|  | /* | 
|  | * QEMU float support | 
|  | * | 
|  | * Derived from SoftFloat. | 
|  | */ | 
|  |  | 
|  | /*============================================================================ | 
|  |  | 
|  | This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic | 
|  | Package, Release 2b. | 
|  |  | 
|  | Written by John R. Hauser.  This work was made possible in part by the | 
|  | International Computer Science Institute, located at Suite 600, 1947 Center | 
|  | Street, Berkeley, California 94704.  Funding was partially provided by the | 
|  | National Science Foundation under grant MIP-9311980.  The original version | 
|  | of this code was written as part of a project to build a fixed-point vector | 
|  | processor in collaboration with the University of California at Berkeley, | 
|  | overseen by Profs. Nelson Morgan and John Wawrzynek.  More information | 
|  | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | 
|  | arithmetic/SoftFloat.html'. | 
|  |  | 
|  | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has | 
|  | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | 
|  | RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | 
|  | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | 
|  | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | 
|  | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | 
|  | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | 
|  | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | 
|  |  | 
|  | Derivative works are acceptable, even for commercial purposes, so long as | 
|  | (1) the source code for the derivative work includes prominent notice that | 
|  | the work is derivative, and (2) the source code includes prominent notice with | 
|  | these four paragraphs for those parts of this code that are retained. | 
|  |  | 
|  | =============================================================================*/ | 
|  |  | 
|  | /* softfloat (and in particular the code in softfloat-specialize.h) is | 
|  | * target-dependent and needs the TARGET_* macros. | 
|  | */ | 
|  | #include "config.h" | 
|  |  | 
|  | #include "softfloat.h" | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Primitive arithmetic functions, including multi-word arithmetic, and | 
|  | | division and square root approximations.  (Can be specialized to target if | 
|  | | desired.) | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #include "softfloat-macros.h" | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Functions and definitions to determine:  (1) whether tininess for underflow | 
|  | | is detected before or after rounding by default, (2) what (if anything) | 
|  | | happens when exceptions are raised, (3) how signaling NaNs are distinguished | 
|  | | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | 
|  | | are propagated from function inputs to output.  These details are target- | 
|  | | specific. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #include "softfloat-specialize.h" | 
|  |  | 
|  | void set_float_rounding_mode(int val STATUS_PARAM) | 
|  | { | 
|  | STATUS(float_rounding_mode) = val; | 
|  | } | 
|  |  | 
|  | void set_float_exception_flags(int val STATUS_PARAM) | 
|  | { | 
|  | STATUS(float_exception_flags) = val; | 
|  | } | 
|  |  | 
|  | void set_floatx80_rounding_precision(int val STATUS_PARAM) | 
|  | { | 
|  | STATUS(floatx80_rounding_precision) = val; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the fraction bits of the half-precision floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE uint32_t extractFloat16Frac(float16 a) | 
|  | { | 
|  | return float16_val(a) & 0x3ff; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the exponent bits of the half-precision floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE int_fast16_t extractFloat16Exp(float16 a) | 
|  | { | 
|  | return (float16_val(a) >> 10) & 0x1f; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the sign bit of the single-precision floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE flag extractFloat16Sign(float16 a) | 
|  | { | 
|  | return float16_val(a)>>15; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | 
|  | | and 7, and returns the properly rounded 32-bit integer corresponding to the | 
|  | | input.  If `zSign' is 1, the input is negated before being converted to an | 
|  | | integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input | 
|  | | is simply rounded to an integer, with the inexact exception raised if the | 
|  | | input cannot be represented exactly as an integer.  However, if the fixed- | 
|  | | point input is too large, the invalid exception is raised and the largest | 
|  | | positive or negative integer is returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static int32 roundAndPackInt32( flag zSign, uint64_t absZ STATUS_PARAM) | 
|  | { | 
|  | int8 roundingMode; | 
|  | flag roundNearestEven; | 
|  | int8 roundIncrement, roundBits; | 
|  | int32_t z; | 
|  |  | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | roundNearestEven = ( roundingMode == float_round_nearest_even ); | 
|  | roundIncrement = 0x40; | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | roundIncrement = 0x7F; | 
|  | if ( zSign ) { | 
|  | if ( roundingMode == float_round_up ) roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | if ( roundingMode == float_round_down ) roundIncrement = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | roundBits = absZ & 0x7F; | 
|  | absZ = ( absZ + roundIncrement )>>7; | 
|  | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | 
|  | z = absZ; | 
|  | if ( zSign ) z = - z; | 
|  | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; | 
|  | } | 
|  | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | 
|  | | `absZ1', with binary point between bits 63 and 64 (between the input words), | 
|  | | and returns the properly rounded 64-bit integer corresponding to the input. | 
|  | | If `zSign' is 1, the input is negated before being converted to an integer. | 
|  | | Ordinarily, the fixed-point input is simply rounded to an integer, with | 
|  | | the inexact exception raised if the input cannot be represented exactly as | 
|  | | an integer.  However, if the fixed-point input is too large, the invalid | 
|  | | exception is raised and the largest positive or negative integer is | 
|  | | returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static int64 roundAndPackInt64( flag zSign, uint64_t absZ0, uint64_t absZ1 STATUS_PARAM) | 
|  | { | 
|  | int8 roundingMode; | 
|  | flag roundNearestEven, increment; | 
|  | int64_t z; | 
|  |  | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | roundNearestEven = ( roundingMode == float_round_nearest_even ); | 
|  | increment = ( (int64_t) absZ1 < 0 ); | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | increment = 0; | 
|  | } | 
|  | else { | 
|  | if ( zSign ) { | 
|  | increment = ( roundingMode == float_round_down ) && absZ1; | 
|  | } | 
|  | else { | 
|  | increment = ( roundingMode == float_round_up ) && absZ1; | 
|  | } | 
|  | } | 
|  | } | 
|  | if ( increment ) { | 
|  | ++absZ0; | 
|  | if ( absZ0 == 0 ) goto overflow; | 
|  | absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); | 
|  | } | 
|  | z = absZ0; | 
|  | if ( zSign ) z = - z; | 
|  | if ( z && ( ( z < 0 ) ^ zSign ) ) { | 
|  | overflow: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return | 
|  | zSign ? (int64_t) LIT64( 0x8000000000000000 ) | 
|  | : LIT64( 0x7FFFFFFFFFFFFFFF ); | 
|  | } | 
|  | if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the fraction bits of the single-precision floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE uint32_t extractFloat32Frac( float32 a ) | 
|  | { | 
|  |  | 
|  | return float32_val(a) & 0x007FFFFF; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the exponent bits of the single-precision floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE int_fast16_t extractFloat32Exp(float32 a) | 
|  | { | 
|  |  | 
|  | return ( float32_val(a)>>23 ) & 0xFF; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the sign bit of the single-precision floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE flag extractFloat32Sign( float32 a ) | 
|  | { | 
|  |  | 
|  | return float32_val(a)>>31; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | If `a' is denormal and we are in flush-to-zero mode then set the | 
|  | | input-denormal exception and return zero. Otherwise just return the value. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | static float32 float32_squash_input_denormal(float32 a STATUS_PARAM) | 
|  | { | 
|  | if (STATUS(flush_inputs_to_zero)) { | 
|  | if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) { | 
|  | float_raise(float_flag_input_denormal STATUS_VAR); | 
|  | return make_float32(float32_val(a) & 0x80000000); | 
|  | } | 
|  | } | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Normalizes the subnormal single-precision floating-point value represented | 
|  | | by the denormalized significand `aSig'.  The normalized exponent and | 
|  | | significand are stored at the locations pointed to by `zExpPtr' and | 
|  | | `zSigPtr', respectively. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void | 
|  | normalizeFloat32Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, uint32_t *zSigPtr) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | shiftCount = countLeadingZeros32( aSig ) - 8; | 
|  | *zSigPtr = aSig<<shiftCount; | 
|  | *zExpPtr = 1 - shiftCount; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | 
|  | | single-precision floating-point value, returning the result.  After being | 
|  | | shifted into the proper positions, the three fields are simply added | 
|  | | together to form the result.  This means that any integer portion of `zSig' | 
|  | | will be added into the exponent.  Since a properly normalized significand | 
|  | | will have an integer portion equal to 1, the `zExp' input should be 1 less | 
|  | | than the desired result exponent whenever `zSig' is a complete, normalized | 
|  | | significand. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE float32 packFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig) | 
|  | { | 
|  |  | 
|  | return make_float32( | 
