|  | /* | 
|  | * gdb server stub | 
|  | * | 
|  | * Copyright (c) 2003-2005 Fabrice Bellard | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include "config.h" | 
|  | #include "qemu-common.h" | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | #include <stdlib.h> | 
|  | #include <stdio.h> | 
|  | #include <stdarg.h> | 
|  | #include <string.h> | 
|  | #include <errno.h> | 
|  | #include <unistd.h> | 
|  | #include <fcntl.h> | 
|  |  | 
|  | #include "qemu.h" | 
|  | #else | 
|  | #include "monitor.h" | 
|  | #include "qemu-char.h" | 
|  | #include "sysemu.h" | 
|  | #include "gdbstub.h" | 
|  | #endif | 
|  |  | 
|  | #define MAX_PACKET_LENGTH 4096 | 
|  |  | 
|  | #include "exec-all.h" | 
|  | #include "qemu_socket.h" | 
|  | #include "kvm.h" | 
|  |  | 
|  |  | 
|  | enum { | 
|  | GDB_SIGNAL_0 = 0, | 
|  | GDB_SIGNAL_INT = 2, | 
|  | GDB_SIGNAL_QUIT = 3, | 
|  | GDB_SIGNAL_TRAP = 5, | 
|  | GDB_SIGNAL_ABRT = 6, | 
|  | GDB_SIGNAL_ALRM = 14, | 
|  | GDB_SIGNAL_IO = 23, | 
|  | GDB_SIGNAL_XCPU = 24, | 
|  | GDB_SIGNAL_UNKNOWN = 143 | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_USER_ONLY | 
|  |  | 
|  | /* Map target signal numbers to GDB protocol signal numbers and vice | 
|  | * versa.  For user emulation's currently supported systems, we can | 
|  | * assume most signals are defined. | 
|  | */ | 
|  |  | 
|  | static int gdb_signal_table[] = { | 
|  | 0, | 
|  | TARGET_SIGHUP, | 
|  | TARGET_SIGINT, | 
|  | TARGET_SIGQUIT, | 
|  | TARGET_SIGILL, | 
|  | TARGET_SIGTRAP, | 
|  | TARGET_SIGABRT, | 
|  | -1, /* SIGEMT */ | 
|  | TARGET_SIGFPE, | 
|  | TARGET_SIGKILL, | 
|  | TARGET_SIGBUS, | 
|  | TARGET_SIGSEGV, | 
|  | TARGET_SIGSYS, | 
|  | TARGET_SIGPIPE, | 
|  | TARGET_SIGALRM, | 
|  | TARGET_SIGTERM, | 
|  | TARGET_SIGURG, | 
|  | TARGET_SIGSTOP, | 
|  | TARGET_SIGTSTP, | 
|  | TARGET_SIGCONT, | 
|  | TARGET_SIGCHLD, | 
|  | TARGET_SIGTTIN, | 
|  | TARGET_SIGTTOU, | 
|  | TARGET_SIGIO, | 
|  | TARGET_SIGXCPU, | 
|  | TARGET_SIGXFSZ, | 
|  | TARGET_SIGVTALRM, | 
|  | TARGET_SIGPROF, | 
|  | TARGET_SIGWINCH, | 
|  | -1, /* SIGLOST */ | 
|  | TARGET_SIGUSR1, | 
|  | TARGET_SIGUSR2, | 
|  | #ifdef TARGET_SIGPWR | 
|  | TARGET_SIGPWR, | 
|  | #else | 
|  | -1, | 
|  | #endif | 
|  | -1, /* SIGPOLL */ | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | #ifdef __SIGRTMIN | 
|  | __SIGRTMIN + 1, | 
|  | __SIGRTMIN + 2, | 
|  | __SIGRTMIN + 3, | 
|  | __SIGRTMIN + 4, | 
|  | __SIGRTMIN + 5, | 
|  | __SIGRTMIN + 6, | 
|  | __SIGRTMIN + 7, | 
|  | __SIGRTMIN + 8, | 
|  | __SIGRTMIN + 9, | 
|  | __SIGRTMIN + 10, | 
|  | __SIGRTMIN + 11, | 
|  | __SIGRTMIN + 12, | 
|  | __SIGRTMIN + 13, | 
|  | __SIGRTMIN + 14, | 
|  | __SIGRTMIN + 15, | 
|  | __SIGRTMIN + 16, | 
|  | __SIGRTMIN + 17, | 
|  | __SIGRTMIN + 18, | 
|  | __SIGRTMIN + 19, | 
|  | __SIGRTMIN + 20, | 
|  | __SIGRTMIN + 21, | 
|  | __SIGRTMIN + 22, | 
|  | __SIGRTMIN + 23, | 
|  | __SIGRTMIN + 24, | 
|  | __SIGRTMIN + 25, | 
|  | __SIGRTMIN + 26, | 
|  | __SIGRTMIN + 27, | 
|  | __SIGRTMIN + 28, | 
|  | __SIGRTMIN + 29, | 
|  | __SIGRTMIN + 30, | 
|  | __SIGRTMIN + 31, | 
|  | -1, /* SIGCANCEL */ | 
|  | __SIGRTMIN, | 
|  | __SIGRTMIN + 32, | 
|  | __SIGRTMIN + 33, | 
|  | __SIGRTMIN + 34, | 
|  | __SIGRTMIN + 35, | 
|  | __SIGRTMIN + 36, | 
|  | __SIGRTMIN + 37, | 
|  | __SIGRTMIN + 38, | 
|  | __SIGRTMIN + 39, | 
|  | __SIGRTMIN + 40, | 
|  | __SIGRTMIN + 41, | 
|  | __SIGRTMIN + 42, | 
|  | __SIGRTMIN + 43, | 
|  | __SIGRTMIN + 44, | 
|  | __SIGRTMIN + 45, | 
|  | __SIGRTMIN + 46, | 
|  | __SIGRTMIN + 47, | 
|  | __SIGRTMIN + 48, | 
|  | __SIGRTMIN + 49, | 
|  | __SIGRTMIN + 50, | 
|  | __SIGRTMIN + 51, | 
|  | __SIGRTMIN + 52, | 
|  | __SIGRTMIN + 53, | 
|  | __SIGRTMIN + 54, | 
|  | __SIGRTMIN + 55, | 
|  | __SIGRTMIN + 56, | 
|  | __SIGRTMIN + 57, | 
|  | __SIGRTMIN + 58, | 
|  | __SIGRTMIN + 59, | 
|  | __SIGRTMIN + 60, | 
|  | __SIGRTMIN + 61, | 
|  | __SIGRTMIN + 62, | 
|  | __SIGRTMIN + 63, | 
|  | __SIGRTMIN + 64, | 
|  | __SIGRTMIN + 65, | 
|  | __SIGRTMIN + 66, | 
|  | __SIGRTMIN + 67, | 
|  | __SIGRTMIN + 68, | 
|  | __SIGRTMIN + 69, | 
|  | __SIGRTMIN + 70, | 
|  | __SIGRTMIN + 71, | 
|  | __SIGRTMIN + 72, | 
|  | __SIGRTMIN + 73, | 
|  | __SIGRTMIN + 74, | 
|  | __SIGRTMIN + 75, | 
|  | __SIGRTMIN + 76, | 
|  | __SIGRTMIN + 77, | 
|  | __SIGRTMIN + 78, | 
|  | __SIGRTMIN + 79, | 
|  | __SIGRTMIN + 80, | 
|  | __SIGRTMIN + 81, | 
|  | __SIGRTMIN + 82, | 
|  | __SIGRTMIN + 83, | 
|  | __SIGRTMIN + 84, | 
|  | __SIGRTMIN + 85, | 
|  | __SIGRTMIN + 86, | 
|  | __SIGRTMIN + 87, | 
|  | __SIGRTMIN + 88, | 
|  | __SIGRTMIN + 89, | 
|  | __SIGRTMIN + 90, | 
|  | __SIGRTMIN + 91, | 
|  | __SIGRTMIN + 92, | 
|  | __SIGRTMIN + 93, | 
|  | __SIGRTMIN + 94, | 
|  | __SIGRTMIN + 95, | 
|  | -1, /* SIGINFO */ | 
|  | -1, /* UNKNOWN */ | 
|  | -1, /* DEFAULT */ | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1 | 
|  | #endif | 
|  | }; | 
|  | #else | 
|  | /* In system mode we only need SIGINT and SIGTRAP; other signals | 
|  | are not yet supported.  */ | 
|  |  | 
|  | enum { | 
|  | TARGET_SIGINT = 2, | 
|  | TARGET_SIGTRAP = 5 | 
|  | }; | 
|  |  | 
|  | static int gdb_signal_table[] = { | 
|  | -1, | 
|  | -1, | 
|  | TARGET_SIGINT, | 
|  | -1, | 
|  | -1, | 
|  | TARGET_SIGTRAP | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | static int target_signal_to_gdb (int sig) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++) | 
|  | if (gdb_signal_table[i] == sig) | 
|  | return i; | 
|  | return GDB_SIGNAL_UNKNOWN; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int gdb_signal_to_target (int sig) | 
|  | { | 
|  | if (sig < ARRAY_SIZE (gdb_signal_table)) | 
|  | return gdb_signal_table[sig]; | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | //#define DEBUG_GDB | 
|  |  | 
|  | typedef struct GDBRegisterState { | 
|  | int base_reg; | 
|  | int num_regs; | 
|  | gdb_reg_cb get_reg; | 
|  | gdb_reg_cb set_reg; | 
|  | const char *xml; | 
|  | struct GDBRegisterState *next; | 
|  | } GDBRegisterState; | 
|  |  | 
|  | enum RSState { | 
|  | RS_INACTIVE, | 
|  | RS_IDLE, | 
|  | RS_GETLINE, | 
|  | RS_CHKSUM1, | 
|  | RS_CHKSUM2, | 
|  | RS_SYSCALL, | 
|  | }; | 
|  | typedef struct GDBState { | 
|  | CPUState *c_cpu; /* current CPU for step/continue ops */ | 
|  | CPUState *g_cpu; /* current CPU for other ops */ | 
|  | CPUState *query_cpu; /* for q{f|s}ThreadInfo */ | 
|  | enum RSState state; /* parsing state */ | 
|  | char line_buf[MAX_PACKET_LENGTH]; | 
|  | int line_buf_index; | 
|  | int line_csum; | 
|  | uint8_t last_packet[MAX_PACKET_LENGTH + 4]; | 
|  | int last_packet_len; | 
|  | int signal; | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | int fd; | 
|  | int running_state; | 
|  | #else | 
|  | CharDriverState *chr; | 
|  | CharDriverState *mon_chr; | 
|  | #endif | 
|  | } GDBState; | 
|  |  | 
|  | /* By default use no IRQs and no timers while single stepping so as to | 
|  | * make single stepping like an ICE HW step. | 
|  | */ | 
|  | static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER; | 
|  |  | 
|  | static GDBState *gdbserver_state; | 
|  |  | 
|  | /* This is an ugly hack to cope with both new and old gdb. | 
|  | If gdb sends qXfer:features:read then assume we're talking to a newish | 
|  | gdb that understands target descriptions.  */ | 
|  | static int gdb_has_xml; | 
|  |  | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | /* XXX: This is not thread safe.  Do we care?  */ | 
|  | static int gdbserver_fd = -1; | 
|  |  | 
|  | static int get_char(GDBState *s) | 
|  | { | 
|  | uint8_t ch; | 
|  | int ret; | 
|  |  | 
|  | for(;;) { | 
|  | ret = recv(s->fd, &ch, 1, 0); | 
|  | if (ret < 0) { | 
|  | if (errno == ECONNRESET) | 
|  | s->fd = -1; | 
|  | if (errno != EINTR && errno != EAGAIN) | 
|  | return -1; | 
|  | } else if (ret == 0) { | 
|  | close(s->fd); | 
|  | s->fd = -1; | 
|  | return -1; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ch; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static gdb_syscall_complete_cb gdb_current_syscall_cb; | 
|  |  | 
|  | static enum { | 
|  | GDB_SYS_UNKNOWN, | 
|  | GDB_SYS_ENABLED, | 
|  | GDB_SYS_DISABLED, | 
|  | } gdb_syscall_mode; | 
|  |  | 
|  | /* If gdb is connected when the first semihosting syscall occurs then use | 
|  | remote gdb syscalls.  Otherwise use native file IO.  */ | 
|  | int use_gdb_syscalls(void) | 
|  | { | 
|  | if (gdb_syscall_mode == GDB_SYS_UNKNOWN) { | 
|  | gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED | 
|  | : GDB_SYS_DISABLED); | 
|  | } | 
|  | return gdb_syscall_mode == GDB_SYS_ENABLED; | 
|  | } | 
|  |  | 
|  | /* Resume execution.  */ | 
|  | static inline void gdb_continue(GDBState *s) | 
|  | { | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | s->running_state = 1; | 
|  | #else | 
|  | vm_start(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void put_buffer(GDBState *s, const uint8_t *buf, int len) | 
|  | { | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | int ret; | 
|  |  | 
|  | while (len > 0) { | 
|  | ret = send(s->fd, buf, len, 0); | 
|  | if (ret < 0) { | 
|  | if (errno != EINTR && errno != EAGAIN) | 
|  | return; | 
|  | } else { | 
|  | buf += ret; | 
|  | len -= ret; | 
|  | } | 
|  | } | 
|  | #else | 
|  | qemu_chr_write(s->chr, buf, len); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int fromhex(int v) | 
