|  | /* | 
|  | * defines common to all virtual CPUs | 
|  | * | 
|  | *  Copyright (c) 2003 Fabrice Bellard | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #ifndef CPU_ALL_H | 
|  | #define CPU_ALL_H | 
|  |  | 
|  | #include "qemu-common.h" | 
|  | #include "cpu-common.h" | 
|  |  | 
|  | /* some important defines: | 
|  | * | 
|  | * WORDS_ALIGNED : if defined, the host cpu can only make word aligned | 
|  | * memory accesses. | 
|  | * | 
|  | * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and | 
|  | * otherwise little endian. | 
|  | * | 
|  | * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet)) | 
|  | * | 
|  | * TARGET_WORDS_BIGENDIAN : same for target cpu | 
|  | */ | 
|  |  | 
|  | #include "softfloat.h" | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) | 
|  | #define BSWAP_NEEDED | 
|  | #endif | 
|  |  | 
|  | #ifdef BSWAP_NEEDED | 
|  |  | 
|  | static inline uint16_t tswap16(uint16_t s) | 
|  | { | 
|  | return bswap16(s); | 
|  | } | 
|  |  | 
|  | static inline uint32_t tswap32(uint32_t s) | 
|  | { | 
|  | return bswap32(s); | 
|  | } | 
|  |  | 
|  | static inline uint64_t tswap64(uint64_t s) | 
|  | { | 
|  | return bswap64(s); | 
|  | } | 
|  |  | 
|  | static inline void tswap16s(uint16_t *s) | 
|  | { | 
|  | *s = bswap16(*s); | 
|  | } | 
|  |  | 
|  | static inline void tswap32s(uint32_t *s) | 
|  | { | 
|  | *s = bswap32(*s); | 
|  | } | 
|  |  | 
|  | static inline void tswap64s(uint64_t *s) | 
|  | { | 
|  | *s = bswap64(*s); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline uint16_t tswap16(uint16_t s) | 
|  | { | 
|  | return s; | 
|  | } | 
|  |  | 
|  | static inline uint32_t tswap32(uint32_t s) | 
|  | { | 
|  | return s; | 
|  | } | 
|  |  | 
|  | static inline uint64_t tswap64(uint64_t s) | 
|  | { | 
|  | return s; | 
|  | } | 
|  |  | 
|  | static inline void tswap16s(uint16_t *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void tswap32s(uint32_t *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void tswap64s(uint64_t *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #if TARGET_LONG_SIZE == 4 | 
|  | #define tswapl(s) tswap32(s) | 
|  | #define tswapls(s) tswap32s((uint32_t *)(s)) | 
|  | #define bswaptls(s) bswap32s(s) | 
|  | #else | 
|  | #define tswapl(s) tswap64(s) | 
|  | #define tswapls(s) tswap64s((uint64_t *)(s)) | 
|  | #define bswaptls(s) bswap64s(s) | 
|  | #endif | 
|  |  | 
|  | typedef union { | 
|  | float32 f; | 
|  | uint32_t l; | 
|  | } CPU_FloatU; | 
|  |  | 
|  | /* NOTE: arm FPA is horrible as double 32 bit words are stored in big | 
|  | endian ! */ | 
|  | typedef union { | 
|  | float64 d; | 
|  | #if defined(HOST_WORDS_BIGENDIAN) \ | 
|  | || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT)) | 
|  | struct { | 
|  | uint32_t upper; | 
|  | uint32_t lower; | 
|  | } l; | 
|  | #else | 
|  | struct { | 
|  | uint32_t lower; | 
|  | uint32_t upper; | 
|  | } l; | 
|  | #endif | 
|  | uint64_t ll; | 
|  | } CPU_DoubleU; | 
|  |  | 
|  | #ifdef TARGET_SPARC | 
|  | typedef union { | 
|  | float128 q; | 
|  | #if defined(HOST_WORDS_BIGENDIAN) \ | 
|  | || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT)) | 
|  | struct { | 
|  | uint32_t upmost; | 
|  | uint32_t upper; | 
|  | uint32_t lower; | 
|  | uint32_t lowest; | 
|  | } l; | 
|  | struct { | 
|  | uint64_t upper; | 
|  | uint64_t lower; | 
|  | } ll; | 
|  | #else | 
|  | struct { | 
|  | uint32_t lowest; | 
|  | uint32_t lower; | 
|  | uint32_t upper; | 
|  | uint32_t upmost; | 
|  | } l; | 
|  | struct { | 
|  | uint64_t lower; | 
|  | uint64_t upper; | 