|  | ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | | and significand `zSig', and returns the proper single-precision floating- | 
|  | | point value corresponding to the abstract input.  Ordinarily, the abstract | 
|  | | value is simply rounded and packed into the single-precision format, with | 
|  | | the inexact exception raised if the abstract input cannot be represented | 
|  | | exactly.  However, if the abstract value is too large, the overflow and | 
|  | | inexact exceptions are raised and an infinity or maximal finite value is | 
|  | | returned.  If the abstract value is too small, the input value is rounded to | 
|  | | a subnormal number, and the underflow and inexact exceptions are raised if | 
|  | | the abstract input cannot be represented exactly as a subnormal single- | 
|  | | precision floating-point number. | 
|  | |     The input significand `zSig' has its binary point between bits 30 | 
|  | | and 29, which is 7 bits to the left of the usual location.  This shifted | 
|  | | significand must be normalized or smaller.  If `zSig' is not normalized, | 
|  | | `zExp' must be 0; in that case, the result returned is a subnormal number, | 
|  | | and it must not require rounding.  In the usual case that `zSig' is | 
|  | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | 
|  | | The handling of underflow and overflow follows the IEC/IEEE Standard for | 
|  | | Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float32 roundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM) | 
|  | { | 
|  | int8 roundingMode; | 
|  | flag roundNearestEven; | 
|  | int8 roundIncrement, roundBits; | 
|  | flag isTiny; | 
|  |  | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | roundNearestEven = ( roundingMode == float_round_nearest_even ); | 
|  | roundIncrement = 0x40; | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | roundIncrement = 0x7F; | 
|  | if ( zSign ) { | 
|  | if ( roundingMode == float_round_up ) roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | if ( roundingMode == float_round_down ) roundIncrement = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | roundBits = zSig & 0x7F; | 
|  | if ( 0xFD <= (uint16_t) zExp ) { | 
|  | if (    ( 0xFD < zExp ) | 
|  | || (    ( zExp == 0xFD ) | 
|  | && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) | 
|  | ) { | 
|  | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | 
|  | return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); | 
|  | } | 
|  | if ( zExp < 0 ) { | 
|  | if (STATUS(flush_to_zero)) { | 
|  | float_raise(float_flag_output_denormal STATUS_VAR); | 
|  | return packFloat32(zSign, 0, 0); | 
|  | } | 
|  | isTiny = | 
|  | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | 
|  | || ( zExp < -1 ) | 
|  | || ( zSig + roundIncrement < 0x80000000 ); | 
|  | shift32RightJamming( zSig, - zExp, &zSig ); | 
|  | zExp = 0; | 
|  | roundBits = zSig & 0x7F; | 
|  | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | 
|  | } | 
|  | } | 
|  | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | zSig = ( zSig + roundIncrement )>>7; | 
|  | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | 
|  | if ( zSig == 0 ) zExp = 0; | 
|  | return packFloat32( zSign, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | | and significand `zSig', and returns the proper single-precision floating- | 
|  | | point value corresponding to the abstract input.  This routine is just like | 
|  | | `roundAndPackFloat32' except that `zSig' does not have to be normalized. | 
|  | | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | 
|  | | floating-point exponent. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float32 | 
|  | normalizeRoundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | shiftCount = countLeadingZeros32( zSig ) - 1; | 
|  | return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the fraction bits of the double-precision floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE uint64_t extractFloat64Frac( float64 a ) | 
|  | { | 
|  |  | 
|  | return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the exponent bits of the double-precision floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE int_fast16_t extractFloat64Exp(float64 a) | 
|  | { | 
|  |  | 
|  | return ( float64_val(a)>>52 ) & 0x7FF; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the sign bit of the double-precision floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE flag extractFloat64Sign( float64 a ) | 
|  | { | 
|  |  | 
|  | return float64_val(a)>>63; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | If `a' is denormal and we are in flush-to-zero mode then set the | 
|  | | input-denormal exception and return zero. Otherwise just return the value. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | static float64 float64_squash_input_denormal(float64 a STATUS_PARAM) | 
|  | { | 
|  | if (STATUS(flush_inputs_to_zero)) { | 
|  | if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) { | 
|  | float_raise(float_flag_input_denormal STATUS_VAR); | 
|  | return make_float64(float64_val(a) & (1ULL << 63)); | 
|  | } | 
|  | } | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Normalizes the subnormal double-precision floating-point value represented | 
|  | | by the denormalized significand `aSig'.  The normalized exponent and | 
|  | | significand are stored at the locations pointed to by `zExpPtr' and | 
|  | | `zSigPtr', respectively. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void | 
|  | normalizeFloat64Subnormal(uint64_t aSig, int_fast16_t *zExpPtr, uint64_t *zSigPtr) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | shiftCount = countLeadingZeros64( aSig ) - 11; | 
|  | *zSigPtr = aSig<<shiftCount; | 
|  | *zExpPtr = 1 - shiftCount; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | 
|  | | double-precision floating-point value, returning the result.  After being | 
|  | | shifted into the proper positions, the three fields are simply added | 
|  | | together to form the result.  This means that any integer portion of `zSig' | 
|  | | will be added into the exponent.  Since a properly normalized significand | 
|  | | will have an integer portion equal to 1, the `zExp' input should be 1 less | 
|  | | than the desired result exponent whenever `zSig' is a complete, normalized | 
|  | | significand. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE float64 packFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig) | 
|  | { | 
|  |  | 
|  | return make_float64( | 
|  | ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | | and significand `zSig', and returns the proper double-precision floating- | 
|  | | point value corresponding to the abstract input.  Ordinarily, the abstract | 
|  | | value is simply rounded and packed into the double-precision format, with | 
|  | | the inexact exception raised if the abstract input cannot be represented | 
|  | | exactly.  However, if the abstract value is too large, the overflow and | 
|  | | inexact exceptions are raised and an infinity or maximal finite value is | 
|  | | returned.  If the abstract value is too small, the input value is rounded | 
|  | | to a subnormal number, and the underflow and inexact exceptions are raised | 
|  | | if the abstract input cannot be represented exactly as a subnormal double- | 
|  | | precision floating-point number. | 
|  | |     The input significand `zSig' has its binary point between bits 62 | 
|  | | and 61, which is 10 bits to the left of the usual location.  This shifted | 
|  | | significand must be normalized or smaller.  If `zSig' is not normalized, | 
|  | | `zExp' must be 0; in that case, the result returned is a subnormal number, | 
|  | | and it must not require rounding.  In the usual case that `zSig' is | 
|  | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | 
|  | | The handling of underflow and overflow follows the IEC/IEEE Standard for | 
|  | | Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float64 roundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM) | 
|  | { | 
|  | int8 roundingMode; | 
|  | flag roundNearestEven; | 
|  | int_fast16_t roundIncrement, roundBits; | 
|  | flag isTiny; | 
|  |  | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | roundNearestEven = ( roundingMode == float_round_nearest_even ); | 
|  | roundIncrement = 0x200; | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | roundIncrement = 0x3FF; | 
|  | if ( zSign ) { | 
|  | if ( roundingMode == float_round_up ) roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | if ( roundingMode == float_round_down ) roundIncrement = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | roundBits = zSig & 0x3FF; | 
|  | if ( 0x7FD <= (uint16_t) zExp ) { | 
|  | if (    ( 0x7FD < zExp ) | 
|  | || (    ( zExp == 0x7FD ) | 
|  | && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) | 
|  | ) { | 
|  | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | 
|  | return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 )); | 
|  | } | 
|  | if ( zExp < 0 ) { | 
|  | if (STATUS(flush_to_zero)) { | 
|  | float_raise(float_flag_output_denormal STATUS_VAR); | 
|  | return packFloat64(zSign, 0, 0); | 
|  | } | 
|  | isTiny = | 
|  | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | 
|  | || ( zExp < -1 ) | 
|  | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | 
|  | shift64RightJamming( zSig, - zExp, &zSig ); | 
|  | zExp = 0; | 
|  | roundBits = zSig & 0x3FF; | 
|  | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | 
|  | } | 
|  | } | 
|  | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | zSig = ( zSig + roundIncrement )>>10; | 
|  | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | 
|  | if ( zSig == 0 ) zExp = 0; | 
|  | return packFloat64( zSign, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | | and significand `zSig', and returns the proper double-precision floating- | 
|  | | point value corresponding to the abstract input.  This routine is just like | 
|  | | `roundAndPackFloat64' except that `zSig' does not have to be normalized. | 
|  | | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | 
|  | | floating-point exponent. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float64 | 