|  | { | 
|  | if (v >= '0' && v <= '9') | 
|  | return v - '0'; | 
|  | else if (v >= 'A' && v <= 'F') | 
|  | return v - 'A' + 10; | 
|  | else if (v >= 'a' && v <= 'f') | 
|  | return v - 'a' + 10; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int tohex(int v) | 
|  | { | 
|  | if (v < 10) | 
|  | return v + '0'; | 
|  | else | 
|  | return v - 10 + 'a'; | 
|  | } | 
|  |  | 
|  | static void memtohex(char *buf, const uint8_t *mem, int len) | 
|  | { | 
|  | int i, c; | 
|  | char *q; | 
|  | q = buf; | 
|  | for(i = 0; i < len; i++) { | 
|  | c = mem[i]; | 
|  | *q++ = tohex(c >> 4); | 
|  | *q++ = tohex(c & 0xf); | 
|  | } | 
|  | *q = '\0'; | 
|  | } | 
|  |  | 
|  | static void hextomem(uint8_t *mem, const char *buf, int len) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for(i = 0; i < len; i++) { | 
|  | mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]); | 
|  | buf += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* return -1 if error, 0 if OK */ | 
|  | static int put_packet_binary(GDBState *s, const char *buf, int len) | 
|  | { | 
|  | int csum, i; | 
|  | uint8_t *p; | 
|  |  | 
|  | for(;;) { | 
|  | p = s->last_packet; | 
|  | *(p++) = '$'; | 
|  | memcpy(p, buf, len); | 
|  | p += len; | 
|  | csum = 0; | 
|  | for(i = 0; i < len; i++) { | 
|  | csum += buf[i]; | 
|  | } | 
|  | *(p++) = '#'; | 
|  | *(p++) = tohex((csum >> 4) & 0xf); | 
|  | *(p++) = tohex((csum) & 0xf); | 
|  |  | 
|  | s->last_packet_len = p - s->last_packet; | 
|  | put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); | 
|  |  | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | i = get_char(s); | 
|  | if (i < 0) | 
|  | return -1; | 
|  | if (i == '+') | 
|  | break; | 
|  | #else | 
|  | break; | 
|  | #endif | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* return -1 if error, 0 if OK */ | 
|  | static int put_packet(GDBState *s, const char *buf) | 
|  | { | 
|  | #ifdef DEBUG_GDB | 
|  | printf("reply='%s'\n", buf); | 
|  | #endif | 
|  |  | 
|  | return put_packet_binary(s, buf, strlen(buf)); | 
|  | } | 
|  |  | 
|  | /* The GDB remote protocol transfers values in target byte order.  This means | 
|  | we can use the raw memory access routines to access the value buffer. | 
|  | Conveniently, these also handle the case where the buffer is mis-aligned. | 
|  | */ | 
|  | #define GET_REG8(val) do { \ | 
|  | stb_p(mem_buf, val); \ | 
|  | return 1; \ | 
|  | } while(0) | 
|  | #define GET_REG16(val) do { \ | 
|  | stw_p(mem_buf, val); \ | 
|  | return 2; \ | 
|  | } while(0) | 
|  | #define GET_REG32(val) do { \ | 
|  | stl_p(mem_buf, val); \ | 
|  | return 4; \ | 
|  | } while(0) | 
|  | #define GET_REG64(val) do { \ | 
|  | stq_p(mem_buf, val); \ | 
|  | return 8; \ | 
|  | } while(0) | 
|  |  | 
|  | #if TARGET_LONG_BITS == 64 | 
|  | #define GET_REGL(val) GET_REG64(val) | 
|  | #define ldtul_p(addr) ldq_p(addr) | 
|  | #else | 
|  | #define GET_REGL(val) GET_REG32(val) | 
|  | #define ldtul_p(addr) ldl_p(addr) | 
|  | #endif | 
|  |  | 
|  | #if defined(TARGET_I386) | 
|  |  | 
|  | #ifdef TARGET_X86_64 | 
|  | static const int gpr_map[16] = { | 
|  | R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP, | 
|  | 8, 9, 10, 11, 12, 13, 14, 15 | 
|  | }; | 
|  | #else | 
|  | #define gpr_map gpr_map32 | 
|  | #endif | 
|  | static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; | 
|  |  | 
|  | #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25) | 
|  |  | 
|  | #define IDX_IP_REG      CPU_NB_REGS | 
|  | #define IDX_FLAGS_REG   (IDX_IP_REG + 1) | 
|  | #define IDX_SEG_REGS    (IDX_FLAGS_REG + 1) | 
|  | #define IDX_FP_REGS     (IDX_SEG_REGS + 6) | 
|  | #define IDX_XMM_REGS    (IDX_FP_REGS + 16) | 
|  | #define IDX_MXCSR_REG   (IDX_XMM_REGS + CPU_NB_REGS) | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | if (n < CPU_NB_REGS) { | 
|  | if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { | 
|  | GET_REG64(env->regs[gpr_map[n]]); | 
|  | } else if (n < CPU_NB_REGS32) { | 
|  | GET_REG32(env->regs[gpr_map32[n]]); | 
|  | } | 
|  | } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { | 
|  | #ifdef USE_X86LDOUBLE | 
|  | /* FIXME: byteswap float values - after fixing fpregs layout. */ | 
|  | memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10); | 
|  | #else | 
|  | memset(mem_buf, 0, 10); | 
|  | #endif | 
|  | return 10; | 
|  | } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { | 
|  | n -= IDX_XMM_REGS; | 
|  | if (n < CPU_NB_REGS32 || | 
|  | (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) { | 
|  | stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0)); | 
|  | stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1)); | 
|  | return 16; | 
|  | } | 
|  | } else { | 
|  | switch (n) { | 
|  | case IDX_IP_REG: | 
|  | if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { | 
|  | GET_REG64(env->eip); | 
|  | } else { | 
|  | GET_REG32(env->eip); | 
|  | } | 
|  | case IDX_FLAGS_REG: GET_REG32(env->eflags); | 
|  |  | 
|  | case IDX_SEG_REGS:     GET_REG32(env->segs[R_CS].selector); | 
|  | case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector); | 
|  | case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector); | 
|  | case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector); | 
|  | case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector); | 
|  | case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector); | 
|  |  | 
|  | case IDX_FP_REGS + 8:  GET_REG32(env->fpuc); | 
|  | case IDX_FP_REGS + 9:  GET_REG32((env->fpus & ~0x3800) | | 
|  | (env->fpstt & 0x7) << 11); | 
|  | case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */ | 
|  | case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */ | 
|  | case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */ | 
|  | case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */ | 
|  | case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */ | 
|  | case IDX_FP_REGS + 15: GET_REG32(0); /* fop */ | 
|  |  | 
|  | case IDX_MXCSR_REG: GET_REG32(env->mxcsr); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf) | 
|  | { | 
|  | uint16_t selector = ldl_p(mem_buf); | 
|  |  | 
|  | if (selector != env->segs[sreg].selector) { | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | cpu_x86_load_seg(env, sreg, selector); | 
|  | #else | 
|  | unsigned int limit, flags; | 
|  | target_ulong base; | 
|  |  | 
|  | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { | 
|  | base = selector << 4; | 
|  | limit = 0xffff; | 
|  | flags = 0; | 
|  | } else { | 
|  | if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags)) | 
|  | return 4; | 
|  | } | 
|  | cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags); | 
|  | #endif | 
|  | } | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | if (n < CPU_NB_REGS) { | 
|  | if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { | 
|  | env->regs[gpr_map[n]] = ldtul_p(mem_buf); | 
|  | return sizeof(target_ulong); | 
|  | } else if (n < CPU_NB_REGS32) { | 
|  | n = gpr_map32[n]; | 
|  | env->regs[n] &= ~0xffffffffUL; | 
|  | env->regs[n] |= (uint32_t)ldl_p(mem_buf); | 
|  | return 4; | 
|  | } | 
|  | } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { | 
|  | #ifdef USE_X86LDOUBLE | 
|  | /* FIXME: byteswap float values - after fixing fpregs layout. */ | 
|  | memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10); | 
|  | #endif | 
|  | return 10; | 
|  | } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { | 
|  | n -= IDX_XMM_REGS; | 
|  | if (n < CPU_NB_REGS32 || | 
|  | (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) { | 
|  | env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf); | 
|  | env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8); | 
|  | return 16; | 
|  | } | 
|  | } else { | 
|  | switch (n) { | 
|  | case IDX_IP_REG: | 
|  | if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { | 
|  | env->eip = ldq_p(mem_buf); | 
|  | return 8; | 
|  | } else { | 
|  | env->eip &= ~0xffffffffUL; | 
|  | env->eip |= (uint32_t)ldl_p(mem_buf); | 
|  | return 4; | 
|  | } | 
|  | case IDX_FLAGS_REG: | 
|  | env->eflags = ldl_p(mem_buf); | 
|  | return 4; | 
|  |  | 
|  | case IDX_SEG_REGS:     return cpu_x86_gdb_load_seg(env, R_CS, mem_buf); | 
|  | case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf); | 
|  | case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf); | 
|  | case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf); | 
|  | case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf); | 
|  | case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf); | 
|  |  | 
|  | case IDX_FP_REGS + 8: | 
|  | env->fpuc = ldl_p(mem_buf); | 
|  | return 4; | 
|  | case IDX_FP_REGS + 9: | 
|  | tmp = ldl_p(mem_buf); | 
|  | env->fpstt = (tmp >> 11) & 7; | 
|  | env->fpus = tmp & ~0x3800; | 
|  | return 4; | 
|  | case IDX_FP_REGS + 10: /* ftag */  return 4; | 
|  | case IDX_FP_REGS + 11: /* fiseg */ return 4; | 
|  | case IDX_FP_REGS + 12: /* fioff */ return 4; | 
|  | case IDX_FP_REGS + 13: /* foseg */ return 4; | 
|  | case IDX_FP_REGS + 14: /* fooff */ return 4; | 
|  | case IDX_FP_REGS + 15: /* fop */   return 4; | 
|  |  | 
|  | case IDX_MXCSR_REG: | 
|  | env->mxcsr = ldl_p(mem_buf); | 
|  | return 4; | 
|  | } | 