|  | } ll; | 
|  | #endif | 
|  | } CPU_QuadU; | 
|  | #endif | 
|  |  | 
|  | /* CPU memory access without any memory or io remapping */ | 
|  |  | 
|  | /* | 
|  | * the generic syntax for the memory accesses is: | 
|  | * | 
|  | * load: ld{type}{sign}{size}{endian}_{access_type}(ptr) | 
|  | * | 
|  | * store: st{type}{size}{endian}_{access_type}(ptr, val) | 
|  | * | 
|  | * type is: | 
|  | * (empty): integer access | 
|  | *   f    : float access | 
|  | * | 
|  | * sign is: | 
|  | * (empty): for floats or 32 bit size | 
|  | *   u    : unsigned | 
|  | *   s    : signed | 
|  | * | 
|  | * size is: | 
|  | *   b: 8 bits | 
|  | *   w: 16 bits | 
|  | *   l: 32 bits | 
|  | *   q: 64 bits | 
|  | * | 
|  | * endian is: | 
|  | * (empty): target cpu endianness or 8 bit access | 
|  | *   r    : reversed target cpu endianness (not implemented yet) | 
|  | *   be   : big endian (not implemented yet) | 
|  | *   le   : little endian (not implemented yet) | 
|  | * | 
|  | * access_type is: | 
|  | *   raw    : host memory access | 
|  | *   user   : user mode access using soft MMU | 
|  | *   kernel : kernel mode access using soft MMU | 
|  | */ | 
|  | static inline int ldub_p(const void *ptr) | 
|  | { | 
|  | return *(uint8_t *)ptr; | 
|  | } | 
|  |  | 
|  | static inline int ldsb_p(const void *ptr) | 
|  | { | 
|  | return *(int8_t *)ptr; | 
|  | } | 
|  |  | 
|  | static inline void stb_p(void *ptr, int v) | 
|  | { | 
|  | *(uint8_t *)ptr = v; | 
|  | } | 
|  |  | 
|  | /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the | 
|  | kernel handles unaligned load/stores may give better results, but | 
|  | it is a system wide setting : bad */ | 
|  | #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) | 
|  |  | 
|  | /* conservative code for little endian unaligned accesses */ | 
|  | static inline int lduw_le_p(const void *ptr) | 
|  | { | 
|  | #ifdef _ARCH_PPC | 
|  | int val; | 
|  | __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); | 
|  | return val; | 
|  | #else | 
|  | const uint8_t *p = ptr; | 
|  | return p[0] | (p[1] << 8); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int ldsw_le_p(const void *ptr) | 
|  | { | 
|  | #ifdef _ARCH_PPC | 
|  | int val; | 
|  | __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); | 
|  | return (int16_t)val; | 
|  | #else | 
|  | const uint8_t *p = ptr; | 
|  | return (int16_t)(p[0] | (p[1] << 8)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int ldl_le_p(const void *ptr) | 
|  | { | 
|  | #ifdef _ARCH_PPC | 
|  | int val; | 
|  | __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr)); | 
|  | return val; | 
|  | #else | 
|  | const uint8_t *p = ptr; | 
|  | return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline uint64_t ldq_le_p(const void *ptr) | 
|  | { | 
|  | const uint8_t *p = ptr; | 
|  | uint32_t v1, v2; | 
|  | v1 = ldl_le_p(p); | 
|  | v2 = ldl_le_p(p + 4); | 
|  | return v1 | ((uint64_t)v2 << 32); | 
|  | } | 
|  |  | 
|  | static inline void stw_le_p(void *ptr, int v) | 
|  | { | 
|  | #ifdef _ARCH_PPC | 
|  | __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr)); | 
|  | #else | 
|  | uint8_t *p = ptr; | 
|  | p[0] = v; | 
|  | p[1] = v >> 8; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void stl_le_p(void *ptr, int v) | 
|  | { | 
|  | #ifdef _ARCH_PPC | 
|  | __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr)); | 
|  | #else | 
|  | uint8_t *p = ptr; | 
|  | p[0] = v; | 
|  | p[1] = v >> 8; | 
|  | p[2] = v >> 16; | 
|  | p[3] = v >> 24; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void stq_le_p(void *ptr, uint64_t v) | 
