blob: 32063459dd12774c5c0064c0ded3f9029d4081d9 [file] [log] [blame]
/*
* StrongARM SA-1100/SA-1110 emulation
*
* Copyright (C) 2011 Dmitry Eremin-Solenikov
*
* Largely based on StrongARM emulation:
* Copyright (c) 2006 Openedhand Ltd.
* Written by Andrzej Zaborowski <balrog@zabor.org>
*
* UART code based on QEMU 16550A UART emulation
* Copyright (c) 2003-2004 Fabrice Bellard
* Copyright (c) 2008 Citrix Systems, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "hw/sysbus.h"
#include "strongarm.h"
#include "qemu/error-report.h"
#include "hw/arm/arm.h"
#include "sysemu/char.h"
#include "sysemu/sysemu.h"
#include "hw/ssi.h"
//#define DEBUG
/*
TODO
- Implement cp15, c14 ?
- Implement cp15, c15 !!! (idle used in L)
- Implement idle mode handling/DIM
- Implement sleep mode/Wake sources
- Implement reset control
- Implement memory control regs
- PCMCIA handling
- Maybe support MBGNT/MBREQ
- DMA channels
- GPCLK
- IrDA
- MCP
- Enhance UART with modem signals
*/
#ifdef DEBUG
# define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
#else
# define DPRINTF(format, ...) do { } while (0)
#endif
static struct {
hwaddr io_base;
int irq;
} sa_serial[] = {
{ 0x80010000, SA_PIC_UART1 },
{ 0x80030000, SA_PIC_UART2 },
{ 0x80050000, SA_PIC_UART3 },
{ 0, 0 }
};
/* Interrupt Controller */
#define TYPE_STRONGARM_PIC "strongarm_pic"
#define STRONGARM_PIC(obj) \
OBJECT_CHECK(StrongARMPICState, (obj), TYPE_STRONGARM_PIC)
typedef struct StrongARMPICState {
SysBusDevice parent_obj;
MemoryRegion iomem;
qemu_irq irq;
qemu_irq fiq;
uint32_t pending;
uint32_t enabled;
uint32_t is_fiq;
uint32_t int_idle;
} StrongARMPICState;
#define ICIP 0x00
#define ICMR 0x04
#define ICLR 0x08
#define ICFP 0x10
#define ICPR 0x20
#define ICCR 0x0c
#define SA_PIC_SRCS 32
static void strongarm_pic_update(void *opaque)
{
StrongARMPICState *s = opaque;
/* FIXME: reflect DIM */
qemu_set_irq(s->fiq, s->pending & s->enabled & s->is_fiq);
qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
}
static void strongarm_pic_set_irq(void *opaque, int irq, int level)
{
StrongARMPICState *s = opaque;
if (level) {
s->pending |= 1 << irq;
} else {
s->pending &= ~(1 << irq);
}
strongarm_pic_update(s);
}
static uint64_t strongarm_pic_mem_read(void *opaque, hwaddr offset,
unsigned size)
{
StrongARMPICState *s = opaque;
switch (offset) {
case ICIP:
return s->pending & ~s->is_fiq & s->enabled;
case ICMR:
return s->enabled;
case ICLR:
return s->is_fiq;
case ICCR:
return s->int_idle == 0;
case ICFP:
return s->pending & s->is_fiq & s->enabled;
case ICPR:
return s->pending;
default:
printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
__func__, offset);
return 0;
}
}
static void strongarm_pic_mem_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
StrongARMPICState *s = opaque;
switch (offset) {
case ICMR:
s->enabled = value;
break;
case ICLR:
s->is_fiq = value;
break;
case ICCR:
s->int_idle = (value & 1) ? 0 : ~0;
break;
default:
printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
__func__, offset);
break;
}
strongarm_pic_update(s);
}
static const MemoryRegionOps strongarm_pic_ops = {
.read = strongarm_pic_mem_read,
.write = strongarm_pic_mem_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int strongarm_pic_initfn(SysBusDevice *sbd)
{
DeviceState *dev = DEVICE(sbd);
StrongARMPICState *s = STRONGARM_PIC(dev);
qdev_init_gpio_in(dev, strongarm_pic_set_irq, SA_PIC_SRCS);
memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_pic_ops, s,
"pic", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
sysbus_init_irq(sbd, &s->fiq);
return 0;
}
static int strongarm_pic_post_load(void *opaque, int version_id)
{
strongarm_pic_update(opaque);
return 0;
}
static VMStateDescription vmstate_strongarm_pic_regs = {
.name = "strongarm_pic",
.version_id = 0,
.minimum_version_id = 0,
.post_load = strongarm_pic_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(pending, StrongARMPICState),
VMSTATE_UINT32(enabled, StrongARMPICState),
VMSTATE_UINT32(is_fiq, StrongARMPICState),
VMSTATE_UINT32(int_idle, StrongARMPICState),
VMSTATE_END_OF_LIST(),
},
};
static void strongarm_pic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = strongarm_pic_initfn;
dc->desc = "StrongARM PIC";
dc->vmsd = &vmstate_strongarm_pic_regs;
}
static const TypeInfo strongarm_pic_info = {
.name = TYPE_STRONGARM_PIC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMPICState),
.class_init = strongarm_pic_class_init,
};