|  | } | 
|  | /* Unrecognised register.  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #elif defined (TARGET_PPC) | 
|  |  | 
|  | /* Old gdb always expects FP registers.  Newer (xml-aware) gdb only | 
|  | expects whatever the target description contains.  Due to a | 
|  | historical mishap the FP registers appear in between core integer | 
|  | regs and PC, MSR, CR, and so forth.  We hack round this by giving the | 
|  | FP regs zero size when talking to a newer gdb.  */ | 
|  | #define NUM_CORE_REGS 71 | 
|  | #if defined (TARGET_PPC64) | 
|  | #define GDB_CORE_XML "power64-core.xml" | 
|  | #else | 
|  | #define GDB_CORE_XML "power-core.xml" | 
|  | #endif | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | if (n < 32) { | 
|  | /* gprs */ | 
|  | GET_REGL(env->gpr[n]); | 
|  | } else if (n < 64) { | 
|  | /* fprs */ | 
|  | if (gdb_has_xml) | 
|  | return 0; | 
|  | stfq_p(mem_buf, env->fpr[n-32]); | 
|  | return 8; | 
|  | } else { | 
|  | switch (n) { | 
|  | case 64: GET_REGL(env->nip); | 
|  | case 65: GET_REGL(env->msr); | 
|  | case 66: | 
|  | { | 
|  | uint32_t cr = 0; | 
|  | int i; | 
|  | for (i = 0; i < 8; i++) | 
|  | cr |= env->crf[i] << (32 - ((i + 1) * 4)); | 
|  | GET_REG32(cr); | 
|  | } | 
|  | case 67: GET_REGL(env->lr); | 
|  | case 68: GET_REGL(env->ctr); | 
|  | case 69: GET_REGL(env->xer); | 
|  | case 70: | 
|  | { | 
|  | if (gdb_has_xml) | 
|  | return 0; | 
|  | GET_REG32(0); /* fpscr */ | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | if (n < 32) { | 
|  | /* gprs */ | 
|  | env->gpr[n] = ldtul_p(mem_buf); | 
|  | return sizeof(target_ulong); | 
|  | } else if (n < 64) { | 
|  | /* fprs */ | 
|  | if (gdb_has_xml) | 
|  | return 0; | 
|  | env->fpr[n-32] = ldfq_p(mem_buf); | 
|  | return 8; | 
|  | } else { | 
|  | switch (n) { | 
|  | case 64: | 
|  | env->nip = ldtul_p(mem_buf); | 
|  | return sizeof(target_ulong); | 
|  | case 65: | 
|  | ppc_store_msr(env, ldtul_p(mem_buf)); | 
|  | return sizeof(target_ulong); | 
|  | case 66: | 
|  | { | 
|  | uint32_t cr = ldl_p(mem_buf); | 
|  | int i; | 
|  | for (i = 0; i < 8; i++) | 
|  | env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF; | 
|  | return 4; | 
|  | } | 
|  | case 67: | 
|  | env->lr = ldtul_p(mem_buf); | 
|  | return sizeof(target_ulong); | 
|  | case 68: | 
|  | env->ctr = ldtul_p(mem_buf); | 
|  | return sizeof(target_ulong); | 
|  | case 69: | 
|  | env->xer = ldtul_p(mem_buf); | 
|  | return sizeof(target_ulong); | 
|  | case 70: | 
|  | /* fpscr */ | 
|  | if (gdb_has_xml) | 
|  | return 0; | 
|  | return 4; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #elif defined (TARGET_SPARC) | 
|  |  | 
|  | #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) | 
|  | #define NUM_CORE_REGS 86 | 
|  | #else | 
|  | #define NUM_CORE_REGS 72 | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_ABI32 | 
|  | #define GET_REGA(val) GET_REG32(val) | 
|  | #else | 
|  | #define GET_REGA(val) GET_REGL(val) | 
|  | #endif | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | if (n < 8) { | 
|  | /* g0..g7 */ | 
|  | GET_REGA(env->gregs[n]); | 
|  | } | 
|  | if (n < 32) { | 
|  | /* register window */ | 
|  | GET_REGA(env->regwptr[n - 8]); | 
|  | } | 
|  | #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) | 
|  | if (n < 64) { | 
|  | /* fprs */ | 
|  | GET_REG32(*((uint32_t *)&env->fpr[n - 32])); | 
|  | } | 
|  | /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ | 
|  | switch (n) { | 
|  | case 64: GET_REGA(env->y); | 
|  | case 65: GET_REGA(cpu_get_psr(env)); | 
|  | case 66: GET_REGA(env->wim); | 
|  | case 67: GET_REGA(env->tbr); | 
|  | case 68: GET_REGA(env->pc); | 
|  | case 69: GET_REGA(env->npc); | 
|  | case 70: GET_REGA(env->fsr); | 
|  | case 71: GET_REGA(0); /* csr */ | 
|  | default: GET_REGA(0); | 
|  | } | 
|  | #else | 
|  | if (n < 64) { | 
|  | /* f0-f31 */ | 
|  | GET_REG32(*((uint32_t *)&env->fpr[n - 32])); | 
|  | } | 
|  | if (n < 80) { | 
|  | /* f32-f62 (double width, even numbers only) */ | 
|  | uint64_t val; | 
|  |  | 
|  | val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32; | 
|  | val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]); | 
|  | GET_REG64(val); | 
|  | } | 
|  | switch (n) { | 
|  | case 80: GET_REGL(env->pc); | 
|  | case 81: GET_REGL(env->npc); | 
|  | case 82: GET_REGL((cpu_get_ccr(env) << 32) | | 
|  | ((env->asi & 0xff) << 24) | | 
|  | ((env->pstate & 0xfff) << 8) | | 
|  | cpu_get_cwp64(env)); | 
|  | case 83: GET_REGL(env->fsr); | 
|  | case 84: GET_REGL(env->fprs); | 
|  | case 85: GET_REGL(env->y); | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | #if defined(TARGET_ABI32) | 
|  | abi_ulong tmp; | 
|  |  | 
|  | tmp = ldl_p(mem_buf); | 
|  | #else | 
|  | target_ulong tmp; | 
|  |  | 
|  | tmp = ldtul_p(mem_buf); | 
|  | #endif | 
|  |  | 
|  | if (n < 8) { | 
|  | /* g0..g7 */ | 
|  | env->gregs[n] = tmp; | 
|  | } else if (n < 32) { | 
|  | /* register window */ | 
|  | env->regwptr[n - 8] = tmp; | 
|  | } | 
|  | #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) | 
|  | else if (n < 64) { | 
|  | /* fprs */ | 
|  | *((uint32_t *)&env->fpr[n - 32]) = tmp; | 
|  | } else { | 
|  | /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ | 
|  | switch (n) { | 
|  | case 64: env->y = tmp; break; | 
|  | case 65: cpu_put_psr(env, tmp); break; | 
|  | case 66: env->wim = tmp; break; | 
|  | case 67: env->tbr = tmp; break; | 
|  | case 68: env->pc = tmp; break; | 
|  | case 69: env->npc = tmp; break; | 
|  | case 70: env->fsr = tmp; break; | 
|  | default: return 0; | 
|  | } | 
|  | } | 
|  | return 4; | 
|  | #else | 
|  | else if (n < 64) { | 
|  | /* f0-f31 */ | 
|  | env->fpr[n] = ldfl_p(mem_buf); | 
|  | return 4; | 
|  | } else if (n < 80) { | 
|  | /* f32-f62 (double width, even numbers only) */ | 
|  | *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32; | 
|  | *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp; | 
|  | } else { | 
|  | switch (n) { | 
|  | case 80: env->pc = tmp; break; | 
|  | case 81: env->npc = tmp; break; | 
|  | case 82: | 
|  | cpu_put_ccr(env, tmp >> 32); | 
|  | env->asi = (tmp >> 24) & 0xff; | 
|  | env->pstate = (tmp >> 8) & 0xfff; | 
|  | cpu_put_cwp64(env, tmp & 0xff); | 
|  | break; | 
|  | case 83: env->fsr = tmp; break; | 
|  | case 84: env->fprs = tmp; break; | 
|  | case 85: env->y = tmp; break; | 
|  | default: return 0; | 
|  | } | 
|  | } | 
|  | return 8; | 
|  | #endif | 
|  | } | 
|  | #elif defined (TARGET_ARM) | 
|  |  | 
|  | /* Old gdb always expect FPA registers.  Newer (xml-aware) gdb only expect | 
|  | whatever the target description contains.  Due to a historical mishap | 
|  | the FPA registers appear in between core integer regs and the CPSR. | 
|  | We hack round this by giving the FPA regs zero size when talking to a | 
|  | newer gdb.  */ | 
|  | #define NUM_CORE_REGS 26 | 
|  | #define GDB_CORE_XML "arm-core.xml" | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | if (n < 16) { | 
|  | /* Core integer register.  */ | 
|  | GET_REG32(env->regs[n]); | 
|  | } | 
|  | if (n < 24) { | 
|  | /* FPA registers.  */ | 
|  | if (gdb_has_xml) | 
|  | return 0; | 
|  | memset(mem_buf, 0, 12); | 
|  | return 12; | 
|  | } | 
|  | switch (n) { | 
|  | case 24: | 
|  | /* FPA status register.  */ | 
|  | if (gdb_has_xml) | 
|  | return 0; | 
|  | GET_REG32(0); | 
|  | case 25: | 
|  | /* CPSR */ | 
|  | GET_REG32(cpsr_read(env)); | 
|  | } | 
|  | /* Unknown register.  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | tmp = ldl_p(mem_buf); | 
|  |  | 
|  | /* Mask out low bit of PC to workaround gdb bugs.  This will probably | 
|  | cause problems if we ever implement the Jazelle DBX extensions.  */ | 
|  | if (n == 15) | 
|  | tmp &= ~1; | 
|  |  | 
|  | if (n < 16) { | 
|  | /* Core integer register.  */ | 
|  | env->regs[n] = tmp; | 
|  | return 4; | 
|  | } | 
|  | if (n < 24) { /* 16-23 */ | 
|  | /* FPA registers (ignored).  */ | 
|  | if (gdb_has_xml) | 
|  | return 0; | 
|  | return 12; | 
|  | } | 
|  | switch (n) { | 
|  | case 24: | 
|  | /* FPA status register (ignored).  */ | 
|  | if (gdb_has_xml) | 
|  | return 0; | 
|  | return 4; | 
|  | case 25: | 
|  | /* CPSR */ | 
|  | cpsr_write (env, tmp, 0xffffffff); | 
|  | return 4; | 
|  | } | 
|  | /* Unknown register.  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #elif defined (TARGET_M68K) | 
|  |  | 
|  | #define NUM_CORE_REGS 18 | 
|  |  | 
|  | #define GDB_CORE_XML "cf-core.xml" | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | if (n < 8) { | 
|  | /* D0-D7 */ | 
|  | GET_REG32(env->dregs[n]); | 
|  | } else if (n < 16) { | 
|  | /* A0-A7 */ | 
|  | GET_REG32(env->aregs[n - 8]); | 
|  | } else { | 
|  | switch (n) { | 
|  | case 16: GET_REG32(env->sr); | 
|  | case 17: GET_REG32(env->pc); | 
|  | } | 
|  | } | 
|  | /* FP registers not included here because they vary between | 
|  | ColdFire and m68k.  Use XML bits for these.  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | tmp = ldl_p(mem_buf); | 
|  |  | 
|  | if (n < 8) { | 
|  | /* D0-D7 */ | 
|  | env->dregs[n] = tmp; | 
|  | } else if (n < 16) { | 
|  | /* A0-A7 */ | 
|  | env->aregs[n - 8] = tmp; | 
|  | } else { | 
|  | switch (n) { | 
|  | case 16: env->sr = tmp; break; | 
|  | case 17: env->pc = tmp; break; | 
|  | default: return 0; | 
