|  | /* | 
|  | *  PowerPC floating point and SPE emulation helpers for QEMU. | 
|  | * | 
|  | *  Copyright (c) 2003-2007 Jocelyn Mayer | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include "cpu.h" | 
|  | #include "exec/helper-proto.h" | 
|  |  | 
|  | #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL) | 
|  | #define float32_snan_to_qnan(x) ((x) | 0x00400000) | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* Floating point operations helpers */ | 
|  | uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg) | 
|  | { | 
|  | CPU_FloatU f; | 
|  | CPU_DoubleU d; | 
|  |  | 
|  | f.l = arg; | 
|  | d.d = float32_to_float64(f.f, &env->fp_status); | 
|  | return d.ll; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg) | 
|  | { | 
|  | CPU_FloatU f; | 
|  | CPU_DoubleU d; | 
|  |  | 
|  | d.ll = arg; | 
|  | f.f = float64_to_float32(d.d, &env->fp_status); | 
|  | return f.l; | 
|  | } | 
|  |  | 
|  | static inline int isden(float64 d) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  |  | 
|  | u.d = d; | 
|  |  | 
|  | return ((u.ll >> 52) & 0x7FF) == 0; | 
|  | } | 
|  |  | 
|  | static inline int ppc_float32_get_unbiased_exp(float32 f) | 
|  | { | 
|  | return ((f >> 23) & 0xFF) - 127; | 
|  | } | 
|  |  | 
|  | static inline int ppc_float64_get_unbiased_exp(float64 f) | 
|  | { | 
|  | return ((f >> 52) & 0x7FF) - 1023; | 
|  | } | 
|  |  | 
|  | void helper_compute_fprf(CPUPPCState *env, uint64_t arg) | 
|  | { | 
|  | CPU_DoubleU farg; | 
|  | int isneg; | 
|  | int fprf; | 
|  |  | 
|  | farg.ll = arg; | 
|  | isneg = float64_is_neg(farg.d); | 
|  | if (unlikely(float64_is_any_nan(farg.d))) { | 
|  | if (float64_is_signaling_nan(farg.d)) { | 
|  | /* Signaling NaN: flags are undefined */ | 
|  | fprf = 0x00; | 
|  | } else { | 
|  | /* Quiet NaN */ | 
|  | fprf = 0x11; | 
|  | } | 
|  | } else if (unlikely(float64_is_infinity(farg.d))) { | 
|  | /* +/- infinity */ | 
|  | if (isneg) { | 
|  | fprf = 0x09; | 
|  | } else { | 
|  | fprf = 0x05; | 
|  | } | 
|  | } else { | 
|  | if (float64_is_zero(farg.d)) { | 
|  | /* +/- zero */ | 
|  | if (isneg) { | 
|  | fprf = 0x12; | 
|  | } else { | 
|  | fprf = 0x02; | 
|  | } | 
|  | } else { | 
|  | if (isden(farg.d)) { | 
|  | /* Denormalized numbers */ | 
|  | fprf = 0x10; | 
|  | } else { | 
|  | /* Normalized numbers */ | 
|  | fprf = 0x00; | 
|  | } | 
|  | if (isneg) { | 
|  | fprf |= 0x08; | 
|  | } else { | 
|  | fprf |= 0x04; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* We update FPSCR_FPRF */ | 
|  | env->fpscr &= ~(0x1F << FPSCR_FPRF); | 
|  | env->fpscr |= fprf << FPSCR_FPRF; | 
|  | } | 
|  |  | 
|  | /* Floating-point invalid operations exception */ | 
|  | static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op, | 
|  | int set_fpcc) | 
|  | { | 
|  | CPUState *cs = CPU(ppc_env_get_cpu(env)); | 
|  | uint64_t ret = 0; | 
|  | int ve; | 
|  |  | 
|  | ve = fpscr_ve; | 
|  | switch (op) { | 
|  | case POWERPC_EXCP_FP_VXSNAN: | 
|  | env->fpscr |= 1 << FPSCR_VXSNAN; | 
|  | break; | 
|  | case POWERPC_EXCP_FP_VXSOFT: | 
|  | env->fpscr |= 1 << FPSCR_VXSOFT; | 
|  | break; | 
|  | case POWERPC_EXCP_FP_VXISI: | 
|  | /* Magnitude subtraction of infinities */ | 
|  | env->fpscr |= 1 << FPSCR_VXISI; | 
|  | goto update_arith; | 
|  | case POWERPC_EXCP_FP_VXIDI: | 
|  | /* Division of infinity by infinity */ | 
|  | env->fpscr |= 1 << FPSCR_VXIDI; | 
|  | goto update_arith; | 
|  | case POWERPC_EXCP_FP_VXZDZ: | 
|  | /* Division of zero by zero */ | 
|  | env->fpscr |= 1 << FPSCR_VXZDZ; | 
|  | goto update_arith; | 
|  | case POWERPC_EXCP_FP_VXIMZ: | 
|  | /* Multiplication of zero by infinity */ | 
|  | env->fpscr |= 1 << FPSCR_VXIMZ; | 
|  | goto update_arith; | 
|  | case POWERPC_EXCP_FP_VXVC: | 
|  | /* Ordered comparison of NaN */ | 
|  | env->fpscr |= 1 << FPSCR_VXVC; | 
|  | if (set_fpcc) { | 
|  | env->fpscr &= ~(0xF << FPSCR_FPCC); | 
|  | env->fpscr |= 0x11 << FPSCR_FPCC; | 
|  | } | 
|  | /* We must update the target FPR before raising the exception */ | 
|  | if (ve != 0) { | 
|  | cs->exception_index = POWERPC_EXCP_PROGRAM; | 
|  | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; | 
|  | /* Update the floating-point enabled exception summary */ | 
|  | env->fpscr |= 1 << FPSCR_FEX; | 
|  | /* Exception is differed */ | 
|  | ve = 0; | 
|  | } | 
|  | break; | 
|  | case POWERPC_EXCP_FP_VXSQRT: | 
|  | /* Square root of a negative number */ | 
|  | env->fpscr |= 1 << FPSCR_VXSQRT; | 
|  | update_arith: | 
|  | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | 
|  | if (ve == 0) { | 
|  | /* Set the result to quiet NaN */ | 
|  | ret = 0x7FF8000000000000ULL; | 
|  | if (set_fpcc) { | 
|  | env->fpscr &= ~(0xF << FPSCR_FPCC); | 
|  | env->fpscr |= 0x11 << FPSCR_FPCC; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case POWERPC_EXCP_FP_VXCVI: | 
|  | /* Invalid conversion */ | 
|  | env->fpscr |= 1 << FPSCR_VXCVI; | 
|  | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | 
|  | if (ve == 0) { | 
|  | /* Set the result to quiet NaN */ | 
|  | ret = 0x7FF8000000000000ULL; | 
|  | if (set_fpcc) { | 
|  | env->fpscr &= ~(0xF << FPSCR_FPCC); | 
|  | env->fpscr |= 0x11 << FPSCR_FPCC; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* Update the floating-point invalid operation summary */ | 
|  | env->fpscr |= 1 << FPSCR_VX; | 
|  | /* Update the floating-point exception summary */ | 
|  | env->fpscr |= FP_FX; | 
|  | if (ve != 0) { | 
|  | /* Update the floating-point enabled exception summary */ | 
|  | env->fpscr |= 1 << FPSCR_FEX; | 
|  | if (msr_fe0 != 0 || msr_fe1 != 0) { | 
|  | helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, | 
|  | POWERPC_EXCP_FP | op); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void float_zero_divide_excp(CPUPPCState *env) | 
|  | { | 
|  | env->fpscr |= 1 << FPSCR_ZX; | 
|  | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | 
|  | /* Update the floating-point exception summary */ | 
|  | env->fpscr |= FP_FX; | 
|  | if (fpscr_ze != 0) { | 
|  | /* Update the floating-point enabled exception summary */ | 
|  | env->fpscr |= 1 << FPSCR_FEX; | 
|  | if (msr_fe0 != 0 || msr_fe1 != 0) { | 
|  | helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, | 
|  | POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void float_overflow_excp(CPUPPCState *env) | 
|  | { | 
|  | CPUState *cs = CPU(ppc_env_get_cpu(env)); | 
|  |  | 
|  | env->fpscr |= 1 << FPSCR_OX; | 
|  | /* Update the floating-point exception summary */ | 
|  | env->fpscr |= FP_FX; | 
|  | if (fpscr_oe != 0) { | 
|  | /* XXX: should adjust the result */ | 
|  | /* Update the floating-point enabled exception summary */ | 
|  | env->fpscr |= 1 << FPSCR_FEX; | 
|  | /* We must update the target FPR before raising the exception */ | 
|  | cs->exception_index = POWERPC_EXCP_PROGRAM; | 
|  | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | 
|  | } else { | 
|  | env->fpscr |= 1 << FPSCR_XX; | 
|  | env->fpscr |= 1 << FPSCR_FI; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void float_underflow_excp(CPUPPCState *env) | 
|  | { | 
|  | CPUState *cs = CPU(ppc_env_get_cpu(env)); | 
|  |  | 
|  | env->fpscr |= 1 << FPSCR_UX; | 
|  | /* Update the floating-point exception summary */ | 
|  | env->fpscr |= FP_FX; | 
|  | if (fpscr_ue != 0) { | 
|  | /* XXX: should adjust the result */ | 
|  | /* Update the floating-point enabled exception summary */ | 
|  | env->fpscr |= 1 << FPSCR_FEX; | 
|  | /* We must update the target FPR before raising the exception */ | 
|  | cs->exception_index = POWERPC_EXCP_PROGRAM; | 
|  | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void float_inexact_excp(CPUPPCState *env) | 
|  | { | 
|  | CPUState *cs = CPU(ppc_env_get_cpu(env)); | 
|  |  | 
|  | env->fpscr |= 1 << FPSCR_XX; | 
|  | /* Update the floating-point exception summary */ | 
|  | env->fpscr |= FP_FX; | 
|  | if (fpscr_xe != 0) { | 
|  | /* Update the floating-point enabled exception summary */ | 
|  | env->fpscr |= 1 << FPSCR_FEX; | 
|  | /* We must update the target FPR before raising the exception */ | 
|  | cs->exception_index = POWERPC_EXCP_PROGRAM; | 
|  | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void fpscr_set_rounding_mode(CPUPPCState *env) | 
|  | { | 
|  | int rnd_type; | 
|  |  | 
|  | /* Set rounding mode */ | 
|  | switch (fpscr_rn) { | 
|  | case 0: | 
|  | /* Best approximation (round to nearest) */ | 
|  | rnd_type = float_round_nearest_even; | 
|  | break; | 
|  | case 1: | 
|  | /* Smaller magnitude (round toward zero) */ | 
|  | rnd_type = float_round_to_zero; | 
|  | break; | 
|  | case 2: | 
|  | /* Round toward +infinite */ | 
|  | rnd_type = float_round_up; | 
|  | break; | 
|  | default: | 
|  | case 3: | 
|  | /* Round toward -infinite */ | 
|  | rnd_type = float_round_down; | 
|  | break; | 
|  | } | 
|  | set_float_rounding_mode(rnd_type, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit) | 
|  | { | 
|  | int prev; | 
|  |  | 
|  | prev = (env->fpscr >> bit) & 1; | 
|  | env->fpscr &= ~(1 << bit); | 
|  | if (prev == 1) { | 
|  | switch (bit) { | 
|  | case FPSCR_RN1: | 
|  | case FPSCR_RN: | 
|  | fpscr_set_rounding_mode(env); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit) | 
|  | { | 
|  | CPUState *cs = CPU(ppc_env_get_cpu(env)); | 
|  | int prev; | 
|  |  | 
|  | prev = (env->fpscr >> bit) & 1; | 
|  | env->fpscr |= 1 << bit; | 
|  | if (prev == 0) { | 
|  | switch (bit) { | 
|  | case FPSCR_VX: | 
|  | env->fpscr |= FP_FX; | 
|  | if (fpscr_ve) { | 
|  | goto raise_ve; | 
|  | } | 
|  | break; | 
|  | case FPSCR_OX: | 
|  | env->fpscr |= FP_FX; | 
|  | if (fpscr_oe) { | 
|  | goto raise_oe; | 
|  | } | 
|  | break; | 
|  | case FPSCR_UX: | 
|  | env->fpscr |= FP_FX; | 
|  | if (fpscr_ue) { | 
|  | goto raise_ue; | 
|  | } | 
|  | break; | 
|  | case FPSCR_ZX: | 
|  | env->fpscr |= FP_FX; | 
|  | if (fpscr_ze) { | 
|  | goto raise_ze; | 
|  | } | 
|  | break; | 
|  | case FPSCR_XX: | 
|  | env->fpscr |= FP_FX; | 
|  | if (fpscr_xe) { | 
|  | goto raise_xe; | 
|  | } | 
|  | break; | 
|  | case FPSCR_VXSNAN: | 
|  | case FPSCR_VXISI: | 
|  | case FPSCR_VXIDI: | 
|  | case FPSCR_VXZDZ: | 
|  | case FPSCR_VXIMZ: | 
|  | case FPSCR_VXVC: | 
|  | case FPSCR_VXSOFT: | 
|  | case FPSCR_VXSQRT: | 
|  | case FPSCR_VXCVI: | 
|  | env->fpscr |= 1 << FPSCR_VX; | 
|  | env->fpscr |= FP_FX; | 
|  | if (fpscr_ve != 0) { | 
|  | goto raise_ve; | 
|  | } | 
|  | break; | 
|  | case FPSCR_VE: | 
|  | if (fpscr_vx != 0) { | 
|  | raise_ve: | 
|  | env->error_code = POWERPC_EXCP_FP; | 
|  | if (fpscr_vxsnan) { | 
|  | env->error_code |= POWERPC_EXCP_FP_VXSNAN; | 
|  | } | 
|  | if (fpscr_vxisi) { | 
|  | env->error_code |= POWERPC_EXCP_FP_VXISI; | 
|  | } | 
|  | if (fpscr_vxidi) { | 
|  | env->error_code |= POWERPC_EXCP_FP_VXIDI; | 
|  | } | 
|  | if (fpscr_vxzdz) { | 
|  | env->error_code |= POWERPC_EXCP_FP_VXZDZ; | 
|  | } | 
|  | if (fpscr_vximz) { | 
|  | env->error_code |= POWERPC_EXCP_FP_VXIMZ; | 
|  | } | 
|  | if (fpscr_vxvc) { | 
|  | env->error_code |= POWERPC_EXCP_FP_VXVC; | 
|  | } | 
|  | if (fpscr_vxsoft) { | 
|  | env->error_code |= POWERPC_EXCP_FP_VXSOFT; | 
|  | } | 
|  | if (fpscr_vxsqrt) { | 
|  | env->error_code |= POWERPC_EXCP_FP_VXSQRT; | 
|  | } | 
|  | if (fpscr_vxcvi) { | 
|  | env->error_code |= POWERPC_EXCP_FP_VXCVI; | 
|  | } | 
|  | goto raise_excp; | 
|  | } | 
|  | break; | 
|  | case FPSCR_OE: | 
|  | if (fpscr_ox != 0) { | 
|  | raise_oe: | 
|  | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | 
|  | goto raise_excp; | 
|  | } | 
|  | break; | 
|  | case FPSCR_UE: | 
|  | if (fpscr_ux != 0) { | 
|  | raise_ue: | 
|  | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | 
|  | goto raise_excp; | 
|  | } | 
|  | break; | 
|  | case FPSCR_ZE: | 
|  | if (fpscr_zx != 0) { | 
|  | raise_ze: | 
|  | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; | 
|  | goto raise_excp; | 
|  | } | 
|  | break; | 
|  | case FPSCR_XE: | 
|  | if (fpscr_xx != 0) { | 
|  | raise_xe: | 
|  | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | 
|  | goto raise_excp; | 
|  | } | 
|  | break; | 
|  | case FPSCR_RN1: | 
|  | case FPSCR_RN: | 
|  | fpscr_set_rounding_mode(env); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | raise_excp: | 
|  | /* Update the floating-point enabled exception summary */ | 
|  | env->fpscr |= 1 << FPSCR_FEX; | 
|  | /* We have to update Rc1 before raising the exception */ | 
|  | cs->exception_index = POWERPC_EXCP_PROGRAM; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask) | 
|  | { | 
|  | CPUState *cs = CPU(ppc_env_get_cpu(env)); | 
|  | target_ulong prev, new; | 
|  | int i; | 
|  |  | 
|  | prev = env->fpscr; | 
|  | new = (target_ulong)arg; | 
|  | new &= ~0x60000000LL; | 
|  | new |= prev & 0x60000000LL; | 
|  | for (i = 0; i < sizeof(target_ulong) * 2; i++) { | 
|  | if (mask & (1 << i)) { | 
|  | env->fpscr &= ~(0xFLL << (4 * i)); | 
|  | env->fpscr |= new & (0xFLL << (4 * i)); | 
|  | } | 
|  | } | 
|  | /* Update VX and FEX */ | 
|  | if (fpscr_ix != 0) { | 
|  | env->fpscr |= 1 << FPSCR_VX; | 