|  | { | 
|  | uint8_t *p = ptr; | 
|  | stl_le_p(p, (uint32_t)v); | 
|  | stl_le_p(p + 4, v >> 32); | 
|  | } | 
|  |  | 
|  | /* float access */ | 
|  |  | 
|  | static inline float32 ldfl_le_p(const void *ptr) | 
|  | { | 
|  | union { | 
|  | float32 f; | 
|  | uint32_t i; | 
|  | } u; | 
|  | u.i = ldl_le_p(ptr); | 
|  | return u.f; | 
|  | } | 
|  |  | 
|  | static inline void stfl_le_p(void *ptr, float32 v) | 
|  | { | 
|  | union { | 
|  | float32 f; | 
|  | uint32_t i; | 
|  | } u; | 
|  | u.f = v; | 
|  | stl_le_p(ptr, u.i); | 
|  | } | 
|  |  | 
|  | static inline float64 ldfq_le_p(const void *ptr) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  | u.l.lower = ldl_le_p(ptr); | 
|  | u.l.upper = ldl_le_p(ptr + 4); | 
|  | return u.d; | 
|  | } | 
|  |  | 
|  | static inline void stfq_le_p(void *ptr, float64 v) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  | u.d = v; | 
|  | stl_le_p(ptr, u.l.lower); | 
|  | stl_le_p(ptr + 4, u.l.upper); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline int lduw_le_p(const void *ptr) | 
|  | { | 
|  | return *(uint16_t *)ptr; | 
|  | } | 
|  |  | 
|  | static inline int ldsw_le_p(const void *ptr) | 
|  | { | 
|  | return *(int16_t *)ptr; | 
|  | } | 
|  |  | 
|  | static inline int ldl_le_p(const void *ptr) | 
|  | { | 
|  | return *(uint32_t *)ptr; | 
|  | } | 
|  |  | 
|  | static inline uint64_t ldq_le_p(const void *ptr) | 
|  | { | 
|  | return *(uint64_t *)ptr; | 
|  | } | 
|  |  | 
|  | static inline void stw_le_p(void *ptr, int v) | 
|  | { | 
|  | *(uint16_t *)ptr = v; | 
|  | } | 
|  |  | 
|  | static inline void stl_le_p(void *ptr, int v) | 
|  | { | 
|  | *(uint32_t *)ptr = v; | 
|  | } | 
|  |  | 
|  | static inline void stq_le_p(void *ptr, uint64_t v) | 
|  | { | 
|  | *(uint64_t *)ptr = v; | 
|  | } | 
|  |  | 
|  | /* float access */ | 
|  |  | 
|  | static inline float32 ldfl_le_p(const void *ptr) | 
|  | { | 
|  | return *(float32 *)ptr; | 
|  | } | 
|  |  | 
|  | static inline float64 ldfq_le_p(const void *ptr) | 
|  | { | 
|  | return *(float64 *)ptr; | 
|  | } | 
|  |  | 
|  | static inline void stfl_le_p(void *ptr, float32 v) | 
|  | { | 
|  | *(float32 *)ptr = v; | 
|  | } | 
|  |  | 
|  | static inline void stfq_le_p(void *ptr, float64 v) | 
|  | { | 
|  | *(float64 *)ptr = v; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) | 
|  |  | 
|  | static inline int lduw_be_p(const void *ptr) | 
|  | { | 
|  | #if defined(__i386__) | 
|  | int val; | 
|  | asm volatile ("movzwl %1, %0\n" | 
|  | "xchgb %b0, %h0\n" | 
|  | : "=q" (val) | 
|  | : "m" (*(uint16_t *)ptr)); | 
|  | return val; | 
|  | #else | 
|  | const uint8_t *b = ptr; | 
|  | return ((b[0] << 8) | b[1]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int ldsw_be_p(const void *ptr) | 
|  | { | 
|  | #if defined(__i386__) | 
|  | int val; | 
|  | asm volatile ("movzwl %1, %0\n" | 
|  | "xchgb %b0, %h0\n" | 
|  | : "=q" (val) | 
|  | : "m" (*(uint16_t *)ptr)); | 
|  | return (int16_t)val; | 
|  | #else | 
|  | const uint8_t *b = ptr; | 
|  | return (int16_t)((b[0] << 8) | b[1]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int ldl_be_p(const void *ptr) | 
|  | { | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | int val; | 
|  | asm volatile ("movl %1, %0\n" | 
|  | "bswap %0\n" | 
|  | : "=r" (val) | 
|  | : "m" (*(uint32_t *)ptr)); | 
|  | return val; | 
|  | #else | 
|  | const uint8_t *b = ptr; | 
|  | return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline uint64_t ldq_be_p(const void *ptr) | 
|  | { | 
|  | uint32_t a,b; | 