|  | } | 
|  | } | 
|  | return 4; | 
|  | } | 
|  | #elif defined (TARGET_MIPS) | 
|  |  | 
|  | #define NUM_CORE_REGS 73 | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | if (n < 32) { | 
|  | GET_REGL(env->active_tc.gpr[n]); | 
|  | } | 
|  | if (env->CP0_Config1 & (1 << CP0C1_FP)) { | 
|  | if (n >= 38 && n < 70) { | 
|  | if (env->CP0_Status & (1 << CP0St_FR)) | 
|  | GET_REGL(env->active_fpu.fpr[n - 38].d); | 
|  | else | 
|  | GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]); | 
|  | } | 
|  | switch (n) { | 
|  | case 70: GET_REGL((int32_t)env->active_fpu.fcr31); | 
|  | case 71: GET_REGL((int32_t)env->active_fpu.fcr0); | 
|  | } | 
|  | } | 
|  | switch (n) { | 
|  | case 32: GET_REGL((int32_t)env->CP0_Status); | 
|  | case 33: GET_REGL(env->active_tc.LO[0]); | 
|  | case 34: GET_REGL(env->active_tc.HI[0]); | 
|  | case 35: GET_REGL(env->CP0_BadVAddr); | 
|  | case 36: GET_REGL((int32_t)env->CP0_Cause); | 
|  | case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16)); | 
|  | case 72: GET_REGL(0); /* fp */ | 
|  | case 89: GET_REGL((int32_t)env->CP0_PRid); | 
|  | } | 
|  | if (n >= 73 && n <= 88) { | 
|  | /* 16 embedded regs.  */ | 
|  | GET_REGL(0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* convert MIPS rounding mode in FCR31 to IEEE library */ | 
|  | static unsigned int ieee_rm[] = | 
|  | { | 
|  | float_round_nearest_even, | 
|  | float_round_to_zero, | 
|  | float_round_up, | 
|  | float_round_down | 
|  | }; | 
|  | #define RESTORE_ROUNDING_MODE \ | 
|  | set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | target_ulong tmp; | 
|  |  | 
|  | tmp = ldtul_p(mem_buf); | 
|  |  | 
|  | if (n < 32) { | 
|  | env->active_tc.gpr[n] = tmp; | 
|  | return sizeof(target_ulong); | 
|  | } | 
|  | if (env->CP0_Config1 & (1 << CP0C1_FP) | 
|  | && n >= 38 && n < 73) { | 
|  | if (n < 70) { | 
|  | if (env->CP0_Status & (1 << CP0St_FR)) | 
|  | env->active_fpu.fpr[n - 38].d = tmp; | 
|  | else | 
|  | env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp; | 
|  | } | 
|  | switch (n) { | 
|  | case 70: | 
|  | env->active_fpu.fcr31 = tmp & 0xFF83FFFF; | 
|  | /* set rounding mode */ | 
|  | RESTORE_ROUNDING_MODE; | 
|  | #ifndef CONFIG_SOFTFLOAT | 
|  | /* no floating point exception for native float */ | 
|  | SET_FP_ENABLE(env->active_fpu.fcr31, 0); | 
|  | #endif | 
|  | break; | 
|  | case 71: env->active_fpu.fcr0 = tmp; break; | 
|  | } | 
|  | return sizeof(target_ulong); | 
|  | } | 
|  | switch (n) { | 
|  | case 32: env->CP0_Status = tmp; break; | 
|  | case 33: env->active_tc.LO[0] = tmp; break; | 
|  | case 34: env->active_tc.HI[0] = tmp; break; | 
|  | case 35: env->CP0_BadVAddr = tmp; break; | 
|  | case 36: env->CP0_Cause = tmp; break; | 
|  | case 37: | 
|  | env->active_tc.PC = tmp & ~(target_ulong)1; | 
|  | if (tmp & 1) { | 
|  | env->hflags |= MIPS_HFLAG_M16; | 
|  | } else { | 
|  | env->hflags &= ~(MIPS_HFLAG_M16); | 
|  | } | 
|  | break; | 
|  | case 72: /* fp, ignored */ break; | 
|  | default: | 
|  | if (n > 89) | 
|  | return 0; | 
|  | /* Other registers are readonly.  Ignore writes.  */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | return sizeof(target_ulong); | 
|  | } | 
|  | #elif defined (TARGET_SH4) | 
|  |  | 
|  | /* Hint: Use "set architecture sh4" in GDB to see fpu registers */ | 
|  | /* FIXME: We should use XML for this.  */ | 
|  |  | 
|  | #define NUM_CORE_REGS 59 | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | if (n < 8) { | 
|  | if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { | 
|  | GET_REGL(env->gregs[n + 16]); | 
|  | } else { | 
|  | GET_REGL(env->gregs[n]); | 
|  | } | 
|  | } else if (n < 16) { | 
|  | GET_REGL(env->gregs[n]); | 
|  | } else if (n >= 25 && n < 41) { | 
|  | GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]); | 
|  | } else if (n >= 43 && n < 51) { | 
|  | GET_REGL(env->gregs[n - 43]); | 
|  | } else if (n >= 51 && n < 59) { | 
|  | GET_REGL(env->gregs[n - (51 - 16)]); | 
|  | } | 
|  | switch (n) { | 
|  | case 16: GET_REGL(env->pc); | 
|  | case 17: GET_REGL(env->pr); | 
|  | case 18: GET_REGL(env->gbr); | 
|  | case 19: GET_REGL(env->vbr); | 
|  | case 20: GET_REGL(env->mach); | 
|  | case 21: GET_REGL(env->macl); | 
|  | case 22: GET_REGL(env->sr); | 
|  | case 23: GET_REGL(env->fpul); | 
|  | case 24: GET_REGL(env->fpscr); | 
|  | case 41: GET_REGL(env->ssr); | 
|  | case 42: GET_REGL(env->spc); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | tmp = ldl_p(mem_buf); | 
|  |  | 
|  | if (n < 8) { | 
|  | if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { | 
|  | env->gregs[n + 16] = tmp; | 
|  | } else { | 
|  | env->gregs[n] = tmp; | 
|  | } | 
|  | return 4; | 
|  | } else if (n < 16) { | 
|  | env->gregs[n] = tmp; | 
|  | return 4; | 
|  | } else if (n >= 25 && n < 41) { | 
|  | env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp; | 
|  | return 4; | 
|  | } else if (n >= 43 && n < 51) { | 
|  | env->gregs[n - 43] = tmp; | 
|  | return 4; | 
|  | } else if (n >= 51 && n < 59) { | 
|  | env->gregs[n - (51 - 16)] = tmp; | 
|  | return 4; | 
|  | } | 
|  | switch (n) { | 
|  | case 16: env->pc = tmp; break; | 
|  | case 17: env->pr = tmp; break; | 
|  | case 18: env->gbr = tmp; break; | 
|  | case 19: env->vbr = tmp; break; | 
|  | case 20: env->mach = tmp; break; | 
|  | case 21: env->macl = tmp; break; | 
|  | case 22: env->sr = tmp; break; | 
|  | case 23: env->fpul = tmp; break; | 
|  | case 24: env->fpscr = tmp; break; | 
|  | case 41: env->ssr = tmp; break; | 
|  | case 42: env->spc = tmp; break; | 
|  | default: return 0; | 
|  | } | 
|  |  | 
|  | return 4; | 
|  | } | 
|  | #elif defined (TARGET_MICROBLAZE) | 
|  |  | 
|  | #define NUM_CORE_REGS (32 + 5) | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | if (n < 32) { | 
|  | GET_REG32(env->regs[n]); | 
|  | } else { | 
|  | GET_REG32(env->sregs[n - 32]); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | if (n > NUM_CORE_REGS) | 
|  | return 0; | 
|  |  | 
|  | tmp = ldl_p(mem_buf); | 
|  |  | 
|  | if (n < 32) { | 
|  | env->regs[n] = tmp; | 
|  | } else { | 
|  | env->sregs[n - 32] = tmp; | 
|  | } | 
|  | return 4; | 
|  | } | 
|  | #elif defined (TARGET_CRIS) | 
|  |  | 
|  | #define NUM_CORE_REGS 49 | 
|  |  | 
|  | static int | 
|  | read_register_crisv10(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | if (n < 15) { | 
|  | GET_REG32(env->regs[n]); | 
|  | } | 
|  |  | 
|  | if (n == 15) { | 
|  | GET_REG32(env->pc); | 
|  | } | 
|  |  | 
|  | if (n < 32) { | 
|  | switch (n) { | 
|  | case 16: | 
|  | GET_REG8(env->pregs[n - 16]); | 
|  | break; | 
|  | case 17: | 
|  | GET_REG8(env->pregs[n - 16]); | 
|  | break; | 
|  | case 20: | 
|  | case 21: | 
|  | GET_REG16(env->pregs[n - 16]); | 
|  | break; | 
|  | default: | 
|  | if (n >= 23) { | 
|  | GET_REG32(env->pregs[n - 16]); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | uint8_t srs; | 
|  |  | 
|  | if (env->pregs[PR_VR] < 32) | 
|  | return read_register_crisv10(env, mem_buf, n); | 
|  |  | 
|  | srs = env->pregs[PR_SRS]; | 
|  | if (n < 16) { | 
|  | GET_REG32(env->regs[n]); | 
|  | } | 
|  |  | 
|  | if (n >= 21 && n < 32) { | 
|  | GET_REG32(env->pregs[n - 16]); | 
|  | } | 
|  | if (n >= 33 && n < 49) { | 
|  | GET_REG32(env->sregs[srs][n - 33]); | 
|  | } | 
|  | switch (n) { | 
|  | case 16: GET_REG8(env->pregs[0]); | 
|  | case 17: GET_REG8(env->pregs[1]); | 
|  | case 18: GET_REG32(env->pregs[2]); | 
|  | case 19: GET_REG8(srs); | 
|  | case 20: GET_REG16(env->pregs[4]); | 
|  | case 32: GET_REG32(env->pc); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | if (n > 49) | 
|  | return 0; | 
|  |  | 
|  | tmp = ldl_p(mem_buf); | 
|  |  | 
|  | if (n < 16) { | 
|  | env->regs[n] = tmp; | 
|  | } | 
|  |  | 
|  | if (n >= 21 && n < 32) { | 
|  | env->pregs[n - 16] = tmp; | 
|  | } | 
|  |  | 
|  | /* FIXME: Should support function regs be writable?  */ | 
|  | switch (n) { | 
|  | case 16: return 1; | 
|  | case 17: return 1; | 
|  | case 18: env->pregs[PR_PID] = tmp; break; | 
|  | case 19: return 1; | 
|  | case 20: return 2; | 
|  | case 32: env->pc = tmp; break; | 
|  | } | 
|  |  | 
|  | return 4; | 
|  | } | 
|  | #elif defined (TARGET_ALPHA) | 
|  |  | 
|  | #define NUM_CORE_REGS 67 | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | uint64_t val; | 
|  | CPU_DoubleU d; | 
|  |  | 
|  | switch (n) { | 
|  | case 0 ... 30: | 
|  | val = env->ir[n]; | 
|  | break; | 
|  | case 32 ... 62: | 
|  | d.d = env->fir[n - 32]; | 
|  | val = d.ll; | 
|  | break; | 
|  | case 63: | 
|  | val = cpu_alpha_load_fpcr(env); | 
|  | break; | 
|  | case 64: | 
|  | val = env->pc; | 
|  | break; | 
|  | case 66: | 
|  | val = env->unique; | 
|  | break; | 
|  | case 31: | 
|  | case 65: | 
|  | /* 31 really is the zero register; 65 is unassigned in the | 
|  | gdb protocol, but is still required to occupy 8 bytes. */ | 
|  | val = 0; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | GET_REGL(val); | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | target_ulong tmp = ldtul_p(mem_buf); | 
|  | CPU_DoubleU d; | 
|  |  | 
|  | switch (n) { | 
|  | case 0 ... 30: | 
|  | env->ir[n] = tmp; | 
|  | break; | 
|  | case 32 ... 62: | 
|  | d.ll = tmp; | 
|  | env->fir[n - 32] = d.d; | 
|  | break; | 
|  | case 63: | 
|  | cpu_alpha_store_fpcr(env, tmp); | 