|  | } else { | 
|  | env->fpscr &= ~(1 << FPSCR_VX); | 
|  | } | 
|  | if ((fpscr_ex & fpscr_eex) != 0) { | 
|  | env->fpscr |= 1 << FPSCR_FEX; | 
|  | cs->exception_index = POWERPC_EXCP_PROGRAM; | 
|  | /* XXX: we should compute it properly */ | 
|  | env->error_code = POWERPC_EXCP_FP; | 
|  | } else { | 
|  | env->fpscr &= ~(1 << FPSCR_FEX); | 
|  | } | 
|  | fpscr_set_rounding_mode(env); | 
|  | } | 
|  |  | 
|  | void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask) | 
|  | { | 
|  | helper_store_fpscr(env, arg, mask); | 
|  | } | 
|  |  | 
|  | void helper_float_check_status(CPUPPCState *env) | 
|  | { | 
|  | CPUState *cs = CPU(ppc_env_get_cpu(env)); | 
|  | int status = get_float_exception_flags(&env->fp_status); | 
|  |  | 
|  | if (status & float_flag_divbyzero) { | 
|  | float_zero_divide_excp(env); | 
|  | } else if (status & float_flag_overflow) { | 
|  | float_overflow_excp(env); | 
|  | } else if (status & float_flag_underflow) { | 
|  | float_underflow_excp(env); | 
|  | } else if (status & float_flag_inexact) { | 
|  | float_inexact_excp(env); | 
|  | } | 
|  |  | 
|  | if (cs->exception_index == POWERPC_EXCP_PROGRAM && | 
|  | (env->error_code & POWERPC_EXCP_FP)) { | 
|  | /* Differred floating-point exception after target FPR update */ | 
|  | if (msr_fe0 != 0 || msr_fe1 != 0) { | 
|  | helper_raise_exception_err(env, cs->exception_index, | 
|  | env->error_code); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_reset_fpstatus(CPUPPCState *env) | 
|  | { | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | } | 
|  |  | 
|  | /* fadd - fadd. */ | 
|  | uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2) | 
|  | { | 
|  | CPU_DoubleU farg1, farg2; | 
|  |  | 
|  | farg1.ll = arg1; | 
|  | farg2.ll = arg2; | 
|  |  | 
|  | if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && | 
|  | float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) { | 
|  | /* Magnitude subtraction of infinities */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); | 
|  | } else { | 
|  | if (unlikely(float64_is_signaling_nan(farg1.d) || | 
|  | float64_is_signaling_nan(farg2.d))) { | 
|  | /* sNaN addition */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); | 
|  | } | 
|  |  | 
|  | return farg1.ll; | 
|  | } | 
|  |  | 
|  | /* fsub - fsub. */ | 
|  | uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2) | 
|  | { | 
|  | CPU_DoubleU farg1, farg2; | 
|  |  | 
|  | farg1.ll = arg1; | 
|  | farg2.ll = arg2; | 
|  |  | 
|  | if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && | 
|  | float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) { | 
|  | /* Magnitude subtraction of infinities */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); | 
|  | } else { | 
|  | if (unlikely(float64_is_signaling_nan(farg1.d) || | 
|  | float64_is_signaling_nan(farg2.d))) { | 
|  | /* sNaN subtraction */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); | 
|  | } | 
|  |  | 
|  | return farg1.ll; | 
|  | } | 
|  |  | 
|  | /* fmul - fmul. */ | 
|  | uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2) | 
|  | { | 
|  | CPU_DoubleU farg1, farg2; | 
|  |  | 
|  | farg1.ll = arg1; | 
|  | farg2.ll = arg2; | 
|  |  | 
|  | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | 
|  | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | 
|  | /* Multiplication of zero by infinity */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); | 
|  | } else { | 
|  | if (unlikely(float64_is_signaling_nan(farg1.d) || | 
|  | float64_is_signaling_nan(farg2.d))) { | 
|  | /* sNaN multiplication */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); | 
|  | } | 
|  |  | 
|  | return farg1.ll; | 
|  | } | 
|  |  | 
|  | /* fdiv - fdiv. */ | 
|  | uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2) | 
|  | { | 
|  | CPU_DoubleU farg1, farg2; | 
|  |  | 
|  | farg1.ll = arg1; | 
|  | farg2.ll = arg2; | 
|  |  | 
|  | if (unlikely(float64_is_infinity(farg1.d) && | 
|  | float64_is_infinity(farg2.d))) { | 
|  | /* Division of infinity by infinity */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1); | 
|  | } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) { | 
|  | /* Division of zero by zero */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1); | 
|  | } else { | 
|  | if (unlikely(float64_is_signaling_nan(farg1.d) || | 
|  | float64_is_signaling_nan(farg2.d))) { | 
|  | /* sNaN division */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); | 
|  | } | 
|  |  | 
|  | return farg1.ll; | 
|  | } | 
|  |  | 
|  |  | 
|  | #define FPU_FCTI(op, cvt, nanval)                                      \ | 
|  | uint64_t helper_##op(CPUPPCState *env, uint64_t arg)                   \ | 
|  | {                                                                      \ | 
|  | CPU_DoubleU farg;                                                  \ | 
|  | \ | 
|  | farg.ll = arg;                                                     \ | 
|  | farg.ll = float64_to_##cvt(farg.d, &env->fp_status);               \ | 
|  | \ | 
|  | if (unlikely(env->fp_status.float_exception_flags)) {              \ | 
|  | if (float64_is_any_nan(arg)) {                                 \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \ | 
|  | if (float64_is_signaling_nan(arg)) {                       \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \ | 
|  | }                                                          \ | 
|  | farg.ll = nanval;                                          \ | 
|  | } else if (env->fp_status.float_exception_flags &              \ | 
|  | float_flag_invalid) {                               \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \ | 
|  | }                                                              \ | 
|  | helper_float_check_status(env);                                \ | 
|  | }                                                                  \ | 
|  | return farg.ll;                                                    \ | 
|  | } | 
|  |  | 
|  | FPU_FCTI(fctiw, int32, 0x80000000U) | 
|  | FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U) | 
|  | FPU_FCTI(fctiwu, uint32, 0x00000000U) | 
|  | FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U) | 
|  | FPU_FCTI(fctid, int64, 0x8000000000000000ULL) | 
|  | FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL) | 
|  | FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL) | 
|  | FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL) | 
|  |  | 
|  | #define FPU_FCFI(op, cvtr, is_single)                      \ | 
|  | uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \ | 
|  | {                                                          \ | 
|  | CPU_DoubleU farg;                                      \ | 
|  | \ | 
|  | if (is_single) {                                       \ | 
|  | float32 tmp = cvtr(arg, &env->fp_status);          \ | 
|  | farg.d = float32_to_float64(tmp, &env->fp_status); \ | 
|  | } else {                                               \ | 
|  | farg.d = cvtr(arg, &env->fp_status);               \ | 
|  | }                                                      \ | 
|  | helper_float_check_status(env);                        \ | 
|  | return farg.ll;                                        \ | 
|  | } | 
|  |  | 
|  | FPU_FCFI(fcfid, int64_to_float64, 0) | 
|  | FPU_FCFI(fcfids, int64_to_float32, 1) | 
|  | FPU_FCFI(fcfidu, uint64_to_float64, 0) | 
|  | FPU_FCFI(fcfidus, uint64_to_float32, 1) | 
|  |  | 
|  | static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg, | 
|  | int rounding_mode) | 
|  | { | 
|  | CPU_DoubleU farg; | 
|  |  | 
|  | farg.ll = arg; | 
|  |  | 
|  | if (unlikely(float64_is_signaling_nan(farg.d))) { | 
|  | /* sNaN round */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | farg.ll = arg | 0x0008000000000000ULL; | 
|  | } else { | 
|  | int inexact = get_float_exception_flags(&env->fp_status) & | 
|  | float_flag_inexact; | 
|  | set_float_rounding_mode(rounding_mode, &env->fp_status); | 
|  | farg.ll = float64_round_to_int(farg.d, &env->fp_status); | 
|  | /* Restore rounding mode from FPSCR */ | 
|  | fpscr_set_rounding_mode(env); | 
|  |  | 
|  | /* fri* does not set FPSCR[XX] */ | 
|  | if (!inexact) { | 
|  | env->fp_status.float_exception_flags &= ~float_flag_inexact; | 
|  | } | 
|  | } | 
|  | helper_float_check_status(env); | 
|  | return farg.ll; | 
|  | } | 
|  |  | 
|  | uint64_t helper_frin(CPUPPCState *env, uint64_t arg) | 
|  | { | 
|  | return do_fri(env, arg, float_round_ties_away); | 
|  | } | 
|  |  | 
|  | uint64_t helper_friz(CPUPPCState *env, uint64_t arg) | 
|  | { | 
|  | return do_fri(env, arg, float_round_to_zero); | 
|  | } | 
|  |  | 
|  | uint64_t helper_frip(CPUPPCState *env, uint64_t arg) | 
|  | { | 
|  | return do_fri(env, arg, float_round_up); | 
|  | } | 
|  |  | 
|  | uint64_t helper_frim(CPUPPCState *env, uint64_t arg) | 
|  | { | 
|  | return do_fri(env, arg, float_round_down); | 
|  | } | 
|  |  | 
|  | /* fmadd - fmadd. */ | 
|  | uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2, | 
|  | uint64_t arg3) | 
|  | { | 
|  | CPU_DoubleU farg1, farg2, farg3; | 
|  |  | 
|  | farg1.ll = arg1; | 
|  | farg2.ll = arg2; | 
|  | farg3.ll = arg3; | 
|  |  | 
|  | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | 
|  | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | 
|  | /* Multiplication of zero by infinity */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); | 
|  | } else { | 
|  | if (unlikely(float64_is_signaling_nan(farg1.d) || | 
|  | float64_is_signaling_nan(farg2.d) || | 
|  | float64_is_signaling_nan(farg3.d))) { | 
|  | /* sNaN operation */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | /* This is the way the PowerPC specification defines it */ | 
|  | float128 ft0_128, ft1_128; | 
|  |  | 
|  | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | 
|  | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | 
|  | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | 
|  | if (unlikely(float128_is_infinity(ft0_128) && | 
|  | float64_is_infinity(farg3.d) && | 
|  | float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { | 
|  | /* Magnitude subtraction of infinities */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); | 
|  | } else { | 
|  | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | 
|  | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | 
|  | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | 
|  | } | 
|  | } | 
|  |  | 
|  | return farg1.ll; | 
|  | } | 
|  |  | 
|  | /* fmsub - fmsub. */ | 
|  | uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2, | 
|  | uint64_t arg3) | 
|  | { | 
|  | CPU_DoubleU farg1, farg2, farg3; | 
|  |  | 
|  | farg1.ll = arg1; | 
|  | farg2.ll = arg2; | 
|  | farg3.ll = arg3; | 
|  |  | 
|  | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | 
|  | (float64_is_zero(farg1.d) && | 
|  | float64_is_infinity(farg2.d)))) { | 
|  | /* Multiplication of zero by infinity */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); | 
|  | } else { | 
|  | if (unlikely(float64_is_signaling_nan(farg1.d) || | 
|  | float64_is_signaling_nan(farg2.d) || | 
|  | float64_is_signaling_nan(farg3.d))) { | 
|  | /* sNaN operation */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | /* This is the way the PowerPC specification defines it */ | 
|  | float128 ft0_128, ft1_128; | 
|  |  | 
|  | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | 
|  | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | 
|  | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | 
|  | if (unlikely(float128_is_infinity(ft0_128) && | 
|  | float64_is_infinity(farg3.d) && | 
|  | float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { | 
|  | /* Magnitude subtraction of infinities */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); | 
|  | } else { | 
|  | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | 
|  | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | 
|  | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | 
|  | } | 
|  | } | 
|  | return farg1.ll; | 
|  | } | 
|  |  | 
|  | /* fnmadd - fnmadd. */ | 
|  | uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2, | 
|  | uint64_t arg3) | 
|  | { | 
|  | CPU_DoubleU farg1, farg2, farg3; | 
|  |  | 
|  | farg1.ll = arg1; | 
|  | farg2.ll = arg2; | 
|  | farg3.ll = arg3; | 
|  |  | 
|  | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | 
|  | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | 
|  | /* Multiplication of zero by infinity */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); | 
|  | } else { | 
|  | if (unlikely(float64_is_signaling_nan(farg1.d) || | 
|  | float64_is_signaling_nan(farg2.d) || | 
|  | float64_is_signaling_nan(farg3.d))) { | 
|  | /* sNaN operation */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | /* This is the way the PowerPC specification defines it */ | 
|  | float128 ft0_128, ft1_128; | 
|  |  | 
|  | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | 
|  | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | 