|  | a = ldl_be_p(ptr); | 
|  | b = ldl_be_p((uint8_t *)ptr + 4); | 
|  | return (((uint64_t)a<<32)|b); | 
|  | } | 
|  |  | 
|  | static inline void stw_be_p(void *ptr, int v) | 
|  | { | 
|  | #if defined(__i386__) | 
|  | asm volatile ("xchgb %b0, %h0\n" | 
|  | "movw %w0, %1\n" | 
|  | : "=q" (v) | 
|  | : "m" (*(uint16_t *)ptr), "0" (v)); | 
|  | #else | 
|  | uint8_t *d = (uint8_t *) ptr; | 
|  | d[0] = v >> 8; | 
|  | d[1] = v; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void stl_be_p(void *ptr, int v) | 
|  | { | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | asm volatile ("bswap %0\n" | 
|  | "movl %0, %1\n" | 
|  | : "=r" (v) | 
|  | : "m" (*(uint32_t *)ptr), "0" (v)); | 
|  | #else | 
|  | uint8_t *d = (uint8_t *) ptr; | 
|  | d[0] = v >> 24; | 
|  | d[1] = v >> 16; | 
|  | d[2] = v >> 8; | 
|  | d[3] = v; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void stq_be_p(void *ptr, uint64_t v) | 
|  | { | 
|  | stl_be_p(ptr, v >> 32); | 
|  | stl_be_p((uint8_t *)ptr + 4, v); | 
|  | } | 
|  |  | 
|  | /* float access */ | 
|  |  | 
|  | static inline float32 ldfl_be_p(const void *ptr) | 
|  | { | 
|  | union { | 
|  | float32 f; | 
|  | uint32_t i; | 
|  | } u; | 
|  | u.i = ldl_be_p(ptr); | 
|  | return u.f; | 
|  | } | 
|  |  | 
|  | static inline void stfl_be_p(void *ptr, float32 v) | 
|  | { | 
|  | union { | 
|  | float32 f; | 
|  | uint32_t i; | 
|  | } u; | 
|  | u.f = v; | 
|  | stl_be_p(ptr, u.i); | 
|  | } | 
|  |  | 
|  | static inline float64 ldfq_be_p(const void *ptr) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  | u.l.upper = ldl_be_p(ptr); | 
|  | u.l.lower = ldl_be_p((uint8_t *)ptr + 4); | 
|  | return u.d; | 
|  | } | 
|  |  | 
|  | static inline void stfq_be_p(void *ptr, float64 v) | 
|  | { | 
|  | CPU_DoubleU u; | 
|  | u.d = v; | 
|  | stl_be_p(ptr, u.l.upper); | 
|  | stl_be_p((uint8_t *)ptr + 4, u.l.lower); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline int lduw_be_p(const void *ptr) | 
|  | { | 
|  | return *(uint16_t *)ptr; | 
|  | } | 
|  |  | 
|  | static inline int ldsw_be_p(const void *ptr) | 
|  | { | 
|  | return *(int16_t *)ptr; | 
|  | } | 
|  |  | 
|  | static inline int ldl_be_p(const void *ptr) | 
|  | { | 
|  | return *(uint32_t *)ptr; | 
|  | } | 
|  |  | 
|  | static inline uint64_t ldq_be_p(const void *ptr) | 
|  | { | 
|  | return *(uint64_t *)ptr; | 
|  | } | 
|  |  | 
|  | static inline void stw_be_p(void *ptr, int v) | 
|  | { | 
|  | *(uint16_t *)ptr = v; | 
|  | } | 
|  |  | 
|  | static inline void stl_be_p(void *ptr, int v) | 
|  | { | 
|  | *(uint32_t *)ptr = v; | 
|  | } | 
|  |  | 
|  | static inline void stq_be_p(void *ptr, uint64_t v) | 
|  | { | 
|  | *(uint64_t *)ptr = v; | 
|  | } | 
|  |  | 
|  | /* float access */ | 
|  |  | 
|  | static inline float32 ldfl_be_p(const void *ptr) | 
|  | { | 
|  | return *(float32 *)ptr; | 
|  | } | 
|  |  | 
|  | static inline float64 ldfq_be_p(const void *ptr) | 
|  | { | 
|  | return *(float64 *)ptr; | 
|  | } | 
|  |  | 
|  | static inline void stfl_be_p(void *ptr, float32 v) | 
|  | { | 
|  | *(float32 *)ptr = v; | 
|  | } | 
|  |  | 
|  | static inline void stfq_be_p(void *ptr, float64 v) | 
|  | { | 
|  | *(float64 *)ptr = v; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* target CPU memory access functions */ | 
|  | #if defined(TARGET_WORDS_BIGENDIAN) | 
|  | #define lduw_p(p) lduw_be_p(p) | 
|  | #define ldsw_p(p) ldsw_be_p(p) | 
|  | #define ldl_p(p) ldl_be_p(p) | 
|  | #define ldq_p(p) ldq_be_p(p) | 
|  | #define ldfl_p(p) ldfl_be_p(p) | 
|  | #define ldfq_p(p) ldfq_be_p(p) | 