/* Real-Time Clock */
#define RTAR 0x00 /* RTC Alarm register */
#define RCNR 0x04 /* RTC Counter register */
#define RTTR 0x08 /* RTC Timer Trim register */
#define RTSR 0x10 /* RTC Status register */
#define RTSR_AL (1 << 0) /* RTC Alarm detected */
#define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
#define RTSR_ALE (1 << 2) /* RTC Alarm enable */
#define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
/* 16 LSB of RTTR are clockdiv for internal trim logic,
* trim delete isn't emulated, so
* f = 32 768 / (RTTR_trim + 1) */
#define TYPE_STRONGARM_RTC "strongarm-rtc"
#define STRONGARM_RTC(obj) \
OBJECT_CHECK(StrongARMRTCState, (obj), TYPE_STRONGARM_RTC)
typedef struct StrongARMRTCState {
SysBusDevice parent_obj;
MemoryRegion iomem;
uint32_t rttr;
uint32_t rtsr;
uint32_t rtar;
uint32_t last_rcnr;
int64_t last_hz;
QEMUTimer *rtc_alarm;
QEMUTimer *rtc_hz;
qemu_irq rtc_irq;
qemu_irq rtc_hz_irq;
} StrongARMRTCState;
static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
{
qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
}
static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
{
int64_t rt = qemu_clock_get_ms(rtc_clock);
s->last_rcnr += ((rt - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
s->last_hz = rt;
}
static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
{
if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
timer_mod(s->rtc_hz, s->last_hz + 1000);
} else {
timer_del(s->rtc_hz);
}
if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
timer_mod(s->rtc_alarm, s->last_hz +
(((s->rtar - s->last_rcnr) * 1000 *
((s->rttr & 0xffff) + 1)) >> 15));
} else {
timer_del(s->rtc_alarm);
}
}
static inline void strongarm_rtc_alarm_tick(void *opaque)
{
StrongARMRTCState *s = opaque;
s->rtsr |= RTSR_AL;
strongarm_rtc_timer_update(s);
strongarm_rtc_int_update(s);
}
static inline void strongarm_rtc_hz_tick(void *opaque)
{
StrongARMRTCState *s = opaque;
s->rtsr |= RTSR_HZ;
strongarm_rtc_timer_update(s);
strongarm_rtc_int_update(s);
}
static uint64_t strongarm_rtc_read(void *opaque, hwaddr addr,
unsigned size)
{
StrongARMRTCState *s = opaque;
switch (addr) {
case RTTR:
return s->rttr;
case RTSR:
return s->rtsr;
case RTAR:
return s->rtar;
case RCNR:
return s->last_rcnr +
((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
default:
printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
return 0;
}
}
static void strongarm_rtc_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
StrongARMRTCState *s = opaque;
uint32_t old_rtsr;
switch (addr) {
case RTTR:
strongarm_rtc_hzupdate(s);
s->rttr = value;
strongarm_rtc_timer_update(s);
break;
case RTSR:
old_rtsr = s->rtsr;
s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
(s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
if (s->rtsr != old_rtsr) {
strongarm_rtc_timer_update(s);
}
strongarm_rtc_int_update(s);
break;
case RTAR:
s->rtar = value;
strongarm_rtc_timer_update(s);
break;
case RCNR:
strongarm_rtc_hzupdate(s);
s->last_rcnr = value;
strongarm_rtc_timer_update(s);
break;
default:
printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
}
}
static const MemoryRegionOps strongarm_rtc_ops = {
.read = strongarm_rtc_read,
.write = strongarm_rtc_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int strongarm_rtc_init(SysBusDevice *dev)
{
StrongARMRTCState *s = STRONGARM_RTC(dev);
struct tm tm;
s->rttr = 0x0;
s->rtsr = 0;
qemu_get_timedate(&tm, 0);
s->last_rcnr = (uint32_t) mktimegm(&tm);
s->last_hz = qemu_clock_get_ms(rtc_clock);
s->rtc_alarm = timer_new_ms(rtc_clock, strongarm_rtc_alarm_tick, s);
s->rtc_hz = timer_new_ms(rtc_clock, strongarm_rtc_hz_tick, s);
sysbus_init_irq(dev, &s->rtc_irq);
sysbus_init_irq(dev, &s->rtc_hz_irq);
memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_rtc_ops, s,
"rtc", 0x10000);
sysbus_init_mmio(dev, &s->iomem);
return 0;
}
static void strongarm_rtc_pre_save(void *opaque)
{
StrongARMRTCState *s = opaque;
strongarm_rtc_hzupdate(s);
}
static int strongarm_rtc_post_load(void *opaque, int version_id)
{
StrongARMRTCState *s = opaque;
strongarm_rtc_timer_update(s);
strongarm_rtc_int_update(s);
return 0;
}
static const VMStateDescription vmstate_strongarm_rtc_regs = {
.name = "strongarm-rtc",
.version_id = 0,
.minimum_version_id = 0,
.pre_save = strongarm_rtc_pre_save,
.post_load = strongarm_rtc_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(rttr, StrongARMRTCState),
VMSTATE_UINT32(rtsr, StrongARMRTCState),