|  | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | 
|  | if (unlikely(float128_is_infinity(ft0_128) && | 
|  | float64_is_infinity(farg3.d) && | 
|  | float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { | 
|  | /* Magnitude subtraction of infinities */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); | 
|  | } else { | 
|  | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | 
|  | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | 
|  | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | 
|  | } | 
|  | if (likely(!float64_is_any_nan(farg1.d))) { | 
|  | farg1.d = float64_chs(farg1.d); | 
|  | } | 
|  | } | 
|  | return farg1.ll; | 
|  | } | 
|  |  | 
|  | /* fnmsub - fnmsub. */ | 
|  | uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2, | 
|  | uint64_t arg3) | 
|  | { | 
|  | CPU_DoubleU farg1, farg2, farg3; | 
|  |  | 
|  | farg1.ll = arg1; | 
|  | farg2.ll = arg2; | 
|  | farg3.ll = arg3; | 
|  |  | 
|  | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | 
|  | (float64_is_zero(farg1.d) && | 
|  | float64_is_infinity(farg2.d)))) { | 
|  | /* Multiplication of zero by infinity */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); | 
|  | } else { | 
|  | if (unlikely(float64_is_signaling_nan(farg1.d) || | 
|  | float64_is_signaling_nan(farg2.d) || | 
|  | float64_is_signaling_nan(farg3.d))) { | 
|  | /* sNaN operation */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | /* This is the way the PowerPC specification defines it */ | 
|  | float128 ft0_128, ft1_128; | 
|  |  | 
|  | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | 
|  | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | 
|  | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | 
|  | if (unlikely(float128_is_infinity(ft0_128) && | 
|  | float64_is_infinity(farg3.d) && | 
|  | float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { | 
|  | /* Magnitude subtraction of infinities */ | 
|  | farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); | 
|  | } else { | 
|  | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | 
|  | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | 
|  | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | 
|  | } | 
|  | if (likely(!float64_is_any_nan(farg1.d))) { | 
|  | farg1.d = float64_chs(farg1.d); | 
|  | } | 
|  | } | 
|  | return farg1.ll; | 
|  | } | 
|  |  | 
|  | /* frsp - frsp. */ | 
|  | uint64_t helper_frsp(CPUPPCState *env, uint64_t arg) | 
|  | { | 
|  | CPU_DoubleU farg; | 
|  | float32 f32; | 
|  |  | 
|  | farg.ll = arg; | 
|  |  | 
|  | if (unlikely(float64_is_signaling_nan(farg.d))) { | 
|  | /* sNaN square root */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | f32 = float64_to_float32(farg.d, &env->fp_status); | 
|  | farg.d = float32_to_float64(f32, &env->fp_status); | 
|  |  | 
|  | return farg.ll; | 
|  | } | 
|  |  | 
|  | /* fsqrt - fsqrt. */ | 
|  | uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg) | 
|  | { | 
|  | CPU_DoubleU farg; | 
|  |  | 
|  | farg.ll = arg; | 
|  |  | 
|  | if (unlikely(float64_is_any_nan(farg.d))) { | 
|  | if (unlikely(float64_is_signaling_nan(farg.d))) { | 
|  | /* sNaN reciprocal square root */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | farg.ll = float64_snan_to_qnan(farg.ll); | 
|  | } | 
|  | } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { | 
|  | /* Square root of a negative nonzero number */ | 
|  | farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1); | 
|  | } else { | 
|  | farg.d = float64_sqrt(farg.d, &env->fp_status); | 
|  | } | 
|  | return farg.ll; | 
|  | } | 
|  |  | 
|  | /* fre - fre. */ | 
|  | uint64_t helper_fre(CPUPPCState *env, uint64_t arg) | 
|  | { | 
|  | CPU_DoubleU farg; | 
|  |  | 
|  | farg.ll = arg; | 
|  |  | 
|  | if (unlikely(float64_is_signaling_nan(farg.d))) { | 
|  | /* sNaN reciprocal */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | farg.d = float64_div(float64_one, farg.d, &env->fp_status); | 
|  | return farg.d; | 
|  | } | 
|  |  | 
|  | /* fres - fres. */ | 
|  | uint64_t helper_fres(CPUPPCState *env, uint64_t arg) | 
|  | { | 
|  | CPU_DoubleU farg; | 
|  | float32 f32; | 
|  |  | 
|  | farg.ll = arg; | 
|  |  | 
|  | if (unlikely(float64_is_signaling_nan(farg.d))) { | 
|  | /* sNaN reciprocal */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | farg.d = float64_div(float64_one, farg.d, &env->fp_status); | 
|  | f32 = float64_to_float32(farg.d, &env->fp_status); | 
|  | farg.d = float32_to_float64(f32, &env->fp_status); | 
|  |  | 
|  | return farg.ll; | 
|  | } | 
|  |  | 
|  | /* frsqrte  - frsqrte. */ | 
|  | uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg) | 
|  | { | 
|  | CPU_DoubleU farg; | 
|  |  | 
|  | farg.ll = arg; | 
|  |  | 
|  | if (unlikely(float64_is_any_nan(farg.d))) { | 
|  | if (unlikely(float64_is_signaling_nan(farg.d))) { | 
|  | /* sNaN reciprocal square root */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | farg.ll = float64_snan_to_qnan(farg.ll); | 
|  | } | 
|  | } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { | 
|  | /* Reciprocal square root of a negative nonzero number */ | 
|  | farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1); | 
|  | } else { | 
|  | farg.d = float64_sqrt(farg.d, &env->fp_status); | 
|  | farg.d = float64_div(float64_one, farg.d, &env->fp_status); | 
|  | } | 
|  |  | 
|  | return farg.ll; | 
|  | } | 
|  |  | 
|  | /* fsel - fsel. */ | 
|  | uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2, | 
|  | uint64_t arg3) | 
|  | { | 
|  | CPU_DoubleU farg1; | 
|  |  | 
|  | farg1.ll = arg1; | 
|  |  | 
|  | if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && | 
|  | !float64_is_any_nan(farg1.d)) { | 
|  | return arg2; | 
|  | } else { | 
|  | return arg3; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t helper_ftdiv(uint64_t fra, uint64_t frb) | 
|  | { | 
|  | int fe_flag = 0; | 
|  | int fg_flag = 0; | 
|  |  | 
|  | if (unlikely(float64_is_infinity(fra) || | 
|  | float64_is_infinity(frb) || | 
|  | float64_is_zero(frb))) { | 
|  | fe_flag = 1; | 
|  | fg_flag = 1; | 
|  | } else { | 
|  | int e_a = ppc_float64_get_unbiased_exp(fra); | 
|  | int e_b = ppc_float64_get_unbiased_exp(frb); | 
|  |  | 
|  | if (unlikely(float64_is_any_nan(fra) || | 
|  | float64_is_any_nan(frb))) { | 
|  | fe_flag = 1; | 
|  | } else if ((e_b <= -1022) || (e_b >= 1021)) { | 
|  | fe_flag = 1; | 
|  | } else if (!float64_is_zero(fra) && | 
|  | (((e_a - e_b) >= 1023) || | 
|  | ((e_a - e_b) <= -1021) || | 
|  | (e_a <= -970))) { | 
|  | fe_flag = 1; | 
|  | } | 
|  |  | 
|  | if (unlikely(float64_is_zero_or_denormal(frb))) { | 
|  | /* XB is not zero because of the above check and */ | 
|  | /* so must be denormalized.                      */ | 
|  | fg_flag = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); | 
|  | } | 
|  |  | 
|  | uint32_t helper_ftsqrt(uint64_t frb) | 
|  | { | 
|  | int fe_flag = 0; | 
|  | int fg_flag = 0; | 
|  |  | 
|  | if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) { | 
|  | fe_flag = 1; | 
|  | fg_flag = 1; | 
|  | } else { | 
|  | int e_b = ppc_float64_get_unbiased_exp(frb); | 
|  |  | 
|  | if (unlikely(float64_is_any_nan(frb))) { | 
|  | fe_flag = 1; | 
|  | } else if (unlikely(float64_is_zero(frb))) { | 
|  | fe_flag = 1; | 
|  | } else if (unlikely(float64_is_neg(frb))) { | 
|  | fe_flag = 1; | 
|  | } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) { | 
|  | fe_flag = 1; | 
|  | } | 
|  |  | 
|  | if (unlikely(float64_is_zero_or_denormal(frb))) { | 
|  | /* XB is not zero because of the above check and */ | 
|  | /* therefore must be denormalized.               */ | 
|  | fg_flag = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); | 
|  | } | 
|  |  | 
|  | void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2, | 
|  | uint32_t crfD) | 
|  | { | 
|  | CPU_DoubleU farg1, farg2; | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | farg1.ll = arg1; | 
|  | farg2.ll = arg2; | 
|  |  | 
|  | if (unlikely(float64_is_any_nan(farg1.d) || | 
|  | float64_is_any_nan(farg2.d))) { | 
|  | ret = 0x01UL; | 
|  | } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { | 
|  | ret = 0x08UL; | 
|  | } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { | 
|  | ret = 0x04UL; | 
|  | } else { | 
|  | ret = 0x02UL; | 
|  | } | 
|  |  | 
|  | env->fpscr &= ~(0x0F << FPSCR_FPRF); | 
|  | env->fpscr |= ret << FPSCR_FPRF; | 
|  | env->crf[crfD] = ret; | 
|  | if (unlikely(ret == 0x01UL | 
|  | && (float64_is_signaling_nan(farg1.d) || | 
|  | float64_is_signaling_nan(farg2.d)))) { | 
|  | /* sNaN comparison */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2, | 
|  | uint32_t crfD) | 
|  | { | 
|  | CPU_DoubleU farg1, farg2; | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | farg1.ll = arg1; | 
|  | farg2.ll = arg2; | 
|  |  | 
|  | if (unlikely(float64_is_any_nan(farg1.d) || | 
|  | float64_is_any_nan(farg2.d))) { | 
|  | ret = 0x01UL; | 
|  | } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { | 
|  | ret = 0x08UL; | 
|  | } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { | 
|  | ret = 0x04UL; | 
|  | } else { | 
|  | ret = 0x02UL; | 
|  | } | 
|  |  | 
|  | env->fpscr &= ~(0x0F << FPSCR_FPRF); | 
|  | env->fpscr |= ret << FPSCR_FPRF; | 
|  | env->crf[crfD] = ret; | 
|  | if (unlikely(ret == 0x01UL)) { | 
|  | if (float64_is_signaling_nan(farg1.d) || | 
|  | float64_is_signaling_nan(farg2.d)) { | 
|  | /* sNaN comparison */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN | | 
|  | POWERPC_EXCP_FP_VXVC, 1); | 
|  | } else { | 
|  | /* qNaN comparison */ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Single-precision floating-point conversions */ | 
|  | static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_FloatU u; | 
|  |  | 
|  | u.f = int32_to_float32(val, &env->vec_status); | 
|  |  | 
|  | return u.l; | 
|  | } | 
|  |  | 
|  | static inline uint32_t efscfui(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_FloatU u; | 
|  |  | 
|  | u.f = uint32_to_float32(val, &env->vec_status); | 
|  |  | 
|  | return u.l; | 
|  | } | 
|  |  | 
|  | static inline int32_t efsctsi(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_FloatU u; | 
|  |  | 
|  | u.l = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float32_is_quiet_nan(u.f))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return float32_to_int32(u.f, &env->vec_status); | 
|  | } | 
|  |  | 
|  | static inline uint32_t efsctui(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_FloatU u; | 
|  |  | 
|  | u.l = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float32_is_quiet_nan(u.f))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return float32_to_uint32(u.f, &env->vec_status); | 
|  | } | 
|  |  | 
|  | static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_FloatU u; | 
|  |  | 
|  | u.l = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float32_is_quiet_nan(u.f))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return float32_to_int32_round_to_zero(u.f, &env->vec_status); | 
|  | } | 
|  |  | 
|  | static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_FloatU u; | 
|  |  | 
|  | u.l = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float32_is_quiet_nan(u.f))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return float32_to_uint32_round_to_zero(u.f, &env->vec_status); | 
|  | } | 
|  |  | 
|  | static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_FloatU u; | 
|  | float32 tmp; | 
|  |  | 
|  | u.f = int32_to_float32(val, &env->vec_status); | 
|  | tmp = int64_to_float32(1ULL << 32, &env->vec_status); | 
|  | u.f = float32_div(u.f, tmp, &env->vec_status); | 
|  |  | 
|  | return u.l; | 
|  | } | 
|  |  | 
|  | static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_FloatU u; | 
|  | float32 tmp; | 
|  |  | 
|  | u.f = uint32_to_float32(val, &env->vec_status); | 
|  | tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | 
|  | u.f = float32_div(u.f, tmp, &env->vec_status); | 
|  |  | 
|  | return u.l; | 
|  | } | 
|  |  | 
|  | static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_FloatU u; | 
|  | float32 tmp; | 
|  |  | 
|  | u.l = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float32_is_quiet_nan(u.f))) { | 
|  | return 0; | 
|  | } | 
|  | tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | 
|  | u.f = float32_mul(u.f, tmp, &env->vec_status); | 
|  |  | 
|  | return float32_to_int32(u.f, &env->vec_status); | 
|  | } | 
|  |  | 
|  | static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_FloatU u; | 
|  | float32 tmp; | 
|  |  | 
|  | u.l = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float32_is_quiet_nan(u.f))) { | 
|  | return 0; | 
|  | } | 
|  | tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | 
|  | u.f = float32_mul(u.f, tmp, &env->vec_status); | 
|  |  | 
|  | return float32_to_uint32(u.f, &env->vec_status); | 
|  | } | 
|  |  | 
|  | #define HELPER_SPE_SINGLE_CONV(name)                              \ | 
|  | uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \ | 
|  | {                                                             \ | 