|  | break; | 
|  | case 64: | 
|  | env->pc = tmp; | 
|  | break; | 
|  | case 66: | 
|  | env->unique = tmp; | 
|  | break; | 
|  | case 31: | 
|  | case 65: | 
|  | /* 31 really is the zero register; 65 is unassigned in the | 
|  | gdb protocol, but is still required to occupy 8 bytes. */ | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | return 8; | 
|  | } | 
|  | #elif defined (TARGET_S390X) | 
|  |  | 
|  | #define NUM_CORE_REGS S390_NUM_TOTAL_REGS | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | switch (n) { | 
|  | case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break; | 
|  | case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break; | 
|  | case S390_R0_REGNUM ... S390_R15_REGNUM: | 
|  | GET_REGL(env->regs[n-S390_R0_REGNUM]); break; | 
|  | case S390_A0_REGNUM ... S390_A15_REGNUM: | 
|  | GET_REG32(env->aregs[n-S390_A0_REGNUM]); break; | 
|  | case S390_FPC_REGNUM: GET_REG32(env->fpc); break; | 
|  | case S390_F0_REGNUM ... S390_F15_REGNUM: | 
|  | /* XXX */ | 
|  | break; | 
|  | case S390_PC_REGNUM: GET_REGL(env->psw.addr); break; | 
|  | case S390_CC_REGNUM: GET_REG32(env->cc); break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | target_ulong tmpl; | 
|  | uint32_t tmp32; | 
|  | int r = 8; | 
|  | tmpl = ldtul_p(mem_buf); | 
|  | tmp32 = ldl_p(mem_buf); | 
|  |  | 
|  | switch (n) { | 
|  | case S390_PSWM_REGNUM: env->psw.mask = tmpl; break; | 
|  | case S390_PSWA_REGNUM: env->psw.addr = tmpl; break; | 
|  | case S390_R0_REGNUM ... S390_R15_REGNUM: | 
|  | env->regs[n-S390_R0_REGNUM] = tmpl; break; | 
|  | case S390_A0_REGNUM ... S390_A15_REGNUM: | 
|  | env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break; | 
|  | case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break; | 
|  | case S390_F0_REGNUM ... S390_F15_REGNUM: | 
|  | /* XXX */ | 
|  | break; | 
|  | case S390_PC_REGNUM: env->psw.addr = tmpl; break; | 
|  | case S390_CC_REGNUM: env->cc = tmp32; r=4; break; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  | #elif defined (TARGET_LM32) | 
|  |  | 
|  | #include "hw/lm32_pic.h" | 
|  | #define NUM_CORE_REGS (32 + 7) | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | if (n < 32) { | 
|  | GET_REG32(env->regs[n]); | 
|  | } else { | 
|  | switch (n) { | 
|  | case 32: | 
|  | GET_REG32(env->pc); | 
|  | break; | 
|  | /* FIXME: put in right exception ID */ | 
|  | case 33: | 
|  | GET_REG32(0); | 
|  | break; | 
|  | case 34: | 
|  | GET_REG32(env->eba); | 
|  | break; | 
|  | case 35: | 
|  | GET_REG32(env->deba); | 
|  | break; | 
|  | case 36: | 
|  | GET_REG32(env->ie); | 
|  | break; | 
|  | case 37: | 
|  | GET_REG32(lm32_pic_get_im(env->pic_state)); | 
|  | break; | 
|  | case 38: | 
|  | GET_REG32(lm32_pic_get_ip(env->pic_state)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | if (n > NUM_CORE_REGS) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | tmp = ldl_p(mem_buf); | 
|  |  | 
|  | if (n < 32) { | 
|  | env->regs[n] = tmp; | 
|  | } else { | 
|  | switch (n) { | 
|  | case 32: | 
|  | env->pc = tmp; | 
|  | break; | 
|  | case 34: | 
|  | env->eba = tmp; | 
|  | break; | 
|  | case 35: | 
|  | env->deba = tmp; | 
|  | break; | 
|  | case 36: | 
|  | env->ie = tmp; | 
|  | break; | 
|  | case 37: | 
|  | lm32_pic_set_im(env->pic_state, tmp); | 
|  | break; | 
|  | case 38: | 
|  | lm32_pic_set_ip(env->pic_state, tmp); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 4; | 
|  | } | 
|  | #else | 
|  |  | 
|  | #define NUM_CORE_REGS 0 | 
|  |  | 
|  | static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int num_g_regs = NUM_CORE_REGS; | 
|  |  | 
|  | #ifdef GDB_CORE_XML | 
|  | /* Encode data using the encoding for 'x' packets.  */ | 
|  | static int memtox(char *buf, const char *mem, int len) | 
|  | { | 
|  | char *p = buf; | 
|  | char c; | 
|  |  | 
|  | while (len--) { | 
|  | c = *(mem++); | 
|  | switch (c) { | 
|  | case '#': case '$': case '*': case '}': | 
|  | *(p++) = '}'; | 
|  | *(p++) = c ^ 0x20; | 
|  | break; | 
|  | default: | 
|  | *(p++) = c; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return p - buf; | 
|  | } | 
|  |  | 
|  | static const char *get_feature_xml(const char *p, const char **newp) | 
|  | { | 
|  | size_t len; | 
|  | int i; | 
|  | const char *name; | 
|  | static char target_xml[1024]; | 
|  |  | 
|  | len = 0; | 
|  | while (p[len] && p[len] != ':') | 
|  | len++; | 
|  | *newp = p + len; | 
|  |  | 
|  | name = NULL; | 
|  | if (strncmp(p, "target.xml", len) == 0) { | 
|  | /* Generate the XML description for this CPU.  */ | 
|  | if (!target_xml[0]) { | 
|  | GDBRegisterState *r; | 
|  |  | 
|  | snprintf(target_xml, sizeof(target_xml), | 
|  | "<?xml version=\"1.0\"?>" | 
|  | "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">" | 
|  | "<target>" | 
|  | "<xi:include href=\"%s\"/>", | 
|  | GDB_CORE_XML); | 
|  |  | 
|  | for (r = first_cpu->gdb_regs; r; r = r->next) { | 
|  | pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\""); | 
|  | pstrcat(target_xml, sizeof(target_xml), r->xml); | 
|  | pstrcat(target_xml, sizeof(target_xml), "\"/>"); | 
|  | } | 
|  | pstrcat(target_xml, sizeof(target_xml), "</target>"); | 
|  | } | 
|  | return target_xml; | 
|  | } | 
|  | for (i = 0; ; i++) { | 
|  | name = xml_builtin[i][0]; | 
|  | if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len)) | 
|  | break; | 
|  | } | 
|  | return name ? xml_builtin[i][1] : NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg) | 
|  | { | 
|  | GDBRegisterState *r; | 
|  |  | 
|  | if (reg < NUM_CORE_REGS) | 
|  | return cpu_gdb_read_register(env, mem_buf, reg); | 
|  |  | 
|  | for (r = env->gdb_regs; r; r = r->next) { | 
|  | if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { | 
|  | return r->get_reg(env, mem_buf, reg - r->base_reg); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg) | 
|  | { | 
|  | GDBRegisterState *r; | 
|  |  | 
|  | if (reg < NUM_CORE_REGS) | 
|  | return cpu_gdb_write_register(env, mem_buf, reg); | 
|  |  | 
|  | for (r = env->gdb_regs; r; r = r->next) { | 
|  | if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { | 
|  | return r->set_reg(env, mem_buf, reg - r->base_reg); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Register a supplemental set of CPU registers.  If g_pos is nonzero it | 
|  | specifies the first register number and these registers are included in | 
|  | a standard "g" packet.  Direction is relative to gdb, i.e. get_reg is | 
|  | gdb reading a CPU register, and set_reg is gdb modifying a CPU register. | 
|  | */ | 
|  |  | 
|  | void gdb_register_coprocessor(CPUState * env, | 
|  | gdb_reg_cb get_reg, gdb_reg_cb set_reg, | 
|  | int num_regs, const char *xml, int g_pos) | 
|  | { | 
|  | GDBRegisterState *s; | 
|  | GDBRegisterState **p; | 
|  | static int last_reg = NUM_CORE_REGS; | 
|  |  | 
|  | s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState)); | 
|  | s->base_reg = last_reg; | 
|  | s->num_regs = num_regs; | 
|  | s->get_reg = get_reg; | 
|  | s->set_reg = set_reg; | 
|  | s->xml = xml; | 
|  | p = &env->gdb_regs; | 
|  | while (*p) { | 
|  | /* Check for duplicates.  */ | 
|  | if (strcmp((*p)->xml, xml) == 0) | 
|  | return; | 
|  | p = &(*p)->next; | 
|  | } | 
|  | /* Add to end of list.  */ | 
|  | last_reg += num_regs; | 
|  | *p = s; | 
|  | if (g_pos) { | 
|  | if (g_pos != s->base_reg) { | 
|  | fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n" | 
|  | "Expected %d got %d\n", xml, g_pos, s->base_reg); | 
|  | } else { | 
|  | num_g_regs = last_reg; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | static const int xlat_gdb_type[] = { | 
|  | [GDB_WATCHPOINT_WRITE]  = BP_GDB | BP_MEM_WRITE, | 
|  | [GDB_WATCHPOINT_READ]   = BP_GDB | BP_MEM_READ, | 
|  | [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type) | 
|  | { | 
|  | CPUState *env; | 
|  | int err = 0; | 
|  |  | 
|  | if (kvm_enabled()) | 
|  | return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type); | 
|  |  | 
|  | switch (type) { | 
|  | case GDB_BREAKPOINT_SW: | 
|  | case GDB_BREAKPOINT_HW: | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | return err; | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | case GDB_WATCHPOINT_WRITE: | 
|  | case GDB_WATCHPOINT_READ: | 
|  | case GDB_WATCHPOINT_ACCESS: | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type], | 
|  | NULL); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | return err; | 
|  | #endif | 
|  | default: | 
|  | return -ENOSYS; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type) | 
|  | { | 
|  | CPUState *env; | 
|  | int err = 0; | 
|  |  | 
|  | if (kvm_enabled()) | 
|  | return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type); | 
|  |  | 
|  | switch (type) { | 
|  | case GDB_BREAKPOINT_SW: | 
|  | case GDB_BREAKPOINT_HW: | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | err = cpu_breakpoint_remove(env, addr, BP_GDB); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | return err; | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | case GDB_WATCHPOINT_WRITE: | 
|  | case GDB_WATCHPOINT_READ: | 
|  | case GDB_WATCHPOINT_ACCESS: | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | return err; | 
|  | #endif | 
|  | default: | 
|  | return -ENOSYS; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void gdb_breakpoint_remove_all(void) | 