|  | normalizeRoundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | shiftCount = countLeadingZeros64( zSig ) - 1; | 
|  | return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the fraction bits of the extended double-precision floating-point | 
|  | | value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE uint64_t extractFloatx80Frac( floatx80 a ) | 
|  | { | 
|  |  | 
|  | return a.low; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the exponent bits of the extended double-precision floating-point | 
|  | | value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE int32 extractFloatx80Exp( floatx80 a ) | 
|  | { | 
|  |  | 
|  | return a.high & 0x7FFF; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the sign bit of the extended double-precision floating-point value | 
|  | | `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE flag extractFloatx80Sign( floatx80 a ) | 
|  | { | 
|  |  | 
|  | return a.high>>15; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Normalizes the subnormal extended double-precision floating-point value | 
|  | | represented by the denormalized significand `aSig'.  The normalized exponent | 
|  | | and significand are stored at the locations pointed to by `zExpPtr' and | 
|  | | `zSigPtr', respectively. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void | 
|  | normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr ) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | shiftCount = countLeadingZeros64( aSig ); | 
|  | *zSigPtr = aSig<<shiftCount; | 
|  | *zExpPtr = 1 - shiftCount; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | 
|  | | extended double-precision floating-point value, returning the result. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig ) | 
|  | { | 
|  | floatx80 z; | 
|  |  | 
|  | z.low = zSig; | 
|  | z.high = ( ( (uint16_t) zSign )<<15 ) + zExp; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | | and extended significand formed by the concatenation of `zSig0' and `zSig1', | 
|  | | and returns the proper extended double-precision floating-point value | 
|  | | corresponding to the abstract input.  Ordinarily, the abstract value is | 
|  | | rounded and packed into the extended double-precision format, with the | 
|  | | inexact exception raised if the abstract input cannot be represented | 
|  | | exactly.  However, if the abstract value is too large, the overflow and | 
|  | | inexact exceptions are raised and an infinity or maximal finite value is | 
|  | | returned.  If the abstract value is too small, the input value is rounded to | 
|  | | a subnormal number, and the underflow and inexact exceptions are raised if | 
|  | | the abstract input cannot be represented exactly as a subnormal extended | 
|  | | double-precision floating-point number. | 
|  | |     If `roundingPrecision' is 32 or 64, the result is rounded to the same | 
|  | | number of bits as single or double precision, respectively.  Otherwise, the | 
|  | | result is rounded to the full precision of the extended double-precision | 
|  | | format. | 
|  | |     The input significand must be normalized or smaller.  If the input | 
|  | | significand is not normalized, `zExp' must be 0; in that case, the result | 
|  | | returned is a subnormal number, and it must not require rounding.  The | 
|  | | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static floatx80 | 
|  | roundAndPackFloatx80( | 
|  | int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 | 
|  | STATUS_PARAM) | 
|  | { | 
|  | int8 roundingMode; | 
|  | flag roundNearestEven, increment, isTiny; | 
|  | int64 roundIncrement, roundMask, roundBits; | 
|  |  | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | roundNearestEven = ( roundingMode == float_round_nearest_even ); | 
|  | if ( roundingPrecision == 80 ) goto precision80; | 
|  | if ( roundingPrecision == 64 ) { | 
|  | roundIncrement = LIT64( 0x0000000000000400 ); | 
|  | roundMask = LIT64( 0x00000000000007FF ); | 
|  | } | 
|  | else if ( roundingPrecision == 32 ) { | 
|  | roundIncrement = LIT64( 0x0000008000000000 ); | 
|  | roundMask = LIT64( 0x000000FFFFFFFFFF ); | 
|  | } | 
|  | else { | 
|  | goto precision80; | 
|  | } | 
|  | zSig0 |= ( zSig1 != 0 ); | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | roundIncrement = roundMask; | 
|  | if ( zSign ) { | 
|  | if ( roundingMode == float_round_up ) roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | if ( roundingMode == float_round_down ) roundIncrement = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | roundBits = zSig0 & roundMask; | 
|  | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { | 
|  | if (    ( 0x7FFE < zExp ) | 
|  | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | 
|  | ) { | 
|  | goto overflow; | 
|  | } | 
|  | if ( zExp <= 0 ) { | 
|  | if (STATUS(flush_to_zero)) { | 
|  | float_raise(float_flag_output_denormal STATUS_VAR); | 
|  | return packFloatx80(zSign, 0, 0); | 
|  | } | 
|  | isTiny = | 
|  | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | 
|  | || ( zExp < 0 ) | 
|  | || ( zSig0 <= zSig0 + roundIncrement ); | 
|  | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | 
|  | zExp = 0; | 
|  | roundBits = zSig0 & roundMask; | 
|  | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | 
|  | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | zSig0 += roundIncrement; | 
|  | if ( (int64_t) zSig0 < 0 ) zExp = 1; | 
|  | roundIncrement = roundMask + 1; | 
|  | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | 
|  | roundMask |= roundIncrement; | 
|  | } | 
|  | zSig0 &= ~ roundMask; | 
|  | return packFloatx80( zSign, zExp, zSig0 ); | 
|  | } | 
|  | } | 
|  | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | zSig0 += roundIncrement; | 
|  | if ( zSig0 < roundIncrement ) { | 
|  | ++zExp; | 
|  | zSig0 = LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | roundIncrement = roundMask + 1; | 
|  | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | 
|  | roundMask |= roundIncrement; | 
|  | } | 
|  | zSig0 &= ~ roundMask; | 
|  | if ( zSig0 == 0 ) zExp = 0; | 
|  | return packFloatx80( zSign, zExp, zSig0 ); | 
|  | precision80: | 
|  | increment = ( (int64_t) zSig1 < 0 ); | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | increment = 0; | 
|  | } | 
|  | else { | 
|  | if ( zSign ) { | 
|  | increment = ( roundingMode == float_round_down ) && zSig1; | 
|  | } | 
|  | else { | 
|  | increment = ( roundingMode == float_round_up ) && zSig1; | 
|  | } | 
|  | } | 
|  | } | 
|  | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { | 
|  | if (    ( 0x7FFE < zExp ) | 
|  | || (    ( zExp == 0x7FFE ) | 
|  | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | 
|  | && increment | 
|  | ) | 
|  | ) { | 
|  | roundMask = 0; | 
|  | overflow: | 
|  | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | 
|  | if (    ( roundingMode == float_round_to_zero ) | 
|  | || ( zSign && ( roundingMode == float_round_up ) ) | 
|  | || ( ! zSign && ( roundingMode == float_round_down ) ) | 
|  | ) { | 
|  | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | 
|  | } | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( zExp <= 0 ) { | 
|  | isTiny = | 
|  | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | 
|  | || ( zExp < 0 ) | 
|  | || ! increment | 
|  | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | 
|  | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | 
|  | zExp = 0; | 
|  | if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR); | 
|  | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | if ( roundNearestEven ) { | 
|  | increment = ( (int64_t) zSig1 < 0 ); | 
|  | } | 
|  | else { | 
|  | if ( zSign ) { | 
|  | increment = ( roundingMode == float_round_down ) && zSig1; | 
|  | } | 
|  | else { | 
|  | increment = ( roundingMode == float_round_up ) && zSig1; | 
|  | } | 
|  | } | 
|  | if ( increment ) { | 
|  | ++zSig0; | 
|  | zSig0 &= | 
|  | ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); | 
|  | if ( (int64_t) zSig0 < 0 ) zExp = 1; | 
|  | } | 
|  | return packFloatx80( zSign, zExp, zSig0 ); | 
|  | } | 
|  | } | 
|  | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | if ( increment ) { | 
|  | ++zSig0; | 
|  | if ( zSig0 == 0 ) { | 
|  | ++zExp; | 
|  | zSig0 = LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | else { | 
|  | zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); | 
|  | } | 
|  | } | 
|  | else { | 
|  | if ( zSig0 == 0 ) zExp = 0; | 
|  | } | 
|  | return packFloatx80( zSign, zExp, zSig0 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes an abstract floating-point value having sign `zSign', exponent | 
|  | | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | 
|  | | and returns the proper extended double-precision floating-point value | 
|  | | corresponding to the abstract input.  This routine is just like | 
|  | | `roundAndPackFloatx80' except that the input significand does not have to be | 
|  | | normalized. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static floatx80 | 
|  | normalizeRoundAndPackFloatx80( | 
|  | int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 | 
|  | STATUS_PARAM) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | if ( zSig0 == 0 ) { | 
|  | zSig0 = zSig1; | 
|  | zSig1 = 0; | 
|  | zExp -= 64; | 
|  | } | 
|  | shiftCount = countLeadingZeros64( zSig0 ); | 
|  | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | 
|  | zExp -= shiftCount; | 
|  | return | 
|  | roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the least-significant 64 fraction bits of the quadruple-precision | 
|  | | floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE uint64_t extractFloat128Frac1( float128 a ) | 
|  | { | 
|  |  | 
|  | return a.low; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the most-significant 48 fraction bits of the quadruple-precision | 
|  | | floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE uint64_t extractFloat128Frac0( float128 a ) | 
|  | { | 
|  |  | 
|  | return a.high & LIT64( 0x0000FFFFFFFFFFFF ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the exponent bits of the quadruple-precision floating-point value | 