|  | return e##name(env, val);                                 \ | 
|  | } | 
|  | /* efscfsi */ | 
|  | HELPER_SPE_SINGLE_CONV(fscfsi); | 
|  | /* efscfui */ | 
|  | HELPER_SPE_SINGLE_CONV(fscfui); | 
|  | /* efscfuf */ | 
|  | HELPER_SPE_SINGLE_CONV(fscfuf); | 
|  | /* efscfsf */ | 
|  | HELPER_SPE_SINGLE_CONV(fscfsf); | 
|  | /* efsctsi */ | 
|  | HELPER_SPE_SINGLE_CONV(fsctsi); | 
|  | /* efsctui */ | 
|  | HELPER_SPE_SINGLE_CONV(fsctui); | 
|  | /* efsctsiz */ | 
|  | HELPER_SPE_SINGLE_CONV(fsctsiz); | 
|  | /* efsctuiz */ | 
|  | HELPER_SPE_SINGLE_CONV(fsctuiz); | 
|  | /* efsctsf */ | 
|  | HELPER_SPE_SINGLE_CONV(fsctsf); | 
|  | /* efsctuf */ | 
|  | HELPER_SPE_SINGLE_CONV(fsctuf); | 
|  |  | 
|  | #define HELPER_SPE_VECTOR_CONV(name)                            \ | 
|  | uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \ | 
|  | {                                                           \ | 
|  | return ((uint64_t)e##name(env, val >> 32) << 32) |      \ | 
|  | (uint64_t)e##name(env, val);                        \ | 
|  | } | 
|  | /* evfscfsi */ | 
|  | HELPER_SPE_VECTOR_CONV(fscfsi); | 
|  | /* evfscfui */ | 
|  | HELPER_SPE_VECTOR_CONV(fscfui); | 
|  | /* evfscfuf */ | 
|  | HELPER_SPE_VECTOR_CONV(fscfuf); | 
|  | /* evfscfsf */ | 
|  | HELPER_SPE_VECTOR_CONV(fscfsf); | 
|  | /* evfsctsi */ | 
|  | HELPER_SPE_VECTOR_CONV(fsctsi); | 
|  | /* evfsctui */ | 
|  | HELPER_SPE_VECTOR_CONV(fsctui); | 
|  | /* evfsctsiz */ | 
|  | HELPER_SPE_VECTOR_CONV(fsctsiz); | 
|  | /* evfsctuiz */ | 
|  | HELPER_SPE_VECTOR_CONV(fsctuiz); | 
|  | /* evfsctsf */ | 
|  | HELPER_SPE_VECTOR_CONV(fsctsf); | 
|  | /* evfsctuf */ | 
|  | HELPER_SPE_VECTOR_CONV(fsctuf); | 
|  |  | 
|  | /* Single-precision floating-point arithmetic */ | 
|  | static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
|  | { | 
|  | CPU_FloatU u1, u2; | 
|  |  | 
|  | u1.l = op1; | 
|  | u2.l = op2; | 
|  | u1.f = float32_add(u1.f, u2.f, &env->vec_status); | 
|  | return u1.l; | 
|  | } | 
|  |  | 
|  | static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
|  | { | 
|  | CPU_FloatU u1, u2; | 
|  |  | 
|  | u1.l = op1; | 
|  | u2.l = op2; | 
|  | u1.f = float32_sub(u1.f, u2.f, &env->vec_status); | 
|  | return u1.l; | 
|  | } | 
|  |  | 
|  | static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
|  | { | 
|  | CPU_FloatU u1, u2; | 
|  |  | 
|  | u1.l = op1; | 
|  | u2.l = op2; | 
|  | u1.f = float32_mul(u1.f, u2.f, &env->vec_status); | 
|  | return u1.l; | 
|  | } | 
|  |  | 
|  | static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
|  | { | 
|  | CPU_FloatU u1, u2; | 
|  |  | 
|  | u1.l = op1; | 
|  | u2.l = op2; | 
|  | u1.f = float32_div(u1.f, u2.f, &env->vec_status); | 
|  | return u1.l; | 
|  | } | 
|  |  | 
|  | #define HELPER_SPE_SINGLE_ARITH(name)                                   \ | 
|  | uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ | 
|  | {                                                                   \ | 
|  | return e##name(env, op1, op2);                                  \ | 
|  | } | 
|  | /* efsadd */ | 
|  | HELPER_SPE_SINGLE_ARITH(fsadd); | 
|  | /* efssub */ | 
|  | HELPER_SPE_SINGLE_ARITH(fssub); | 
|  | /* efsmul */ | 
|  | HELPER_SPE_SINGLE_ARITH(fsmul); | 
|  | /* efsdiv */ | 
|  | HELPER_SPE_SINGLE_ARITH(fsdiv); | 
|  |  | 
|  | #define HELPER_SPE_VECTOR_ARITH(name)                                   \ | 
|  | uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ | 
|  | {                                                                   \ | 
|  | return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \ | 
|  | (uint64_t)e##name(env, op1, op2);                           \ | 
|  | } | 
|  | /* evfsadd */ | 
|  | HELPER_SPE_VECTOR_ARITH(fsadd); | 
|  | /* evfssub */ | 
|  | HELPER_SPE_VECTOR_ARITH(fssub); | 
|  | /* evfsmul */ | 
|  | HELPER_SPE_VECTOR_ARITH(fsmul); | 
|  | /* evfsdiv */ | 
|  | HELPER_SPE_VECTOR_ARITH(fsdiv); | 
|  |  | 
|  | /* Single-precision floating-point comparisons */ | 
|  | static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
|  | { | 
|  | CPU_FloatU u1, u2; | 
|  |  | 
|  | u1.l = op1; | 
|  | u2.l = op2; | 
|  | return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; | 
|  | } | 
|  |  | 
|  | static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
|  | { | 
|  | CPU_FloatU u1, u2; | 
|  |  | 
|  | u1.l = op1; | 
|  | u2.l = op2; | 
|  | return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; | 
|  | } | 
|  |  | 
|  | static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
|  | { | 
|  | CPU_FloatU u1, u2; | 
|  |  | 
|  | u1.l = op1; | 
|  | u2.l = op2; | 
|  | return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; | 
|  | } | 
|  |  | 
|  | static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
|  | { | 
|  | /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | 
|  | return efscmplt(env, op1, op2); | 
|  | } | 
|  |  | 
|  | static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
|  | { | 
|  | /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | 
|  | return efscmpgt(env, op1, op2); | 
|  | } | 
|  |  | 
|  | static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
|  | { | 
|  | /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | 
|  | return efscmpeq(env, op1, op2); | 
|  | } | 
|  |  | 
|  | #define HELPER_SINGLE_SPE_CMP(name)                                     \ | 
|  | uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ | 
|  | {                                                                   \ | 
|  | return e##name(env, op1, op2) << 2;                             \ | 
|  | } | 
|  | /* efststlt */ | 
|  | HELPER_SINGLE_SPE_CMP(fststlt); | 
|  | /* efststgt */ | 
|  | HELPER_SINGLE_SPE_CMP(fststgt); | 
|  | /* efststeq */ | 
|  | HELPER_SINGLE_SPE_CMP(fststeq); | 
|  | /* efscmplt */ | 
|  | HELPER_SINGLE_SPE_CMP(fscmplt); | 
|  | /* efscmpgt */ | 
|  | HELPER_SINGLE_SPE_CMP(fscmpgt); | 
|  | /* efscmpeq */ | 
|  | HELPER_SINGLE_SPE_CMP(fscmpeq); | 
|  |  | 
|  | static inline uint32_t evcmp_merge(int t0, int t1) | 
|  | { | 
|  | return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); | 
|  | } | 
|  |  | 
|  | #define HELPER_VECTOR_SPE_CMP(name)                                     \ | 
|  | uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ | 
|  | {                                                                   \ | 
|  | return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \ | 
|  | e##name(env, op1, op2));                     \ | 
|  | } | 
|  | /* evfststlt */ | 
|  | HELPER_VECTOR_SPE_CMP(fststlt); | 
|  | /* evfststgt */ | 
|  | HELPER_VECTOR_SPE_CMP(fststgt); | 
|  | /* evfststeq */ | 
|  | HELPER_VECTOR_SPE_CMP(fststeq); | 
|  | /* evfscmplt */ | 
|  | HELPER_VECTOR_SPE_CMP(fscmplt); | 
|  | /* evfscmpgt */ | 
|  | HELPER_VECTOR_SPE_CMP(fscmpgt); | 
|  | /* evfscmpeq */ | 
|  | HELPER_VECTOR_SPE_CMP(fscmpeq); | 
|  |  | 
|  | /* Double-precision floating-point conversion */ | 
|  | uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  |  | 
|  | u.d = int32_to_float64(val, &env->vec_status); | 
|  |  | 
|  | return u.ll; | 
|  | } | 
|  |  | 
|  | uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  |  | 
|  | u.d = int64_to_float64(val, &env->vec_status); | 
|  |  | 
|  | return u.ll; | 
|  | } | 
|  |  | 
|  | uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  |  | 
|  | u.d = uint32_to_float64(val, &env->vec_status); | 
|  |  | 
|  | return u.ll; | 
|  | } | 
|  |  | 
|  | uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  |  | 
|  | u.d = uint64_to_float64(val, &env->vec_status); | 
|  |  | 
|  | return u.ll; | 
|  | } | 
|  |  | 
|  | uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  |  | 
|  | u.ll = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float64_is_any_nan(u.d))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return float64_to_int32(u.d, &env->vec_status); | 
|  | } | 
|  |  | 
|  | uint32_t helper_efdctui(CPUPPCState *env, uint64_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  |  | 
|  | u.ll = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float64_is_any_nan(u.d))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return float64_to_uint32(u.d, &env->vec_status); | 
|  | } | 
|  |  | 
|  | uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  |  | 
|  | u.ll = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float64_is_any_nan(u.d))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return float64_to_int32_round_to_zero(u.d, &env->vec_status); | 
|  | } | 
|  |  | 
|  | uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  |  | 
|  | u.ll = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float64_is_any_nan(u.d))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return float64_to_int64_round_to_zero(u.d, &env->vec_status); | 
|  | } | 
|  |  | 
|  | uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  |  | 
|  | u.ll = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float64_is_any_nan(u.d))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return float64_to_uint32_round_to_zero(u.d, &env->vec_status); | 
|  | } | 
|  |  | 
|  | uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  |  | 
|  | u.ll = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float64_is_any_nan(u.d))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return float64_to_uint64_round_to_zero(u.d, &env->vec_status); | 
|  | } | 
|  |  | 
|  | uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  | float64 tmp; | 
|  |  | 
|  | u.d = int32_to_float64(val, &env->vec_status); | 
|  | tmp = int64_to_float64(1ULL << 32, &env->vec_status); | 
|  | u.d = float64_div(u.d, tmp, &env->vec_status); | 
|  |  | 
|  | return u.ll; | 
|  | } | 
|  |  | 
|  | uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  | float64 tmp; | 
|  |  | 
|  | u.d = uint32_to_float64(val, &env->vec_status); | 
|  | tmp = int64_to_float64(1ULL << 32, &env->vec_status); | 
|  | u.d = float64_div(u.d, tmp, &env->vec_status); | 
|  |  | 
|  | return u.ll; | 
|  | } | 
|  |  | 
|  | uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  | float64 tmp; | 
|  |  | 
|  | u.ll = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float64_is_any_nan(u.d))) { | 
|  | return 0; | 
|  | } | 
|  | tmp = uint64_to_float64(1ULL << 32, &env->vec_status); | 
|  | u.d = float64_mul(u.d, tmp, &env->vec_status); | 
|  |  | 
|  | return float64_to_int32(u.d, &env->vec_status); | 
|  | } | 
|  |  | 
|  | uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  | float64 tmp; | 
|  |  | 
|  | u.ll = val; | 
|  | /* NaN are not treated the same way IEEE 754 does */ | 
|  | if (unlikely(float64_is_any_nan(u.d))) { | 
|  | return 0; | 
|  | } | 
|  | tmp = uint64_to_float64(1ULL << 32, &env->vec_status); | 
|  | u.d = float64_mul(u.d, tmp, &env->vec_status); | 
|  |  | 
|  | return float64_to_uint32(u.d, &env->vec_status); | 
|  | } | 
|  |  | 
|  | uint32_t helper_efscfd(CPUPPCState *env, uint64_t val) | 
|  | { | 
|  | CPU_DoubleU u1; | 
|  | CPU_FloatU u2; | 
|  |  | 
|  | u1.ll = val; | 
|  | u2.f = float64_to_float32(u1.d, &env->vec_status); | 
|  |  | 
|  | return u2.l; | 
|  | } | 
|  |  | 
|  | uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val) | 
|  | { | 
|  | CPU_DoubleU u2; | 
|  | CPU_FloatU u1; | 
|  |  | 
|  | u1.l = val; | 
|  | u2.d = float32_to_float64(u1.f, &env->vec_status); | 
|  |  | 
|  | return u2.ll; | 
|  | } | 
|  |  | 
|  | /* Double precision fixed-point arithmetic */ | 
|  | uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
|  | { | 
|  | CPU_DoubleU u1, u2; | 
|  |  | 
|  | u1.ll = op1; | 
|  | u2.ll = op2; | 
|  | u1.d = float64_add(u1.d, u2.d, &env->vec_status); | 
|  | return u1.ll; | 
|  | } | 
|  |  | 
|  | uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
|  | { | 
|  | CPU_DoubleU u1, u2; | 
|  |  | 
|  | u1.ll = op1; | 
|  | u2.ll = op2; | 
|  | u1.d = float64_sub(u1.d, u2.d, &env->vec_status); | 
|  | return u1.ll; | 
|  | } | 
|  |  | 
|  | uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
|  | { | 
|  | CPU_DoubleU u1, u2; | 
|  |  | 
|  | u1.ll = op1; | 
|  | u2.ll = op2; | 
|  | u1.d = float64_mul(u1.d, u2.d, &env->vec_status); | 
|  | return u1.ll; | 
|  | } | 
|  |  | 
|  | uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
|  | { | 
|  | CPU_DoubleU u1, u2; | 
|  |  | 
|  | u1.ll = op1; | 
|  | u2.ll = op2; | 
|  | u1.d = float64_div(u1.d, u2.d, &env->vec_status); | 
|  | return u1.ll; | 
|  | } | 
|  |  | 
|  | /* Double precision floating point helpers */ | 
|  | uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
|  | { | 
|  | CPU_DoubleU u1, u2; | 
|  |  | 
|  | u1.ll = op1; | 
|  | u2.ll = op2; | 
|  | return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; | 
|  | } | 
|  |  | 
|  | uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
|  | { | 
|  | CPU_DoubleU u1, u2; | 
|  |  | 
|  | u1.ll = op1; | 
|  | u2.ll = op2; | 
|  | return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; | 
|  | } | 
|  |  | 
|  | uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