|  | { | 
|  | CPUState *env; | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | kvm_remove_all_breakpoints(gdbserver_state->c_cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | cpu_breakpoint_remove_all(env, BP_GDB); | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | cpu_watchpoint_remove_all(env, BP_GDB); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | static void gdb_set_cpu_pc(GDBState *s, target_ulong pc) | 
|  | { | 
|  | #if defined(TARGET_I386) | 
|  | cpu_synchronize_state(s->c_cpu); | 
|  | s->c_cpu->eip = pc; | 
|  | #elif defined (TARGET_PPC) | 
|  | s->c_cpu->nip = pc; | 
|  | #elif defined (TARGET_SPARC) | 
|  | s->c_cpu->pc = pc; | 
|  | s->c_cpu->npc = pc + 4; | 
|  | #elif defined (TARGET_ARM) | 
|  | s->c_cpu->regs[15] = pc; | 
|  | #elif defined (TARGET_SH4) | 
|  | s->c_cpu->pc = pc; | 
|  | #elif defined (TARGET_MIPS) | 
|  | s->c_cpu->active_tc.PC = pc & ~(target_ulong)1; | 
|  | if (pc & 1) { | 
|  | s->c_cpu->hflags |= MIPS_HFLAG_M16; | 
|  | } else { | 
|  | s->c_cpu->hflags &= ~(MIPS_HFLAG_M16); | 
|  | } | 
|  | #elif defined (TARGET_MICROBLAZE) | 
|  | s->c_cpu->sregs[SR_PC] = pc; | 
|  | #elif defined (TARGET_CRIS) | 
|  | s->c_cpu->pc = pc; | 
|  | #elif defined (TARGET_ALPHA) | 
|  | s->c_cpu->pc = pc; | 
|  | #elif defined (TARGET_S390X) | 
|  | cpu_synchronize_state(s->c_cpu); | 
|  | s->c_cpu->psw.addr = pc; | 
|  | #elif defined (TARGET_LM32) | 
|  | s->c_cpu->pc = pc; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int gdb_id(CPUState *env) | 
|  | { | 
|  | #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL) | 
|  | return env->host_tid; | 
|  | #else | 
|  | return env->cpu_index + 1; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static CPUState *find_cpu(uint32_t thread_id) | 
|  | { | 
|  | CPUState *env; | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | if (gdb_id(env) == thread_id) { | 
|  | return env; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int gdb_handle_packet(GDBState *s, const char *line_buf) | 
|  | { | 
|  | CPUState *env; | 
|  | const char *p; | 
|  | uint32_t thread; | 
|  | int ch, reg_size, type, res; | 
|  | char buf[MAX_PACKET_LENGTH]; | 
|  | uint8_t mem_buf[MAX_PACKET_LENGTH]; | 
|  | uint8_t *registers; | 
|  | target_ulong addr, len; | 
|  |  | 
|  | #ifdef DEBUG_GDB | 
|  | printf("command='%s'\n", line_buf); | 
|  | #endif | 
|  | p = line_buf; | 
|  | ch = *p++; | 
|  | switch(ch) { | 
|  | case '?': | 
|  | /* TODO: Make this return the correct value for user-mode.  */ | 
|  | snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP, | 
|  | gdb_id(s->c_cpu)); | 
|  | put_packet(s, buf); | 
|  | /* Remove all the breakpoints when this query is issued, | 
|  | * because gdb is doing and initial connect and the state | 
|  | * should be cleaned up. | 
|  | */ | 
|  | gdb_breakpoint_remove_all(); | 
|  | break; | 
|  | case 'c': | 
|  | if (*p != '\0') { | 
|  | addr = strtoull(p, (char **)&p, 16); | 
|  | gdb_set_cpu_pc(s, addr); | 
|  | } | 
|  | s->signal = 0; | 
|  | gdb_continue(s); | 
|  | return RS_IDLE; | 
|  | case 'C': | 
|  | s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16)); | 
|  | if (s->signal == -1) | 
|  | s->signal = 0; | 
|  | gdb_continue(s); | 
|  | return RS_IDLE; | 
|  | case 'v': | 
|  | if (strncmp(p, "Cont", 4) == 0) { | 
|  | int res_signal, res_thread; | 
|  |  | 
|  | p += 4; | 
|  | if (*p == '?') { | 
|  | put_packet(s, "vCont;c;C;s;S"); | 
|  | break; | 
|  | } | 
|  | res = 0; | 
|  | res_signal = 0; | 
|  | res_thread = 0; | 
|  | while (*p) { | 
|  | int action, signal; | 
|  |  | 
|  | if (*p++ != ';') { | 
|  | res = 0; | 
|  | break; | 
|  | } | 
|  | action = *p++; | 
|  | signal = 0; | 
|  | if (action == 'C' || action == 'S') { | 
|  | signal = strtoul(p, (char **)&p, 16); | 
|  | } else if (action != 'c' && action != 's') { | 
|  | res = 0; | 
|  | break; | 
|  | } | 
|  | thread = 0; | 
|  | if (*p == ':') { | 
|  | thread = strtoull(p+1, (char **)&p, 16); | 
|  | } | 
|  | action = tolower(action); | 
|  | if (res == 0 || (res == 'c' && action == 's')) { | 
|  | res = action; | 
|  | res_signal = signal; | 
|  | res_thread = thread; | 
|  | } | 
|  | } | 
|  | if (res) { | 
|  | if (res_thread != -1 && res_thread != 0) { | 
|  | env = find_cpu(res_thread); | 
|  | if (env == NULL) { | 
|  | put_packet(s, "E22"); | 
|  | break; | 
|  | } | 
|  | s->c_cpu = env; | 
|  | } | 
|  | if (res == 's') { | 
|  | cpu_single_step(s->c_cpu, sstep_flags); | 
|  | } | 
|  | s->signal = res_signal; | 
|  | gdb_continue(s); | 
|  | return RS_IDLE; | 
|  | } | 
|  | break; | 
|  | } else { | 
|  | goto unknown_command; | 
|  | } | 
|  | case 'k': | 
|  | /* Kill the target */ | 
|  | fprintf(stderr, "\nQEMU: Terminated via GDBstub\n"); | 
|  | exit(0); | 
|  | case 'D': | 
|  | /* Detach packet */ | 
|  | gdb_breakpoint_remove_all(); | 
|  | gdb_syscall_mode = GDB_SYS_DISABLED; | 
|  | gdb_continue(s); | 
|  | put_packet(s, "OK"); | 
|  | break; | 
|  | case 's': | 
|  | if (*p != '\0') { | 
|  | addr = strtoull(p, (char **)&p, 16); | 
|  | gdb_set_cpu_pc(s, addr); | 
|  | } | 
|  | cpu_single_step(s->c_cpu, sstep_flags); | 
|  | gdb_continue(s); | 
|  | return RS_IDLE; | 
|  | case 'F': | 
|  | { | 
|  | target_ulong ret; | 
|  | target_ulong err; | 
|  |  | 
|  | ret = strtoull(p, (char **)&p, 16); | 
|  | if (*p == ',') { | 
|  | p++; | 
|  | err = strtoull(p, (char **)&p, 16); | 
|  | } else { | 
|  | err = 0; | 
|  | } | 
|  | if (*p == ',') | 
|  | p++; | 
|  | type = *p; | 
|  | if (gdb_current_syscall_cb) | 
|  | gdb_current_syscall_cb(s->c_cpu, ret, err); | 
|  | if (type == 'C') { | 
|  | put_packet(s, "T02"); | 
|  | } else { | 
|  | gdb_continue(s); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'g': | 
|  | cpu_synchronize_state(s->g_cpu); | 
|  | len = 0; | 
|  | for (addr = 0; addr < num_g_regs; addr++) { | 
|  | reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr); | 
|  | len += reg_size; | 
|  | } | 
|  | memtohex(buf, mem_buf, len); | 
|  | put_packet(s, buf); | 
|  | break; | 
|  | case 'G': | 
|  | cpu_synchronize_state(s->g_cpu); | 
|  | registers = mem_buf; | 
|  | len = strlen(p) / 2; | 
|  | hextomem((uint8_t *)registers, p, len); | 
|  | for (addr = 0; addr < num_g_regs && len > 0; addr++) { | 
|  | reg_size = gdb_write_register(s->g_cpu, registers, addr); | 
|  | len -= reg_size; | 
|  | registers += reg_size; | 
|  | } | 
|  | put_packet(s, "OK"); | 
|  | break; | 
|  | case 'm': | 
|  | addr = strtoull(p, (char **)&p, 16); | 
|  | if (*p == ',') | 
|  | p++; | 
|  | len = strtoull(p, NULL, 16); | 
|  | if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) { | 
|  | put_packet (s, "E14"); | 
|  | } else { | 
|  | memtohex(buf, mem_buf, len); | 
|  | put_packet(s, buf); | 
|  | } | 
|  | break; | 
|  | case 'M': | 
|  | addr = strtoull(p, (char **)&p, 16); | 
|  | if (*p == ',') | 
|  | p++; | 
|  | len = strtoull(p, (char **)&p, 16); | 
|  | if (*p == ':') | 
|  | p++; | 
|  | hextomem(mem_buf, p, len); | 
|  | if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) | 
|  | put_packet(s, "E14"); | 
|  | else | 
|  | put_packet(s, "OK"); | 
|  | break; | 
|  | case 'p': | 
|  | /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable. | 
|  | This works, but can be very slow.  Anything new enough to | 
|  | understand XML also knows how to use this properly.  */ | 
|  | if (!gdb_has_xml) | 
|  | goto unknown_command; | 
|  | addr = strtoull(p, (char **)&p, 16); | 
|  | reg_size = gdb_read_register(s->g_cpu, mem_buf, addr); | 
|  | if (reg_size) { | 
|  | memtohex(buf, mem_buf, reg_size); | 
|  | put_packet(s, buf); | 
|  | } else { | 
|  | put_packet(s, "E14"); | 
|  | } | 
|  | break; | 
|  | case 'P': | 
|  | if (!gdb_has_xml) | 
|  | goto unknown_command; | 
|  | addr = strtoull(p, (char **)&p, 16); | 
|  | if (*p == '=') | 
|  | p++; | 
|  | reg_size = strlen(p) / 2; | 
|  | hextomem(mem_buf, p, reg_size); | 
|  | gdb_write_register(s->g_cpu, mem_buf, addr); | 
|  | put_packet(s, "OK"); | 
|  | break; | 
|  | case 'Z': | 
|  | case 'z': | 
|  | type = strtoul(p, (char **)&p, 16); | 
|  | if (*p == ',') | 
|  | p++; | 
|  | addr = strtoull(p, (char **)&p, 16); | 
|  | if (*p == ',') | 
|  | p++; | 
|  | len = strtoull(p, (char **)&p, 16); | 
|  | if (ch == 'Z') | 
|  | res = gdb_breakpoint_insert(addr, len, type); | 
|  | else | 
|  | res = gdb_breakpoint_remove(addr, len, type); | 
|  | if (res >= 0) | 
|  | put_packet(s, "OK"); | 
|  | else if (res == -ENOSYS) | 
|  | put_packet(s, ""); | 
|  | else | 
|  | put_packet(s, "E22"); | 
|  | break; | 
|  | case 'H': | 
|  | type = *p++; | 
|  | thread = strtoull(p, (char **)&p, 16); | 
|  | if (thread == -1 || thread == 0) { | 
|  | put_packet(s, "OK"); | 
|  | break; | 
|  | } | 
|  | env = find_cpu(thread); | 
|  | if (env == NULL) { | 
|  | put_packet(s, "E22"); | 
|  | break; | 
|  | } | 
|  | switch (type) { | 
|  | case 'c': | 
|  | s->c_cpu = env; | 
|  | put_packet(s, "OK"); | 
|  | break; | 
|  | case 'g': | 
|  | s->g_cpu = env; | 
|  | put_packet(s, "OK"); | 
|  | break; | 
|  | default: | 
|  | put_packet(s, "E22"); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 'T': | 
|  | thread = strtoull(p, (char **)&p, 16); | 
|  | env = find_cpu(thread); | 
|  |  | 