|  | | `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE int32 extractFloat128Exp( float128 a ) | 
|  | { | 
|  |  | 
|  | return ( a.high>>48 ) & 0x7FFF; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the sign bit of the quadruple-precision floating-point value `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE flag extractFloat128Sign( float128 a ) | 
|  | { | 
|  |  | 
|  | return a.high>>63; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Normalizes the subnormal quadruple-precision floating-point value | 
|  | | represented by the denormalized significand formed by the concatenation of | 
|  | | `aSig0' and `aSig1'.  The normalized exponent is stored at the location | 
|  | | pointed to by `zExpPtr'.  The most significant 49 bits of the normalized | 
|  | | significand are stored at the location pointed to by `zSig0Ptr', and the | 
|  | | least significant 64 bits of the normalized significand are stored at the | 
|  | | location pointed to by `zSig1Ptr'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void | 
|  | normalizeFloat128Subnormal( | 
|  | uint64_t aSig0, | 
|  | uint64_t aSig1, | 
|  | int32 *zExpPtr, | 
|  | uint64_t *zSig0Ptr, | 
|  | uint64_t *zSig1Ptr | 
|  | ) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | if ( aSig0 == 0 ) { | 
|  | shiftCount = countLeadingZeros64( aSig1 ) - 15; | 
|  | if ( shiftCount < 0 ) { | 
|  | *zSig0Ptr = aSig1>>( - shiftCount ); | 
|  | *zSig1Ptr = aSig1<<( shiftCount & 63 ); | 
|  | } | 
|  | else { | 
|  | *zSig0Ptr = aSig1<<shiftCount; | 
|  | *zSig1Ptr = 0; | 
|  | } | 
|  | *zExpPtr = - shiftCount - 63; | 
|  | } | 
|  | else { | 
|  | shiftCount = countLeadingZeros64( aSig0 ) - 15; | 
|  | shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); | 
|  | *zExpPtr = 1 - shiftCount; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Packs the sign `zSign', the exponent `zExp', and the significand formed | 
|  | | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision | 
|  | | floating-point value, returning the result.  After being shifted into the | 
|  | | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply | 
|  | | added together to form the most significant 32 bits of the result.  This | 
|  | | means that any integer portion of `zSig0' will be added into the exponent. | 
|  | | Since a properly normalized significand will have an integer portion equal | 
|  | | to 1, the `zExp' input should be 1 less than the desired result exponent | 
|  | | whenever `zSig0' and `zSig1' concatenated form a complete, normalized | 
|  | | significand. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE float128 | 
|  | packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 ) | 
|  | { | 
|  | float128 z; | 
|  |  | 
|  | z.low = zSig1; | 
|  | z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | | and extended significand formed by the concatenation of `zSig0', `zSig1', | 
|  | | and `zSig2', and returns the proper quadruple-precision floating-point value | 
|  | | corresponding to the abstract input.  Ordinarily, the abstract value is | 
|  | | simply rounded and packed into the quadruple-precision format, with the | 
|  | | inexact exception raised if the abstract input cannot be represented | 
|  | | exactly.  However, if the abstract value is too large, the overflow and | 
|  | | inexact exceptions are raised and an infinity or maximal finite value is | 
|  | | returned.  If the abstract value is too small, the input value is rounded to | 
|  | | a subnormal number, and the underflow and inexact exceptions are raised if | 
|  | | the abstract input cannot be represented exactly as a subnormal quadruple- | 
|  | | precision floating-point number. | 
|  | |     The input significand must be normalized or smaller.  If the input | 
|  | | significand is not normalized, `zExp' must be 0; in that case, the result | 
|  | | returned is a subnormal number, and it must not require rounding.  In the | 
|  | | usual case that the input significand is normalized, `zExp' must be 1 less | 
|  | | than the ``true'' floating-point exponent.  The handling of underflow and | 
|  | | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float128 | 
|  | roundAndPackFloat128( | 
|  | flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1, uint64_t zSig2 STATUS_PARAM) | 
|  | { | 
|  | int8 roundingMode; | 
|  | flag roundNearestEven, increment, isTiny; | 
|  |  | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | roundNearestEven = ( roundingMode == float_round_nearest_even ); | 
|  | increment = ( (int64_t) zSig2 < 0 ); | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | increment = 0; | 
|  | } | 
|  | else { | 
|  | if ( zSign ) { | 
|  | increment = ( roundingMode == float_round_down ) && zSig2; | 
|  | } | 
|  | else { | 
|  | increment = ( roundingMode == float_round_up ) && zSig2; | 
|  | } | 
|  | } | 
|  | } | 
|  | if ( 0x7FFD <= (uint32_t) zExp ) { | 
|  | if (    ( 0x7FFD < zExp ) | 
|  | || (    ( zExp == 0x7FFD ) | 
|  | && eq128( | 
|  | LIT64( 0x0001FFFFFFFFFFFF ), | 
|  | LIT64( 0xFFFFFFFFFFFFFFFF ), | 
|  | zSig0, | 
|  | zSig1 | 
|  | ) | 
|  | && increment | 
|  | ) | 
|  | ) { | 
|  | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | 
|  | if (    ( roundingMode == float_round_to_zero ) | 
|  | || ( zSign && ( roundingMode == float_round_up ) ) | 
|  | || ( ! zSign && ( roundingMode == float_round_down ) ) | 
|  | ) { | 
|  | return | 
|  | packFloat128( | 
|  | zSign, | 
|  | 0x7FFE, | 
|  | LIT64( 0x0000FFFFFFFFFFFF ), | 
|  | LIT64( 0xFFFFFFFFFFFFFFFF ) | 
|  | ); | 
|  | } | 
|  | return packFloat128( zSign, 0x7FFF, 0, 0 ); | 
|  | } | 
|  | if ( zExp < 0 ) { | 
|  | if (STATUS(flush_to_zero)) { | 
|  | float_raise(float_flag_output_denormal STATUS_VAR); | 
|  | return packFloat128(zSign, 0, 0, 0); | 
|  | } | 
|  | isTiny = | 
|  | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | 
|  | || ( zExp < -1 ) | 
|  | || ! increment | 
|  | || lt128( | 
|  | zSig0, | 
|  | zSig1, | 
|  | LIT64( 0x0001FFFFFFFFFFFF ), | 
|  | LIT64( 0xFFFFFFFFFFFFFFFF ) | 
|  | ); | 
|  | shift128ExtraRightJamming( | 
|  | zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); | 
|  | zExp = 0; | 
|  | if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR); | 
|  | if ( roundNearestEven ) { | 
|  | increment = ( (int64_t) zSig2 < 0 ); | 
|  | } | 
|  | else { | 
|  | if ( zSign ) { | 
|  | increment = ( roundingMode == float_round_down ) && zSig2; | 
|  | } | 
|  | else { | 
|  | increment = ( roundingMode == float_round_up ) && zSig2; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | if ( increment ) { | 
|  | add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); | 
|  | zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); | 
|  | } | 
|  | else { | 
|  | if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; | 
|  | } | 
|  | return packFloat128( zSign, zExp, zSig0, zSig1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | | and significand formed by the concatenation of `zSig0' and `zSig1', and | 
|  | | returns the proper quadruple-precision floating-point value corresponding | 
|  | | to the abstract input.  This routine is just like `roundAndPackFloat128' | 
|  | | except that the input significand has fewer bits and does not have to be | 
|  | | normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating- | 
|  | | point exponent. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float128 | 
|  | normalizeRoundAndPackFloat128( | 
|  | flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 STATUS_PARAM) | 
|  | { | 
|  | int8 shiftCount; | 
|  | uint64_t zSig2; | 
|  |  | 
|  | if ( zSig0 == 0 ) { | 
|  | zSig0 = zSig1; | 
|  | zSig1 = 0; | 
|  | zExp -= 64; | 
|  | } | 
|  | shiftCount = countLeadingZeros64( zSig0 ) - 15; | 
|  | if ( 0 <= shiftCount ) { | 
|  | zSig2 = 0; | 
|  | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | 
|  | } | 
|  | else { | 
|  | shift128ExtraRightJamming( | 
|  | zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); | 
|  | } | 
|  | zExp -= shiftCount; | 
|  | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the 32-bit two's complement integer `a' | 
|  | | to the single-precision floating-point format.  The conversion is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 int32_to_float32( int32 a STATUS_PARAM ) | 
|  | { | 
|  | flag zSign; | 
|  |  | 
|  | if ( a == 0 ) return float32_zero; | 
|  | if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); | 
|  | zSign = ( a < 0 ); | 
|  | return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the 32-bit two's complement integer `a' | 
|  | | to the double-precision floating-point format.  The conversion is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 int32_to_float64( int32 a STATUS_PARAM ) | 
|  | { | 
|  | flag zSign; | 
|  | uint32 absA; | 
|  | int8 shiftCount; | 
|  | uint64_t zSig; | 
|  |  | 
|  | if ( a == 0 ) return float64_zero; | 
|  | zSign = ( a < 0 ); | 
|  | absA = zSign ? - a : a; | 
|  | shiftCount = countLeadingZeros32( absA ) + 21; | 
|  | zSig = absA; | 
|  | return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the 32-bit two's complement integer `a' | 
|  | | to the extended double-precision floating-point format.  The conversion | 
|  | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 int32_to_floatx80( int32 a STATUS_PARAM ) | 
|  | { | 
|  | flag zSign; | 
|  | uint32 absA; | 
|  | int8 shiftCount; | 
|  | uint64_t zSig; | 
|  |  | 
|  | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | 
|  | zSign = ( a < 0 ); | 
|  | absA = zSign ? - a : a; | 
|  | shiftCount = countLeadingZeros32( absA ) + 32; | 
|  | zSig = absA; | 
|  | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the 32-bit two's complement integer `a' to | 
|  | | the quadruple-precision floating-point format.  The conversion is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 int32_to_float128( int32 a STATUS_PARAM ) | 
|  | { | 
|  | flag zSign; | 
|  | uint32 absA; | 
|  | int8 shiftCount; | 
|  | uint64_t zSig0; | 
|  |  | 
|  | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | 
|  | zSign = ( a < 0 ); | 
|  | absA = zSign ? - a : a; | 
|  | shiftCount = countLeadingZeros32( absA ) + 17; | 
|  | zSig0 = absA; | 