|  | { | 
|  | CPU_DoubleU u1, u2; | 
|  |  | 
|  | u1.ll = op1; | 
|  | u2.ll = op2; | 
|  | return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0; | 
|  | } | 
|  |  | 
|  | uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
|  | { | 
|  | /* XXX: TODO: test special values (NaN, infinites, ...) */ | 
|  | return helper_efdtstlt(env, op1, op2); | 
|  | } | 
|  |  | 
|  | uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
|  | { | 
|  | /* XXX: TODO: test special values (NaN, infinites, ...) */ | 
|  | return helper_efdtstgt(env, op1, op2); | 
|  | } | 
|  |  | 
|  | uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
|  | { | 
|  | /* XXX: TODO: test special values (NaN, infinites, ...) */ | 
|  | return helper_efdtsteq(env, op1, op2); | 
|  | } | 
|  |  | 
|  | #define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \ | 
|  | (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) |    \ | 
|  | (((opcode) >> (shift2)) & ((1 << (nb2)) - 1))) | 
|  |  | 
|  | #define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5) | 
|  | #define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5) | 
|  | #define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5) | 
|  | #define xC(opcode) DECODE_SPLIT(opcode, 3, 1,  6, 5) | 
|  | #define BF(opcode) (((opcode) >> (31-8)) & 7) | 
|  |  | 
|  | typedef union _ppc_vsr_t { | 
|  | uint64_t u64[2]; | 
|  | uint32_t u32[4]; | 
|  | float32 f32[4]; | 
|  | float64 f64[2]; | 
|  | } ppc_vsr_t; | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | #define VsrW(i) u32[i] | 
|  | #define VsrD(i) u64[i] | 
|  | #else | 
|  | #define VsrW(i) u32[3-(i)] | 
|  | #define VsrD(i) u64[1-(i)] | 
|  | #endif | 
|  |  | 
|  | static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env) | 
|  | { | 
|  | if (n < 32) { | 
|  | vsr->VsrD(0) = env->fpr[n]; | 
|  | vsr->VsrD(1) = env->vsr[n]; | 
|  | } else { | 
|  | vsr->u64[0] = env->avr[n-32].u64[0]; | 
|  | vsr->u64[1] = env->avr[n-32].u64[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env) | 
|  | { | 
|  | if (n < 32) { | 
|  | env->fpr[n] = vsr->VsrD(0); | 
|  | env->vsr[n] = vsr->VsrD(1); | 
|  | } else { | 
|  | env->avr[n-32].u64[0] = vsr->u64[0]; | 
|  | env->avr[n-32].u64[1] = vsr->u64[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define float64_to_float64(x, env) x | 
|  |  | 
|  |  | 
|  | /* VSX_ADD_SUB - VSX floating point add/subract | 
|  | *   name  - instruction mnemonic | 
|  | *   op    - operation (add or sub) | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | *   sfprf - set FPRF | 
|  | */ | 
|  | #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \ | 
|  | void helper_##name(CPUPPCState *env, uint32_t opcode)                        \ | 
|  | {                                                                            \ | 
|  | ppc_vsr_t xt, xa, xb;                                                    \ | 
|  | int i;                                                                   \ | 
|  | \ | 
|  | getVSR(xA(opcode), &xa, env);                                            \ | 
|  | getVSR(xB(opcode), &xb, env);                                            \ | 
|  | getVSR(xT(opcode), &xt, env);                                            \ | 
|  | helper_reset_fpstatus(env);                                              \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                             \ | 
|  | float_status tstat = env->fp_status;                                 \ | 
|  | set_float_exception_flags(0, &tstat);                                \ | 
|  | xt.fld = tp##_##op(xa.fld, xb.fld, &tstat);                          \ | 
|  | env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ | 
|  | \ | 
|  | if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \ | 
|  | if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {      \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);    \ | 
|  | } else if (tp##_is_signaling_nan(xa.fld) ||                      \ | 
|  | tp##_is_signaling_nan(xb.fld)) {                      \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \ | 
|  | }                                                                \ | 
|  | }                                                                    \ | 
|  | \ | 
|  | if (r2sp) {                                                          \ | 
|  | xt.fld = helper_frsp(env, xt.fld);                               \ | 
|  | }                                                                    \ | 
|  | \ | 
|  | if (sfprf) {                                                         \ | 
|  | helper_compute_fprf(env, xt.fld);                                \ | 
|  | }                                                                    \ | 
|  | }                                                                        \ | 
|  | putVSR(xT(opcode), &xt, env);                                            \ | 
|  | helper_float_check_status(env);                                          \ | 
|  | } | 
|  |  | 
|  | VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0) | 
|  | VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1) | 
|  | VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0) | 
|  | VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0) | 
|  | VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0) | 
|  | VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1) | 
|  | VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0) | 
|  | VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0) | 
|  |  | 
|  | /* VSX_MUL - VSX floating point multiply | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | *   sfprf - set FPRF | 
|  | */ | 
|  | #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                          \ | 
|  | {                                                                            \ | 
|  | ppc_vsr_t xt, xa, xb;                                                    \ | 
|  | int i;                                                                   \ | 
|  | \ | 
|  | getVSR(xA(opcode), &xa, env);                                            \ | 
|  | getVSR(xB(opcode), &xb, env);                                            \ | 
|  | getVSR(xT(opcode), &xt, env);                                            \ | 
|  | helper_reset_fpstatus(env);                                              \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                             \ | 
|  | float_status tstat = env->fp_status;                                 \ | 
|  | set_float_exception_flags(0, &tstat);                                \ | 
|  | xt.fld = tp##_mul(xa.fld, xb.fld, &tstat);                           \ | 
|  | env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ | 
|  | \ | 
|  | if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \ | 
|  | if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) ||        \ | 
|  | (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) {        \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf);    \ | 
|  | } else if (tp##_is_signaling_nan(xa.fld) ||                      \ | 
|  | tp##_is_signaling_nan(xb.fld)) {                      \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \ | 
|  | }                                                                \ | 
|  | }                                                                    \ | 
|  | \ | 
|  | if (r2sp) {                                                          \ | 
|  | xt.fld = helper_frsp(env, xt.fld);                               \ | 
|  | }                                                                    \ | 
|  | \ | 
|  | if (sfprf) {                                                         \ | 
|  | helper_compute_fprf(env, xt.fld);                                \ | 
|  | }                                                                    \ | 
|  | }                                                                        \ | 
|  | \ | 
|  | putVSR(xT(opcode), &xt, env);                                            \ | 
|  | helper_float_check_status(env);                                          \ | 
|  | } | 
|  |  | 
|  | VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0) | 
|  | VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1) | 
|  | VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0) | 
|  | VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0) | 
|  |  | 
|  | /* VSX_DIV - VSX floating point divide | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | *   sfprf - set FPRF | 
|  | */ | 
|  | #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                           \ | 
|  | {                                                                             \ | 
|  | ppc_vsr_t xt, xa, xb;                                                     \ | 
|  | int i;                                                                    \ | 
|  | \ | 
|  | getVSR(xA(opcode), &xa, env);                                             \ | 
|  | getVSR(xB(opcode), &xb, env);                                             \ | 
|  | getVSR(xT(opcode), &xt, env);                                             \ | 
|  | helper_reset_fpstatus(env);                                               \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                              \ | 
|  | float_status tstat = env->fp_status;                                  \ | 
|  | set_float_exception_flags(0, &tstat);                                 \ | 
|  | xt.fld = tp##_div(xa.fld, xb.fld, &tstat);                            \ | 
|  | env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \ | 
|  | \ | 
|  | if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \ | 
|  | if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {       \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf);     \ | 
|  | } else if (tp##_is_zero(xa.fld) &&                                \ | 
|  | tp##_is_zero(xb.fld)) {                                       \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf);     \ | 
|  | } else if (tp##_is_signaling_nan(xa.fld) ||                       \ | 
|  | tp##_is_signaling_nan(xb.fld)) {                              \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \ | 
|  | }                                                                 \ | 
|  | }                                                                     \ | 
|  | \ | 
|  | if (r2sp) {                                                           \ | 
|  | xt.fld = helper_frsp(env, xt.fld);                                \ | 
|  | }                                                                     \ | 
|  | \ | 
|  | if (sfprf) {                                                          \ | 
|  | helper_compute_fprf(env, xt.fld);                                 \ | 
|  | }                                                                     \ | 
|  | }                                                                         \ | 
|  | \ | 
|  | putVSR(xT(opcode), &xt, env);                                             \ | 
|  | helper_float_check_status(env);                                           \ | 
|  | } | 
|  |  | 
|  | VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0) | 
|  | VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1) | 
|  | VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0) | 
|  | VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0) | 
|  |  | 
|  | /* VSX_RE  - VSX floating point reciprocal estimate | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | *   sfprf - set FPRF | 
|  | */ | 
|  | #define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                           \ | 
|  | {                                                                             \ | 
|  | ppc_vsr_t xt, xb;                                                         \ | 
|  | int i;                                                                    \ | 
|  | \ | 
|  | getVSR(xB(opcode), &xb, env);                                             \ | 
|  | getVSR(xT(opcode), &xt, env);                                             \ | 
|  | helper_reset_fpstatus(env);                                               \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                              \ | 
|  | if (unlikely(tp##_is_signaling_nan(xb.fld))) {                        \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \ | 
|  | }                                                                     \ | 
|  | xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status);                 \ | 
|  | \ | 
|  | if (r2sp) {                                                           \ | 
|  | xt.fld = helper_frsp(env, xt.fld);                                \ | 
|  | }                                                                     \ | 
|  | \ | 
|  | if (sfprf) {                                                          \ | 
|  | helper_compute_fprf(env, xt.fld);                                 \ | 
|  | }                                                                     \ | 