|  | if (env != NULL) { | 
|  | put_packet(s, "OK"); | 
|  | } else { | 
|  | put_packet(s, "E22"); | 
|  | } | 
|  | break; | 
|  | case 'q': | 
|  | case 'Q': | 
|  | /* parse any 'q' packets here */ | 
|  | if (!strcmp(p,"qemu.sstepbits")) { | 
|  | /* Query Breakpoint bit definitions */ | 
|  | snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", | 
|  | SSTEP_ENABLE, | 
|  | SSTEP_NOIRQ, | 
|  | SSTEP_NOTIMER); | 
|  | put_packet(s, buf); | 
|  | break; | 
|  | } else if (strncmp(p,"qemu.sstep",10) == 0) { | 
|  | /* Display or change the sstep_flags */ | 
|  | p += 10; | 
|  | if (*p != '=') { | 
|  | /* Display current setting */ | 
|  | snprintf(buf, sizeof(buf), "0x%x", sstep_flags); | 
|  | put_packet(s, buf); | 
|  | break; | 
|  | } | 
|  | p++; | 
|  | type = strtoul(p, (char **)&p, 16); | 
|  | sstep_flags = type; | 
|  | put_packet(s, "OK"); | 
|  | break; | 
|  | } else if (strcmp(p,"C") == 0) { | 
|  | /* "Current thread" remains vague in the spec, so always return | 
|  | *  the first CPU (gdb returns the first thread). */ | 
|  | put_packet(s, "QC1"); | 
|  | break; | 
|  | } else if (strcmp(p,"fThreadInfo") == 0) { | 
|  | s->query_cpu = first_cpu; | 
|  | goto report_cpuinfo; | 
|  | } else if (strcmp(p,"sThreadInfo") == 0) { | 
|  | report_cpuinfo: | 
|  | if (s->query_cpu) { | 
|  | snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu)); | 
|  | put_packet(s, buf); | 
|  | s->query_cpu = s->query_cpu->next_cpu; | 
|  | } else | 
|  | put_packet(s, "l"); | 
|  | break; | 
|  | } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) { | 
|  | thread = strtoull(p+16, (char **)&p, 16); | 
|  | env = find_cpu(thread); | 
|  | if (env != NULL) { | 
|  | cpu_synchronize_state(env); | 
|  | len = snprintf((char *)mem_buf, sizeof(mem_buf), | 
|  | "CPU#%d [%s]", env->cpu_index, | 
|  | env->halted ? "halted " : "running"); | 
|  | memtohex(buf, mem_buf, len); | 
|  | put_packet(s, buf); | 
|  | } | 
|  | break; | 
|  | } | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | else if (strncmp(p, "Offsets", 7) == 0) { | 
|  | TaskState *ts = s->c_cpu->opaque; | 
|  |  | 
|  | snprintf(buf, sizeof(buf), | 
|  | "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx | 
|  | ";Bss=" TARGET_ABI_FMT_lx, | 
|  | ts->info->code_offset, | 
|  | ts->info->data_offset, | 
|  | ts->info->data_offset); | 
|  | put_packet(s, buf); | 
|  | break; | 
|  | } | 
|  | #else /* !CONFIG_USER_ONLY */ | 
|  | else if (strncmp(p, "Rcmd,", 5) == 0) { | 
|  | int len = strlen(p + 5); | 
|  |  | 
|  | if ((len % 2) != 0) { | 
|  | put_packet(s, "E01"); | 
|  | break; | 
|  | } | 
|  | hextomem(mem_buf, p + 5, len); | 
|  | len = len / 2; | 
|  | mem_buf[len++] = 0; | 
|  | qemu_chr_read(s->mon_chr, mem_buf, len); | 
|  | put_packet(s, "OK"); | 
|  | break; | 
|  | } | 
|  | #endif /* !CONFIG_USER_ONLY */ | 
|  | if (strncmp(p, "Supported", 9) == 0) { | 
|  | snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH); | 
|  | #ifdef GDB_CORE_XML | 
|  | pstrcat(buf, sizeof(buf), ";qXfer:features:read+"); | 
|  | #endif | 
|  | put_packet(s, buf); | 
|  | break; | 
|  | } | 
|  | #ifdef GDB_CORE_XML | 
|  | if (strncmp(p, "Xfer:features:read:", 19) == 0) { | 
|  | const char *xml; | 
|  | target_ulong total_len; | 
|  |  | 
|  | gdb_has_xml = 1; | 
|  | p += 19; | 
|  | xml = get_feature_xml(p, &p); | 
|  | if (!xml) { | 
|  | snprintf(buf, sizeof(buf), "E00"); | 
|  | put_packet(s, buf); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (*p == ':') | 
|  | p++; | 
|  | addr = strtoul(p, (char **)&p, 16); | 
|  | if (*p == ',') | 
|  | p++; | 
|  | len = strtoul(p, (char **)&p, 16); | 
|  |  | 
|  | total_len = strlen(xml); | 
|  | if (addr > total_len) { | 
|  | snprintf(buf, sizeof(buf), "E00"); | 
|  | put_packet(s, buf); | 
|  | break; | 
|  | } | 
|  | if (len > (MAX_PACKET_LENGTH - 5) / 2) | 
|  | len = (MAX_PACKET_LENGTH - 5) / 2; | 
|  | if (len < total_len - addr) { | 
|  | buf[0] = 'm'; | 
|  | len = memtox(buf + 1, xml + addr, len); | 
|  | } else { | 
|  | buf[0] = 'l'; | 
|  | len = memtox(buf + 1, xml + addr, total_len - addr); | 
|  | } | 
|  | put_packet_binary(s, buf, len + 1); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | /* Unrecognised 'q' command.  */ | 
|  | goto unknown_command; | 
|  |  | 
|  | default: | 
|  | unknown_command: | 
|  | /* put empty packet */ | 
|  | buf[0] = '\0'; | 
|  | put_packet(s, buf); | 
|  | break; | 
|  | } | 
|  | return RS_IDLE; | 
|  | } | 
|  |  | 
|  | void gdb_set_stop_cpu(CPUState *env) | 
|  | { | 
|  | gdbserver_state->c_cpu = env; | 
|  | gdbserver_state->g_cpu = env; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | static void gdb_vm_state_change(void *opaque, int running, int reason) | 
|  | { | 
|  | GDBState *s = gdbserver_state; | 
|  | CPUState *env = s->c_cpu; | 
|  | char buf[256]; | 
|  | const char *type; | 
|  | int ret; | 
|  |  | 
|  | if (running || s->state == RS_INACTIVE || s->state == RS_SYSCALL) { | 
|  | return; | 
|  | } | 
|  | switch (reason) { | 
|  | case VMSTOP_DEBUG: | 
|  | if (env->watchpoint_hit) { | 
|  | switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) { | 
|  | case BP_MEM_READ: | 
|  | type = "r"; | 
|  | break; | 
|  | case BP_MEM_ACCESS: | 
|  | type = "a"; | 
|  | break; | 
|  | default: | 
|  | type = ""; | 
|  | break; | 
|  | } | 
|  | snprintf(buf, sizeof(buf), | 
|  | "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";", | 
|  | GDB_SIGNAL_TRAP, gdb_id(env), type, | 
|  | env->watchpoint_hit->vaddr); | 
|  | env->watchpoint_hit = NULL; | 
|  | goto send_packet; | 
|  | } | 
|  | tb_flush(env); | 
|  | ret = GDB_SIGNAL_TRAP; | 
|  | break; | 
|  | case VMSTOP_USER: | 
|  | ret = GDB_SIGNAL_INT; | 
|  | break; | 
|  | case VMSTOP_SHUTDOWN: | 
|  | ret = GDB_SIGNAL_QUIT; | 
|  | break; | 
|  | case VMSTOP_DISKFULL: | 
|  | ret = GDB_SIGNAL_IO; | 
|  | break; | 
|  | case VMSTOP_WATCHDOG: | 
|  | ret = GDB_SIGNAL_ALRM; | 
|  | break; | 
|  | case VMSTOP_PANIC: | 
|  | ret = GDB_SIGNAL_ABRT; | 
|  | break; | 
|  | case VMSTOP_SAVEVM: | 
|  | case VMSTOP_LOADVM: | 
|  | return; | 
|  | case VMSTOP_MIGRATE: | 
|  | ret = GDB_SIGNAL_XCPU; | 
|  | break; | 
|  | default: | 
|  | ret = GDB_SIGNAL_UNKNOWN; | 
|  | break; | 
|  | } | 
|  | snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env)); | 
|  |  | 
|  | send_packet: | 
|  | put_packet(s, buf); | 
|  |  | 
|  | /* disable single step if it was enabled */ | 
|  | cpu_single_step(env, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Send a gdb syscall request. | 
|  | This accepts limited printf-style format specifiers, specifically: | 
|  | %x  - target_ulong argument printed in hex. | 
|  | %lx - 64-bit argument printed in hex. | 
|  | %s  - string pointer (target_ulong) and length (int) pair.  */ | 
|  | void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...) | 
|  | { | 
|  | va_list va; | 
|  | char buf[256]; | 
|  | char *p; | 
|  | target_ulong addr; | 
|  | uint64_t i64; | 
|  | GDBState *s; | 
|  |  | 
|  | s = gdbserver_state; | 
|  | if (!s) | 
|  | return; | 
|  | gdb_current_syscall_cb = cb; | 
|  | s->state = RS_SYSCALL; | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | vm_stop(VMSTOP_DEBUG); | 
|  | #endif | 
|  | s->state = RS_IDLE; | 
|  | va_start(va, fmt); | 
|  | p = buf; | 
|  | *(p++) = 'F'; | 
|  | while (*fmt) { | 
|  | if (*fmt == '%') { | 
|  | fmt++; | 
|  | switch (*fmt++) { | 
|  | case 'x': | 
|  | addr = va_arg(va, target_ulong); | 
|  | p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr); | 
|  | break; | 
|  | case 'l': | 
|  | if (*(fmt++) != 'x') | 
|  | goto bad_format; | 
|  | i64 = va_arg(va, uint64_t); | 
|  | p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64); | 
|  | break; | 
|  | case 's': | 
|  | addr = va_arg(va, target_ulong); | 
|  | p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x", | 
|  | addr, va_arg(va, int)); | 
|  | break; | 
|  | default: | 
|  | bad_format: | 
|  | fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n", | 
|  | fmt - 1); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | *(p++) = *(fmt++); | 
|  | } | 
|  | } | 
|  | *p = 0; | 
|  | va_end(va); | 
|  | put_packet(s, buf); | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | gdb_handlesig(s->c_cpu, 0); | 
|  | #else | 
|  | cpu_exit(s->c_cpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void gdb_read_byte(GDBState *s, int ch) | 
|  | { | 
|  | int i, csum; | 
|  | uint8_t reply; | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | if (s->last_packet_len) { | 
|  | /* Waiting for a response to the last packet.  If we see the start | 
|  | of a new command then abandon the previous response.  */ | 
|  | if (ch == '-') { | 
|  | #ifdef DEBUG_GDB | 
|  | printf("Got NACK, retransmitting\n"); | 
|  | #endif | 
|  | put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); | 
|  | } | 
|  | #ifdef DEBUG_GDB | 
|  | else if (ch == '+') | 
|  | printf("Got ACK\n"); | 
|  | else | 
|  | printf("Got '%c' when expecting ACK/NACK\n", ch); | 
|  | #endif | 
|  | if (ch == '+' || ch == '$') | 
|  | s->last_packet_len = 0; | 
|  | if (ch != '$') | 
|  | return; | 
|  | } | 
|  | if (vm_running) { | 
|  | /* when the CPU is running, we cannot do anything except stop | 
|  | it when receiving a char */ | 