|  | #define stw_p(p, v) stw_be_p(p, v) | 
|  | #define stl_p(p, v) stl_be_p(p, v) | 
|  | #define stq_p(p, v) stq_be_p(p, v) | 
|  | #define stfl_p(p, v) stfl_be_p(p, v) | 
|  | #define stfq_p(p, v) stfq_be_p(p, v) | 
|  | #else | 
|  | #define lduw_p(p) lduw_le_p(p) | 
|  | #define ldsw_p(p) ldsw_le_p(p) | 
|  | #define ldl_p(p) ldl_le_p(p) | 
|  | #define ldq_p(p) ldq_le_p(p) | 
|  | #define ldfl_p(p) ldfl_le_p(p) | 
|  | #define ldfq_p(p) ldfq_le_p(p) | 
|  | #define stw_p(p, v) stw_le_p(p, v) | 
|  | #define stl_p(p, v) stl_le_p(p, v) | 
|  | #define stq_p(p, v) stq_le_p(p, v) | 
|  | #define stfl_p(p, v) stfl_le_p(p, v) | 
|  | #define stfq_p(p, v) stfq_le_p(p, v) | 
|  | #endif | 
|  |  | 
|  | /* MMU memory access macros */ | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | #include <assert.h> | 
|  | #include "qemu-types.h" | 
|  |  | 
|  | /* On some host systems the guest address space is reserved on the host. | 
|  | * This allows the guest address space to be offset to a convenient location. | 
|  | */ | 
|  | #if defined(CONFIG_USE_GUEST_BASE) | 
|  | extern unsigned long guest_base; | 
|  | extern int have_guest_base; | 
|  | extern unsigned long reserved_va; | 
|  | #define GUEST_BASE guest_base | 
|  | #define RESERVED_VA reserved_va | 
|  | #else | 
|  | #define GUEST_BASE 0ul | 
|  | #define RESERVED_VA 0ul | 
|  | #endif | 
|  |  | 
|  | /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */ | 
|  | #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE)) | 
|  |  | 
|  | #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS | 
|  | #define h2g_valid(x) 1 | 
|  | #else | 
|  | #define h2g_valid(x) ({ \ | 
|  | unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \ | 
|  | __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | #define h2g(x) ({ \ | 
|  | unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \ | 
|  | /* Check if given address fits target address space */ \ | 
|  | assert(h2g_valid(x)); \ | 
|  | (abi_ulong)__ret; \ | 
|  | }) | 
|  |  | 
|  | #define saddr(x) g2h(x) | 
|  | #define laddr(x) g2h(x) | 
|  |  | 
|  | #else /* !CONFIG_USER_ONLY */ | 
|  | /* NOTE: we use double casts if pointers and target_ulong have | 
|  | different sizes */ | 
|  | #define saddr(x) (uint8_t *)(long)(x) | 
|  | #define laddr(x) (uint8_t *)(long)(x) | 
|  | #endif | 
|  |  | 
|  | #define ldub_raw(p) ldub_p(laddr((p))) | 
|  | #define ldsb_raw(p) ldsb_p(laddr((p))) | 
|  | #define lduw_raw(p) lduw_p(laddr((p))) | 
|  | #define ldsw_raw(p) ldsw_p(laddr((p))) | 
|  | #define ldl_raw(p) ldl_p(laddr((p))) | 
|  | #define ldq_raw(p) ldq_p(laddr((p))) | 
|  | #define ldfl_raw(p) ldfl_p(laddr((p))) | 
|  | #define ldfq_raw(p) ldfq_p(laddr((p))) | 
|  | #define stb_raw(p, v) stb_p(saddr((p)), v) | 
|  | #define stw_raw(p, v) stw_p(saddr((p)), v) | 
|  | #define stl_raw(p, v) stl_p(saddr((p)), v) | 
|  | #define stq_raw(p, v) stq_p(saddr((p)), v) | 
|  | #define stfl_raw(p, v) stfl_p(saddr((p)), v) | 
|  | #define stfq_raw(p, v) stfq_p(saddr((p)), v) | 
|  |  | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | /* if user mode, no other memory access functions */ | 
|  | #define ldub(p) ldub_raw(p) | 
|  | #define ldsb(p) ldsb_raw(p) | 
|  | #define lduw(p) lduw_raw(p) | 
|  | #define ldsw(p) ldsw_raw(p) | 
|  | #define ldl(p) ldl_raw(p) | 
|  | #define ldq(p) ldq_raw(p) | 
|  | #define ldfl(p) ldfl_raw(p) | 
|  | #define ldfq(p) ldfq_raw(p) | 
|  | #define stb(p, v) stb_raw(p, v) | 
|  | #define stw(p, v) stw_raw(p, v) | 
|  | #define stl(p, v) stl_raw(p, v) | 
|  | #define stq(p, v) stq_raw(p, v) | 