|  | }                                                                         \ | 
|  | \ | 
|  | putVSR(xT(opcode), &xt, env);                                             \ | 
|  | helper_float_check_status(env);                                           \ | 
|  | } | 
|  |  | 
|  | VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0) | 
|  | VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1) | 
|  | VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0) | 
|  | VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0) | 
|  |  | 
|  | /* VSX_SQRT - VSX floating point square root | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | *   sfprf - set FPRF | 
|  | */ | 
|  | #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                          \ | 
|  | {                                                                            \ | 
|  | ppc_vsr_t xt, xb;                                                        \ | 
|  | int i;                                                                   \ | 
|  | \ | 
|  | getVSR(xB(opcode), &xb, env);                                            \ | 
|  | getVSR(xT(opcode), &xt, env);                                            \ | 
|  | helper_reset_fpstatus(env);                                              \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                             \ | 
|  | float_status tstat = env->fp_status;                                 \ | 
|  | set_float_exception_flags(0, &tstat);                                \ | 
|  | xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \ | 
|  | env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ | 
|  | \ | 
|  | if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \ | 
|  | if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \ | 
|  | } else if (tp##_is_signaling_nan(xb.fld)) {                      \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \ | 
|  | }                                                                \ | 
|  | }                                                                    \ | 
|  | \ | 
|  | if (r2sp) {                                                          \ | 
|  | xt.fld = helper_frsp(env, xt.fld);                               \ | 
|  | }                                                                    \ | 
|  | \ | 
|  | if (sfprf) {                                                         \ | 
|  | helper_compute_fprf(env, xt.fld);                                \ | 
|  | }                                                                    \ | 
|  | }                                                                        \ | 
|  | \ | 
|  | putVSR(xT(opcode), &xt, env);                                            \ | 
|  | helper_float_check_status(env);                                          \ | 
|  | } | 
|  |  | 
|  | VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0) | 
|  | VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1) | 
|  | VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0) | 
|  | VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0) | 
|  |  | 
|  | /* VSX_RSQRTE - VSX floating point reciprocal square root estimate | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | *   sfprf - set FPRF | 
|  | */ | 
|  | #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                          \ | 
|  | {                                                                            \ | 
|  | ppc_vsr_t xt, xb;                                                        \ | 
|  | int i;                                                                   \ | 
|  | \ | 
|  | getVSR(xB(opcode), &xb, env);                                            \ | 
|  | getVSR(xT(opcode), &xt, env);                                            \ | 
|  | helper_reset_fpstatus(env);                                              \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                             \ | 
|  | float_status tstat = env->fp_status;                                 \ | 
|  | set_float_exception_flags(0, &tstat);                                \ | 
|  | xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \ | 
|  | xt.fld = tp##_div(tp##_one, xt.fld, &tstat);                         \ | 
|  | env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ | 
|  | \ | 
|  | if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \ | 
|  | if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \ | 
|  | } else if (tp##_is_signaling_nan(xb.fld)) {                      \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \ | 
|  | }                                                                \ | 
|  | }                                                                    \ | 
|  | \ | 
|  | if (r2sp) {                                                          \ | 
|  | xt.fld = helper_frsp(env, xt.fld);                               \ | 
|  | }                                                                    \ | 
|  | \ | 
|  | if (sfprf) {                                                         \ | 
|  | helper_compute_fprf(env, xt.fld);                                \ | 
|  | }                                                                    \ | 
|  | }                                                                        \ | 
|  | \ | 
|  | putVSR(xT(opcode), &xt, env);                                            \ | 
|  | helper_float_check_status(env);                                          \ | 
|  | } | 
|  |  | 
|  | VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0) | 
|  | VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1) | 
|  | VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0) | 
|  | VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0) | 
|  |  | 
|  | /* VSX_TDIV - VSX floating point test for divide | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | *   emin  - minimum unbiased exponent | 
|  | *   emax  - maximum unbiased exponent | 
|  | *   nbits - number of fraction bits | 
|  | */ | 
|  | #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                     \ | 
|  | {                                                                       \ | 
|  | ppc_vsr_t xa, xb;                                                   \ | 
|  | int i;                                                              \ | 
|  | int fe_flag = 0;                                                    \ | 
|  | int fg_flag = 0;                                                    \ | 
|  | \ | 
|  | getVSR(xA(opcode), &xa, env);                                       \ | 
|  | getVSR(xB(opcode), &xb, env);                                       \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                        \ | 
|  | if (unlikely(tp##_is_infinity(xa.fld) ||                        \ | 
|  | tp##_is_infinity(xb.fld) ||                        \ | 
|  | tp##_is_zero(xb.fld))) {                           \ | 
|  | fe_flag = 1;                                                \ | 
|  | fg_flag = 1;                                                \ | 
|  | } else {                                                        \ | 
|  | int e_a = ppc_##tp##_get_unbiased_exp(xa.fld);              \ | 
|  | int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \ | 
|  | \ | 
|  | if (unlikely(tp##_is_any_nan(xa.fld) ||                     \ | 
|  | tp##_is_any_nan(xb.fld))) {                    \ | 
|  | fe_flag = 1;                                            \ | 
|  | } else if ((e_b <= emin) || (e_b >= (emax-2))) {            \ | 
|  | fe_flag = 1;                                            \ | 
|  | } else if (!tp##_is_zero(xa.fld) &&                         \ | 
|  | (((e_a - e_b) >= emax) ||                        \ | 
|  | ((e_a - e_b) <= (emin+1)) ||                    \ | 
|  | (e_a <= (emin+nbits)))) {                      \ | 
|  | fe_flag = 1;                                            \ | 
|  | }                                                           \ | 
|  | \ | 
|  | if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \ | 
|  | /* XB is not zero because of the above check and */     \ | 
|  | /* so must be denormalized.                      */     \ | 
|  | fg_flag = 1;                                            \ | 
|  | }                                                           \ | 
|  | }                                                               \ | 
|  | }                                                                   \ | 
|  | \ | 
|  | env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ | 
|  | } | 
|  |  | 
|  | VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52) | 
|  | VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52) | 
|  | VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23) | 
|  |  | 
|  | /* VSX_TSQRT - VSX floating point test for square root | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | *   emin  - minimum unbiased exponent | 
|  | *   emax  - maximum unbiased exponent | 
|  | *   nbits - number of fraction bits | 
|  | */ | 
|  | #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                     \ | 
|  | {                                                                       \ | 
|  | ppc_vsr_t xa, xb;                                                   \ | 
|  | int i;                                                              \ | 
|  | int fe_flag = 0;                                                    \ | 
|  | int fg_flag = 0;                                                    \ | 
|  | \ | 
|  | getVSR(xA(opcode), &xa, env);                                       \ | 
|  | getVSR(xB(opcode), &xb, env);                                       \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                        \ | 
|  | if (unlikely(tp##_is_infinity(xb.fld) ||                        \ | 
|  | tp##_is_zero(xb.fld))) {                           \ | 
|  | fe_flag = 1;                                                \ | 
|  | fg_flag = 1;                                                \ | 
|  | } else {                                                        \ | 
|  | int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \ | 
|  | \ | 
|  | if (unlikely(tp##_is_any_nan(xb.fld))) {                    \ | 
|  | fe_flag = 1;                                            \ | 
|  | } else if (unlikely(tp##_is_zero(xb.fld))) {                \ | 
|  | fe_flag = 1;                                            \ | 
|  | } else if (unlikely(tp##_is_neg(xb.fld))) {                 \ | 
|  | fe_flag = 1;                                            \ | 
|  | } else if (!tp##_is_zero(xb.fld) &&                         \ | 
|  | (e_b <= (emin+nbits))) {                          \ | 
|  | fe_flag = 1;                                            \ | 
|  | }                                                           \ | 
|  | \ | 
|  | if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \ | 
|  | /* XB is not zero because of the above check and */     \ | 
|  | /* therefore must be denormalized.               */     \ | 
|  | fg_flag = 1;                                            \ | 
|  | }                                                           \ | 
|  | }                                                               \ | 
|  | }                                                                   \ | 
|  | \ | 
|  | env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ | 
|  | } | 
|  |  | 
|  | VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52) | 
|  | VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52) | 
|  | VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23) | 
|  |  | 
|  | /* VSX_MADD - VSX floating point muliply/add variations | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | *   maddflgs - flags for the float*muladd routine that control the | 
|  | *           various forms (madd, msub, nmadd, nmsub) | 
|  | *   afrm  - A form (1=A, 0=M) | 
|  | *   sfprf - set FPRF | 
|  | */ | 
|  | #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp)              \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                           \ | 
|  | {                                                                             \ | 
|  | ppc_vsr_t xt_in, xa, xb, xt_out;                                          \ | 
|  | ppc_vsr_t *b, *c;                                                         \ | 
|  | int i;                                                                    \ | 
|  | \ | 
|  | if (afrm) { /* AxB + T */                                                 \ | 
|  | b = &xb;                                                              \ | 
|  | c = &xt_in;                                                           \ | 
|  | } else { /* AxT + B */                                                    \ | 
|  | b = &xt_in;                                                           \ | 
|  | c = &xb;                                                              \ | 