|  | vm_stop(VMSTOP_USER); | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | switch(s->state) { | 
|  | case RS_IDLE: | 
|  | if (ch == '$') { | 
|  | s->line_buf_index = 0; | 
|  | s->state = RS_GETLINE; | 
|  | } | 
|  | break; | 
|  | case RS_GETLINE: | 
|  | if (ch == '#') { | 
|  | s->state = RS_CHKSUM1; | 
|  | } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) { | 
|  | s->state = RS_IDLE; | 
|  | } else { | 
|  | s->line_buf[s->line_buf_index++] = ch; | 
|  | } | 
|  | break; | 
|  | case RS_CHKSUM1: | 
|  | s->line_buf[s->line_buf_index] = '\0'; | 
|  | s->line_csum = fromhex(ch) << 4; | 
|  | s->state = RS_CHKSUM2; | 
|  | break; | 
|  | case RS_CHKSUM2: | 
|  | s->line_csum |= fromhex(ch); | 
|  | csum = 0; | 
|  | for(i = 0; i < s->line_buf_index; i++) { | 
|  | csum += s->line_buf[i]; | 
|  | } | 
|  | if (s->line_csum != (csum & 0xff)) { | 
|  | reply = '-'; | 
|  | put_buffer(s, &reply, 1); | 
|  | s->state = RS_IDLE; | 
|  | } else { | 
|  | reply = '+'; | 
|  | put_buffer(s, &reply, 1); | 
|  | s->state = gdb_handle_packet(s, s->line_buf); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | abort(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Tell the remote gdb that the process has exited.  */ | 
|  | void gdb_exit(CPUState *env, int code) | 
|  | { | 
|  | GDBState *s; | 
|  | char buf[4]; | 
|  |  | 
|  | s = gdbserver_state; | 
|  | if (!s) { | 
|  | return; | 
|  | } | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | if (gdbserver_fd < 0 || s->fd < 0) { | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code); | 
|  | put_packet(s, buf); | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | if (s->chr) { | 
|  | qemu_chr_close(s->chr); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | int | 
|  | gdb_queuesig (void) | 
|  | { | 
|  | GDBState *s; | 
|  |  | 
|  | s = gdbserver_state; | 
|  |  | 
|  | if (gdbserver_fd < 0 || s->fd < 0) | 
|  | return 0; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int | 
|  | gdb_handlesig (CPUState *env, int sig) | 
|  | { | 
|  | GDBState *s; | 
|  | char buf[256]; | 
|  | int n; | 
|  |  | 
|  | s = gdbserver_state; | 
|  | if (gdbserver_fd < 0 || s->fd < 0) | 
|  | return sig; | 
|  |  | 
|  | /* disable single step if it was enabled */ | 
|  | cpu_single_step(env, 0); | 
|  | tb_flush(env); | 
|  |  | 
|  | if (sig != 0) | 
|  | { | 
|  | snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig)); | 
|  | put_packet(s, buf); | 
|  | } | 
|  | /* put_packet() might have detected that the peer terminated the | 
|  | connection.  */ | 
|  | if (s->fd < 0) | 
|  | return sig; | 
|  |  | 
|  | sig = 0; | 
|  | s->state = RS_IDLE; | 
|  | s->running_state = 0; | 
|  | while (s->running_state == 0) { | 
|  | n = read (s->fd, buf, 256); | 
|  | if (n > 0) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < n; i++) | 
|  | gdb_read_byte (s, buf[i]); | 
|  | } | 
|  | else if (n == 0 || errno != EAGAIN) | 
|  | { | 
|  | /* XXX: Connection closed.  Should probably wait for annother | 
|  | connection before continuing.  */ | 
|  | return sig; | 
|  | } | 
|  | } | 
|  | sig = s->signal; | 
|  | s->signal = 0; | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | /* Tell the remote gdb that the process has exited due to SIG.  */ | 
|  | void gdb_signalled(CPUState *env, int sig) | 
|  | { | 
|  | GDBState *s; | 
|  | char buf[4]; | 
|  |  | 
|  | s = gdbserver_state; | 
|  | if (gdbserver_fd < 0 || s->fd < 0) | 
|  | return; | 
|  |  | 
|  | snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig)); | 
|  | put_packet(s, buf); | 
|  | } | 
|  |  | 
|  | static void gdb_accept(void) | 
|  | { | 
|  | GDBState *s; | 
|  | struct sockaddr_in sockaddr; | 
|  | socklen_t len; | 
|  | int val, fd; | 
|  |  | 
|  | for(;;) { | 
|  | len = sizeof(sockaddr); | 
|  | fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len); | 
|  | if (fd < 0 && errno != EINTR) { | 
|  | perror("accept"); | 
|  | return; | 
|  | } else if (fd >= 0) { | 
|  | #ifndef _WIN32 | 
|  | fcntl(fd, F_SETFD, FD_CLOEXEC); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* set short latency */ | 
|  | val = 1; | 
|  | setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val)); | 
|  |  | 
|  | s = qemu_mallocz(sizeof(GDBState)); | 
|  | s->c_cpu = first_cpu; | 
|  | s->g_cpu = first_cpu; | 
|  | s->fd = fd; | 
|  | gdb_has_xml = 0; | 
|  |  | 
|  | gdbserver_state = s; | 
|  |  | 
|  | fcntl(fd, F_SETFL, O_NONBLOCK); | 
|  | } | 
|  |  | 
|  | static int gdbserver_open(int port) | 
|  | { | 
|  | struct sockaddr_in sockaddr; | 
|  | int fd, val, ret; | 
|  |  | 
|  | fd = socket(PF_INET, SOCK_STREAM, 0); | 
|  | if (fd < 0) { | 
|  | perror("socket"); | 
|  | return -1; | 
|  | } | 
|  | #ifndef _WIN32 | 
|  | fcntl(fd, F_SETFD, FD_CLOEXEC); | 
|  | #endif | 
|  |  | 
|  | /* allow fast reuse */ | 
|  | val = 1; | 
|  | setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val)); | 
|  |  | 
|  | sockaddr.sin_family = AF_INET; | 
|  | sockaddr.sin_port = htons(port); | 
|  | sockaddr.sin_addr.s_addr = 0; | 
|  | ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); | 
|  | if (ret < 0) { | 
|  | perror("bind"); | 
|  | return -1; | 
|  | } | 
|  | ret = listen(fd, 0); | 
|  | if (ret < 0) { | 
|  | perror("listen"); | 
|  | return -1; | 
|  | } | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | int gdbserver_start(int port) | 
|  | { | 
|  | gdbserver_fd = gdbserver_open(port); | 
|  | if (gdbserver_fd < 0) | 
|  | return -1; | 
|  | /* accept connections */ | 
|  | gdb_accept(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Disable gdb stub for child processes.  */ | 
|  | void gdbserver_fork(CPUState *env) | 
|  | { | 
|  | GDBState *s = gdbserver_state; | 
|  | if (gdbserver_fd < 0 || s->fd < 0) | 
|  | return; | 
|  | close(s->fd); | 
|  | s->fd = -1; | 
|  | cpu_breakpoint_remove_all(env, BP_GDB); | 
|  | cpu_watchpoint_remove_all(env, BP_GDB); | 
|  | } | 
|  | #else | 
|  | static int gdb_chr_can_receive(void *opaque) | 
|  | { | 
|  | /* We can handle an arbitrarily large amount of data. | 
|  | Pick the maximum packet size, which is as good as anything.  */ | 
|  | return MAX_PACKET_LENGTH; | 
|  | } | 
|  |  | 
|  | static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | gdb_read_byte(gdbserver_state, buf[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void gdb_chr_event(void *opaque, int event) | 
|  | { | 
|  | switch (event) { | 
|  | case CHR_EVENT_OPENED: | 
|  | vm_stop(VMSTOP_USER); | 
|  | gdb_has_xml = 0; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void gdb_monitor_output(GDBState *s, const char *msg, int len) | 
|  | { | 
|  | char buf[MAX_PACKET_LENGTH]; | 
|  |  | 
|  | buf[0] = 'O'; | 
|  | if (len > (MAX_PACKET_LENGTH/2) - 1) | 
|  | len = (MAX_PACKET_LENGTH/2) - 1; | 
|  | memtohex(buf + 1, (uint8_t *)msg, len); | 
|  | put_packet(s, buf); | 
|  | } | 
|  |  | 
|  | static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len) | 
|  | { | 
|  | const char *p = (const char *)buf; | 
|  | int max_sz; | 
|  |  | 
|  | max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2; | 
|  | for (;;) { | 
|  | if (len <= max_sz) { | 
|  | gdb_monitor_output(gdbserver_state, p, len); | 
|  | break; | 
|  | } | 
|  | gdb_monitor_output(gdbserver_state, p, max_sz); | 
|  | p += max_sz; | 
|  | len -= max_sz; | 
|  | } | 
|  | return len; | 
|  | } | 
|  |  | 
|  | #ifndef _WIN32 | 
|  | static void gdb_sigterm_handler(int signal) | 
|  | { | 
|  | if (vm_running) { | 
|  | vm_stop(VMSTOP_USER); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int gdbserver_start(const char *device) | 
|  | { | 
|  | GDBState *s; | 
|  | char gdbstub_device_name[128]; | 
|  | CharDriverState *chr = NULL; | 
|  | CharDriverState *mon_chr; | 
|  |  | 
|  | if (!device) | 
|  | return -1; | 
|  | if (strcmp(device, "none") != 0) { | 
|  | if (strstart(device, "tcp:", NULL)) { | 
|  | /* enforce required TCP attributes */ | 
|  | snprintf(gdbstub_device_name, sizeof(gdbstub_device_name), | 
|  | "%s,nowait,nodelay,server", device); | 
|  | device = gdbstub_device_name; | 
|  | } | 
|  | #ifndef _WIN32 | 
|  | else if (strcmp(device, "stdio") == 0) { | 
|  | struct sigaction act; | 
|  |  | 
|  | memset(&act, 0, sizeof(act)); | 
|  | act.sa_handler = gdb_sigterm_handler; | 
|  | sigaction(SIGINT, &act, NULL); | 
|  | } | 
|  | #endif | 
|  | chr = qemu_chr_open("gdb", device, NULL); | 
|  | if (!chr) | 
|  | return -1; | 
|  |  | 
|  | qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive, | 
|  | gdb_chr_event, NULL); | 
|  | } | 
|  |  | 
|  | s = gdbserver_state; | 
|  | if (!s) { | 
|  | s = qemu_mallocz(sizeof(GDBState)); | 
|  | gdbserver_state = s; | 
|  |  | 
|  | qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL); | 
|  |  | 
|  | /* Initialize a monitor terminal for gdb */ | 
|  | mon_chr = qemu_mallocz(sizeof(*mon_chr)); | 
|  | mon_chr->chr_write = gdb_monitor_write; | 
|  | monitor_init(mon_chr, 0); | 
|  | } else { | 
|  | if (s->chr) | 
|  | qemu_chr_close(s->chr); | 
|  | mon_chr = s->mon_chr; | 
|  | memset(s, 0, sizeof(GDBState)); | 
|  | } | 
|  | s->c_cpu = first_cpu; | 
|  | s->g_cpu = first_cpu; | 
|  | s->chr = chr; | 
|  | s->state = chr ? RS_IDLE : RS_INACTIVE; | 
|  | s->mon_chr = mon_chr; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif |