|  | /* | 
|  | *  Alpha emulation cpu helpers for qemu. | 
|  | * | 
|  | *  Copyright (c) 2007 Jocelyn Mayer | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include <stdint.h> | 
|  | #include <stdlib.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "cpu.h" | 
|  | #include "fpu/softfloat.h" | 
|  | #include "exec/helper-proto.h" | 
|  |  | 
|  |  | 
|  | #define CONVERT_BIT(X, SRC, DST) \ | 
|  | (SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC)) | 
|  |  | 
|  | uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env) | 
|  | { | 
|  | return (uint64_t)env->fpcr << 32; | 
|  | } | 
|  |  | 
|  | void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val) | 
|  | { | 
|  | uint32_t fpcr = val >> 32; | 
|  | uint32_t t = 0; | 
|  |  | 
|  | t |= CONVERT_BIT(fpcr, FPCR_INED, FPCR_INE); | 
|  | t |= CONVERT_BIT(fpcr, FPCR_UNFD, FPCR_UNF); | 
|  | t |= CONVERT_BIT(fpcr, FPCR_OVFD, FPCR_OVF); | 
|  | t |= CONVERT_BIT(fpcr, FPCR_DZED, FPCR_DZE); | 
|  | t |= CONVERT_BIT(fpcr, FPCR_INVD, FPCR_INV); | 
|  |  | 
|  | env->fpcr = fpcr; | 
|  | env->fpcr_exc_enable = ~t & FPCR_STATUS_MASK; | 
|  |  | 
|  | switch (fpcr & FPCR_DYN_MASK) { | 
|  | case FPCR_DYN_NORMAL: | 
|  | default: | 
|  | t = float_round_nearest_even; | 
|  | break; | 
|  | case FPCR_DYN_CHOPPED: | 
|  | t = float_round_to_zero; | 
|  | break; | 
|  | case FPCR_DYN_MINUS: | 
|  | t = float_round_down; | 
|  | break; | 
|  | case FPCR_DYN_PLUS: | 
|  | t = float_round_up; | 
|  | break; | 
|  | } | 
|  | env->fpcr_dyn_round = t; | 
|  |  | 
|  | env->fpcr_flush_to_zero = (fpcr & FPCR_UNFD) && (fpcr & FPCR_UNDZ); | 
|  | env->fp_status.flush_inputs_to_zero = (fpcr & FPCR_DNZ) != 0; | 
|  | } | 
|  |  | 
|  | uint64_t helper_load_fpcr(CPUAlphaState *env) | 
|  | { | 
|  | return cpu_alpha_load_fpcr(env); | 
|  | } | 
|  |  | 
|  | void helper_store_fpcr(CPUAlphaState *env, uint64_t val) | 
|  | { | 
|  | cpu_alpha_store_fpcr(env, val); | 
|  | } | 
|  |  | 
|  | static uint64_t *cpu_alpha_addr_gr(CPUAlphaState *env, unsigned reg) | 
|  | { | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | if (env->pal_mode) { | 
|  | if (reg >= 8 && reg <= 14) { | 
|  | return &env->shadow[reg - 8]; | 
|  | } else if (reg == 25) { | 
|  | return &env->shadow[7]; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return &env->ir[reg]; | 
|  | } | 
|  |  | 
|  | uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg) | 
|  | { | 
|  | return *cpu_alpha_addr_gr(env, reg); | 
|  | } | 
|  |  | 
|  | void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val) | 
|  | { | 
|  | *cpu_alpha_addr_gr(env, reg) = val; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | int alpha_cpu_handle_mmu_fault(CPUState *cs, vaddr address, | 
|  | int rw, int mmu_idx) | 
|  | { | 
|  | AlphaCPU *cpu = ALPHA_CPU(cs); | 
|  |  | 
|  | cs->exception_index = EXCP_MMFAULT; | 
|  | cpu->env.trap_arg0 = address; | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | /* Returns the OSF/1 entMM failure indication, or -1 on success.  */ | 
|  | static int get_physical_address(CPUAlphaState *env, target_ulong addr, | 
|  | int prot_need, int mmu_idx, | 
|  | target_ulong *pphys, int *pprot) | 
|  | { | 
|  | CPUState *cs = CPU(alpha_env_get_cpu(env)); | 
|  | target_long saddr = addr; | 
|  | target_ulong phys = 0; | 
|  | target_ulong L1pte, L2pte, L3pte; | 
|  | target_ulong pt, index; | 
|  | int prot = 0; | 
|  | int ret = MM_K_ACV; | 
|  |  | 
|  | /* Ensure that the virtual address is properly sign-extended from | 