|  | }                                                                         \ | 
|  | \ | 
|  | getVSR(xA(opcode), &xa, env);                                             \ | 
|  | getVSR(xB(opcode), &xb, env);                                             \ | 
|  | getVSR(xT(opcode), &xt_in, env);                                          \ | 
|  | \ | 
|  | xt_out = xt_in;                                                           \ | 
|  | \ | 
|  | helper_reset_fpstatus(env);                                               \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                              \ | 
|  | float_status tstat = env->fp_status;                                  \ | 
|  | set_float_exception_flags(0, &tstat);                                 \ | 
|  | if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\ | 
|  | /* Avoid double rounding errors by rounding the intermediate */   \ | 
|  | /* result to odd.                                            */   \ | 
|  | set_float_rounding_mode(float_round_to_zero, &tstat);             \ | 
|  | xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \ | 
|  | maddflgs, &tstat);                     \ | 
|  | xt_out.fld |= (get_float_exception_flags(&tstat) &                \ | 
|  | float_flag_inexact) != 0;                       \ | 
|  | } else {                                                              \ | 
|  | xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \ | 
|  | maddflgs, &tstat);                    \ | 
|  | }                                                                     \ | 
|  | env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \ | 
|  | \ | 
|  | if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \ | 
|  | if (tp##_is_signaling_nan(xa.fld) ||                              \ | 
|  | tp##_is_signaling_nan(b->fld) ||                              \ | 
|  | tp##_is_signaling_nan(c->fld)) {                              \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \ | 
|  | tstat.float_exception_flags &= ~float_flag_invalid;           \ | 
|  | }                                                                 \ | 
|  | if ((tp##_is_infinity(xa.fld) && tp##_is_zero(b->fld)) ||         \ | 
|  | (tp##_is_zero(xa.fld) && tp##_is_infinity(b->fld))) {         \ | 
|  | xt_out.fld = float64_to_##tp(fload_invalid_op_excp(env,       \ | 
|  | POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status);          \ | 
|  | tstat.float_exception_flags &= ~float_flag_invalid;           \ | 
|  | }                                                                 \ | 
|  | if ((tstat.float_exception_flags & float_flag_invalid) &&         \ | 
|  | ((tp##_is_infinity(xa.fld) ||                                 \ | 
|  | tp##_is_infinity(b->fld)) &&                                \ | 
|  | tp##_is_infinity(c->fld))) {                                \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);     \ | 
|  | }                                                                 \ | 
|  | }                                                                     \ | 
|  | \ | 
|  | if (r2sp) {                                                           \ | 
|  | xt_out.fld = helper_frsp(env, xt_out.fld);                        \ | 
|  | }                                                                     \ | 
|  | \ | 
|  | if (sfprf) {                                                          \ | 
|  | helper_compute_fprf(env, xt_out.fld);                             \ | 
|  | }                                                                     \ | 
|  | }                                                                         \ | 
|  | putVSR(xT(opcode), &xt_out, env);                                         \ | 
|  | helper_float_check_status(env);                                           \ | 
|  | } | 
|  |  | 
|  | #define MADD_FLGS 0 | 
|  | #define MSUB_FLGS float_muladd_negate_c | 
|  | #define NMADD_FLGS float_muladd_negate_result | 
|  | #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result) | 
|  |  | 
|  | VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0) | 
|  | VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0) | 
|  | VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0) | 
|  | VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0) | 
|  | VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0) | 
|  | VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0) | 
|  | VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0) | 
|  | VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0) | 
|  |  | 
|  | VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1) | 
|  | VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1) | 
|  | VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1) | 
|  | VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1) | 
|  | VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1) | 
|  | VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1) | 
|  | VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1) | 
|  | VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1) | 
|  |  | 
|  | VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0) | 
|  | VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0) | 
|  | VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0) | 
|  | VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0) | 
|  | VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0) | 
|  | VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0) | 
|  | VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0) | 
|  | VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0) | 
|  |  | 
|  | VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0) | 
|  | VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0) | 
|  | VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0) | 
|  | VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0) | 
|  | VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0) | 
|  | VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0) | 
|  | VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0) | 
|  | VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0) | 
|  |  | 
|  | #define VSX_SCALAR_CMP(op, ordered)                                      \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                      \ | 
|  | {                                                                        \ | 
|  | ppc_vsr_t xa, xb;                                                    \ | 
|  | uint32_t cc = 0;                                                     \ | 
|  | \ | 
|  | getVSR(xA(opcode), &xa, env);                                        \ | 
|  | getVSR(xB(opcode), &xb, env);                                        \ | 
|  | \ | 
|  | if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||                       \ | 
|  | float64_is_any_nan(xb.VsrD(0)))) {                      \ | 
|  | if (float64_is_signaling_nan(xa.VsrD(0)) ||                      \ | 
|  | float64_is_signaling_nan(xb.VsrD(0))) {                      \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \ | 
|  | }                                                                \ | 
|  | if (ordered) {                                                   \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);         \ | 
|  | }                                                                \ | 
|  | cc = 1;                                                          \ | 
|  | } else {                                                             \ | 
|  | if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {       \ | 
|  | cc = 8;                                                      \ | 
|  | } else if (!float64_le(xa.VsrD(0), xb.VsrD(0),                   \ | 
|  | &env->fp_status)) { \ | 
|  | cc = 4;                                                      \ | 
|  | } else {                                                         \ | 
|  | cc = 2;                                                      \ | 
|  | }                                                                \ | 
|  | }                                                                    \ | 
|  | \ | 
|  | env->fpscr &= ~(0x0F << FPSCR_FPRF);                                 \ | 
|  | env->fpscr |= cc << FPSCR_FPRF;                                      \ | 
|  | env->crf[BF(opcode)] = cc;                                           \ | 
|  | \ | 
|  | helper_float_check_status(env);                                      \ | 
|  | } | 
|  |  | 
|  | VSX_SCALAR_CMP(xscmpodp, 1) | 
|  | VSX_SCALAR_CMP(xscmpudp, 0) | 
|  |  | 
|  | /* VSX_MAX_MIN - VSX floating point maximum/minimum | 
|  | *   name  - instruction mnemonic | 
|  | *   op    - operation (max or min) | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | */ | 
|  | #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \ | 
|  | void helper_##name(CPUPPCState *env, uint32_t opcode)                         \ | 
|  | {                                                                             \ | 
|  | ppc_vsr_t xt, xa, xb;                                                     \ | 
|  | int i;                                                                    \ | 
|  | \ | 
|  | getVSR(xA(opcode), &xa, env);                                             \ | 
|  | getVSR(xB(opcode), &xb, env);                                             \ | 
|  | getVSR(xT(opcode), &xt, env);                                             \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                              \ | 
|  | xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status);                  \ | 
|  | if (unlikely(tp##_is_signaling_nan(xa.fld) ||                         \ | 
|  | tp##_is_signaling_nan(xb.fld))) {                        \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);            \ | 
|  | }                                                                     \ | 
|  | }                                                                         \ | 
|  | \ | 
|  | putVSR(xT(opcode), &xt, env);                                             \ | 
|  | helper_float_check_status(env);                                           \ | 
|  | } | 
|  |  | 
|  | VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0)) | 
|  | VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i)) | 
|  | VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i)) | 
|  | VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0)) | 
|  | VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i)) | 
|  | VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i)) | 
|  |  | 
|  | /* VSX_CMP - VSX floating point compare | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | *   cmp   - comparison operation | 
|  | *   svxvc - set VXVC bit | 
|  | */ | 
|  | #define VSX_CMP(op, nels, tp, fld, cmp, svxvc)                            \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                       \ | 
|  | {                                                                         \ | 
|  | ppc_vsr_t xt, xa, xb;                                                 \ | 
|  | int i;                                                                \ | 
|  | int all_true = 1;                                                     \ | 
|  | int all_false = 1;                                                    \ | 
|  | \ | 
|  | getVSR(xA(opcode), &xa, env);                                         \ | 
|  | getVSR(xB(opcode), &xb, env);                                         \ | 
|  | getVSR(xT(opcode), &xt, env);                                         \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                          \ | 
|  | if (unlikely(tp##_is_any_nan(xa.fld) ||                           \ | 
|  | tp##_is_any_nan(xb.fld))) {                          \ | 
|  | if (tp##_is_signaling_nan(xa.fld) ||                          \ | 
|  | tp##_is_signaling_nan(xb.fld)) {                          \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);    \ | 
|  | }                                                             \ | 
|  | if (svxvc) {                                                  \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);      \ | 
|  | }                                                             \ | 
|  | xt.fld = 0;                                                   \ | 
|  | all_true = 0;                                                 \ | 
|  | } else {                                                          \ | 
|  | if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == 1) {       \ | 
|  | xt.fld = -1;                                              \ | 
|  | all_false = 0;                                            \ | 
|  | } else {                                                      \ | 
|  | xt.fld = 0;                                               \ | 
|  | all_true = 0;                                             \ | 
|  | }                                                             \ | 
