| /* |
| * ARM implementation of KVM hooks, 64 bit specific code |
| * |
| * Copyright Mian-M. Hamayun 2013, Virtual Open Systems |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <stdio.h> |
| #include <sys/types.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu-common.h" |
| #include "qemu/timer.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/kvm.h" |
| #include "kvm_arm.h" |
| #include "cpu.h" |
| #include "hw/arm/arm.h" |
| |
| static inline void set_feature(uint64_t *features, int feature) |
| { |
| *features |= 1ULL << feature; |
| } |
| |
| bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc) |
| { |
| /* Identify the feature bits corresponding to the host CPU, and |
| * fill out the ARMHostCPUClass fields accordingly. To do this |
| * we have to create a scratch VM, create a single CPU inside it, |
| * and then query that CPU for the relevant ID registers. |
| * For AArch64 we currently don't care about ID registers at |
| * all; we just want to know the CPU type. |
| */ |
| int fdarray[3]; |
| uint64_t features = 0; |
| /* Old kernels may not know about the PREFERRED_TARGET ioctl: however |
| * we know these will only support creating one kind of guest CPU, |
| * which is its preferred CPU type. Fortunately these old kernels |
| * support only a very limited number of CPUs. |
| */ |
| static const uint32_t cpus_to_try[] = { |
| KVM_ARM_TARGET_AEM_V8, |
| KVM_ARM_TARGET_FOUNDATION_V8, |
| KVM_ARM_TARGET_CORTEX_A57, |
| QEMU_KVM_ARM_TARGET_NONE |
| }; |
| struct kvm_vcpu_init init; |
| |
| if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { |
| return false; |
| } |
| |
| ahcc->target = init.target; |
| ahcc->dtb_compatible = "arm,arm-v8"; |
| |
| kvm_arm_destroy_scratch_host_vcpu(fdarray); |
| |
| /* We can assume any KVM supporting CPU is at least a v8 |
| * with VFPv4+Neon; this in turn implies most of the other |
| * feature bits. |
| */ |
| set_feature(&features, ARM_FEATURE_V8); |
| set_feature(&features, ARM_FEATURE_VFP4); |
| set_feature(&features, ARM_FEATURE_NEON); |
| set_feature(&features, ARM_FEATURE_AARCH64); |
| |
| ahcc->features = features; |
| |
| return true; |
| } |
| |
| int kvm_arch_init_vcpu(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| struct kvm_vcpu_init init; |
| int ret; |
| |
| if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || |
| !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| fprintf(stderr, "KVM is not supported for this guest CPU type\n"); |
| return -EINVAL; |
| } |
| |
| init.target = cpu->kvm_target; |
| memset(init.features, 0, sizeof(init.features)); |
| if (cpu->start_powered_off) { |
| init.features[0] = 1 << KVM_ARM_VCPU_POWER_OFF; |
| } |
| ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); |
| |
| /* TODO : support for save/restore/reset of system regs via tuple list */ |
| |
| return ret; |
| } |
| |
| #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ |
| KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) |
| |
| int kvm_arch_put_registers(CPUState *cs, int level) |
| { |
| struct kvm_one_reg reg; |
| uint64_t val; |
| int i; |
| int ret; |
| |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| for (i = 0; i < 31; i++) { |
| reg.id = AARCH64_CORE_REG(regs.regs[i]); |
| reg.addr = (uintptr_t) &env->xregs[i]; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the |
| * QEMU side we keep the current SP in xregs[31] as well. |
| */ |
| if (env->pstate & PSTATE_SP) { |
| env->sp_el[1] = env->xregs[31]; |
| } else { |
| env->sp_el[0] = env->xregs[31]; |
| } |
| |
| reg.id = AARCH64_CORE_REG(regs.sp); |
| reg.addr = (uintptr_t) &env->sp_el[0]; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.id = AARCH64_CORE_REG(sp_el1); |
| reg.addr = (uintptr_t) &env->sp_el[1]; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ |
| val = pstate_read(env); |
| reg.id = AARCH64_CORE_REG(regs.pstate); |
| reg.addr = (uintptr_t) &val; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.id = AARCH64_CORE_REG(regs.pc); |
| reg.addr = (uintptr_t) &env->pc; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.id = AARCH64_CORE_REG(elr_el1); |
| reg.addr = (uintptr_t) &env->elr_el1; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| for (i = 0; i < KVM_NR_SPSR; i++) { |
| reg.id = AARCH64_CORE_REG(spsr[i]); |
| reg.addr = (uintptr_t) &env->banked_spsr[i - 1]; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* TODO: |
| * FP state |
| * system registers |
| */ |
| return ret; |
| } |
| |
| int kvm_arch_get_registers(CPUState *cs) |
| { |
| struct kvm_one_reg reg; |
| uint64_t val; |
| int i; |
| int ret; |
| |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| for (i = 0; i < 31; i++) { |
| reg.id = AARCH64_CORE_REG(regs.regs[i]); |
| reg.addr = (uintptr_t) &env->xregs[i]; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| reg.id = AARCH64_CORE_REG(regs.sp); |
| reg.addr = (uintptr_t) &env->sp_el[0]; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.id = AARCH64_CORE_REG(sp_el1); |
| reg.addr = (uintptr_t) &env->sp_el[1]; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.id = AARCH64_CORE_REG(regs.pstate); |
| reg.addr = (uintptr_t) &val; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| pstate_write(env, val); |
| |
| /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the |
| * QEMU side we keep the current SP in xregs[31] as well. |
| */ |
| if (env->pstate & PSTATE_SP) { |
| env->xregs[31] = env->sp_el[1]; |
| } else { |
| env->xregs[31] = env->sp_el[0]; |
| } |
| |
| reg.id = AARCH64_CORE_REG(regs.pc); |
| reg.addr = (uintptr_t) &env->pc; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.id = AARCH64_CORE_REG(elr_el1); |
| reg.addr = (uintptr_t) &env->elr_el1; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| for (i = 0; i < KVM_NR_SPSR; i++) { |
| reg.id = AARCH64_CORE_REG(spsr[i]); |
| reg.addr = (uintptr_t) &env->banked_spsr[i - 1]; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* TODO: other registers */ |
| return ret; |
| } |
| |
| void kvm_arm_reset_vcpu(ARMCPU *cpu) |
| { |
| } |