|  | /* | 
|  | * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994 | 
|  | *	The Regents of the University of California.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. Neither the name of the University nor the names of its contributors | 
|  | *    may be used to endorse or promote products derived from this software | 
|  | *    without specific prior written permission. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | *	@(#)tcp_input.c	8.5 (Berkeley) 4/10/94 | 
|  | * tcp_input.c,v 1.10 1994/10/13 18:36:32 wollman Exp | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Changes and additions relating to SLiRP | 
|  | * Copyright (c) 1995 Danny Gasparovski. | 
|  | * | 
|  | * Please read the file COPYRIGHT for the | 
|  | * terms and conditions of the copyright. | 
|  | */ | 
|  |  | 
|  | #include <slirp.h> | 
|  | #include "ip_icmp.h" | 
|  |  | 
|  | #define	TCPREXMTTHRESH 3 | 
|  |  | 
|  | #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ) | 
|  |  | 
|  | /* for modulo comparisons of timestamps */ | 
|  | #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0) | 
|  | #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0) | 
|  |  | 
|  | /* | 
|  | * Insert segment ti into reassembly queue of tcp with | 
|  | * control block tp.  Return TH_FIN if reassembly now includes | 
|  | * a segment with FIN.  The macro form does the common case inline | 
|  | * (segment is the next to be received on an established connection, | 
|  | * and the queue is empty), avoiding linkage into and removal | 
|  | * from the queue and repetition of various conversions. | 
|  | * Set DELACK for segments received in order, but ack immediately | 
|  | * when segments are out of order (so fast retransmit can work). | 
|  | */ | 
|  | #ifdef TCP_ACK_HACK | 
|  | #define TCP_REASS(tp, ti, m, so, flags) {\ | 
|  | if ((ti)->ti_seq == (tp)->rcv_nxt && \ | 
|  | tcpfrag_list_empty(tp) && \ | 
|  | (tp)->t_state == TCPS_ESTABLISHED) {\ | 
|  | if (ti->ti_flags & TH_PUSH) \ | 
|  | tp->t_flags |= TF_ACKNOW; \ | 
|  | else \ | 
|  | tp->t_flags |= TF_DELACK; \ | 
|  | (tp)->rcv_nxt += (ti)->ti_len; \ | 
|  | flags = (ti)->ti_flags & TH_FIN; \ | 
|  | if (so->so_emu) { \ | 
|  | if (tcp_emu((so),(m))) sbappend((so), (m)); \ | 
|  | } else \ | 
|  | sbappend((so), (m)); \ | 
|  | } else {\ | 
|  | (flags) = tcp_reass((tp), (ti), (m)); \ | 
|  | tp->t_flags |= TF_ACKNOW; \ | 
|  | } \ | 
|  | } | 
|  | #else | 
|  | #define	TCP_REASS(tp, ti, m, so, flags) { \ | 
|  | if ((ti)->ti_seq == (tp)->rcv_nxt && \ | 
|  | tcpfrag_list_empty(tp) && \ | 
|  | (tp)->t_state == TCPS_ESTABLISHED) { \ | 
|  | tp->t_flags |= TF_DELACK; \ | 
|  | (tp)->rcv_nxt += (ti)->ti_len; \ | 
|  | flags = (ti)->ti_flags & TH_FIN; \ | 
|  | if (so->so_emu) { \ | 
|  | if (tcp_emu((so),(m))) sbappend(so, (m)); \ | 
|  | } else \ | 
|  | sbappend((so), (m)); \ | 
|  | } else { \ | 
|  | (flags) = tcp_reass((tp), (ti), (m)); \ | 
|  | tp->t_flags |= TF_ACKNOW; \ | 
|  | } \ | 
|  | } | 
|  | #endif | 
|  | static void tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, | 
|  | struct tcpiphdr *ti); | 
|  | static void tcp_xmit_timer(register struct tcpcb *tp, int rtt); | 
|  |  | 
|  | static int | 
|  | tcp_reass(register struct tcpcb *tp, register struct tcpiphdr *ti, | 
|  | struct mbuf *m) | 
|  | { | 
|  | register struct tcpiphdr *q; | 
|  | struct socket *so = tp->t_socket; | 
|  | int flags; | 
|  |  | 
|  | /* | 
|  | * Call with ti==NULL after become established to | 
|  | * force pre-ESTABLISHED data up to user socket. | 
|  | */ | 
|  | if (ti == NULL) | 
|  | goto present; | 
|  |  | 
|  | /* | 
|  | * Find a segment which begins after this one does. | 
|  | */ | 
|  | for (q = tcpfrag_list_first(tp); !tcpfrag_list_end(q, tp); | 
|  | q = tcpiphdr_next(q)) | 
|  | if (SEQ_GT(q->ti_seq, ti->ti_seq)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If there is a preceding segment, it may provide some of | 
|  | * our data already.  If so, drop the data from the incoming | 
|  | * segment.  If it provides all of our data, drop us. | 
|  | */ | 
|  | if (!tcpfrag_list_end(tcpiphdr_prev(q), tp)) { | 
|  | register int i; | 
|  | q = tcpiphdr_prev(q); | 
|  | /* conversion to int (in i) handles seq wraparound */ | 
|  | i = q->ti_seq + q->ti_len - ti->ti_seq; | 
|  | if (i > 0) { | 
|  | if (i >= ti->ti_len) { | 
|  | m_free(m); | 
|  | /* | 
|  | * Try to present any queued data | 
|  | * at the left window edge to the user. | 
|  | * This is needed after the 3-WHS | 
|  | * completes. | 
|  | */ | 
|  | goto present;   /* ??? */ | 
|  | } | 
|  | m_adj(m, i); | 
|  | ti->ti_len -= i; | 
|  | ti->ti_seq += i; | 
|  | } | 
|  | q = tcpiphdr_next(q); | 
|  | } | 
|  | ti->ti_mbuf = m; | 
|  |  | 
|  | /* | 
|  | * While we overlap succeeding segments trim them or, | 
|  | * if they are completely covered, dequeue them. | 
|  | */ | 
|  | while (!tcpfrag_list_end(q, tp)) { | 
|  | register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq; | 
|  | if (i <= 0) | 
|  | break; | 
|  | if (i < q->ti_len) { | 
|  | q->ti_seq += i; | 
|  | q->ti_len -= i; | 
|  | m_adj(q->ti_mbuf, i); | 
|  | break; | 
|  | } | 
|  | q = tcpiphdr_next(q); | 
|  | m = tcpiphdr_prev(q)->ti_mbuf; | 
|  | remque(tcpiphdr2qlink(tcpiphdr_prev(q))); | 
|  | m_free(m); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stick new segment in its place. | 
|  | */ | 
|  | insque(tcpiphdr2qlink(ti), tcpiphdr2qlink(tcpiphdr_prev(q))); | 
|  |  | 
|  | present: | 
|  | /* | 
|  | * Present data to user, advancing rcv_nxt through | 
|  | * completed sequence space. | 
|  | */ | 
|  | if (!TCPS_HAVEESTABLISHED(tp->t_state)) | 
|  | return (0); | 
|  | ti = tcpfrag_list_first(tp); | 
|  | if (tcpfrag_list_end(ti, tp) || ti->ti_seq != tp->rcv_nxt) | 
|  | return (0); | 
|  | if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len) | 
|  | return (0); | 
|  | do { | 
|  | tp->rcv_nxt += ti->ti_len; | 
|  | flags = ti->ti_flags & TH_FIN; | 
|  | remque(tcpiphdr2qlink(ti)); | 
|  | m = ti->ti_mbuf; | 
|  | ti = tcpiphdr_next(ti); | 
|  | if (so->so_state & SS_FCANTSENDMORE) | 
|  | m_free(m); | 
|  | else { | 
|  | if (so->so_emu) { | 
|  | if (tcp_emu(so,m)) sbappend(so, m); | 
|  | } else | 
|  | sbappend(so, m); | 
|  | } | 
|  | } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt); | 
|  | return (flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TCP input routine, follows pages 65-76 of the | 
|  | * protocol specification dated September, 1981 very closely. | 
|  | */ | 
|  | void | 
|  | tcp_input(struct mbuf *m, int iphlen, struct socket *inso) | 
|  | { | 
|  | struct ip save_ip, *ip; | 
|  | register struct tcpiphdr *ti; | 
|  | caddr_t optp = NULL; | 
|  | int optlen = 0; | 
|  | int len, tlen, off; | 
|  | register struct tcpcb *tp = NULL; | 
|  | register int tiflags; | 
|  | struct socket *so = NULL; | 
|  | int todrop, acked, ourfinisacked, needoutput = 0; | 
|  | int iss = 0; | 
|  | u_long tiwin; | 
|  | int ret; | 
|  | struct ex_list *ex_ptr; | 
|  | Slirp *slirp; | 
|  |  | 
|  | DEBUG_CALL("tcp_input"); | 
|  | DEBUG_ARGS((dfd, " m = %8lx  iphlen = %2d  inso = %lx\n", | 
|  | (long )m, iphlen, (long )inso )); | 
|  |  | 
|  | /* | 
|  | * If called with m == 0, then we're continuing the connect | 
|  | */ | 
|  | if (m == NULL) { | 
|  | so = inso; | 
|  | slirp = so->slirp; | 
|  |  | 
|  | /* Re-set a few variables */ | 
|  | tp = sototcpcb(so); | 
|  | m = so->so_m; | 
|  | so->so_m = NULL; | 
|  | ti = so->so_ti; | 
|  | tiwin = ti->ti_win; | 
|  | tiflags = ti->ti_flags; | 
|  |  | 
|  | goto cont_conn; | 
|  | } | 
|  | slirp = m->slirp; | 
|  |  | 
|  | /* | 
|  | * Get IP and TCP header together in first mbuf. | 
|  | * Note: IP leaves IP header in first mbuf. | 
|  | */ | 
|  | ti = mtod(m, struct tcpiphdr *); | 
|  | if (iphlen > sizeof(struct ip )) { | 
|  | ip_stripoptions(m, (struct mbuf *)0); | 
|  | iphlen=sizeof(struct ip ); | 
|  | } | 
|  | /* XXX Check if too short */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Save a copy of the IP header in case we want restore it | 
|  | * for sending an ICMP error message in response. | 
|  | */ | 
|  | ip=mtod(m, struct ip *); | 
|  | save_ip = *ip; | 
|  | save_ip.ip_len+= iphlen; | 
|  |  | 
|  | /* | 
|  | * Checksum extended TCP header and data. | 
|  | */ | 
|  | tlen = ((struct ip *)ti)->ip_len; | 
|  | tcpiphdr2qlink(ti)->next = tcpiphdr2qlink(ti)->prev = NULL; | 
|  | memset(&ti->ti_i.ih_mbuf, 0 , sizeof(struct mbuf_ptr)); | 
|  | ti->ti_x1 = 0; | 
|  | ti->ti_len = htons((uint16_t)tlen); | 
|  | len = sizeof(struct ip ) + tlen; | 
|  | if(cksum(m, len)) { | 
|  | goto drop; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that TCP offset makes sense, | 
|  | * pull out TCP options and adjust length.		XXX | 
|  | */ | 
|  | off = ti->ti_off << 2; | 
|  | if (off < sizeof (struct tcphdr) || off > tlen) { | 
|  | goto drop; | 
|  | } | 
|  | tlen -= off; | 
|  | ti->ti_len = tlen; | 
|  | if (off > sizeof (struct tcphdr)) { | 
|  | optlen = off - sizeof (struct tcphdr); | 
|  | optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr); | 
|  | } | 
|  | tiflags = ti->ti_flags; | 
|  |  | 
|  | /* | 
|  | * Convert TCP protocol specific fields to host format. | 
|  | */ | 
|  | NTOHL(ti->ti_seq); | 
|  | NTOHL(ti->ti_ack); | 
|  | NTOHS(ti->ti_win); | 
|  | NTOHS(ti->ti_urp); | 
|  |  | 
|  | /* | 
|  | * Drop TCP, IP headers and TCP options. | 
|  | */ | 
|  | m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); | 
|  | m->m_len  -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); | 
|  |  | 
|  | /* | 
|  | * Locate pcb for segment. | 
|  | */ | 
|  | findso: | 
|  | so = slirp->tcp_last_so; | 
|  | if (so->so_fport != ti->ti_dport || | 
|  | so->so_lport != ti->ti_sport || | 
|  | so->so_laddr.s_addr != ti->ti_src.s_addr || | 
|  | so->so_faddr.s_addr != ti->ti_dst.s_addr) { | 
|  | so = solookup(&slirp->tcb, ti->ti_src, ti->ti_sport, | 
|  | ti->ti_dst, ti->ti_dport); | 
|  | if (so) | 
|  | slirp->tcp_last_so = so; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the state is CLOSED (i.e., TCB does not exist) then | 
|  | * all data in the incoming segment is discarded. | 
|  | * If the TCB exists but is in CLOSED state, it is embryonic, | 
|  | * but should either do a listen or a connect soon. | 
|  | * | 
|  | * state == CLOSED means we've done socreate() but haven't | 
|  | * attached it to a protocol yet... | 
|  | * | 
|  | * XXX If a TCB does not exist, and the TH_SYN flag is | 
|  | * the only flag set, then create a session, mark it | 
|  | * as if it was LISTENING, and continue... | 
|  | */ | 
|  | if (so == NULL) { | 
|  | if (slirp->restricted) { | 
|  | /* Any hostfwds will have an existing socket, so we only get here | 
|  | * for non-hostfwd connections. These should be dropped, unless it | 
|  | * happens to be a guestfwd. | 
|  | */ | 
|  | for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { | 
|  | if (ex_ptr->ex_fport == ti->ti_dport && | 
|  | ti->ti_dst.s_addr == ex_ptr->ex_addr.s_addr) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!ex_ptr) { | 
|  | goto dropwithreset; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) != TH_SYN) | 
|  | goto dropwithreset; | 
|  |  | 
|  | if ((so = socreate(slirp)) == NULL) | 
|  | goto dropwithreset; | 
|  | if (tcp_attach(so) < 0) { | 
|  | free(so); /* Not sofree (if it failed, it's not insqued) */ | 
|  | goto dropwithreset; | 
|  | } | 
|  |  | 
|  | sbreserve(&so->so_snd, TCP_SNDSPACE); | 
|  | sbreserve(&so->so_rcv, TCP_RCVSPACE); | 
|  |  | 
|  | so->so_laddr = ti->ti_src; | 
|  | so->so_lport = ti->ti_sport; | 
|  | so->so_faddr = ti->ti_dst; | 
|  | so->so_fport = ti->ti_dport; | 
|  |  | 
|  | if ((so->so_iptos = tcp_tos(so)) == 0) | 
|  | so->so_iptos = ((struct ip *)ti)->ip_tos; | 
|  |  | 
|  | tp = sototcpcb(so); | 
|  | tp->t_state = TCPS_LISTEN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is a still-connecting socket, this probably | 
|  | * a retransmit of the SYN.  Whether it's a retransmit SYN | 
|  | * or something else, we nuke it. | 
|  | */ | 
|  | if (so->so_state & SS_ISFCONNECTING) | 
|  | goto drop; | 
|  |  | 
|  | tp = sototcpcb(so); | 
|  |  | 
|  | /* XXX Should never fail */ | 
|  | if (tp == NULL) | 
|  | goto dropwithreset; | 
|  | if (tp->t_state == TCPS_CLOSED) | 
|  | goto drop; | 
|  |  | 
|  | tiwin = ti->ti_win; | 
|  |  | 
|  | /* | 
|  | * Segment received on connection. | 
|  | * Reset idle time and keep-alive timer. | 
|  | */ | 
|  | tp->t_idle = 0; | 
|  | if (SO_OPTIONS) | 
|  | tp->t_timer[TCPT_KEEP] = TCPTV_KEEPINTVL; | 
|  | else | 
|  | tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_IDLE; | 
|  |  | 
|  | /* | 
|  | * Process options if not in LISTEN state, | 
|  | * else do it below (after getting remote address). | 
|  | */ | 
|  | if (optp && tp->t_state != TCPS_LISTEN) | 
|  | tcp_dooptions(tp, (u_char *)optp, optlen, ti); | 
|  |  | 
|  | /* | 
|  | * Header prediction: check for the two common cases | 
|  | * of a uni-directional data xfer.  If the packet has | 
|  | * no control flags, is in-sequence, the window didn't | 
|  | * change and we're not retransmitting, it's a | 
|  | * candidate.  If the length is zero and the ack moved | 
|  | * forward, we're the sender side of the xfer.  Just | 
|  | * free the data acked & wake any higher level process | 
|  | * that was blocked waiting for space.  If the length | 
|  | * is non-zero and the ack didn't move, we're the | 
|  | * receiver side.  If we're getting packets in-order | 
|  | * (the reassembly queue is empty), add the data to | 
|  | * the socket buffer and note that we need a delayed ack. | 
|  | * | 
|  | * XXX Some of these tests are not needed | 
|  | * eg: the tiwin == tp->snd_wnd prevents many more | 
|  | * predictions.. with no *real* advantage.. | 
|  | */ | 
|  | if (tp->t_state == TCPS_ESTABLISHED && | 
|  | (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && | 
|  | ti->ti_seq == tp->rcv_nxt && | 
|  | tiwin && tiwin == tp->snd_wnd && | 
|  | tp->snd_nxt == tp->snd_max) { | 
|  | if (ti->ti_len == 0) { | 
|  | if (SEQ_GT(ti->ti_ack, tp->snd_una) && | 
|  | SEQ_LEQ(ti->ti_ack, tp->snd_max) && | 
|  | tp->snd_cwnd >= tp->snd_wnd) { | 
|  | /* | 
|  | * this is a pure ack for outstanding data. | 
|  | */ | 
|  | if (tp->t_rtt && | 
|  | SEQ_GT(ti->ti_ack, tp->t_rtseq)) | 
|  | tcp_xmit_timer(tp, tp->t_rtt); | 
|  | acked = ti->ti_ack - tp->snd_una; | 
|  | sbdrop(&so->so_snd, acked); | 
|  | tp->snd_una = ti->ti_ack; | 
|  | m_free(m); | 
|  |  | 
|  | /* | 
|  | * If all outstanding data are acked, stop | 
|  | * retransmit timer, otherwise restart timer | 
|  | * using current (possibly backed-off) value. | 
|  | * If process is waiting for space, | 
|  | * wakeup/selwakeup/signal.  If data | 
|  | * are ready to send, let tcp_output | 
|  | * decide between more output or persist. | 
|  | */ | 
|  | if (tp->snd_una == tp->snd_max) | 
|  | tp->t_timer[TCPT_REXMT] = 0; | 
|  | else if (tp->t_timer[TCPT_PERSIST] == 0) | 
|  | tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; | 
|  |  | 
|  | /* | 
|  | * This is called because sowwakeup might have | 
|  | * put data into so_snd.  Since we don't so sowwakeup, | 
|  | * we don't need this.. XXX??? | 
|  | */ | 
|  | if (so->so_snd.sb_cc) | 
|  | (void) tcp_output(tp); | 
|  |  | 
|  | return; | 
|  | } | 
|  | } else if (ti->ti_ack == tp->snd_una && | 
|  | tcpfrag_list_empty(tp) && | 
|  | ti->ti_len <= sbspace(&so->so_rcv)) { | 
|  | /* | 
|  | * this is a pure, in-sequence data packet | 
|  | * with nothing on the reassembly queue and | 
|  | * we have enough buffer space to take it. | 
|  | */ | 
|  | tp->rcv_nxt += ti->ti_len; | 
|  | /* | 
|  | * Add data to socket buffer. | 
|  | */ | 
|  | if (so->so_emu) { | 
|  | if (tcp_emu(so,m)) sbappend(so, m); | 
|  | } else | 
|  | sbappend(so, m); | 
|  |  | 
|  | /* | 
|  | * If this is a short packet, then ACK now - with Nagel | 
|  | *	congestion avoidance sender won't send more until | 
|  | *	he gets an ACK. | 
|  | * | 
|  | * It is better to not delay acks at all to maximize | 
|  | * TCP throughput.  See RFC 2581. | 
|  | */ | 
|  | tp->t_flags |= TF_ACKNOW; | 
|  | tcp_output(tp); | 
|  | return; | 
|  | } | 
|  | } /* header prediction */ | 
|  | /* | 
|  | * Calculate amount of space in receive window, | 
|  | * and then do TCP input processing. | 
|  | * Receive window is amount of space in rcv queue, | 
|  | * but not less than advertised window. | 
|  | */ | 
|  | { int win; | 
|  | win = sbspace(&so->so_rcv); | 
|  | if (win < 0) | 
|  | win = 0; | 
|  | tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt)); | 
|  | } | 
|  |  | 
|  | switch (tp->t_state) { | 
|  |  | 
|  | /* | 
|  | * If the state is LISTEN then ignore segment if it contains an RST. | 
|  | * If the segment contains an ACK then it is bad and send a RST. | 
|  | * If it does not contain a SYN then it is not interesting; drop it. | 
|  | * Don't bother responding if the destination was a broadcast. | 
|  | * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial | 
|  | * tp->iss, and send a segment: | 
|  | *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> | 
|  | * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss. | 
|  | * Fill in remote peer address fields if not previously specified. | 
|  | * Enter SYN_RECEIVED state, and process any other fields of this | 
|  | * segment in this state. | 
|  | */ | 
|  | case TCPS_LISTEN: { | 
|  |  | 
|  | if (tiflags & TH_RST) | 
|  | goto drop; | 
|  | if (tiflags & TH_ACK) | 
|  | goto dropwithreset; | 
|  | if ((tiflags & TH_SYN) == 0) | 
|  | goto drop; | 
|  |  | 
|  | /* | 
|  | * This has way too many gotos... | 
|  | * But a bit of spaghetti code never hurt anybody :) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * If this is destined for the control address, then flag to | 
|  | * tcp_ctl once connected, otherwise connect | 
|  | */ | 
|  | if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) == | 
|  | slirp->vnetwork_addr.s_addr) { | 
|  | if (so->so_faddr.s_addr != slirp->vhost_addr.s_addr && | 
|  | so->so_faddr.s_addr != slirp->vnameserver_addr.s_addr) { | 
|  | /* May be an add exec */ | 