|  | the last implemented virtual address bit.  */ | 
|  | if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) { | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* Translate the superpage.  */ | 
|  | /* ??? When we do more than emulate Unix PALcode, we'll need to | 
|  | determine which KSEG is actually active.  */ | 
|  | if (saddr < 0 && ((saddr >> 41) & 3) == 2) { | 
|  | /* User-space cannot access KSEG addresses.  */ | 
|  | if (mmu_idx != MMU_KERNEL_IDX) { | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* For the benefit of the Typhoon chipset, move bit 40 to bit 43. | 
|  | We would not do this if the 48-bit KSEG is enabled.  */ | 
|  | phys = saddr & ((1ull << 40) - 1); | 
|  | phys |= (saddr & (1ull << 40)) << 3; | 
|  |  | 
|  | prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | 
|  | ret = -1; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* Interpret the page table exactly like PALcode does.  */ | 
|  |  | 
|  | pt = env->ptbr; | 
|  |  | 
|  | /* L1 page table read.  */ | 
|  | index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff; | 
|  | L1pte = ldq_phys(cs->as, pt + index*8); | 
|  |  | 
|  | if (unlikely((L1pte & PTE_VALID) == 0)) { | 
|  | ret = MM_K_TNV; | 
|  | goto exit; | 
|  | } | 
|  | if (unlikely((L1pte & PTE_KRE) == 0)) { | 
|  | goto exit; | 
|  | } | 
|  | pt = L1pte >> 32 << TARGET_PAGE_BITS; | 
|  |  | 
|  | /* L2 page table read.  */ | 
|  | index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff; | 
|  | L2pte = ldq_phys(cs->as, pt + index*8); | 
|  |  | 
|  | if (unlikely((L2pte & PTE_VALID) == 0)) { | 
|  | ret = MM_K_TNV; | 
|  | goto exit; | 
|  | } | 
|  | if (unlikely((L2pte & PTE_KRE) == 0)) { | 
|  | goto exit; | 
|  | } | 
|  | pt = L2pte >> 32 << TARGET_PAGE_BITS; | 
|  |  | 
|  | /* L3 page table read.  */ | 
|  | index = (addr >> TARGET_PAGE_BITS) & 0x3ff; | 
|  | L3pte = ldq_phys(cs->as, pt + index*8); | 
|  |  | 
|  | phys = L3pte >> 32 << TARGET_PAGE_BITS; | 
|  | if (unlikely((L3pte & PTE_VALID) == 0)) { | 
|  | ret = MM_K_TNV; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | #if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4 | 
|  | # error page bits out of date | 
|  | #endif | 
|  |  | 
|  | /* Check access violations.  */ | 
|  | if (L3pte & (PTE_KRE << mmu_idx)) { | 
|  | prot |= PAGE_READ | PAGE_EXEC; | 
|  | } | 
|  | if (L3pte & (PTE_KWE << mmu_idx)) { | 
|  | prot |= PAGE_WRITE; | 
|  | } | 
|  | if (unlikely((prot & prot_need) == 0 && prot_need)) { | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* Check fault-on-operation violations.  */ | 
|  | prot &= ~(L3pte >> 1); | 
|  | ret = -1; | 
|  | if (unlikely((prot & prot_need) == 0)) { | 
|  | ret = (prot_need & PAGE_EXEC ? MM_K_FOE : | 
|  | prot_need & PAGE_WRITE ? MM_K_FOW : | 
|  | prot_need & PAGE_READ ? MM_K_FOR : -1); | 
|  | } | 
|  |  | 
|  | exit: | 
|  | *pphys = phys; | 
|  | *pprot = prot; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) | 
|  | { | 
|  | AlphaCPU *cpu = ALPHA_CPU(cs); | 
|  | target_ulong phys; | 
|  | int prot, fail; | 
|  |  | 
|  | fail = get_physical_address(&cpu->env, addr, 0, 0, &phys, &prot); | 
|  | return (fail >= 0 ? -1 : phys); | 
|  | } | 
|  |  | 
|  | int alpha_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int rw, | 
|  | int mmu_idx) | 
|  | { | 
|  | AlphaCPU *cpu = ALPHA_CPU(cs); | 
|  | CPUAlphaState *env = &cpu->env; | 
|  | target_ulong phys; | 
|  | int prot, fail; | 
|  |  | 
|  | fail = get_physical_address(env, addr, 1 << rw, mmu_idx, &phys, &prot); | 
