && (n < 64)); | 
|  | int64_t limit = INT64_C(1) << (n - 1); | 
|  | return (-limit <= x) && (x < limit); | 
|  | } | 
|  |  | 
|  | inline bool is_uintn(unsigned n, int64_t x) { | 
|  | VIXL_ASSERT((0 < n) && (n < 64)); | 
|  | return !(x >> n); | 
|  | } | 
|  |  | 
|  | inline unsigned truncate_to_intn(unsigned n, int64_t x) { | 
|  | VIXL_ASSERT((0 < n) && (n < 64)); | 
|  | return (x & ((INT64_C(1) << n) - 1)); | 
|  | } | 
|  |  | 
|  | #define INT_1_TO_63_LIST(V)                                                    \ | 
|  | V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \ | 
|  | V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \ | 
|  | V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \ | 
|  | V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)                                \ | 
|  | V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \ | 
|  | V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \ | 
|  | V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \ | 
|  | V(57) V(58) V(59) V(60) V(61) V(62) V(63) | 
|  |  | 
|  | #define DECLARE_IS_INT_N(N)                                                    \ | 
|  | inline bool is_int##N(int64_t x) { return is_intn(N, x); } | 
|  | #define DECLARE_IS_UINT_N(N)                                                   \ | 
|  | inline bool is_uint##N(int64_t x) { return is_uintn(N, x); } | 
|  | #define DECLARE_TRUNCATE_TO_INT_N(N)                                           \ | 
|  | inline int truncate_to_int##N(int x) { return truncate_to_intn(N, x); } | 
|  | INT_1_TO_63_LIST(DECLARE_IS_INT_N) | 
|  | INT_1_TO_63_LIST(DECLARE_IS_UINT_N) | 
|  | INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N) | 
|  | #undef DECLARE_IS_INT_N | 
|  | #undef DECLARE_IS_UINT_N | 
|  | #undef DECLARE_TRUNCATE_TO_INT_N | 
|  |  | 
|  | // Bit field extraction. | 
|  | inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) { | 
|  | return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1); | 
|  | } | 
|  |  | 
|  | inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) { | 
|  | return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1); | 
|  | } | 
|  |  | 
|  | inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) { | 
|  | return (x << (31 - msb)) >> (lsb + 31 - msb); | 
|  | } | 
|  |  | 
|  | inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) { | 
|  | return (x << (63 - msb)) >> (lsb + 63 - msb); | 
|  | } | 
|  |  | 
|  | // Floating point representation. | 
|  | uint32_t float_to_rawbits(float value); | 
|  | uint64_t double_to_rawbits(double value); | 
|  | float rawbits_to_float(uint32_t bits); | 
|  | double rawbits_to_double(uint64_t bits); | 
|  |  | 
|  |  | 
|  | // NaN tests. | 
|  | inline bool IsSignallingNaN(double num) { | 
|  | const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000); | 
|  | uint64_t raw = double_to_rawbits(num); | 
|  | if (isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | inline bool IsSignallingNaN(float num) { | 
|  | const uint32_t kFP32QuietNaNMask = 0x00400000; | 
|  | uint32_t raw = float_to_rawbits(num); | 
|  | if (isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | template <typename T> | 
|  | inline bool IsQuietNaN(T num) { | 
|  | return isnan(num) && !IsSignallingNaN(num); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Convert the NaN in 'num' to a quiet NaN. | 
|  | inline double ToQuietNaN(double num) { | 
|  | const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000); | 
|  | VIXL_ASSERT(isnan(num)); | 
|  | return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask); | 
|  | } | 
|  |  | 
|  |  | 
|  | inline float ToQuietNaN(float num) { | 
|  | const uint32_t kFP32QuietNaNMask = 0x00400000; | 
|  | VIXL_ASSERT(isnan(num)); | 
|  | return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Fused multiply-add. | 
|  | inline double FusedMultiplyAdd(double op1, double op2, double a) { | 
|  | return fma(op1, op2, a); | 
|  | } | 
|  |  | 
|  |  | 
|  | inline float FusedMultiplyAdd(float op1, float op2, float a) { | 
|  | return fmaf(op1, op2, a); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Bit counting. | 
|  | int CountLeadingZeros(uint64_t value, int width); | 
|  | int CountLeadingSignBits(int64_t value, int width); | 
|  | int CountTrailingZeros(uint64_t value, int width); | 
|  | int CountSetBits(uint64_t value, int width); | 
|  | uint64_t LowestSetBit(uint64_t value); | 
|  | bool IsPowerOf2(int64_t value); | 
|  |  | 
|  | unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size); | 
|  |  | 
|  | // Pointer alignment | 
|  | // TODO: rename/refactor to make it specific to instructions. | 
|  | template<typename T> | 
|  | bool IsWordAligned(T pointer) { | 
|  | VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));   // NOLINT(runtime/sizeof) | 
|  | return ((intptr_t)(pointer) & 3) == 0; | 
|  | } | 
|  |  | 
|  | // Increment a pointer (up to 64 bits) until it has the specified alignment. | 
|  | template<class T> | 
|  | T AlignUp(T pointer, size_t alignment) { | 
|  | // Use C-style casts to get static_cast behaviour for integral types (T), and | 
|  | // reinterpret_cast behaviour for other types. | 
|  |  | 
|  | uint64_t pointer_raw = (uint64_t)pointer; | 
|  | VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw)); | 
|  |  | 
|  | size_t align_step = (alignment - pointer_raw) % alignment; | 
|  | VIXL_ASSERT((pointer_raw + align_step) % alignment == 0); | 
|  |  | 
|  | return (T)(pointer_raw + align_step); | 
|  | } | 
|  |  | 
|  | // Decrement a pointer (up to 64 bits) until it has the specified alignment. | 
|  | template<class T> | 
|  | T AlignDown(T pointer, size_t alignment) { | 
|  | // Use C-style casts to get static_cast behaviour for integral types (T), and | 
|  | // reinterpret_cast behaviour for other types. | 
|  |  | 
|  | uint64_t pointer_raw = (uint64_t)pointer; | 
|  | VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw)); | 
|  |  | 
|  | size_t align_step = pointer_raw % alignment; | 
|  | VIXL_ASSERT((pointer_raw - align_step) % alignment == 0); | 
|  |  | 
|  | return (T)(pointer_raw - align_step); | 
|  | } | 
|  |  | 
|  | }  // namespace vixl | 
|  |  | 
|  | #endif  // VIXL_UTILS_H |