|  | }                                                                 \ | 
|  | }                                                                     \ | 
|  | \ | 
|  | putVSR(xT(opcode), &xt, env);                                         \ | 
|  | if ((opcode >> (31-21)) & 1) {                                        \ | 
|  | env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);       \ | 
|  | }                                                                     \ | 
|  | helper_float_check_status(env);                                       \ | 
|  | } | 
|  |  | 
|  | VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0) | 
|  | VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1) | 
|  | VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1) | 
|  | VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0) | 
|  | VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1) | 
|  | VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1) | 
|  |  | 
|  | /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   stp   - source type (float32 or float64) | 
|  | *   ttp   - target type (float32 or float64) | 
|  | *   sfld  - source vsr_t field | 
|  | *   tfld  - target vsr_t field (f32 or f64) | 
|  | *   sfprf - set FPRF | 
|  | */ | 
|  | #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                \ | 
|  | {                                                                  \ | 
|  | ppc_vsr_t xt, xb;                                              \ | 
|  | int i;                                                         \ | 
|  | \ | 
|  | getVSR(xB(opcode), &xb, env);                                  \ | 
|  | getVSR(xT(opcode), &xt, env);                                  \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                   \ | 
|  | xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);        \ | 
|  | if (unlikely(stp##_is_signaling_nan(xb.sfld))) {           \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ | 
|  | xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \ | 
|  | }                                                          \ | 
|  | if (sfprf) {                                               \ | 
|  | helper_compute_fprf(env, ttp##_to_float64(xt.tfld,     \ | 
|  | &env->fp_status));                 \ | 
|  | }                                                          \ | 
|  | }                                                              \ | 
|  | \ | 
|  | putVSR(xT(opcode), &xt, env);                                  \ | 
|  | helper_float_check_status(env);                                \ | 
|  | } | 
|  |  | 
|  | VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1) | 
|  | VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1) | 
|  | VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0) | 
|  | VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0) | 
|  |  | 
|  | uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb) | 
|  | { | 
|  | float_status tstat = env->fp_status; | 
|  | set_float_exception_flags(0, &tstat); | 
|  |  | 
|  | return (uint64_t)float64_to_float32(xb, &tstat) << 32; | 
|  | } | 
|  |  | 
|  | uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb) | 
|  | { | 
|  | float_status tstat = env->fp_status; | 
|  | set_float_exception_flags(0, &tstat); | 
|  |  | 
|  | return float32_to_float64(xb >> 32, &tstat); | 
|  | } | 
|  |  | 
|  | /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   stp   - source type (float32 or float64) | 
|  | *   ttp   - target type (int32, uint32, int64 or uint64) | 
|  | *   sfld  - source vsr_t field | 
|  | *   tfld  - target vsr_t field | 
|  | *   rnan  - resulting NaN | 
|  | */ | 
|  | #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                          \ | 
|  | {                                                                            \ | 
|  | ppc_vsr_t xt, xb;                                                        \ | 
|  | int i;                                                                   \ | 
|  | \ | 
|  | getVSR(xB(opcode), &xb, env);                                            \ | 
|  | getVSR(xT(opcode), &xt, env);                                            \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                             \ | 
|  | if (unlikely(stp##_is_any_nan(xb.sfld))) {                           \ | 
|  | if (stp##_is_signaling_nan(xb.sfld)) {                           \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \ | 
|  | }                                                                \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);            \ | 
|  | xt.tfld = rnan;                                                  \ | 
|  | } else {                                                             \ | 
|  | xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld,                \ | 
|  | &env->fp_status);                                  \ | 
|  | if (env->fp_status.float_exception_flags & float_flag_invalid) { \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);        \ | 
|  | }                                                                \ | 
|  | }                                                                    \ | 
|  | }                                                                        \ | 
|  | \ | 
|  | putVSR(xT(opcode), &xt, env);                                            \ | 
|  | helper_float_check_status(env);                                          \ | 
|  | } | 
|  |  | 
|  | VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \ | 
|  | 0x8000000000000000ULL) | 
|  | VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \ | 
|  | 0x80000000U) | 
|  | VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL) | 
|  | VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U) | 
|  | VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \ | 
|  | 0x8000000000000000ULL) | 
|  | VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \ | 
|  | 0x80000000U) | 
|  | VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL) | 
|  | VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U) | 
|  | VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \ | 
|  | 0x8000000000000000ULL) | 
|  | VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U) | 
|  | VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL) | 
|  | VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U) | 
|  |  | 
|  | /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   stp   - source type (int32, uint32, int64 or uint64) | 
|  | *   ttp   - target type (float32 or float64) | 
|  | *   sfld  - source vsr_t field | 
|  | *   tfld  - target vsr_t field | 
|  | *   jdef  - definition of the j index (i or 2*i) | 
|  | *   sfprf - set FPRF | 
|  | */ | 
|  | #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                     \ | 
|  | {                                                                       \ | 
|  | ppc_vsr_t xt, xb;                                                   \ | 
|  | int i;                                                              \ | 
|  | \ | 
|  | getVSR(xB(opcode), &xb, env);                                       \ | 
|  | getVSR(xT(opcode), &xt, env);                                       \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                        \ | 
|  | xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \ | 
|  | if (r2sp) {                                                     \ | 
|  | xt.tfld = helper_frsp(env, xt.tfld);                        \ | 
|  | }                                                               \ | 
|  | if (sfprf) {                                                    \ | 
|  | helper_compute_fprf(env, xt.tfld);                          \ | 
|  | }                                                               \ | 
|  | }                                                                   \ | 
|  | \ | 
|  | putVSR(xT(opcode), &xt, env);                                       \ | 
|  | helper_float_check_status(env);                                     \ | 
|  | } | 
|  |  | 
|  | VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0) | 
|  | VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0) | 
|  | VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1) | 
|  | VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1) | 
|  | VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0) | 
|  | VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0) | 
|  | VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0) | 
|  | VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0) | 
|  | VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0) | 
|  | VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0) | 
|  | VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0) | 
|  | VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0) | 
|  |  | 
|  | /* For "use current rounding mode", define a value that will not be one of | 
|  | * the existing rounding model enums. | 
|  | */ | 
|  | #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \ | 
|  | float_round_up + float_round_to_zero) | 
|  |  | 
|  | /* VSX_ROUND - VSX floating point round | 
|  | *   op    - instruction mnemonic | 
|  | *   nels  - number of elements (1, 2 or 4) | 
|  | *   tp    - type (float32 or float64) | 
|  | *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
|  | *   rmode - rounding mode | 
|  | *   sfprf - set FPRF | 
|  | */ | 
|  | #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \ | 
|  | void helper_##op(CPUPPCState *env, uint32_t opcode)                    \ | 
|  | {                                                                      \ | 
|  | ppc_vsr_t xt, xb;                                                  \ | 
|  | int i;                                                             \ | 
|  | getVSR(xB(opcode), &xb, env);                                      \ | 
|  | getVSR(xT(opcode), &xt, env);                                      \ | 
|  | \ | 
|  | if (rmode != FLOAT_ROUND_CURRENT) {                                \ | 
|  | set_float_rounding_mode(rmode, &env->fp_status);               \ | 
|  | }                                                                  \ | 
|  | \ | 
|  | for (i = 0; i < nels; i++) {                                       \ | 
|  | if (unlikely(tp##_is_signaling_nan(xb.fld))) {                 \ | 
|  | fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);     \ | 
|  | xt.fld = tp##_snan_to_qnan(xb.fld);                        \ | 
|  | } else {                                                       \ | 
|  | xt.fld = tp##_round_to_int(xb.fld, &env->fp_status);       \ | 
|  | }                                                              \ | 
|  | if (sfprf) {                                                   \ | 
|  | helper_compute_fprf(env, xt.fld);                          \ | 
|  | }                                                              \ | 
|  | }                                                                  \ | 
|  | \ | 
|  | /* If this is not a "use current rounding mode" instruction,       \ | 
|  | * then inhibit setting of the XX bit and restore rounding         \ | 
|  | * mode from FPSCR */                                              \ | 
|  | if (rmode != FLOAT_ROUND_CURRENT) {                                \ | 
|  | fpscr_set_rounding_mode(env);                                  \ | 
|  | env->fp_status.float_exception_flags &= ~float_flag_inexact;   \ | 
|  | }                                                                  \ | 
|  | \ | 
|  | putVSR(xT(opcode), &xt, env);                                      \ | 
|  | helper_float_check_status(env);                                    \ | 
|  | } | 
|  |  | 
|  | VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_nearest_even, 1) | 
|  | VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1) | 
|  | VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1) | 
|  | VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1) | 
|  | VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1) | 
|  |  | 
|  | VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_nearest_even, 0) | 
|  | VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0) | 
|  | VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0) | 
|  | VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0) | 
|  | VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0) | 
|  |  | 
|  | VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_nearest_even, 0) | 
|  | VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0) | 
|  | VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0) | 
|  | VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0) | 
|  | VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0) | 
|  |  | 
|  | uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb) | 
|  | { | 
|  | helper_reset_fpstatus(env); | 
|  |  | 
|  | uint64_t xt = helper_frsp(env, xb); | 
|  |  | 
|  | helper_compute_fprf(env, xt); | 
|  | helper_float_check_status(env); | 
|  | return xt; | 
|  | } |