|  | if (unlikely(fail >= 0)) { | 
|  | cs->exception_index = EXCP_MMFAULT; | 
|  | env->trap_arg0 = addr; | 
|  | env->trap_arg1 = fail; | 
|  | env->trap_arg2 = (rw == 2 ? -1 : rw); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK, | 
|  | prot, mmu_idx, TARGET_PAGE_SIZE); | 
|  | return 0; | 
|  | } | 
|  | #endif /* USER_ONLY */ | 
|  |  | 
|  | void alpha_cpu_do_interrupt(CPUState *cs) | 
|  | { | 
|  | AlphaCPU *cpu = ALPHA_CPU(cs); | 
|  | CPUAlphaState *env = &cpu->env; | 
|  | int i = cs->exception_index; | 
|  |  | 
|  | if (qemu_loglevel_mask(CPU_LOG_INT)) { | 
|  | static int count; | 
|  | const char *name = "<unknown>"; | 
|  |  | 
|  | switch (i) { | 
|  | case EXCP_RESET: | 
|  | name = "reset"; | 
|  | break; | 
|  | case EXCP_MCHK: | 
|  | name = "mchk"; | 
|  | break; | 
|  | case EXCP_SMP_INTERRUPT: | 
|  | name = "smp_interrupt"; | 
|  | break; | 
|  | case EXCP_CLK_INTERRUPT: | 
|  | name = "clk_interrupt"; | 
|  | break; | 
|  | case EXCP_DEV_INTERRUPT: | 
|  | name = "dev_interrupt"; | 
|  | break; | 
|  | case EXCP_MMFAULT: | 
|  | name = "mmfault"; | 
|  | break; | 
|  | case EXCP_UNALIGN: | 
|  | name = "unalign"; | 
|  | break; | 
|  | case EXCP_OPCDEC: | 
|  | name = "opcdec"; | 
|  | break; | 
|  | case EXCP_ARITH: | 
|  | name = "arith"; | 
|  | break; | 
|  | case EXCP_FEN: | 
|  | name = "fen"; | 
|  | break; | 
|  | case EXCP_CALL_PAL: | 
|  | name = "call_pal"; | 
|  | break; | 
|  | case EXCP_STL_C: | 
|  | name = "stl_c"; | 
|  | break; | 
|  | case EXCP_STQ_C: | 
|  | name = "stq_c"; | 
|  | break; | 
|  | } | 
|  | qemu_log("INT %6d: %s(%#x) pc=%016" PRIx64 " sp=%016" PRIx64 "\n", | 
|  | ++count, name, env->error_code, env->pc, env->ir[IR_SP]); | 
|  | } | 
|  |  | 
|  | cs->exception_index = -1; | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | switch (i) { | 
|  | case EXCP_RESET: | 
|  | i = 0x0000; | 
|  | break; | 
|  | case EXCP_MCHK: | 
|  | i = 0x0080; | 
|  | break; | 
|  | case EXCP_SMP_INTERRUPT: | 
|  | i = 0x0100; | 
|  | break; | 
|  | case EXCP_CLK_INTERRUPT: | 
|  | i = 0x0180; | 
|  | break; | 
|  | case EXCP_DEV_INTERRUPT: | 
|  | i = 0x0200; | 
|  | break; | 
|  | case EXCP_MMFAULT: | 
|  | i = 0x0280; | 
|  | break; | 
|  | case EXCP_UNALIGN: | 
|  | i = 0x0300; | 
|  | break; | 
|  | case EXCP_OPCDEC: | 
|  | i = 0x0380; | 
|  | break; | 
|  | case EXCP_ARITH: | 
|  | i = 0x0400; | 
|  | break; | 
|  | case EXCP_FEN: | 
|  | i = 0x0480; | 
|  | break; | 
|  | case EXCP_CALL_PAL: | 
|  | i = env->error_code; | 
|  | /* There are 64 entry points for both privileged and unprivileged, | 
|  | with bit 0x80 indicating unprivileged.  Each entry point gets | 
|  | 64 bytes to do its job.  */ | 
|  | if (i & 0x80) { | 
|  | i = 0x2000 + (i - 0x80) * 64; | 
|  | } else { | 
|  | i = 0x1000 + i * 64; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | cpu_abort(cs, "Unhandled CPU exception"); | 
|  | } | 
|  |  | 
|  | /* Remember where the exception happened.  Emulate real hardware in | 
|  | that the low bit of the PC indicates PALmode.  */ | 
|  | env->exc_addr = env->pc | env->pal_mode; | 
|  |  | 
|  | /* Continue execution at the PALcode entry point.  */ | 
|  | env->pc = env->palbr + i; | 
|  |  | 
|  | /* Switch to PALmode.  */ | 
|  | env->pal_mode = 1; | 
|  | #endif /* !USER_ONLY */ | 
|  | } | 
|  |  | 
|  | bool alpha_cpu_exec_interrupt(CPUState *cs, int interrupt_request) | 
|  | { | 
|  | AlphaCPU *cpu = ALPHA_CPU(cs); | 
|  | CPUAlphaState *env = &cpu->env; | 
|  | int idx = -1; | 