|  | #define stfl(p, v) stfl_raw(p, v) | 
|  | #define stfq(p, v) stfq_raw(p, v) | 
|  |  | 
|  | #define ldub_code(p) ldub_raw(p) | 
|  | #define ldsb_code(p) ldsb_raw(p) | 
|  | #define lduw_code(p) lduw_raw(p) | 
|  | #define ldsw_code(p) ldsw_raw(p) | 
|  | #define ldl_code(p) ldl_raw(p) | 
|  | #define ldq_code(p) ldq_raw(p) | 
|  |  | 
|  | #define ldub_kernel(p) ldub_raw(p) | 
|  | #define ldsb_kernel(p) ldsb_raw(p) | 
|  | #define lduw_kernel(p) lduw_raw(p) | 
|  | #define ldsw_kernel(p) ldsw_raw(p) | 
|  | #define ldl_kernel(p) ldl_raw(p) | 
|  | #define ldq_kernel(p) ldq_raw(p) | 
|  | #define ldfl_kernel(p) ldfl_raw(p) | 
|  | #define ldfq_kernel(p) ldfq_raw(p) | 
|  | #define stb_kernel(p, v) stb_raw(p, v) | 
|  | #define stw_kernel(p, v) stw_raw(p, v) | 
|  | #define stl_kernel(p, v) stl_raw(p, v) | 
|  | #define stq_kernel(p, v) stq_raw(p, v) | 
|  | #define stfl_kernel(p, v) stfl_raw(p, v) | 
|  | #define stfq_kernel(p, vt) stfq_raw(p, v) | 
|  |  | 
|  | #endif /* defined(CONFIG_USER_ONLY) */ | 
|  |  | 
|  | /* page related stuff */ | 
|  |  | 
|  | #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) | 
|  | #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) | 
|  | #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) | 
|  |  | 
|  | /* ??? These should be the larger of unsigned long and target_ulong.  */ | 
|  | extern unsigned long qemu_real_host_page_size; | 
|  | extern unsigned long qemu_host_page_bits; | 
|  | extern unsigned long qemu_host_page_size; | 
|  | extern unsigned long qemu_host_page_mask; | 
|  |  | 
|  | #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) | 
|  |  | 
|  | /* same as PROT_xxx */ | 
|  | #define PAGE_READ      0x0001 | 
|  | #define PAGE_WRITE     0x0002 | 
|  | #define PAGE_EXEC      0x0004 | 
|  | #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC) | 
|  | #define PAGE_VALID     0x0008 | 
|  | /* original state of the write flag (used when tracking self-modifying | 
|  | code */ | 
|  | #define PAGE_WRITE_ORG 0x0010 | 
|  | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) | 
|  | /* FIXME: Code that sets/uses this is broken and needs to go away.  */ | 
|  | #define PAGE_RESERVED  0x0020 | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | void page_dump(FILE *f); | 
|  |  | 
|  | typedef int (*walk_memory_regions_fn)(void *, abi_ulong, | 
|  | abi_ulong, unsigned long); | 
|  | int walk_memory_regions(void *, walk_memory_regions_fn); | 
|  |  | 
|  | int page_get_flags(target_ulong address); | 
|  | void page_set_flags(target_ulong start, target_ulong end, int flags); | 
|  | int page_check_range(target_ulong start, target_ulong len, int flags); | 
|  | #endif | 
|  |  | 
|  | CPUState *cpu_copy(CPUState *env); | 
|  | CPUState *qemu_get_cpu(int cpu); | 
|  |  | 
|  | #define CPU_DUMP_CODE 0x00010000 | 
|  |  | 
|  | void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf, | 
|  | int flags); | 
|  | void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf, | 
|  | int flags); | 
|  |  | 
|  | void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...) | 
|  | GCC_FMT_ATTR(2, 3); | 
|  | extern CPUState *first_cpu; | 
|  | extern CPUState *cpu_single_env; | 
|  |  | 
|  | #define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */ | 
|  | #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */ | 
|  | #define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */ | 
|  | #define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */ | 
|  | #define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */ | 
|  | #define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */ | 