VMSTATE_UINT32(rtar, StrongARMRTCState),
VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
VMSTATE_INT64(last_hz, StrongARMRTCState),
VMSTATE_END_OF_LIST(),
},
};
static void strongarm_rtc_sysbus_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = strongarm_rtc_init;
dc->desc = "StrongARM RTC Controller";
dc->vmsd = &vmstate_strongarm_rtc_regs;
}
static const TypeInfo strongarm_rtc_sysbus_info = {
.name = TYPE_STRONGARM_RTC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMRTCState),
.class_init = strongarm_rtc_sysbus_class_init,
};
/* GPIO */
#define GPLR 0x00
#define GPDR 0x04
#define GPSR 0x08
#define GPCR 0x0c
#define GRER 0x10
#define GFER 0x14
#define GEDR 0x18
#define GAFR 0x1c
#define TYPE_STRONGARM_GPIO "strongarm-gpio"
#define STRONGARM_GPIO(obj) \
OBJECT_CHECK(StrongARMGPIOInfo, (obj), TYPE_STRONGARM_GPIO)
typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
struct StrongARMGPIOInfo {
SysBusDevice busdev;
MemoryRegion iomem;
qemu_irq handler[28];
qemu_irq irqs[11];
qemu_irq irqX;
uint32_t ilevel;
uint32_t olevel;
uint32_t dir;
uint32_t rising;
uint32_t falling;
uint32_t status;
uint32_t gafr;
uint32_t prev_level;
};
static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
{
int i;
for (i = 0; i < 11; i++) {
qemu_set_irq(s->irqs[i], s->status & (1 << i));
}
qemu_set_irq(s->irqX, (s->status & ~0x7ff));
}
static void strongarm_gpio_set(void *opaque, int line, int level)
{
StrongARMGPIOInfo *s = opaque;
uint32_t mask;
mask = 1 << line;
if (level) {
s->status |= s->rising & mask &
~s->ilevel & ~s->dir;
s->ilevel |= mask;
} else {
s->status |= s->falling & mask &
s->ilevel & ~s->dir;
s->ilevel &= ~mask;
}
if (s->status & mask) {
strongarm_gpio_irq_update(s);
}
}
static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
{
uint32_t level, diff;
int bit;
level = s->olevel & s->dir;
for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
bit = ffs(diff) - 1;
qemu_set_irq(s->handler[bit], (level >> bit) & 1);
}
s->prev_level = level;
}
static uint64_t strongarm_gpio_read(void *opaque, hwaddr offset,
unsigned size)
{
StrongARMGPIOInfo *s = opaque;
switch (offset) {
case GPDR: /* GPIO Pin-Direction registers */
return s->dir;
case GPSR: /* GPIO Pin-Output Set registers */
qemu_log_mask(LOG_GUEST_ERROR,
"strongarm GPIO: read from write only register GPSR\n");
return 0;
case GPCR: /* GPIO Pin-Output Clear registers */
qemu_log_mask(LOG_GUEST_ERROR,
"strongarm GPIO: read from write only register GPCR\n");
return 0;
case GRER: /* GPIO Rising-Edge Detect Enable registers */
return s->rising;
case GFER: /* GPIO Falling-Edge Detect Enable registers */
return s->falling;
case GAFR: /* GPIO Alternate Function registers */
return s->gafr;
case GPLR: /* GPIO Pin-Level registers */
return (s->olevel & s->dir) |
(s->ilevel & ~s->dir);
case GEDR: /* GPIO Edge Detect Status registers */
return s->status;
default:
printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
}
return 0;
}
static void strongarm_gpio_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
StrongARMGPIOInfo *s = opaque;
switch (offset) {
case GPDR: /* GPIO Pin-Direction registers */
s->dir = value;
strongarm_gpio_handler_update(s);
break;
case GPSR: /* GPIO Pin-Output Set registers */
s->olevel |= value;
strongarm_gpio_handler_update(s);
break;
case GPCR: /* GPIO Pin-Output Clear registers */
s->olevel &= ~value;
strongarm_gpio_handler_update(s);
break;
case GRER: /* GPIO Rising-Edge Detect Enable registers */
s->rising = value;
break;
case GFER: /* GPIO Falling-Edge Detect Enable registers */
s->falling = value;
break;
case GAFR: /* GPIO Alternate Function registers */
s->gafr = value;
break;
case GEDR: /* GPIO Edge Detect Status registers */
s->status &= ~value;
strongarm_gpio_irq_update(s);
break;
default:
printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
}
}
static const MemoryRegionOps strongarm_gpio_ops = {
.read = strongarm_gpio_read,
.write = strongarm_gpio_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static DeviceState *strongarm_gpio_init(hwaddr base,
DeviceState *pic)
{
DeviceState *dev;
int i;
dev = qdev_create(NULL, TYPE_STRONGARM_GPIO);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
for (i = 0; i < 12; i++)
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
return dev;
}
static int strongarm_gpio_initfn(SysBusDevice *sbd)
{
DeviceState *dev = DEVICE(sbd);
StrongARMGPIOInfo *s = STRONGARM_GPIO(dev);
int i;
qdev_init_gpio_in(dev, strongarm_gpio_set, 28);
qdev_init_gpio_out(dev, s->handler, 28);
memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_gpio_ops, s,
"gpio", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
for (i = 0; i < 11; i++) {
sysbus_init_irq(sbd, &s->irqs[i]);
}
sysbus_init_irq(sbd, &s->irqX);
return 0;
}
static const VMStateDescription vmstate_strongarm_gpio_regs = {
.name = "strongarm-gpio",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
VMSTATE_UINT32(dir, StrongARMGPIOInfo),
VMSTATE_UINT32(rising, StrongARMGPIOInfo),
VMSTATE_UINT32(falling, StrongARMGPIOInfo),
VMSTATE_UINT32(status, StrongARMGPIOInfo),
VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
VMSTATE_UINT32(prev_level, StrongARMGPIOInfo),
VMSTATE_END_OF_LIST(),
},
};
static void strongarm_gpio_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = strongarm_gpio_initfn;
dc->desc = "StrongARM GPIO controller";
dc->vmsd = &vmstate_strongarm_gpio_regs;
}
static const TypeInfo strongarm_gpio_info = {
.name = TYPE_STRONGARM_GPIO,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMGPIOInfo),
.class_init = strongarm_gpio_class_init,
};
/* Peripheral Pin Controller */
#define PPDR 0x00
#define PPSR 0x04
#define PPAR 0x08
#define PSDR 0x0c
#define PPFR 0x10
#define TYPE_STRONGARM_PPC "strongarm-ppc"
#define STRONGARM_PPC(obj) \
OBJECT_CHECK(StrongARMPPCInfo, (obj), TYPE_STRONGARM_PPC)
typedef struct StrongARMPPCInfo StrongARMPPCInfo;
struct StrongARMPPCInfo {
SysBusDevice parent_obj;
MemoryRegion iomem;
qemu_irq handler[28];
uint32_t ilevel;
uint32_t olevel;
uint32_t dir;
uint32_t ppar;
uint32_t psdr;
uint32_t ppfr;
uint32_t prev_level;
};
static void strongarm_ppc_set(void *opaque, int line, int level)
{
StrongARMPPCInfo *s = opaque;
if (level) {
s->ilevel |= 1 << line;
} else {
s->ilevel &= ~(1 << line);
}
}
static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
{
uint32_t level, diff;
int bit;
level = s->olevel & s->dir;
for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
bit = ffs(diff) - 1;
qemu_set_irq(s->handler[bit], (level >> bit) & 1);
}
s->prev_level = level;
}
static uint64_t strongarm_ppc_read(void *opaque, hwaddr offset,
unsigned size)
{
StrongARMPPCInfo *s = opaque;
switch (offset) {
case PPDR: /* PPC Pin Direction registers */
return s->dir | ~0x3fffff;
case PPSR: /* PPC Pin State registers */
return (s->olevel & s->dir) |
(s->ilevel & ~s->dir) |
~0x3fffff;
case PPAR:
return s->ppar | ~0x41000;
case PSDR:
return s->psdr;
case PPFR:
return s->ppfr | ~0x7f001;
default:
printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
}
return 0;
}
static void strongarm_ppc_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
StrongARMPPCInfo *s = opaque;
switch (offset) {
case PPDR: /* PPC Pin Direction registers */
s->dir = value & 0x3fffff;
strongarm_ppc_handler_update(s);
break;
case PPSR: /* PPC Pin State registers */
s->olevel = value & s->dir & 0x3fffff;
strongarm_ppc_handler_update(s);
break;
case PPAR:
s->ppar = value & 0x41000;
break;
case PSDR:
s->psdr = value & 0x3fffff;
break;
case PPFR:
s->ppfr = value & 0x7f001;
break;
default:
printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
}
}
static const MemoryRegionOps strongarm_ppc_ops = {
.read = strongarm_ppc_read,
.write = strongarm_ppc_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int strongarm_ppc_init(SysBusDevice *sbd)
{
DeviceState *dev = DEVICE(sbd);
StrongARMPPCInfo *s = STRONGARM_PPC(dev);
qdev_init_gpio_in(dev, strongarm_ppc_set, 22);
qdev_init_gpio_out(dev, s->handler, 22);
memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ppc_ops, s,
"ppc", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
return 0;
}
static const VMStateDescription vmstate_strongarm_ppc_regs = {
.name = "strongarm-ppc",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
VMSTATE_UINT32(olevel, StrongARMPPCInfo),
VMSTATE_UINT32(dir, StrongARMPPCInfo),
VMSTATE_UINT32(ppar, StrongARMPPCInfo),
VMSTATE_UINT32(psdr, StrongARMPPCInfo),
VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
VMSTATE_UINT32(prev_level, StrongARMPPCInfo),
VMSTATE_END_OF_LIST(),
},
};
static void strongarm_ppc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = strongarm_ppc_init;
dc->desc = "StrongARM PPC controller";
dc->vmsd = &vmstate_strongarm_ppc_regs;
}
static const TypeInfo strongarm_ppc_info = {
.name = TYPE_STRONGARM_PPC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMPPCInfo),