|  |  | 
|  | /* We never take interrupts while in PALmode.  */ | 
|  | if (env->pal_mode) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Fall through the switch, collecting the highest priority | 
|  | interrupt that isn't masked by the processor status IPL.  */ | 
|  | /* ??? This hard-codes the OSF/1 interrupt levels.  */ | 
|  | switch (env->ps & PS_INT_MASK) { | 
|  | case 0 ... 3: | 
|  | if (interrupt_request & CPU_INTERRUPT_HARD) { | 
|  | idx = EXCP_DEV_INTERRUPT; | 
|  | } | 
|  | /* FALLTHRU */ | 
|  | case 4: | 
|  | if (interrupt_request & CPU_INTERRUPT_TIMER) { | 
|  | idx = EXCP_CLK_INTERRUPT; | 
|  | } | 
|  | /* FALLTHRU */ | 
|  | case 5: | 
|  | if (interrupt_request & CPU_INTERRUPT_SMP) { | 
|  | idx = EXCP_SMP_INTERRUPT; | 
|  | } | 
|  | /* FALLTHRU */ | 
|  | case 6: | 
|  | if (interrupt_request & CPU_INTERRUPT_MCHK) { | 
|  | idx = EXCP_MCHK; | 
|  | } | 
|  | } | 
|  | if (idx >= 0) { | 
|  | cs->exception_index = idx; | 
|  | env->error_code = 0; | 
|  | alpha_cpu_do_interrupt(cs); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void alpha_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, | 
|  | int flags) | 
|  | { | 
|  | static const char *linux_reg_names[] = { | 
|  | "v0 ", "t0 ", "t1 ", "t2 ", "t3 ", "t4 ", "t5 ", "t6 ", | 
|  | "t7 ", "s0 ", "s1 ", "s2 ", "s3 ", "s4 ", "s5 ", "fp ", | 
|  | "a0 ", "a1 ", "a2 ", "a3 ", "a4 ", "a5 ", "t8 ", "t9 ", | 
|  | "t10", "t11", "ra ", "t12", "at ", "gp ", "sp ", "zero", | 
|  | }; | 
|  | AlphaCPU *cpu = ALPHA_CPU(cs); | 
|  | CPUAlphaState *env = &cpu->env; | 
|  | int i; | 
|  |  | 
|  | cpu_fprintf(f, "     PC  " TARGET_FMT_lx "      PS  %02x\n", | 
|  | env->pc, env->ps); | 
|  | for (i = 0; i < 31; i++) { | 
|  | cpu_fprintf(f, "IR%02d %s " TARGET_FMT_lx " ", i, | 
|  | linux_reg_names[i], cpu_alpha_load_gr(env, i)); | 
|  | if ((i % 3) == 2) | 
|  | cpu_fprintf(f, "\n"); | 
|  | } | 
|  |  | 
|  | cpu_fprintf(f, "lock_a   " TARGET_FMT_lx " lock_v   " TARGET_FMT_lx "\n", | 
|  | env->lock_addr, env->lock_value); | 
|  |  | 
|  | for (i = 0; i < 31; i++) { | 
|  | cpu_fprintf(f, "FIR%02d    " TARGET_FMT_lx " ", i, | 
|  | *((uint64_t *)(&env->fir[i]))); | 
|  | if ((i % 3) == 2) | 
|  | cpu_fprintf(f, "\n"); | 
|  | } | 
|  | cpu_fprintf(f, "\n"); | 
|  | } | 
|  |  | 
|  | /* This should only be called from translate, via gen_excp. | 
|  | We expect that ENV->PC has already been updated.  */ | 
|  | void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error) | 
|  | { | 
|  | AlphaCPU *cpu = alpha_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | cs->exception_index = excp; | 
|  | env->error_code = error; | 
|  | cpu_loop_exit(cs); | 
|  | } | 
|  |  | 
|  | /* This may be called from any of the helpers to set up EXCEPTION_INDEX.  */ | 
|  | void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, uintptr_t retaddr, | 
|  | int excp, int error) | 
|  | { | 
|  | AlphaCPU *cpu = alpha_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | cs->exception_index = excp; | 
|  | env->error_code = error; | 
|  | if (retaddr) { | 
|  | cpu_restore_state(cs, retaddr); | 
|  | /* Floating-point exceptions (our only users) point to the next PC.  */ | 
|  | env->pc += 4; | 
|  | } | 
|  | cpu_loop_exit(cs); | 
|  | } | 
|  |  | 
|  | void QEMU_NORETURN arith_excp(CPUAlphaState *env, uintptr_t retaddr, | 
|  | int exc, uint64_t mask) | 
|  | { | 
|  | env->trap_arg0 = exc; | 
|  | env->trap_arg1 = mask; | 
|  | dynamic_excp(env, retaddr, EXCP_ARITH, 0); | 
|  | } |