|  | #define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */ | 
|  | #define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */ | 
|  | #define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */ | 
|  | #define CPU_INTERRUPT_INIT   0x400 /* INIT pending. */ | 
|  | #define CPU_INTERRUPT_SIPI   0x800 /* SIPI pending. */ | 
|  | #define CPU_INTERRUPT_MCE    0x1000 /* (x86 only) MCE pending. */ | 
|  |  | 
|  | void cpu_interrupt(CPUState *s, int mask); | 
|  | void cpu_reset_interrupt(CPUState *env, int mask); | 
|  |  | 
|  | void cpu_exit(CPUState *s); | 
|  |  | 
|  | int qemu_cpu_has_work(CPUState *env); | 
|  |  | 
|  | /* Breakpoint/watchpoint flags */ | 
|  | #define BP_MEM_READ           0x01 | 
|  | #define BP_MEM_WRITE          0x02 | 
|  | #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE) | 
|  | #define BP_STOP_BEFORE_ACCESS 0x04 | 
|  | #define BP_WATCHPOINT_HIT     0x08 | 
|  | #define BP_GDB                0x10 | 
|  | #define BP_CPU                0x20 | 
|  |  | 
|  | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | 
|  | CPUBreakpoint **breakpoint); | 
|  | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags); | 
|  | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint); | 
|  | void cpu_breakpoint_remove_all(CPUState *env, int mask); | 
|  | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, | 
|  | int flags, CPUWatchpoint **watchpoint); | 
|  | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, | 
|  | target_ulong len, int flags); | 
|  | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint); | 
|  | void cpu_watchpoint_remove_all(CPUState *env, int mask); | 
|  |  | 
|  | #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */ | 
|  | #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */ | 
|  | #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */ | 
|  |  | 
|  | void cpu_single_step(CPUState *env, int enabled); | 
|  | void cpu_reset(CPUState *s); | 
|  | int cpu_is_stopped(CPUState *env); | 
|  | void run_on_cpu(CPUState *env, void (*func)(void *data), void *data); | 
|  |  | 
|  | #define CPU_LOG_TB_OUT_ASM (1 << 0) | 
|  | #define CPU_LOG_TB_IN_ASM  (1 << 1) | 
|  | #define CPU_LOG_TB_OP      (1 << 2) | 
|  | #define CPU_LOG_TB_OP_OPT  (1 << 3) | 
|  | #define CPU_LOG_INT        (1 << 4) | 
|  | #define CPU_LOG_EXEC       (1 << 5) | 
|  | #define CPU_LOG_PCALL      (1 << 6) | 
|  | #define CPU_LOG_IOPORT     (1 << 7) | 
|  | #define CPU_LOG_TB_CPU     (1 << 8) | 
|  | #define CPU_LOG_RESET      (1 << 9) | 
|  |  | 
|  | /* define log items */ | 
|  | typedef struct CPULogItem { | 
|  | int mask; | 
|  | const char *name; | 
|  | const char *help; | 
|  | } CPULogItem; | 
|  |  | 
|  | extern const CPULogItem cpu_log_items[]; | 
|  |  | 
|  | void cpu_set_log(int log_flags); | 
|  | void cpu_set_log_filename(const char *filename); | 
|  | int cpu_str_to_log_mask(const char *str); | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | /* Return the physical page corresponding to a virtual one. Use it | 
|  | only for debugging because no protection checks are done. Return -1 | 
|  | if no page found. */ | 
|  | target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr); | 
|  |  | 
|  | /* memory API */ | 
|  |  | 
|  | extern int phys_ram_fd; | 
|  | extern ram_addr_t ram_size; | 
|  |  | 
|  | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ | 
|  | #define RAM_PREALLOC_MASK   (1 << 0) | 
|  |  | 
|  | typedef struct RAMBlock { | 
|  | uint8_t *host; | 
|  | ram_addr_t offset; | 
|  | ram_addr_t length; | 