|  | return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the 64-bit two's complement integer `a' | 
|  | | to the single-precision floating-point format.  The conversion is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 int64_to_float32( int64 a STATUS_PARAM ) | 
|  | { | 
|  | flag zSign; | 
|  | uint64 absA; | 
|  | int8 shiftCount; | 
|  |  | 
|  | if ( a == 0 ) return float32_zero; | 
|  | zSign = ( a < 0 ); | 
|  | absA = zSign ? - a : a; | 
|  | shiftCount = countLeadingZeros64( absA ) - 40; | 
|  | if ( 0 <= shiftCount ) { | 
|  | return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); | 
|  | } | 
|  | else { | 
|  | shiftCount += 7; | 
|  | if ( shiftCount < 0 ) { | 
|  | shift64RightJamming( absA, - shiftCount, &absA ); | 
|  | } | 
|  | else { | 
|  | absA <<= shiftCount; | 
|  | } | 
|  | return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | float32 uint64_to_float32( uint64 a STATUS_PARAM ) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | if ( a == 0 ) return float32_zero; | 
|  | shiftCount = countLeadingZeros64( a ) - 40; | 
|  | if ( 0 <= shiftCount ) { | 
|  | return packFloat32(0, 0x95 - shiftCount, a<<shiftCount); | 
|  | } | 
|  | else { | 
|  | shiftCount += 7; | 
|  | if ( shiftCount < 0 ) { | 
|  | shift64RightJamming( a, - shiftCount, &a ); | 
|  | } | 
|  | else { | 
|  | a <<= shiftCount; | 
|  | } | 
|  | return roundAndPackFloat32(0, 0x9C - shiftCount, a STATUS_VAR); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the 64-bit two's complement integer `a' | 
|  | | to the double-precision floating-point format.  The conversion is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 int64_to_float64( int64 a STATUS_PARAM ) | 
|  | { | 
|  | flag zSign; | 
|  |  | 
|  | if ( a == 0 ) return float64_zero; | 
|  | if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) { | 
|  | return packFloat64( 1, 0x43E, 0 ); | 
|  | } | 
|  | zSign = ( a < 0 ); | 
|  | return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | float64 uint64_to_float64( uint64 a STATUS_PARAM ) | 
|  | { | 
|  | if ( a == 0 ) return float64_zero; | 
|  | return normalizeRoundAndPackFloat64( 0, 0x43C, a STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the 64-bit two's complement integer `a' | 
|  | | to the extended double-precision floating-point format.  The conversion | 
|  | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 int64_to_floatx80( int64 a STATUS_PARAM ) | 
|  | { | 
|  | flag zSign; | 
|  | uint64 absA; | 
|  | int8 shiftCount; | 
|  |  | 
|  | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | 
|  | zSign = ( a < 0 ); | 
|  | absA = zSign ? - a : a; | 
|  | shiftCount = countLeadingZeros64( absA ); | 
|  | return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the 64-bit two's complement integer `a' to | 
|  | | the quadruple-precision floating-point format.  The conversion is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 int64_to_float128( int64 a STATUS_PARAM ) | 
|  | { | 
|  | flag zSign; | 
|  | uint64 absA; | 
|  | int8 shiftCount; | 
|  | int32 zExp; | 
|  | uint64_t zSig0, zSig1; | 
|  |  | 
|  | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | 
|  | zSign = ( a < 0 ); | 
|  | absA = zSign ? - a : a; | 
|  | shiftCount = countLeadingZeros64( absA ) + 49; | 
|  | zExp = 0x406E - shiftCount; | 
|  | if ( 64 <= shiftCount ) { | 
|  | zSig1 = 0; | 
|  | zSig0 = absA; | 
|  | shiftCount -= 64; | 
|  | } | 
|  | else { | 
|  | zSig1 = absA; | 
|  | zSig0 = 0; | 
|  | } | 
|  | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | 
|  | return packFloat128( zSign, zExp, zSig0, zSig1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the single-precision floating-point value | 
|  | | `a' to the 32-bit two's complement integer format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic---which means in particular that the conversion is rounded | 
|  | | according to the current rounding mode.  If `a' is a NaN, the largest | 
|  | | positive integer is returned.  Otherwise, if the conversion overflows, the | 
|  | | largest integer with the same sign as `a' is returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int32 float32_to_int32( float32 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, shiftCount; | 
|  | uint32_t aSig; | 
|  | uint64_t aSig64; | 
|  |  | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | if ( ( aExp == 0xFF ) && aSig ) aSign = 0; | 
|  | if ( aExp ) aSig |= 0x00800000; | 
|  | shiftCount = 0xAF - aExp; | 
|  | aSig64 = aSig; | 
|  | aSig64 <<= 32; | 
|  | if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); | 
|  | return roundAndPackInt32( aSign, aSig64 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the single-precision floating-point value | 
|  | | `a' to the 32-bit two's complement integer format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic, except that the conversion is always rounded toward zero. | 
|  | | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if | 
|  | | the conversion overflows, the largest integer with the same sign as `a' is | 
|  | | returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, shiftCount; | 
|  | uint32_t aSig; | 
|  | int32_t z; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | shiftCount = aExp - 0x9E; | 
|  | if ( 0 <= shiftCount ) { | 
|  | if ( float32_val(a) != 0xCF000000 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; | 
|  | } | 
|  | return (int32_t) 0x80000000; | 
|  | } | 
|  | else if ( aExp <= 0x7E ) { | 
|  | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return 0; | 
|  | } | 
|  | aSig = ( aSig | 0x00800000 )<<8; | 
|  | z = aSig>>( - shiftCount ); | 
|  | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | if ( aSign ) z = - z; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the single-precision floating-point value | 
|  | | `a' to the 16-bit two's complement integer format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic, except that the conversion is always rounded toward zero. | 
|  | | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if | 
|  | | the conversion overflows, the largest integer with the same sign as `a' is | 
|  | | returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int_fast16_t float32_to_int16_round_to_zero(float32 a STATUS_PARAM) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, shiftCount; | 
|  | uint32_t aSig; | 
|  | int32 z; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | shiftCount = aExp - 0x8E; | 
|  | if ( 0 <= shiftCount ) { | 
|  | if ( float32_val(a) != 0xC7000000 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | 
|  | return 0x7FFF; | 
|  | } | 
|  | } | 
|  | return (int32_t) 0xffff8000; | 
|  | } | 
|  | else if ( aExp <= 0x7E ) { | 
|  | if ( aExp | aSig ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | shiftCount -= 0x10; | 
|  | aSig = ( aSig | 0x00800000 )<<8; | 
|  | z = aSig>>( - shiftCount ); | 
|  | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | if ( aSign ) { | 
|  | z = - z; | 
|  | } | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the single-precision floating-point value | 
|  | | `a' to the 64-bit two's complement integer format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic---which means in particular that the conversion is rounded | 
|  | | according to the current rounding mode.  If `a' is a NaN, the largest | 
|  | | positive integer is returned.  Otherwise, if the conversion overflows, the | 
|  | | largest integer with the same sign as `a' is returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int64 float32_to_int64( float32 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, shiftCount; | 
|  | uint32_t aSig; | 
|  | uint64_t aSig64, aSigExtra; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | shiftCount = 0xBE - aExp; | 
|  | if ( shiftCount < 0 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | 
|  | return LIT64( 0x7FFFFFFFFFFFFFFF ); | 
|  | } | 
|  | return (int64_t) LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | if ( aExp ) aSig |= 0x00800000; | 
|  | aSig64 = aSig; | 
|  | aSig64 <<= 40; | 
|  | shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); | 
|  | return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the single-precision floating-point value | 
|  | | `a' to the 64-bit two's complement integer format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic, except that the conversion is always rounded toward zero.  If | 
|  | | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the | 
|  | | conversion overflows, the largest integer with the same sign as `a' is | 
|  | | returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, shiftCount; | 
|  | uint32_t aSig; | 
|  | uint64_t aSig64; | 
|  | int64 z; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | shiftCount = aExp - 0xBE; | 
|  | if ( 0 <= shiftCount ) { | 
|  | if ( float32_val(a) != 0xDF000000 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | 
|  | return LIT64( 0x7FFFFFFFFFFFFFFF ); | 
|  | } | 
|  | } | 
|  | return (int64_t) LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | else if ( aExp <= 0x7E ) { | 
|  | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return 0; | 
|  | } | 
|  | aSig64 = aSig | 0x00800000; | 
|  | aSig64 <<= 40; | 
|  | z = aSig64>>( - shiftCount ); | 
|  | if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | if ( aSign ) z = - z; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the single-precision floating-point value | 
|  | | `a' to the double-precision floating-point format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 float32_to_float64( float32 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint32_t aSig; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | return packFloat64( aSign, 0x7FF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | --aExp; | 
|  | } | 
|  | return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the single-precision floating-point value | 
|  | | `a' to the extended double-precision floating-point format.  The conversion | 
|  | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 float32_to_floatx80( float32 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint32_t aSig; | 
|  |  | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | aSig |= 0x00800000; | 
|  | return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the single-precision floating-point value | 
|  | | `a' to the double-precision floating-point format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 float32_to_float128( float32 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint32_t aSig; | 
|  |  | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | return packFloat128( aSign, 0x7FFF, 0, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | --aExp; | 
|  | } | 
|  | return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Rounds the single-precision floating-point value `a' to an integer, and | 
|  | | returns the result as a single-precision floating-point value.  The | 
|  | | operation is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 float32_round_to_int( float32 a STATUS_PARAM) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint32_t lastBitMask, roundBitsMask; | 
|  | int8 roundingMode; | 
|  | uint32_t z; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aExp = extractFloat32Exp( a ); | 
|  | if ( 0x96 <= aExp ) { | 
|  | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | 
|  | return propagateFloat32NaN( a, a STATUS_VAR ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | if ( aExp <= 0x7E ) { | 
|  | if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a; | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | aSign = extractFloat32Sign( a ); | 
|  | switch ( STATUS(float_rounding_mode) ) { | 
|  | case float_round_nearest_even: | 
|  | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | 
|  | return packFloat32( aSign, 0x7F, 0 ); | 
|  | } | 
|  | break; | 
|  | case float_round_down: | 
|  | return make_float32(aSign ? 0xBF800000 : 0); | 
|  | case float_round_up: | 
|  | return make_float32(aSign ? 0x80000000 : 0x3F800000); | 
|  | } | 
|  | return packFloat32( aSign, 0, 0 ); | 
|  | } | 
|  | lastBitMask = 1; | 
|  | lastBitMask <<= 0x96 - aExp; | 
|  | roundBitsMask = lastBitMask - 1; | 
|  | z = float32_val(a); | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | if ( roundingMode == float_round_nearest_even ) { | 
|  | z += lastBitMask>>1; | 
|  | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | 
|  | } | 
|  | else if ( roundingMode != float_round_to_zero ) { | 
|  | if ( extractFloat32Sign( make_float32(z) ) ^ ( roundingMode == float_round_up ) ) { | 
|  | z += roundBitsMask; | 
|  | } | 
|  | } | 
|  | z &= ~ roundBitsMask; | 
|  | if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return make_float32(z); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of adding the absolute values of the single-precision | 
|  | | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated | 
|  | | before being returned.  `zSign' is ignored if the result is a NaN. | 
|  | | The addition is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) | 
|  | { | 
|  | int_fast16_t aExp, bExp, zExp; | 
|  | uint32_t aSig, bSig, zSig; | 
|  | int_fast16_t expDiff; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | bSig = extractFloat32Frac( b ); | 
|  | bExp = extractFloat32Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | aSig <<= 6; | 
|  | bSig <<= 6; | 
|  | if ( 0 < expDiff ) { | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | --expDiff; | 
|  | } | 
|  | else { | 
|  | bSig |= 0x20000000; | 
|  | } | 
|  | shift32RightJamming( bSig, expDiff, &bSig ); | 
|  | zExp = aExp; | 
|  | } | 
|  | else if ( expDiff < 0 ) { | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | return packFloat32( zSign, 0xFF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | ++expDiff; | 
|  | } | 
|  | else { | 
|  | aSig |= 0x20000000; | 
|  | } | 
|  | shift32RightJamming( aSig, - expDiff, &aSig ); | 
|  | zExp = bExp; | 
|  | } | 
|  | else { | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if (STATUS(flush_to_zero)) { | 
|  | if (aSig | bSig) { | 
|  | float_raise(float_flag_output_denormal STATUS_VAR); | 
|  | } | 
|  | return packFloat32(zSign, 0, 0); | 
|  | } | 
|  | return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); | 
|  | } | 
|  | zSig = 0x40000000 + aSig + bSig; | 
|  | zExp = aExp; | 
|  | goto roundAndPack; | 
|  | } | 
|  | aSig |= 0x20000000; | 
|  | zSig = ( aSig + bSig )<<1; | 
|  | --zExp; | 
|  | if ( (int32_t) zSig < 0 ) { | 
|  | zSig = aSig + bSig; | 
|  | ++zExp; | 
|  | } | 
|  | roundAndPack: | 
|  | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of subtracting the absolute values of the single- | 
|  | | precision floating-point values `a' and `b'.  If `zSign' is 1, the | 
|  | | difference is negated before being returned.  `zSign' is ignored if the | 
|  | | result is a NaN.  The subtraction is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) | 
|  | { | 
|  | int_fast16_t aExp, bExp, zExp; | 
|  | uint32_t aSig, bSig, zSig; | 
|  | int_fast16_t expDiff; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | bSig = extractFloat32Frac( b ); | 
|  | bExp = extractFloat32Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | aSig <<= 7; | 
|  | bSig <<= 7; | 
|  | if ( 0 < expDiff ) goto aExpBigger; | 
|  | if ( expDiff < 0 ) goto bExpBigger; | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | aExp = 1; | 
|  | bExp = 1; | 
|  | } | 
|  | if ( bSig < aSig ) goto aBigger; | 
|  | if ( aSig < bSig ) goto bBigger; | 
|  | return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | 
|  | bExpBigger: | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | return packFloat32( zSign ^ 1, 0xFF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | ++expDiff; | 
|  | } | 
|  | else { | 
|  | aSig |= 0x40000000; | 
|  | } | 
|  | shift32RightJamming( aSig, - expDiff, &aSig ); | 
|  | bSig |= 0x40000000; | 
|  | bBigger: | 
|  | zSig = bSig - aSig; | 
|  | zExp = bExp; | 
|  | zSign ^= 1; | 
|  | goto normalizeRoundAndPack; | 
|  | aExpBigger: | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | --expDiff; | 
|  | } | 
|  | else { | 
|  | bSig |= 0x40000000; | 
|  | } | 
|  | shift32RightJamming( bSig, expDiff, &bSig ); | 
|  | aSig |= 0x40000000; | 
|  | aBigger: | 
|  | zSig = aSig - bSig; | 
|  | zExp = aExp; | 
|  | normalizeRoundAndPack: | 
|  | --zExp; | 
|  | return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of adding the single-precision floating-point values `a' | 
|  | | and `b'.  The operation is performed according to the IEC/IEEE Standard for | 
|  | | Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 float32_add( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return addFloat32Sigs( a, b, aSign STATUS_VAR); | 
|  | } | 
|  | else { | 
|  | return subFloat32Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of subtracting the single-precision floating-point values | 
|  | | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard | 
|  | | for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 float32_sub( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return subFloat32Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  | else { | 
|  | return addFloat32Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of multiplying the single-precision floating-point values | 
|  | | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard | 
|  | | for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 float32_mul( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int_fast16_t aExp, bExp, zExp; | 
|  | uint32_t aSig, bSig; | 
|  | uint64_t zSig64; | 
|  | uint32_t zSig; | 
|  |  | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSig = extractFloat32Frac( b ); | 
|  | bExp = extractFloat32Exp( b ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | 
|  | return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | if ( ( bExp | bSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  | return packFloat32( zSign, 0xFF, 0 ); | 
|  | } | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  | return packFloat32( zSign, 0xFF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); | 
|  | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | zExp = aExp + bExp - 0x7F; | 
|  | aSig = ( aSig | 0x00800000 )<<7; | 
|  | bSig = ( bSig | 0x00800000 )<<8; | 
|  | shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 ); | 
|  | zSig = zSig64; | 
|  | if ( 0 <= (int32_t) ( zSig<<1 ) ) { | 
|  | zSig <<= 1; | 
|  | --zExp; | 
|  | } | 
|  | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of dividing the single-precision floating-point value `a' | 
|  | | by the corresponding value `b'.  The operation is performed according to the | 
|  | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 float32_div( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int_fast16_t aExp, bExp, zExp; | 
|  | uint32_t aSig, bSig, zSig; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSig = extractFloat32Frac( b ); | 
|  | bExp = extractFloat32Exp( b ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  | return packFloat32( zSign, 0xFF, 0 ); | 
|  | } | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | return packFloat32( zSign, 0, 0 ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  | float_raise( float_flag_divbyzero STATUS_VAR); | 
|  | return packFloat32( zSign, 0xFF, 0 ); | 
|  | } | 
|  | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | zExp = aExp - bExp + 0x7D; | 
|  | aSig = ( aSig | 0x00800000 )<<7; | 
|  | bSig = ( bSig | 0x00800000 )<<8; | 
|  | if ( bSig <= ( aSig + aSig ) ) { | 
|  | aSig >>= 1; | 
|  | ++zExp; | 
|  | } | 
|  | zSig = ( ( (uint64_t) aSig )<<32 ) / bSig; | 
|  | if ( ( zSig & 0x3F ) == 0 ) { | 
|  | zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 ); | 
|  | } | 
|  | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the remainder of the single-precision floating-point value `a' | 
|  | | with respect to the corresponding value `b'.  The operation is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 float32_rem( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, zSign; | 
|  | int_fast16_t aExp, bExp, expDiff; | 
|  | uint32_t aSig, bSig; | 
|  | uint32_t q; | 
|  | uint64_t aSig64, bSig64, q64; | 
|  | uint32_t alternateASig; | 
|  | int32_t sigMean; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSig = extractFloat32Frac( b ); | 
|  | bExp = extractFloat32Exp( b ); | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | 
|  | return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return a; | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | expDiff = aExp - bExp; | 
|  | aSig |= 0x00800000; | 
|  | bSig |= 0x00800000; | 
|  | if ( expDiff < 32 ) { | 
|  | aSig <<= 8; | 
|  | bSig <<= 8; | 
|  | if ( expDiff < 0 ) { | 
|  | if ( expDiff < -1 ) return a; | 
|  | aSig >>= 1; | 
|  | } | 
|  | q = ( bSig <= aSig ); | 
|  | if ( q ) aSig -= bSig; | 
|  | if ( 0 < expDiff ) { | 
|  | q = ( ( (uint64_t) aSig )<<32 ) / bSig; | 
|  | q >>= 32 - expDiff; | 
|  | bSig >>= 2; | 
|  | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | 
|  | } | 
|  | else { | 
|  | aSig >>= 2; | 
|  | bSig >>= 2; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if ( bSig <= aSig ) aSig -= bSig; | 
|  | aSig64 = ( (uint64_t) aSig )<<40; | 
|  | bSig64 = ( (uint64_t) bSig )<<40; | 
|  | expDiff -= 64; | 
|  | while ( 0 < expDiff ) { | 
|  | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | 
|  | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | 
|  | aSig64 = - ( ( bSig * q64 )<<38 ); | 
|  | expDiff -= 62; | 
|  | } | 
|  | expDiff += 64; | 
|  | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | 
|  | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | 
|  | q = q64>>( 64 - expDiff ); | 
|  | bSig <<= 6; | 
|  | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | 
|  | } | 
|  | do { | 
|  | alternateASig = aSig; | 
|  | ++q; | 
|  | aSig -= bSig; | 
|  | } while ( 0 <= (int32_t) aSig ); | 
|  | sigMean = aSig + alternateASig; | 
|  | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | 
|  | aSig = alternateASig; | 
|  | } | 
|  | zSign = ( (int32_t) aSig < 0 ); | 
|  | if ( zSign ) aSig = - aSig; | 
|  | return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of multiplying the single-precision floating-point values | 
|  | | `a' and `b' then adding 'c', with no intermediate rounding step after the | 
|  | | multiplication.  The operation is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic 754-2008. | 
|  | | The flags argument allows the caller to select negation of the | 
|  | | addend, the intermediate product, or the final result. (The difference | 
|  | | between this and having the caller do a separate negation is that negating | 
|  | | externally will flip the sign bit on NaNs.) | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 float32_muladd(float32 a, float32 b, float32 c, int flags STATUS_PARAM) | 
|  | { | 
|  | flag aSign, bSign, cSign, zSign; | 
|  | int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff; | 
|  | uint32_t aSig, bSig, cSig; | 
|  | flag pInf, pZero, pSign; | 
|  | uint64_t pSig64, cSig64, zSig64; | 
|  | uint32_t pSig; | 
|  | int shiftcount; | 
|  | flag signflip, infzero; | 
|  |  | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  | c = float32_squash_input_denormal(c STATUS_VAR); | 
|  | aSig = extractFloat32Frac(a); | 
|  | aExp = extractFloat32Exp(a); | 
|  | aSign = extractFloat32Sign(a); | 
|  | bSig = extractFloat32Frac(b); | 
|  | bExp = extractFloat32Exp(b); | 
|  | bSign = extractFloat32Sign(b); | 
|  | cSig = extractFloat32Frac(c); | 
|  | cExp = extractFloat32Exp(c); | 
|  | cSign = extractFloat32Sign(c); | 
|  |  | 
|  | infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) || | 
|  | (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0)); | 
|  |  | 
|  | /* It is implementation-defined whether the cases of (0,inf,qnan) | 
|  | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | 
|  | * they return if they do), so we have to hand this information | 
|  | * off to the target-specific pick-a-NaN routine. | 
|  | */ | 
|  | if (((aExp == 0xff) && aSig) || | 
|  | ((bExp == 0xff) && bSig) || | 
|  | ((cExp == 0xff) && cSig)) { | 
|  | return propagateFloat32MulAddNaN(a, b, c, infzero STATUS_VAR); | 
|  | } | 
|  |  | 
|  | if (infzero) { | 
|  | float_raise(float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  |  | 
|  | if (flags & float_muladd_negate_c) { | 
|  | cSign ^= 1; | 
|  | } | 
|  |  | 
|  | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | 
|  |  | 
|  | /* Work out the sign and type of the product */ | 
|  | pSign = aSign ^ bSign; | 
|  | if (flags & float_muladd_negate_product) { | 
|  | pSign ^= 1; | 
|  | } | 
|  | pInf = (aExp == 0xff) || (bExp == 0xff); | 
|  | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | 
|  |  | 
|  | if (cExp == 0xff) { | 
|  | if (pInf && (pSign ^ cSign)) { | 
|  | /* addition of opposite-signed infinities => InvalidOperation */ | 
|  | float_raise(float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  | /* Otherwise generate an infinity of the same sign */ | 
|  | return packFloat32(cSign ^ signflip, 0xff, 0); | 
|  | } | 
|  |  | 
|  | if (pInf) { | 
|  | return packFloat32(pSign ^ signflip, 0xff, 0); | 
|  | } | 
|  |  | 
|  | if (pZero) { | 
|  | if (cExp == 0) { | 
|  | if (cSig == 0) { | 
|  | /* Adding two exact zeroes */ | 
|  | if (pSign == cSign) { | 
|  | zSign = pSign; | 
|  | } else if (STATUS(float_rounding_mode) == float_round_down) { | 
|  | zSign = 1; | 
|  | } else { | 
|  | zSign = 0; | 
|  | } | 
|  | return packFloat32(zSign ^ signflip, 0, 0); | 
|  | } | 
|  | /* Exact zero plus a denorm */ | 
|  | if (STATUS(flush_to_zero)) { | 
|  | float_raise(float_flag_output_denormal STATUS_VAR); | 
|  | return packFloat32(cSign ^ signflip, 0, 0); | 
|  | } | 
|  | } | 
|  | /* Zero plus something non-zero : just return the something */ | 
|  | return make_float32(float32_val(c) ^ (signflip << 31)); | 
|  | } | 
|  |  | 
|  | if (aExp == 0) { | 
|  | normalizeFloat32Subnormal(aSig, &aExp, &aSig); | 
|  | } | 
|  | if (bExp == 0) { | 
|  | normalizeFloat32Subnormal(bSig, &bExp, &bSig); | 
|  | } | 
|  |  | 
|  | /* Calculate the actual result a * b + c */ | 
|  |  | 
|  | /* Multiply first; this is easy. */ | 
|  | /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f | 
|  | * because we want the true exponent, not the "one-less-than" | 
|  | * flavour that roundAndPackFloat32() takes. | 
|  | */ | 
|  | pExp = aExp + bExp - 0x7e; | 
|  | aSig = (aSig | 0x00800000) << 7; | 
|  | bSig = (bSig | 0x00800000) << 8; | 
|  | pSig64 = (uint64_t)aSig * bSig; | 
|  | if ((int64_t)(pSig64 << 1) >= 0) { | 
|  | pSig64 <<= 1; | 
|  | pExp--; | 
|  | } | 
|  |  | 
|  | zSign = pSign ^ signflip; | 
|  |  | 
|  | /* Now pSig64 is the significand of the multiply, with the explicit bit in | 
|  | * position 62. | 
|  | */ | 
|  | if (cExp == 0) { | 
|  | if (!cSig) { | 
|  | /* Throw out the special case of c being an exact zero now */ | 
|  | shift64RightJamming(pSig64, 32, &pSig64); | 
|  | pSig = pSig64; | 
|  | return roundAndPackFloat32(zSign, pExp - 1, | 
|  | pSig STATUS_VAR); | 
|  | } | 
|  | normalizeFloat32Subnormal(cSig, &cExp, &cSig); | 
|  | } | 
|  |  | 
|  | cSig64 = (uint64_t)cSig << (62 - 23); | 
|  | cSig64 |= LIT64(0x4000000000000000); | 
|  | expDiff = pExp - cExp; | 
|  |  | 
|  | if (pSign == cSign) { | 
|  | /* Addition */ | 
|  | if (expDiff > 0) { | 
|  | /* scale c to match p */ | 
|  | shift64RightJamming(cSig64, expDiff, &cSig64); | 
|  | zExp = pExp; | 
|  | } else if (expDiff < 0) { | 
|  | /* scale p to match c */ | 
|  | shift64RightJamming(pSig64, -expDiff, &pSig64); | 
|  | zExp = cExp; | 
|  | } else { | 
|  | /* no scaling needed */ | 
|  | zExp = cExp; | 
|  | } | 
|  | /* Add significands and make sure explicit bit ends up in posn 62 */ | 
|  | zSig64 = pSig64 + cSig64; | 
|  | if ((int64_t)zSig64 < 0) { | 
|  | shift64RightJamming(zSig64, 1, &zSig64); | 
|  | } else { | 
|  | zExp--; | 
|  | } | 
|  | } else { | 
|  | /* Subtraction */ | 
|  | if (expDiff > 0) { | 
|  | shift64RightJamming(cSig64, expDiff, &cSig64); | 
|  | zSig64 = pSig64 - cSig64; | 
|  | zExp = pExp; | 
|  | } else if (expDiff < 0) { | 
|  | shift64RightJamming(pSig64, -expDiff, &pSig64); | 
|  | zSig64 = cSig64 - pSig64; | 
|  | zExp = cExp; | 
|  | zSign ^= 1; | 
|  | } else { | 
|  | zExp = pExp; | 
|  | if (cSig64 < pSig64) { | 
|  | zSig64 = pSig64 - cSig64; | 
|  | } else if (pSig64 < cSig64) { | 
|  | zSig64 = cSig64 - pSig64; | 
|  | zSign ^= 1; | 
|  | } else { | 
|  | /* Exact zero */ | 
|  | zSign = signflip; | 
|  | if (STATUS(float_rounding_mode) == float_round_down) { | 
|  | zSign ^= 1; | 
|  | } | 
|  | return packFloat32(zSign, 0, 0); | 
|  | } | 
|  | } | 
|  | --zExp; | 
|  | /* Normalize to put the explicit bit back into bit 62. */ | 
|  | shiftcount = countLeadingZeros64(zSig64) - 1; | 
|  | zSig64 <<= shiftcount; | 
|  | zExp -= shiftcount; | 
|  | } | 
|  | shift64RightJamming(zSig64, 32, &zSig64); | 
|  | return roundAndPackFloat32(zSign, zExp, zSig64 STATUS_VAR); | 
|  | } | 
|  |  | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the square root of the single-precision floating-point value `a'. | 
|  | | The operation is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 float32_sqrt( float32 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, zExp; | 
|  | uint32_t aSig, zSig; | 
|  | uint64_t rem, term; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); | 
|  | if ( ! aSign ) return a; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  | if ( aSign ) { | 
|  | if ( ( aExp | aSig ) == 0 ) return a; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return float32_zero; | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | 
|  | aSig = ( aSig | 0x00800000 )<<8; | 
|  | zSig = estimateSqrt32( aExp, aSig ) + 2; | 
|  | if ( ( zSig & 0x7F ) <= 5 ) { | 
|  | if ( zSig < 2 ) { | 
|  | zSig = 0x7FFFFFFF; | 
|  | goto roundAndPack; | 
|  | } | 
|  | aSig >>= aExp & 1; | 
|  | term = ( (uint64_t) zSig ) * zSig; | 
|  | rem = ( ( (uint64_t) aSig )<<32 ) - term; | 
|  | while ( (int64_t) rem < 0 ) { | 
|  | --zSig; | 
|  | rem += ( ( (uint64_t) zSig )<<1 ) | 1; | 
|  | } | 
|  | zSig |= ( rem != 0 ); | 
|  | } | 
|  | shift32RightJamming( zSig, 1, &zSig ); | 
|  | roundAndPack: | 
|  | return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the binary exponential of the single-precision floating-point value | 
|  | | `a'. The operation is performed according to the IEC/IEEE Standard for | 