|  | for (ex_ptr = slirp->exec_list; ex_ptr; | 
|  | ex_ptr = ex_ptr->ex_next) { | 
|  | if(ex_ptr->ex_fport == so->so_fport && | 
|  | so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr) { | 
|  | so->so_state |= SS_CTL; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (so->so_state & SS_CTL) { | 
|  | goto cont_input; | 
|  | } | 
|  | } | 
|  | /* CTL_ALIAS: Do nothing, tcp_fconnect will be called on it */ | 
|  | } | 
|  |  | 
|  | if (so->so_emu & EMU_NOCONNECT) { | 
|  | so->so_emu &= ~EMU_NOCONNECT; | 
|  | goto cont_input; | 
|  | } | 
|  |  | 
|  | if((tcp_fconnect(so) == -1) && (errno != EINPROGRESS) && (errno != EWOULDBLOCK)) { | 
|  | u_char code=ICMP_UNREACH_NET; | 
|  | DEBUG_MISC((dfd, " tcp fconnect errno = %d-%s\n", | 
|  | errno,strerror(errno))); | 
|  | if(errno == ECONNREFUSED) { | 
|  | /* ACK the SYN, send RST to refuse the connection */ | 
|  | tcp_respond(tp, ti, m, ti->ti_seq+1, (tcp_seq)0, | 
|  | TH_RST|TH_ACK); | 
|  | } else { | 
|  | if(errno == EHOSTUNREACH) code=ICMP_UNREACH_HOST; | 
|  | HTONL(ti->ti_seq);             /* restore tcp header */ | 
|  | HTONL(ti->ti_ack); | 
|  | HTONS(ti->ti_win); | 
|  | HTONS(ti->ti_urp); | 
|  | m->m_data -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); | 
|  | m->m_len  += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); | 
|  | *ip=save_ip; | 
|  | icmp_error(m, ICMP_UNREACH,code, 0,strerror(errno)); | 
|  | } | 
|  | tcp_close(tp); | 
|  | m_free(m); | 
|  | } else { | 
|  | /* | 
|  | * Haven't connected yet, save the current mbuf | 
|  | * and ti, and return | 
|  | * XXX Some OS's don't tell us whether the connect() | 
|  | * succeeded or not.  So we must time it out. | 
|  | */ | 
|  | so->so_m = m; | 
|  | so->so_ti = ti; | 
|  | tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; | 
|  | tp->t_state = TCPS_SYN_RECEIVED; | 
|  | tcp_template(tp); | 
|  | } | 
|  | return; | 
|  |  | 
|  | cont_conn: | 
|  | /* m==NULL | 
|  | * Check if the connect succeeded | 
|  | */ | 
|  | if (so->so_state & SS_NOFDREF) { | 
|  | tp = tcp_close(tp); | 
|  | goto dropwithreset; | 
|  | } | 
|  | cont_input: | 
|  | tcp_template(tp); | 
|  |  | 
|  | if (optp) | 
|  | tcp_dooptions(tp, (u_char *)optp, optlen, ti); | 
|  |  | 
|  | if (iss) | 
|  | tp->iss = iss; | 
|  | else | 
|  | tp->iss = slirp->tcp_iss; | 
|  | slirp->tcp_iss += TCP_ISSINCR/2; | 
|  | tp->irs = ti->ti_seq; | 
|  | tcp_sendseqinit(tp); | 
|  | tcp_rcvseqinit(tp); | 
|  | tp->t_flags |= TF_ACKNOW; | 
|  | tp->t_state = TCPS_SYN_RECEIVED; | 
|  | tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; | 
|  | goto trimthenstep6; | 
|  | } /* case TCPS_LISTEN */ | 
|  |  | 
|  | /* | 
|  | * If the state is SYN_SENT: | 
|  | *	if seg contains an ACK, but not for our SYN, drop the input. | 
|  | *	if seg contains a RST, then drop the connection. | 
|  | *	if seg does not contain SYN, then drop it. | 
|  | * Otherwise this is an acceptable SYN segment | 
|  | *	initialize tp->rcv_nxt and tp->irs | 
|  | *	if seg contains ack then advance tp->snd_una | 
|  | *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state | 
|  | *	arrange for segment to be acked (eventually) | 
|  | *	continue processing rest of data/controls, beginning with URG | 
|  | */ | 
|  | case TCPS_SYN_SENT: | 
|  | if ((tiflags & TH_ACK) && | 
|  | (SEQ_LEQ(ti->ti_ack, tp->iss) || | 
|  | SEQ_GT(ti->ti_ack, tp->snd_max))) | 
|  | goto dropwithreset; | 
|  |  | 
|  | if (tiflags & TH_RST) { | 
|  | if (tiflags & TH_ACK) { | 
|  | tcp_drop(tp, 0); /* XXX Check t_softerror! */ | 
|  | } | 
|  | goto drop; | 
|  | } | 
|  |  | 
|  | if ((tiflags & TH_SYN) == 0) | 
|  | goto drop; | 
|  | if (tiflags & TH_ACK) { | 
|  | tp->snd_una = ti->ti_ack; | 
|  | if (SEQ_LT(tp->snd_nxt, tp->snd_una)) | 
|  | tp->snd_nxt = tp->snd_una; | 
|  | } | 
|  |  | 
|  | tp->t_timer[TCPT_REXMT] = 0; | 
|  | tp->irs = ti->ti_seq; | 
|  | tcp_rcvseqinit(tp); | 
|  | tp->t_flags |= TF_ACKNOW; | 
|  | if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) { | 
|  | soisfconnected(so); | 
|  | tp->t_state = TCPS_ESTABLISHED; | 
|  |  | 
|  | (void) tcp_reass(tp, (struct tcpiphdr *)0, | 
|  | (struct mbuf *)0); | 
|  | /* | 
|  | * if we didn't have to retransmit the SYN, | 
|  | * use its rtt as our initial srtt & rtt var. | 
|  | */ | 
|  | if (tp->t_rtt) | 
|  | tcp_xmit_timer(tp, tp->t_rtt); | 
|  | } else | 
|  | tp->t_state = TCPS_SYN_RECEIVED; | 
|  |  | 
|  | trimthenstep6: | 
|  | /* | 
|  | * Advance ti->ti_seq to correspond to first data byte. | 
|  | * If data, trim to stay within window, | 
|  | * dropping FIN if necessary. | 
|  | */ | 
|  | ti->ti_seq++; | 
|  | if (ti->ti_len > tp->rcv_wnd) { | 
|  | todrop = ti->ti_len - tp->rcv_wnd; | 
|  | m_adj(m, -todrop); | 
|  | ti->ti_len = tp->rcv_wnd; | 
|  | tiflags &= ~TH_FIN; | 
|  | } | 
|  | tp->snd_wl1 = ti->ti_seq - 1; | 
|  | tp->rcv_up = ti->ti_seq; | 
|  | goto step6; | 
|  | } /* switch tp->t_state */ | 
|  | /* | 
|  | * States other than LISTEN or SYN_SENT. | 
|  | * Check that at least some bytes of segment are within | 
|  | * receive window.  If segment begins before rcv_nxt, | 
|  | * drop leading data (and SYN); if nothing left, just ack. | 
|  | */ | 
|  | todrop = tp->rcv_nxt - ti->ti_seq; | 
|  | if (todrop > 0) { | 
|  | if (tiflags & TH_SYN) { | 
|  | tiflags &= ~TH_SYN; | 
|  | ti->ti_seq++; | 
|  | if (ti->ti_urp > 1) | 
|  | ti->ti_urp--; | 
|  | else | 
|  | tiflags &= ~TH_URG; | 
|  | todrop--; | 
|  | } | 
|  | /* | 
|  | * Following if statement from Stevens, vol. 2, p. 960. | 
|  | */ | 
|  | if (todrop > ti->ti_len | 
|  | || (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) { | 
|  | /* | 
|  | * Any valid FIN must be to the left of the window. | 
|  | * At this point the FIN must be a duplicate or out | 
|  | * of sequence; drop it. | 
|  | */ | 
|  | tiflags &= ~TH_FIN; | 
|  |  | 
|  | /* | 
|  | * Send an ACK to resynchronize and drop any data. | 
|  | * But keep on processing for RST or ACK. | 
|  | */ | 
|  | tp->t_flags |= TF_ACKNOW; | 
|  | todrop = ti->ti_len; | 
|  | } | 
|  | m_adj(m, todrop); | 
|  | ti->ti_seq += todrop; | 
|  | ti->ti_len -= todrop; | 
|  | if (ti->ti_urp > todrop) | 
|  | ti->ti_urp -= todrop; | 
|  | else { | 
|  | tiflags &= ~TH_URG; | 
|  | ti->ti_urp = 0; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * If new data are received on a connection after the | 
|  | * user processes are gone, then RST the other end. | 
|  | */ | 
|  | if ((so->so_state & SS_NOFDREF) && | 
|  | tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) { | 
|  | tp = tcp_close(tp); | 
|  | goto dropwithreset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If segment ends after window, drop trailing data | 
|  | * (and PUSH and FIN); if nothing left, just ACK. | 
|  | */ | 
|  | todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd); | 
|  | if (todrop > 0) { | 
|  | if (todrop >= ti->ti_len) { | 
|  | /* | 
|  | * If a new connection request is received | 
|  | * while in TIME_WAIT, drop the old connection | 
|  | * and start over if the sequence numbers | 
|  | * are above the previous ones. | 
|  | */ | 
|  | if (tiflags & TH_SYN && | 
|  | tp->t_state == TCPS_TIME_WAIT && | 
|  | SEQ_GT(ti->ti_seq, tp->rcv_nxt)) { | 
|  | iss = tp->rcv_nxt + TCP_ISSINCR; | 
|  | tp = tcp_close(tp); | 
|  | goto findso; | 
|  | } | 
|  | /* | 
|  | * If window is closed can only take segments at | 
|  | * window edge, and have to drop data and PUSH from | 
|  | * incoming segments.  Continue processing, but | 
|  | * remember to ack.  Otherwise, drop segment | 
|  | * and ack. | 
|  | */ | 
|  | if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) { | 
|  | tp->t_flags |= TF_ACKNOW; | 
|  | } else { | 
|  | goto dropafterack; | 
|  | } | 
|  | } | 
|  | m_adj(m, -todrop); | 
|  | ti->ti_len -= todrop; | 
|  | tiflags &= ~(TH_PUSH|TH_FIN); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the RST bit is set examine the state: | 
|  | *    SYN_RECEIVED STATE: | 
|  | *	If passive open, return to LISTEN state. | 
|  | *	If active open, inform user that connection was refused. | 
|  | *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES: | 
|  | *	Inform user that connection was reset, and close tcb. | 
|  | *    CLOSING, LAST_ACK, TIME_WAIT STATES | 
|  | *	Close the tcb. | 
|  | */ | 
|  | if (tiflags&TH_RST) switch (tp->t_state) { | 
|  |  | 
|  | case TCPS_SYN_RECEIVED: | 
|  | case TCPS_ESTABLISHED: | 
|  | case TCPS_FIN_WAIT_1: | 
|  | case TCPS_FIN_WAIT_2: | 
|  | case TCPS_CLOSE_WAIT: | 
|  | tp->t_state = TCPS_CLOSED; | 
|  | tcp_close(tp); | 
|  | goto drop; | 
|  |  | 
|  | case TCPS_CLOSING: | 
|  | case TCPS_LAST_ACK: | 
|  | case TCPS_TIME_WAIT: | 
|  | tcp_close(tp); | 
|  | goto drop; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a SYN is in the window, then this is an | 
|  | * error and we send an RST and drop the connection. | 
|  | */ | 
|  | if (tiflags & TH_SYN) { | 
|  | tp = tcp_drop(tp,0); | 
|  | goto dropwithreset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the ACK bit is off we drop the segment and return. | 
|  | */ | 
|  | if ((tiflags & TH_ACK) == 0) goto drop; | 
|  |  | 
|  | /* | 
|  | * Ack processing. | 
|  | */ | 
|  | switch (tp->t_state) { | 
|  | /* | 
|  | * In SYN_RECEIVED state if the ack ACKs our SYN then enter | 
|  | * ESTABLISHED state and continue processing, otherwise | 
|  | * send an RST.  una<=ack<=max | 
|  | */ | 
|  | case TCPS_SYN_RECEIVED: | 
|  |  | 
|  | if (SEQ_GT(tp->snd_una, ti->ti_ack) || | 
|  | SEQ_GT(ti->ti_ack, tp->snd_max)) | 
|  | goto dropwithreset; | 
|  | tp->t_state = TCPS_ESTABLISHED; | 
|  | /* | 
|  | * The sent SYN is ack'ed with our sequence number +1 | 
|  | * The first data byte already in the buffer will get | 
|  | * lost if no correction is made.  This is only needed for | 
|  | * SS_CTL since the buffer is empty otherwise. | 
|  | * tp->snd_una++; or: | 
|  | */ | 
|  | tp->snd_una=ti->ti_ack; | 
|  | if (so->so_state & SS_CTL) { | 
|  | /* So tcp_ctl reports the right state */ | 
|  | ret = tcp_ctl(so); | 
|  | if (ret == 1) { | 
|  | soisfconnected(so); | 
|  | so->so_state &= ~SS_CTL;   /* success XXX */ | 
|  | } else if (ret == 2) { | 
|  | so->so_state &= SS_PERSISTENT_MASK; | 
|  | so->so_state |= SS_NOFDREF; /* CTL_CMD */ | 
|  | } else { | 
|  | needoutput = 1; | 
|  | tp->t_state = TCPS_FIN_WAIT_1; | 
|  | } | 
|  | } else { | 
|  | soisfconnected(so); | 
|  | } | 
|  |  | 
|  | (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0); | 
|  | tp->snd_wl1 = ti->ti_seq - 1; | 
|  | /* Avoid ack processing; snd_una==ti_ack  =>  dup ack */ | 
|  | goto synrx_to_est; | 
|  | /* fall into ... */ | 
|  |  | 
|  | /* | 
|  | * In ESTABLISHED state: drop duplicate ACKs; ACK out of range | 
|  | * ACKs.  If the ack is in the range | 
|  | *	tp->snd_una < ti->ti_ack <= tp->snd_max | 
|  | * then advance tp->snd_una to ti->ti_ack and drop | 
|  | * data from the retransmission queue.  If this ACK reflects | 
|  | * more up to date window information we update our window information. | 
|  | */ | 
|  | case TCPS_ESTABLISHED: | 
|  | case TCPS_FIN_WAIT_1: | 
|  | case TCPS_FIN_WAIT_2: | 
|  | case TCPS_CLOSE_WAIT: | 
|  | case TCPS_CLOSING: | 
|  | case TCPS_LAST_ACK: | 
|  | case TCPS_TIME_WAIT: | 
|  |  | 
|  | if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) { | 
|  | if (ti->ti_len == 0 && tiwin == tp->snd_wnd) { | 
|  | DEBUG_MISC((dfd, " dup ack  m = %lx  so = %lx\n", | 
|  | (long )m, (long )so)); | 
|  | /* | 
|  | * If we have outstanding data (other than | 
|  | * a window probe), this is a completely | 
|  | * duplicate ack (ie, window info didn't | 
|  | * change), the ack is the biggest we've | 
|  | * seen and we've seen exactly our rexmt | 
|  | * threshold of them, assume a packet | 
|  | * has been dropped and retransmit it. | 
|  | * Kludge snd_nxt & the congestion | 
|  | * window so we send only this one | 
|  | * packet. | 
|  | * | 
|  | * We know we're losing at the current | 
|  | * window size so do congestion avoidance | 
|  | * (set ssthresh to half the current window | 
|  | * and pull our congestion window back to | 
|  | * the new ssthresh). | 
|  | * | 
|  | * Dup acks mean that packets have left the | 
|  | * network (they're now cached at the receiver) | 
|  | * so bump cwnd by the amount in the receiver | 
|  | * to keep a constant cwnd packets in the | 
|  | * network. | 
|  | */ | 
|  | if (tp->t_timer[TCPT_REXMT] == 0 || | 
|  | ti->ti_ack != tp->snd_una) | 
|  | tp->t_dupacks = 0; | 
|  | else if (++tp->t_dupacks == TCPREXMTTHRESH) { | 
|  | tcp_seq onxt = tp->snd_nxt; | 
|  | u_int win = | 
|  | min(tp->snd_wnd, tp->snd_cwnd) / 2 / | 
|  | tp->t_maxseg; | 
|  |  | 
|  | if (win < 2) | 
|  | win = 2; | 
|  | tp->snd_ssthresh = win * tp->t_maxseg; | 
|  | tp->t_timer[TCPT_REXMT] = 0; | 
|  | tp->t_rtt = 0; | 
|  | tp->snd_nxt = ti->ti_ack; | 
|  | tp->snd_cwnd = tp->t_maxseg; | 
|  | (void) tcp_output(tp); | 
|  | tp->snd_cwnd = tp->snd_ssthresh + | 
|  | tp->t_maxseg * tp->t_dupacks; | 
|  | if (SEQ_GT(onxt, tp->snd_nxt)) | 
|  | tp->snd_nxt = onxt; | 
|  | goto drop; | 
|  | } else if (tp->t_dupacks > TCPREXMTTHRESH) { | 
|  | tp->snd_cwnd += tp->t_maxseg; | 
|  | (void) tcp_output(tp); | 
|  | goto drop; | 
|  | } | 
|  | } else | 
|  | tp->t_dupacks = 0; | 
|  | break; | 
|  | } | 
|  | synrx_to_est: | 
|  | /* | 
|  | * If the congestion window was inflated to account | 
|  | * for the other side's cached packets, retract it. | 
|  | */ | 
|  | if (tp->t_dupacks > TCPREXMTTHRESH && | 
|  | tp->snd_cwnd > tp->snd_ssthresh) | 
|  | tp->snd_cwnd = tp->snd_ssthresh; | 
|  | tp->t_dupacks = 0; | 
|  | if (SEQ_GT(ti->ti_ack, tp->snd_max)) { | 
|  | goto dropafterack; | 
|  | } | 
|  | acked = ti->ti_ack - tp->snd_una; | 
|  |  | 
|  | /* | 
|  | * If transmit timer is running and timed sequence | 
|  | * number was acked, update smoothed round trip time. | 
|  | * Since we now have an rtt measurement, cancel the | 
|  | * timer backoff (cf., Phil Karn's retransmit alg.). | 
|  | * Recompute the initial retransmit timer. | 
|  | */ | 
|  | if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) | 
|  | tcp_xmit_timer(tp,tp->t_rtt); | 
|  |  | 
|  | /* | 
|  | * If all outstanding data is acked, stop retransmit | 
|  | * timer and remember to restart (more output or persist). | 
|  | * If there is more data to be acked, restart retransmit | 
|  | * timer, using current (possibly backed-off) value. | 
|  | */ | 
|  | if (ti->ti_ack == tp->snd_max) { | 
|  | tp->t_timer[TCPT_REXMT] = 0; | 
|  | needoutput = 1; | 
|  | } else if (tp->t_timer[TCPT_PERSIST] == 0) | 
|  | tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; | 
|  | /* | 
|  | * When new data is acked, open the congestion window. | 
|  | * If the window gives us less than ssthresh packets | 
|  | * in flight, open exponentially (maxseg per packet). | 
|  | * Otherwise open linearly: maxseg per window | 
|  | * (maxseg^2 / cwnd per packet). | 
|  | */ | 
|  | { | 
|  | register u_int cw = tp->snd_cwnd; | 
|  | register u_int incr = tp->t_maxseg; | 
|  |  | 
|  | if (cw > tp->snd_ssthresh) | 
|  | incr = incr * incr / cw; | 
|  | tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale); | 
|  | } | 
|  | if (acked > so->so_snd.sb_cc) { | 
|  | tp->snd_wnd -= so->so_snd.sb_cc; | 
|  | sbdrop(&so->so_snd, (int )so->so_snd.sb_cc); | 
|  | ourfinisacked = 1; | 
|  | } else { | 
|  | sbdrop(&so->so_snd, acked); | 
|  | tp->snd_wnd -= acked; | 
|  | ourfinisacked = 0; | 
|  | } | 
|  | tp->snd_una = ti->ti_ack; | 
|  | if (SEQ_LT(tp->snd_nxt, tp->snd_una)) | 
|  | tp->snd_nxt = tp->snd_una; | 
|  |  | 
|  | switch (tp->t_state) { | 
|  |  | 
|  | /* | 
|  | * In FIN_WAIT_1 STATE in addition to the processing | 
|  | * for the ESTABLISHED state if our FIN is now acknowledged | 
|  | * then enter FIN_WAIT_2. | 
|  | */ | 
|  | case TCPS_FIN_WAIT_1: | 
|  | if (ourfinisacked) { | 
|  | /* | 
|  | * If we can't receive any more | 
|  | * data, then closing user can proceed. | 
|  | * Starting the timer is contrary to the | 
|  | * specification, but if we don't get a FIN | 
|  | * we'll hang forever. | 
|  | */ | 
|  | if (so->so_state & SS_FCANTRCVMORE) { | 
|  | tp->t_timer[TCPT_2MSL] = TCP_MAXIDLE; | 
|  | } | 
|  | tp->t_state = TCPS_FIN_WAIT_2; | 
|  | } | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * In CLOSING STATE in addition to the processing for | 
|  | * the ESTABLISHED state if the ACK acknowledges our FIN | 
|  | * then enter the TIME-WAIT state, otherwise ignore | 
|  | * the segment. | 
|  | */ | 
|  | case TCPS_CLOSING: | 
|  | if (ourfinisacked) { | 
|  | tp->t_state = TCPS_TIME_WAIT; | 
|  | tcp_canceltimers(tp); | 
|  | tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; | 
|  | } | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * In LAST_ACK, we may still be waiting for data to drain | 
|  | * and/or to be acked, as well as for the ack of our FIN. | 
|  | * If our FIN is now acknowledged, delete the TCB, | 
|  | * enter the closed state and return. | 
|  | */ | 
|  | case TCPS_LAST_ACK: | 
|  | if (ourfinisacked) { | 
|  | tcp_close(tp); | 
|  | goto drop; | 
|  | } | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * In TIME_WAIT state the only thing that should arrive | 
|  | * is a retransmission of the remote FIN.  Acknowledge | 
|  | * it and restart the finack timer. | 
|  | */ | 
|  | case TCPS_TIME_WAIT: | 
|  | tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; | 
|  | goto dropafterack; | 
|  | } | 
|  | } /* switch(tp->t_state) */ | 
|  |  | 
|  | step6: | 
|  | /* | 
|  | * Update window information. | 
|  | * Don't look at window if no ACK: TAC's send garbage on first SYN. | 
|  | */ | 
|  | if ((tiflags & TH_ACK) && | 
|  | (SEQ_LT(tp->snd_wl1, ti->ti_seq) || | 
|  | (tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) || | 
|  | (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))))) { | 
|  | tp->snd_wnd = tiwin; | 
|  | tp->snd_wl1 = ti->ti_seq; | 
|  | tp->snd_wl2 = ti->ti_ack; | 
|  | if (tp->snd_wnd > tp->max_sndwnd) | 
|  | tp->max_sndwnd = tp->snd_wnd; | 
|  | needoutput = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process segments with URG. | 
|  | */ | 
|  | if ((tiflags & TH_URG) && ti->ti_urp && | 
|  | TCPS_HAVERCVDFIN(tp->t_state) == 0) { | 
|  | /* | 
|  | * This is a kludge, but if we receive and accept | 
|  | * random urgent pointers, we'll crash in | 
|  | * soreceive.  It's hard to imagine someone | 
|  | * actually wanting to send this much urgent data. | 
|  | */ | 
|  | if (ti->ti_urp + so->so_rcv.sb_cc > so->so_rcv.sb_datalen) { | 
|  | ti->ti_urp = 0; | 
|  | tiflags &= ~TH_URG; | 
|  | goto dodata; | 
|  | } | 
|  | /* | 
|  | * If this segment advances the known urgent pointer, | 
|  | * then mark the data stream.  This should not happen | 
|  | * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since | 
|  | * a FIN has been received from the remote side. | 
|  | * In these states we ignore the URG. | 
|  | * | 
|  | * According to RFC961 (Assigned Protocols), | 
|  | * the urgent pointer points to the last octet | 
|  | * of urgent data.  We continue, however, | 
|  | * to consider it to indicate the first octet | 
|  | * of data past the urgent section as the original | 
|  | * spec states (in one of two places). | 
|  | */ | 
|  | if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) { | 
|  | tp->rcv_up = ti->ti_seq + ti->ti_urp; | 
|  | so->so_urgc =  so->so_rcv.sb_cc + | 
|  | (tp->rcv_up - tp->rcv_nxt); /* -1; */ | 
|  | tp->rcv_up = ti->ti_seq + ti->ti_urp; | 
|  |  | 
|  | } | 
|  | } else | 
|  | /* | 
|  | * If no out of band data is expected, | 
|  | * pull receive urgent pointer along | 
|  | * with the receive window. | 
|  | */ | 
|  | if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) | 
|  | tp->rcv_up = tp->rcv_nxt; | 
|  | dodata: | 
|  |  | 
|  | /* | 
|  | * If this is a small packet, then ACK now - with Nagel | 
|  | *      congestion avoidance sender won't send more until | 
|  | *      he gets an ACK. | 
|  | */ | 
|  | if (ti->ti_len && (unsigned)ti->ti_len <= 5 && | 
|  | ((struct tcpiphdr_2 *)ti)->first_char == (char)27) { | 
|  | tp->t_flags |= TF_ACKNOW; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process the segment text, merging it into the TCP sequencing queue, | 
|  | * and arranging for acknowledgment of receipt if necessary. | 
|  | * This process logically involves adjusting tp->rcv_wnd as data | 
|  | * is presented to the user (this happens in tcp_usrreq.c, | 
|  | * case PRU_RCVD).  If a FIN has already been received on this | 
|  | * connection then we just ignore the text. | 
|  | */ | 
|  | if ((ti->ti_len || (tiflags&TH_FIN)) && | 
|  | TCPS_HAVERCVDFIN(tp->t_state) == 0) { | 
|  | TCP_REASS(tp, ti, m, so, tiflags); | 
|  | } else { | 
|  | m_free(m); | 
|  | tiflags &= ~TH_FIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If FIN is received ACK the FIN and let the user know | 
|  | * that the connection is closing. | 
|  | */ | 
|  | if (tiflags & TH_FIN) { | 
|  | if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { | 
|  | /* | 
|  | * If we receive a FIN we can't send more data, | 
|  | * set it SS_FDRAIN | 
|  | * Shutdown the socket if there is no rx data in the | 
|  | * buffer. | 
|  | * soread() is called on completion of shutdown() and | 
|  | * will got to TCPS_LAST_ACK, and use tcp_output() | 
|  | * to send the FIN. | 
|  | */ | 
|  | sofwdrain(so); | 
|  |  | 
|  | tp->t_flags |= TF_ACKNOW; | 
|  | tp->rcv_nxt++; | 
|  | } | 
|  | switch (tp->t_state) { | 
|  |  | 
|  | /* | 
|  | * In SYN_RECEIVED and ESTABLISHED STATES | 
|  | * enter the CLOSE_WAIT state. | 
|  | */ | 
|  | case TCPS_SYN_RECEIVED: | 
|  | case TCPS_ESTABLISHED: | 
|  | if(so->so_emu == EMU_CTL)        /* no shutdown on socket */ | 
|  | tp->t_state = TCPS_LAST_ACK; | 
|  | else | 
|  | tp->t_state = TCPS_CLOSE_WAIT; | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If still in FIN_WAIT_1 STATE FIN has not been acked so | 
|  | * enter the CLOSING state. | 
|  | */ | 
|  | case TCPS_FIN_WAIT_1: | 
|  | tp->t_state = TCPS_CLOSING; | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * In FIN_WAIT_2 state enter the TIME_WAIT state, | 
|  | * starting the time-wait timer, turning off the other | 
|  | * standard timers. | 
|  | */ | 
|  | case TCPS_FIN_WAIT_2: | 
|  | tp->t_state = TCPS_TIME_WAIT; | 
|  | tcp_canceltimers(tp); | 
|  | tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * In TIME_WAIT state restart the 2 MSL time_wait timer. | 
|  | */ | 
|  | case TCPS_TIME_WAIT: | 
|  | tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return any desired output. | 
|  | */ | 
|  | if (needoutput || (tp->t_flags & TF_ACKNOW)) { | 
|  | (void) tcp_output(tp); | 
|  | } | 
|  | return; | 
|  |  | 
|  | dropafterack: | 
|  | /* | 
|  | * Generate an ACK dropping incoming segment if it occupies | 
|  | * sequence space, where the ACK reflects our state. | 
|  | */ | 
|  | if (tiflags & TH_RST) | 
|  | goto drop; | 
|  | m_free(m); | 
|  | tp->t_flags |= TF_ACKNOW; | 
|  | (void) tcp_output(tp); | 
|  | return; | 
|  |  | 
|  | dropwithreset: | 
|  | /* reuses m if m!=NULL, m_free() unnecessary */ | 
|  | if (tiflags & TH_ACK) | 
|  | tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST); | 
|  | else { | 
|  | if (tiflags & TH_SYN) ti->ti_len++; | 
|  | tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0, | 
|  | TH_RST|TH_ACK); | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | drop: | 
|  | /* | 
|  | * Drop space held by incoming segment and return. | 
|  | */ | 
|  | m_free(m); | 
|  | } | 
|  |  | 
|  | static void | 
|  | tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcpiphdr *ti) | 
|  | { | 
|  | uint16_t mss; | 
|  | int opt, optlen; | 
|  |  | 
|  | DEBUG_CALL("tcp_dooptions"); | 
|  | DEBUG_ARGS((dfd, " tp = %lx  cnt=%i\n", (long)tp, cnt)); | 
|  |  | 
|  | for (; cnt > 0; cnt -= optlen, cp += optlen) { | 
|  | opt = cp[0]; | 
|  | if (opt == TCPOPT_EOL) | 
|  | break; | 
|  | if (opt == TCPOPT_NOP) | 
|  | optlen = 1; | 
|  | else { | 
|  | optlen = cp[1]; | 
|  | if (optlen <= 0) | 
|  | break; | 
|  | } | 
|  | switch (opt) { | 
|  |  | 
|  | default: | 
|  | continue; | 
|  |  | 
|  | case TCPOPT_MAXSEG: | 
|  | if (optlen != TCPOLEN_MAXSEG) | 
|  | continue; | 
|  | if (!(ti->ti_flags & TH_SYN)) | 
|  | continue; | 
|  | memcpy((char *) &mss, (char *) cp + 2, sizeof(mss)); | 
|  | NTOHS(mss); | 
|  | (void) tcp_mss(tp, mss);	/* sets t_maxseg */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Pull out of band byte out of a segment so | 
|  | * it doesn't appear in the user's data queue. | 
|  | * It is still reflected in the segment length for | 
|  | * sequencing purposes. | 
|  | */ | 
|  |  | 
|  | #ifdef notdef | 
|  |  | 
|  | void | 
|  | tcp_pulloutofband(so, ti, m) | 
|  | struct socket *so; | 
|  | struct tcpiphdr *ti; | 
|  | register struct mbuf *m; | 
|  | { | 
|  | int cnt = ti->ti_urp - 1; | 
|  |  | 
|  | while (cnt >= 0) { | 
|  | if (m->m_len > cnt) { | 
|  | char *cp = mtod(m, caddr_t) + cnt; | 
|  | struct tcpcb *tp = sototcpcb(so); | 
|  |  | 
|  | tp->t_iobc = *cp; | 
|  | tp->t_oobflags |= TCPOOB_HAVEDATA; | 
|  | memcpy(sp, cp+1, (unsigned)(m->m_len - cnt - 1)); | 
|  | m->m_len--; | 
|  | return; | 
|  | } | 
|  | cnt -= m->m_len; | 
|  | m = m->m_next; /* XXX WRONG! Fix it! */ | 
|  | if (m == 0) | 
|  | break; | 
|  | } | 
|  | panic("tcp_pulloutofband"); | 
|  | } | 
|  |  | 
|  | #endif /* notdef */ | 
|  |  | 
|  | /* | 
|  | * Collect new round-trip time estimate | 
|  | * and update averages and current timeout. | 
|  | */ | 
|  |  | 
|  | static void | 
|  | tcp_xmit_timer(register struct tcpcb *tp, int rtt) | 
|  | { | 
|  | register short delta; | 
|  |  | 
|  | DEBUG_CALL("tcp_xmit_timer"); | 
|  | DEBUG_ARG("tp = %lx", (long)tp); | 
|  | DEBUG_ARG("rtt = %d", rtt); | 
|  |  | 
|  | if (tp->t_srtt != 0) { | 
|  | /* | 
|  | * srtt is stored as fixed point with 3 bits after the | 
|  | * binary point (i.e., scaled by 8).  The following magic | 
|  | * is equivalent to the smoothing algorithm in rfc793 with | 
|  | * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed | 
|  | * point).  Adjust rtt to origin 0. | 
|  | */ | 
|  | delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT); | 
|  | if ((tp->t_srtt += delta) <= 0) | 
|  | tp->t_srtt = 1; | 
|  | /* | 
|  | * We accumulate a smoothed rtt variance (actually, a | 
|  | * smoothed mean difference), then set the retransmit | 
|  | * timer to smoothed rtt + 4 times the smoothed variance. | 
|  | * rttvar is stored as fixed point with 2 bits after the | 
|  | * binary point (scaled by 4).  The following is | 
|  | * equivalent to rfc793 smoothing with an alpha of .75 | 
|  | * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces | 
|  | * rfc793's wired-in beta. | 
|  | */ | 
|  | if (delta < 0) | 
|  | delta = -delta; | 
|  | delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT); | 
|  | if ((tp->t_rttvar += delta) <= 0) | 
|  | tp->t_rttvar = 1; | 
|  | } else { | 
|  | /* | 
|  | * No rtt measurement yet - use the unsmoothed rtt. | 
|  | * Set the variance to half the rtt (so our first | 
|  | * retransmit happens at 3*rtt). | 
|  | */ | 
|  | tp->t_srtt = rtt << TCP_RTT_SHIFT; | 
|  | tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); | 
|  | } | 
|  | tp->t_rtt = 0; | 
|  | tp->t_rxtshift = 0; | 
|  |  | 
|  | /* | 
|  | * the retransmit should happen at rtt + 4 * rttvar. | 
|  | * Because of the way we do the smoothing, srtt and rttvar | 
|  | * will each average +1/2 tick of bias.  When we compute | 
|  | * the retransmit timer, we want 1/2 tick of rounding and | 
|  | * 1 extra tick because of +-1/2 tick uncertainty in the | 
|  | * firing of the timer.  The bias will give us exactly the | 
|  | * 1.5 tick we need.  But, because the bias is | 
|  | * statistical, we have to test that we don't drop below | 
|  | * the minimum feasible timer (which is 2 ticks). | 
|  | */ | 
|  | TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), | 
|  | (short)tp->t_rttmin, TCPTV_REXMTMAX); /* XXX */ | 
|  |  | 
|  | /* | 
|  | * We received an ack for a packet that wasn't retransmitted; | 
|  | * it is probably safe to discard any error indications we've | 
|  | * received recently.  This isn't quite right, but close enough | 
|  | * for now (a route might have failed after we sent a segment, | 
|  | * and the return path might not be symmetrical). | 
|  | */ | 
|  | tp->t_softerror = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine a reasonable value for maxseg size. | 
|  | * If the route is known, check route for mtu. | 
|  | * If none, use an mss that can be handled on the outgoing | 
|  | * interface without forcing IP to fragment; if bigger than | 
|  | * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES | 
|  | * to utilize large mbufs.  If no route is found, route has no mtu, | 
|  | * or the destination isn't local, use a default, hopefully conservative | 
|  | * size (usually 512 or the default IP max size, but no more than the mtu | 
|  | * of the interface), as we can't discover anything about intervening | 
|  | * gateways or networks.  We also initialize the congestion/slow start | 
|  | * window to be a single segment if the destination isn't local. | 
|  | * While looking at the routing entry, we also initialize other path-dependent | 
|  | * parameters from pre-set or cached values in the routing entry. | 
|  | */ | 
|  |  | 
|  | int | 
|  | tcp_mss(struct tcpcb *tp, u_int offer) | 
|  | { | 
|  | struct socket *so = tp->t_socket; | 
|  | int mss; | 
|  |  | 
|  | DEBUG_CALL("tcp_mss"); | 
|  | DEBUG_ARG("tp = %lx", (long)tp); | 
|  | DEBUG_ARG("offer = %d", offer); | 
|  |  | 
|  | mss = min(IF_MTU, IF_MRU) - sizeof(struct tcpiphdr); | 
|  | if (offer) | 
|  | mss = min(mss, offer); | 
|  | mss = max(mss, 32); | 
|  | if (mss < tp->t_maxseg || offer != 0) | 
|  | tp->t_maxseg = mss; | 
|  |  | 
|  | tp->snd_cwnd = mss; | 
|  |  | 
|  | sbreserve(&so->so_snd, TCP_SNDSPACE + ((TCP_SNDSPACE % mss) ? | 
|  | (mss - (TCP_SNDSPACE % mss)) : | 
|  | 0)); | 
|  | sbreserve(&so->so_rcv, TCP_RCVSPACE + ((TCP_RCVSPACE % mss) ? | 
|  | (mss - (TCP_RCVSPACE % mss)) : | 
|  | 0)); | 
|  |  | 
|  | DEBUG_MISC((dfd, " returning mss = %d\n", mss)); | 
|  |  | 
|  | return mss; | 
|  | } |