.class_init = strongarm_ppc_class_init,
};
/* UART Ports */
#define UTCR0 0x00
#define UTCR1 0x04
#define UTCR2 0x08
#define UTCR3 0x0c
#define UTDR 0x14
#define UTSR0 0x1c
#define UTSR1 0x20
#define UTCR0_PE (1 << 0) /* Parity enable */
#define UTCR0_OES (1 << 1) /* Even parity */
#define UTCR0_SBS (1 << 2) /* 2 stop bits */
#define UTCR0_DSS (1 << 3) /* 8-bit data */
#define UTCR3_RXE (1 << 0) /* Rx enable */
#define UTCR3_TXE (1 << 1) /* Tx enable */
#define UTCR3_BRK (1 << 2) /* Force Break */
#define UTCR3_RIE (1 << 3) /* Rx int enable */
#define UTCR3_TIE (1 << 4) /* Tx int enable */
#define UTCR3_LBM (1 << 5) /* Loopback */
#define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
#define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
#define UTSR0_RID (1 << 2) /* Receiver Idle */
#define UTSR0_RBB (1 << 3) /* Receiver begin break */
#define UTSR0_REB (1 << 4) /* Receiver end break */
#define UTSR0_EIF (1 << 5) /* Error in FIFO */
#define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
#define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
#define UTSR1_PRE (1 << 3) /* Parity error */
#define UTSR1_FRE (1 << 4) /* Frame error */
#define UTSR1_ROR (1 << 5) /* Receive Over Run */
#define RX_FIFO_PRE (1 << 8)
#define RX_FIFO_FRE (1 << 9)
#define RX_FIFO_ROR (1 << 10)
#define TYPE_STRONGARM_UART "strongarm-uart"
#define STRONGARM_UART(obj) \
OBJECT_CHECK(StrongARMUARTState, (obj), TYPE_STRONGARM_UART)
typedef struct StrongARMUARTState {
SysBusDevice parent_obj;
MemoryRegion iomem;
CharDriverState *chr;
qemu_irq irq;
uint8_t utcr0;
uint16_t brd;
uint8_t utcr3;
uint8_t utsr0;
uint8_t utsr1;
uint8_t tx_fifo[8];
uint8_t tx_start;
uint8_t tx_len;
uint16_t rx_fifo[12]; /* value + error flags in high bits */
uint8_t rx_start;
uint8_t rx_len;
uint64_t char_transmit_time; /* time to transmit a char in ticks*/
bool wait_break_end;
QEMUTimer *rx_timeout_timer;
QEMUTimer *tx_timer;
} StrongARMUARTState;
static void strongarm_uart_update_status(StrongARMUARTState *s)
{
uint16_t utsr1 = 0;
if (s->tx_len != 8) {
utsr1 |= UTSR1_TNF;
}
if (s->rx_len != 0) {
uint16_t ent = s->rx_fifo[s->rx_start];
utsr1 |= UTSR1_RNE;
if (ent & RX_FIFO_PRE) {
s->utsr1 |= UTSR1_PRE;
}
if (ent & RX_FIFO_FRE) {
s->utsr1 |= UTSR1_FRE;
}
if (ent & RX_FIFO_ROR) {
s->utsr1 |= UTSR1_ROR;
}
}
s->utsr1 = utsr1;
}
static void strongarm_uart_update_int_status(StrongARMUARTState *s)
{
uint16_t utsr0 = s->utsr0 &
(UTSR0_REB | UTSR0_RBB | UTSR0_RID);
int i;
if ((s->utcr3 & UTCR3_TXE) &&
(s->utcr3 & UTCR3_TIE) &&
s->tx_len <= 4) {
utsr0 |= UTSR0_TFS;
}
if ((s->utcr3 & UTCR3_RXE) &&
(s->utcr3 & UTCR3_RIE) &&
s->rx_len > 4) {
utsr0 |= UTSR0_RFS;
}
for (i = 0; i < s->rx_len && i < 4; i++)
if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
utsr0 |= UTSR0_EIF;
break;
}
s->utsr0 = utsr0;
qemu_set_irq(s->irq, utsr0);
}
static void strongarm_uart_update_parameters(StrongARMUARTState *s)
{
int speed, parity, data_bits, stop_bits, frame_size;
QEMUSerialSetParams ssp;
/* Start bit. */
frame_size = 1;
if (s->utcr0 & UTCR0_PE) {
/* Parity bit. */
frame_size++;
if (s->utcr0 & UTCR0_OES) {
parity = 'E';
} else {
parity = 'O';
}
} else {
parity = 'N';
}
if (s->utcr0 & UTCR0_SBS) {
stop_bits = 2;
} else {
stop_bits = 1;
}
data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
frame_size += data_bits + stop_bits;
speed = 3686400 / 16 / (s->brd + 1);
ssp.speed = speed;
ssp.parity = parity;
ssp.data_bits = data_bits;
ssp.stop_bits = stop_bits;
s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size;
if (s->chr) {
qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
}
DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
speed, parity, data_bits, stop_bits);
}
static void strongarm_uart_rx_to(void *opaque)
{
StrongARMUARTState *s = opaque;
if (s->rx_len) {
s->utsr0 |= UTSR0_RID;
strongarm_uart_update_int_status(s);
}
}
static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
{
if ((s->utcr3 & UTCR3_RXE) == 0) {
/* rx disabled */
return;
}
if (s->wait_break_end) {
s->utsr0 |= UTSR0_REB;
s->wait_break_end = false;
}
if (s->rx_len < 12) {
s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
s->rx_len++;
} else
s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
}
static int strongarm_uart_can_receive(void *opaque)
{
StrongARMUARTState *s = opaque;
if (s->rx_len == 12) {
return 0;
}
/* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
if (s->rx_len < 8) {
return 8 - s->rx_len;
}
return 1;
}
static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
{
StrongARMUARTState *s = opaque;
int i;
for (i = 0; i < size; i++) {
strongarm_uart_rx_push(s, buf[i]);
}
/* call the timeout receive callback in 3 char transmit time */
timer_mod(s->rx_timeout_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
}
static void strongarm_uart_event(void *opaque, int event)
{
StrongARMUARTState *s = opaque;
if (event == CHR_EVENT_BREAK) {
s->utsr0 |= UTSR0_RBB;
strongarm_uart_rx_push(s, RX_FIFO_FRE);
s->wait_break_end = true;
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
}
}
static void strongarm_uart_tx(void *opaque)
{
StrongARMUARTState *s = opaque;
uint64_t new_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
if (s->utcr3 & UTCR3_LBM) /* loopback */ {
strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
} else if (s->chr) {
qemu_chr_fe_write(s->chr, &s->tx_fifo[s->tx_start], 1);
}
s->tx_start = (s->tx_start + 1) % 8;
s->tx_len--;
if (s->tx_len) {
timer_mod(s->tx_timer, new_xmit_ts + s->char_transmit_time);
}
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
}
static uint64_t strongarm_uart_read(void *opaque, hwaddr addr,
unsigned size)
{
StrongARMUARTState *s = opaque;
uint16_t ret;
switch (addr) {
case UTCR0:
return s->utcr0;
case UTCR1:
return s->brd >> 8;
case UTCR2:
return s->brd & 0xff;
case UTCR3:
return s->utcr3;
case UTDR:
if (s->rx_len != 0) {
ret = s->rx_fifo[s->rx_start];
s->rx_start = (s->rx_start + 1) % 12;
s->rx_len--;
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
return ret;
}
return 0;
case UTSR0:
return s->utsr0;
case UTSR1:
return s->utsr1;
default:
printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
return 0;
}
}
static void strongarm_uart_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
StrongARMUARTState *s = opaque;
switch (addr) {
case UTCR0:
s->utcr0 = value & 0x7f;
strongarm_uart_update_parameters(s);
break;
case UTCR1:
s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
strongarm_uart_update_parameters(s);
break;
case UTCR2:
s->brd = (s->brd & 0xf00) | (value & 0xff);
strongarm_uart_update_parameters(s);
break;
case UTCR3:
s->utcr3 = value & 0x3f;
if ((s->utcr3 & UTCR3_RXE) == 0) {
s->rx_len = 0;
}
if ((s->utcr3 & UTCR3_TXE) == 0) {
s->tx_len = 0;
}
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
break;
case UTDR:
if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
s->tx_len++;
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
if (s->tx_len == 1) {
strongarm_uart_tx(s);
}
}
break;
case UTSR0:
s->utsr0 = s->utsr0 & ~(value &
(UTSR0_REB | UTSR0_RBB | UTSR0_RID));
strongarm_uart_update_int_status(s);
break;
default:
printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
}
}
static const MemoryRegionOps strongarm_uart_ops = {
.read = strongarm_uart_read,
.write = strongarm_uart_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int strongarm_uart_init(SysBusDevice *dev)
{
StrongARMUARTState *s = STRONGARM_UART(dev);
memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_uart_ops, s,
"uart", 0x10000);
sysbus_init_mmio(dev, &s->iomem);
sysbus_init_irq(dev, &s->irq);
s->rx_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_rx_to, s);
s->tx_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_tx, s);
if (s->chr) {
qemu_chr_add_handlers(s->chr,
strongarm_uart_can_receive,
strongarm_uart_receive,
strongarm_uart_event,
s);
}
return 0;
}
static void strongarm_uart_reset(DeviceState *dev)
{
StrongARMUARTState *s = STRONGARM_UART(dev);
s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
s->brd = 23; /* 9600 */
/* enable send & recv - this actually violates spec */
s->utcr3 = UTCR3_TXE | UTCR3_RXE;
s->rx_len = s->tx_len = 0;
strongarm_uart_update_parameters(s);
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
}
static int strongarm_uart_post_load(void *opaque, int version_id)
{
StrongARMUARTState *s = opaque;
strongarm_uart_update_parameters(s);
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
/* tx and restart timer */
if (s->tx_len) {
strongarm_uart_tx(s);
}
/* restart rx timeout timer */
if (s->rx_len) {
timer_mod(s->rx_timeout_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
}
return 0;
}
static const VMStateDescription vmstate_strongarm_uart_regs = {
.name = "strongarm-uart",
.version_id = 0,
.minimum_version_id = 0,
.post_load = strongarm_uart_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT8(utcr0, StrongARMUARTState),
VMSTATE_UINT16(brd, StrongARMUARTState),
VMSTATE_UINT8(utcr3, StrongARMUARTState),
VMSTATE_UINT8(utsr0, StrongARMUARTState),
VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
VMSTATE_UINT8(tx_start, StrongARMUARTState),
VMSTATE_UINT8(tx_len, StrongARMUARTState),
VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
VMSTATE_UINT8(rx_start, StrongARMUARTState),
VMSTATE_UINT8(rx_len, StrongARMUARTState),
VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
VMSTATE_END_OF_LIST(),
},
};
static Property strongarm_uart_properties[] = {
DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
DEFINE_PROP_END_OF_LIST(),
};
static void strongarm_uart_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = strongarm_uart_init;
dc->desc = "StrongARM UART controller";
dc->reset = strongarm_uart_reset;
dc->vmsd = &vmstate_strongarm_uart_regs;
dc->props = strongarm_uart_properties;
}
static const TypeInfo strongarm_uart_info = {
.name = TYPE_STRONGARM_UART,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMUARTState),
.class_init = strongarm_uart_class_init,
};
/* Synchronous Serial Ports */
#define TYPE_STRONGARM_SSP "strongarm-ssp"
#define STRONGARM_SSP(obj) \
OBJECT_CHECK(StrongARMSSPState, (obj), TYPE_STRONGARM_SSP)
typedef struct StrongARMSSPState {
SysBusDevice parent_obj;
MemoryRegion iomem;
qemu_irq irq;
SSIBus *bus;
uint16_t sscr[2];
uint16_t sssr;
uint16_t rx_fifo[8];
uint8_t rx_level;
uint8_t rx_start;
} StrongARMSSPState;
#define SSCR0 0x60 /* SSP Control register 0 */
#define SSCR1 0x64 /* SSP Control register 1 */
#define SSDR 0x6c /* SSP Data register */
#define SSSR 0x74 /* SSP Status register */
/* Bitfields for above registers */
#define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
#define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
#define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
#define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
#define SSCR0_SSE (1 << 7)
#define SSCR0_DSS(x) (((x) & 0xf) + 1)
#define SSCR1_RIE (1 << 0)
#define SSCR1_TIE (1 << 1)
#define SSCR1_LBM (1 << 2)
#define SSSR_TNF (1 << 2)
#define SSSR_RNE (1 << 3)
#define SSSR_TFS (1 << 5)
#define SSSR_RFS (1 << 6)
#define SSSR_ROR (1 << 7)
#define SSSR_RW 0x0080
static void strongarm_ssp_int_update(StrongARMSSPState *s)
{
int level = 0;
level |= (s->sssr & SSSR_ROR);
level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
qemu_set_irq(s->irq, level);
}
static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
{
s->sssr &= ~SSSR_TFS;
s->sssr &= ~SSSR_TNF;
if (s->sscr[0] & SSCR0_SSE) {
if (s->rx_level >= 4) {
s->sssr |= SSSR_RFS;
} else {
s->sssr &= ~SSSR_RFS;
}
if (s->rx_level) {
s->sssr |= SSSR_RNE;
} else {
s->sssr &= ~SSSR_RNE;
}
/* TX FIFO is never filled, so it is always in underrun
condition if SSP is enabled */
s->sssr |= SSSR_TFS;
s->sssr |= SSSR_TNF;
}
strongarm_ssp_int_update(s);
}
static uint64_t strongarm_ssp_read(void *opaque, hwaddr addr,
unsigned size)
{
StrongARMSSPState *s = opaque;
uint32_t retval;
switch (addr) {
case SSCR0:
return s->sscr[0];
case SSCR1:
return s->sscr[1];
case SSSR:
return s->sssr;
case SSDR:
if (~s->sscr[0] & SSCR0_SSE) {
return 0xffffffff;
}
if (s->rx_level < 1) {
printf("%s: SSP Rx Underrun\n", __func__);
return 0xffffffff;
}
s->rx_level--;
retval = s->rx_fifo[s->rx_start++];
s->rx_start &= 0x7;
strongarm_ssp_fifo_update(s);
return retval;
default:
printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
break;
}
return 0;
}
static void strongarm_ssp_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
StrongARMSSPState *s = opaque;
switch (addr) {
case SSCR0:
s->sscr[0] = value & 0xffbf;
if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
printf("%s: Wrong data size: %i bits\n", __func__,
(int)SSCR0_DSS(value));
}
if (!(value & SSCR0_SSE)) {
s->sssr = 0;
s->rx_level = 0;
}
strongarm_ssp_fifo_update(s);
break;
case SSCR1:
s->sscr[1] = value & 0x2f;
if (value & SSCR1_LBM) {
printf("%s: Attempt to use SSP LBM mode\n", __func__);
}
strongarm_ssp_fifo_update(s);
break;
case SSSR:
s->sssr &= ~(value & SSSR_RW);
strongarm_ssp_int_update(s);
break;
case SSDR:
if (SSCR0_UWIRE(s->sscr[0])) {
value &= 0xff;
} else
/* Note how 32bits overflow does no harm here */
value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
/* Data goes from here to the Tx FIFO and is shifted out from
* there directly to the slave, no need to buffer it.
*/
if (s->sscr[0] & SSCR0_SSE) {
uint32_t readval;
if (s->sscr[1] & SSCR1_LBM) {
readval = value;
} else {
readval = ssi_transfer(s->bus, value);
}
if (s->rx_level < 0x08) {
s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
} else {
s->sssr |= SSSR_ROR;
}
}
strongarm_ssp_fifo_update(s);
break;
default:
printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
break;
}
}
static const MemoryRegionOps strongarm_ssp_ops = {
.read = strongarm_ssp_read,
.write = strongarm_ssp_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int strongarm_ssp_post_load(void *opaque, int version_id)
{
StrongARMSSPState *s = opaque;
strongarm_ssp_fifo_update(s);
return 0;
}
static int strongarm_ssp_init(SysBusDevice *sbd)
{
DeviceState *dev = DEVICE(sbd);
StrongARMSSPState *s = STRONGARM_SSP(dev);
sysbus_init_irq(sbd, &s->irq);
memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ssp_ops, s,
"ssp", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
s->bus = ssi_create_bus(dev, "ssi");
return 0;
}
static void strongarm_ssp_reset(DeviceState *dev)
{
StrongARMSSPState *s = STRONGARM_SSP(dev);
s->sssr = 0x03; /* 3 bit data, SPI, disabled */
s->rx_start = 0;
s->rx_level = 0;
}
static const VMStateDescription vmstate_strongarm_ssp_regs = {
.name = "strongarm-ssp",
.version_id = 0,
.minimum_version_id = 0,
.post_load = strongarm_ssp_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
VMSTATE_UINT16(sssr, StrongARMSSPState),
VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
VMSTATE_UINT8(rx_start, StrongARMSSPState),
VMSTATE_UINT8(rx_level, StrongARMSSPState),
VMSTATE_END_OF_LIST(),
},
};
static void strongarm_ssp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = strongarm_ssp_init;
dc->desc = "StrongARM SSP controller";
dc->reset = strongarm_ssp_reset;
dc->vmsd = &vmstate_strongarm_ssp_regs;
}
static const TypeInfo strongarm_ssp_info = {
.name = TYPE_STRONGARM_SSP,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMSSPState),
.class_init = strongarm_ssp_class_init,
};
/* Main CPU functions */
StrongARMState *sa1110_init(MemoryRegion *sysmem,
unsigned int sdram_size, const char *rev)
{
StrongARMState *s;
int i;
s = g_malloc0(sizeof(StrongARMState));
if (!rev) {
rev = "sa1110-b5";
}
if (strncmp(rev, "sa1110", 6)) {
error_report("Machine requires a SA1110 processor.");
exit(1);
}
s->cpu = cpu_arm_init(rev);
if (!s->cpu) {
error_report("Unable to find CPU definition");
exit(1);
}
memory_region_init_ram(&s->sdram, NULL, "strongarm.sdram", sdram_size,
&error_abort);
vmstate_register_ram_global(&s->sdram);
memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram);
s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ),
qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ),
NULL);
sysbus_create_varargs("pxa25x-timer", 0x90000000,
qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
NULL);
sysbus_create_simple(TYPE_STRONGARM_RTC, 0x90010000,
qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
s->gpio = strongarm_gpio_init(0x90040000, s->pic);
s->ppc = sysbus_create_varargs(TYPE_STRONGARM_PPC, 0x90060000, NULL);
for (i = 0; sa_serial[i].io_base; i++) {
DeviceState *dev = qdev_create(NULL, TYPE_STRONGARM_UART);
qdev_prop_set_chr(dev, "chardev", serial_hds[i]);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0,
sa_serial[i].io_base);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
qdev_get_gpio_in(s->pic, sa_serial[i].irq));
}
s->ssp = sysbus_create_varargs(TYPE_STRONGARM_SSP, 0x80070000,
qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
return s;
}
static void strongarm_register_types(void)
{
type_register_static(&strongarm_pic_info);
type_register_static(&strongarm_rtc_sysbus_info);
type_register_static(&strongarm_gpio_info);
type_register_static(&strongarm_ppc_info);
type_register_static(&strongarm_uart_info);
type_register_static(&strongarm_ssp_info);
}
type_init(strongarm_register_types)