|  | uint32_t flags; | 
|  | char idstr[256]; | 
|  | QLIST_ENTRY(RAMBlock) next; | 
|  | #if defined(__linux__) && !defined(TARGET_S390X) | 
|  | int fd; | 
|  | #endif | 
|  | } RAMBlock; | 
|  |  | 
|  | typedef struct RAMList { | 
|  | uint8_t *phys_dirty; | 
|  | QLIST_HEAD(ram, RAMBlock) blocks; | 
|  | } RAMList; | 
|  | extern RAMList ram_list; | 
|  |  | 
|  | extern const char *mem_path; | 
|  | extern int mem_prealloc; | 
|  |  | 
|  | /* physical memory access */ | 
|  |  | 
|  | /* MMIO pages are identified by a combination of an IO device index and | 
|  | 3 flags.  The ROMD code stores the page ram offset in iotlb entry, | 
|  | so only a limited number of ids are avaiable.  */ | 
|  |  | 
|  | #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT)) | 
|  |  | 
|  | /* Flags stored in the low bits of the TLB virtual address.  These are | 
|  | defined so that fast path ram access is all zeros.  */ | 
|  | /* Zero if TLB entry is valid.  */ | 
|  | #define TLB_INVALID_MASK   (1 << 3) | 
|  | /* Set if TLB entry references a clean RAM page.  The iotlb entry will | 
|  | contain the page physical address.  */ | 
|  | #define TLB_NOTDIRTY    (1 << 4) | 
|  | /* Set if TLB entry is an IO callback.  */ | 
|  | #define TLB_MMIO        (1 << 5) | 
|  |  | 
|  | #define VGA_DIRTY_FLAG       0x01 | 
|  | #define CODE_DIRTY_FLAG      0x02 | 
|  | #define MIGRATION_DIRTY_FLAG 0x08 | 
|  |  | 
|  | /* read dirty bit (return 0 or 1) */ | 
|  | static inline int cpu_physical_memory_is_dirty(ram_addr_t addr) | 
|  | { | 
|  | return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff; | 
|  | } | 
|  |  | 
|  | static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr) | 
|  | { | 
|  | return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS]; | 
|  | } | 
|  |  | 
|  | static inline int cpu_physical_memory_get_dirty(ram_addr_t addr, | 
|  | int dirty_flags) | 
|  | { | 
|  | return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags; | 
|  | } | 
|  |  | 
|  | static inline void cpu_physical_memory_set_dirty(ram_addr_t addr) | 
|  | { | 
|  | ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff; | 
|  | } | 
|  |  | 
|  | static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr, | 
|  | int dirty_flags) | 
|  | { | 
|  | return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags; | 
|  | } | 
|  |  | 
|  | static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start, | 
|  | int length, | 
|  | int dirty_flags) | 
|  | { | 
|  | int i, mask, len; | 
|  | uint8_t *p; | 
|  |  | 
|  | len = length >> TARGET_PAGE_BITS; | 
|  | mask = ~dirty_flags; | 
|  | p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS); | 
|  | for (i = 0; i < len; i++) { | 
|  | p[i] &= mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, | 
|  | int dirty_flags); | 
|  | void cpu_tlb_update_dirty(CPUState *env); | 
|  |  | 
|  | int cpu_physical_memory_set_dirty_tracking(int enable); | 
|  |  | 
|  | int cpu_physical_memory_get_dirty_tracking(void); | 
|  |  | 
|  | int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, | 
|  | target_phys_addr_t end_addr); | 
|  |  | 
|  | int cpu_physical_log_start(target_phys_addr_t start_addr, | 
|  | ram_addr_t size); | 
|  |  | 
|  | int cpu_physical_log_stop(target_phys_addr_t start_addr, | 
|  | ram_addr_t size); | 
|  |  | 
|  | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf); | 
|  | #endif /* !CONFIG_USER_ONLY */ | 
|  |  | 
|  | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, | 
|  | uint8_t *buf, int len, int is_write); | 
|  |  | 
|  | #endif /* CPU_ALL_H */ |