|  | | Binary Floating-Point Arithmetic. | 
|  | | | 
|  | | Uses the following identities: | 
|  | | | 
|  | | 1. ------------------------------------------------------------------------- | 
|  | |      x    x*ln(2) | 
|  | |     2  = e | 
|  | | | 
|  | | 2. ------------------------------------------------------------------------- | 
|  | |                      2     3     4     5           n | 
|  | |      x        x     x     x     x     x           x | 
|  | |     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ... | 
|  | |               1!    2!    3!    4!    5!          n! | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static const float64 float32_exp2_coefficients[15] = | 
|  | { | 
|  | const_float64( 0x3ff0000000000000ll ), /*  1 */ | 
|  | const_float64( 0x3fe0000000000000ll ), /*  2 */ | 
|  | const_float64( 0x3fc5555555555555ll ), /*  3 */ | 
|  | const_float64( 0x3fa5555555555555ll ), /*  4 */ | 
|  | const_float64( 0x3f81111111111111ll ), /*  5 */ | 
|  | const_float64( 0x3f56c16c16c16c17ll ), /*  6 */ | 
|  | const_float64( 0x3f2a01a01a01a01all ), /*  7 */ | 
|  | const_float64( 0x3efa01a01a01a01all ), /*  8 */ | 
|  | const_float64( 0x3ec71de3a556c734ll ), /*  9 */ | 
|  | const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ | 
|  | const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ | 
|  | const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ | 
|  | const_float64( 0x3de6124613a86d09ll ), /* 13 */ | 
|  | const_float64( 0x3da93974a8c07c9dll ), /* 14 */ | 
|  | const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ | 
|  | }; | 
|  |  | 
|  | float32 float32_exp2( float32 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint32_t aSig; | 
|  | float64 r, x, xn; | 
|  | int i; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  |  | 
|  | if ( aExp == 0xFF) { | 
|  | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); | 
|  | return (aSign) ? float32_zero : a; | 
|  | } | 
|  | if (aExp == 0) { | 
|  | if (aSig == 0) return float32_one; | 
|  | } | 
|  |  | 
|  | float_raise( float_flag_inexact STATUS_VAR); | 
|  |  | 
|  | /* ******************************* */ | 
|  | /* using float64 for approximation */ | 
|  | /* ******************************* */ | 
|  | x = float32_to_float64(a STATUS_VAR); | 
|  | x = float64_mul(x, float64_ln2 STATUS_VAR); | 
|  |  | 
|  | xn = x; | 
|  | r = float64_one; | 
|  | for (i = 0 ; i < 15 ; i++) { | 
|  | float64 f; | 
|  |  | 
|  | f = float64_mul(xn, float32_exp2_coefficients[i] STATUS_VAR); | 
|  | r = float64_add(r, f STATUS_VAR); | 
|  |  | 
|  | xn = float64_mul(xn, x STATUS_VAR); | 
|  | } | 
|  |  | 
|  | return float64_to_float32(r, status); | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the binary log of the single-precision floating-point value `a'. | 
|  | | The operation is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | float32 float32_log2( float32 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, zSign; | 
|  | int_fast16_t aExp; | 
|  | uint32_t aSig, zSig, i; | 
|  |  | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  |  | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | if ( aSign ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float32_default_nan; | 
|  | } | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  |  | 
|  | aExp -= 0x7F; | 
|  | aSig |= 0x00800000; | 
|  | zSign = aExp < 0; | 
|  | zSig = aExp << 23; | 
|  |  | 
|  | for (i = 1 << 22; i > 0; i >>= 1) { | 
|  | aSig = ( (uint64_t)aSig * aSig ) >> 23; | 
|  | if ( aSig & 0x01000000 ) { | 
|  | aSig >>= 1; | 
|  | zSig |= i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ( zSign ) | 
|  | zSig = -zSig; | 
|  |  | 
|  | return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point value `a' is equal to | 
|  | | the corresponding value `b', and 0 otherwise.  The invalid exception is | 
|  | | raised if either operand is a NaN.  Otherwise, the comparison is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float32_eq( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | uint32_t av, bv; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | av = float32_val(a); | 
|  | bv = float32_val(b); | 
|  | return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point value `a' is less than | 
|  | | or equal to the corresponding value `b', and 0 otherwise.  The invalid | 
|  | | exception is raised if either operand is a NaN.  The comparison is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float32_le( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | uint32_t av, bv; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | av = float32_val(a); | 
|  | bv = float32_val(b); | 
|  | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); | 
|  | return ( av == bv ) || ( aSign ^ ( av < bv ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point value `a' is less than | 
|  | | the corresponding value `b', and 0 otherwise.  The invalid exception is | 
|  | | raised if either operand is a NaN.  The comparison is performed according | 
|  | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float32_lt( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | uint32_t av, bv; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | av = float32_val(a); | 
|  | bv = float32_val(b); | 
|  | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); | 
|  | return ( av != bv ) && ( aSign ^ ( av < bv ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | 
|  | | be compared, and 0 otherwise.  The invalid exception is raised if either | 
|  | | operand is a NaN.  The comparison is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float32_unordered( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point value `a' is equal to | 
|  | | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an | 
|  | | exception.  The comparison is performed according to the IEC/IEEE Standard | 
|  | | for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float32_eq_quiet( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return ( float32_val(a) == float32_val(b) ) || | 
|  | ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point value `a' is less than or | 
|  | | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not | 
|  | | cause an exception.  Otherwise, the comparison is performed according to the | 
|  | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float32_le_quiet( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | uint32_t av, bv; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | av = float32_val(a); | 
|  | bv = float32_val(b); | 
|  | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); | 
|  | return ( av == bv ) || ( aSign ^ ( av < bv ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point value `a' is less than | 
|  | | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an | 
|  | | exception.  Otherwise, the comparison is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float32_lt_quiet( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | uint32_t av, bv; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | av = float32_val(a); | 
|  | bv = float32_val(b); | 
|  | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); | 
|  | return ( av != bv ) && ( aSign ^ ( av < bv ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | 
|  | | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The | 
|  | | comparison is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | b = float32_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the double-precision floating-point value | 
|  | | `a' to the 32-bit two's complement integer format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic---which means in particular that the conversion is rounded | 
|  | | according to the current rounding mode.  If `a' is a NaN, the largest | 
|  | | positive integer is returned.  Otherwise, if the conversion overflows, the | 
|  | | largest integer with the same sign as `a' is returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int32 float64_to_int32( float64 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, shiftCount; | 
|  | uint64_t aSig; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | 
|  | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | 
|  | shiftCount = 0x42C - aExp; | 
|  | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | 
|  | return roundAndPackInt32( aSign, aSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the double-precision floating-point value | 
|  | | `a' to the 32-bit two's complement integer format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic, except that the conversion is always rounded toward zero. | 
|  | | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if | 
|  | | the conversion overflows, the largest integer with the same sign as `a' is | 
|  | | returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, shiftCount; | 
|  | uint64_t aSig, savedASig; | 
|  | int32_t z; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( 0x41E < aExp ) { | 
|  | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | 
|  | goto invalid; | 
|  | } | 
|  | else if ( aExp < 0x3FF ) { | 
|  | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return 0; | 
|  | } | 
|  | aSig |= LIT64( 0x0010000000000000 ); | 
|  | shiftCount = 0x433 - aExp; | 
|  | savedASig = aSig; | 
|  | aSig >>= shiftCount; | 
|  | z = aSig; | 
|  | if ( aSign ) z = - z; | 
|  | if ( ( z < 0 ) ^ aSign ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; | 
|  | } | 
|  | if ( ( aSig<<shiftCount ) != savedASig ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the double-precision floating-point value | 
|  | | `a' to the 16-bit two's complement integer format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic, except that the conversion is always rounded toward zero. | 
|  | | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if | 
|  | | the conversion overflows, the largest integer with the same sign as `a' is | 
|  | | returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int_fast16_t float64_to_int16_round_to_zero(float64 a STATUS_PARAM) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, shiftCount; | 
|  | uint64_t aSig, savedASig; | 
|  | int32 z; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( 0x40E < aExp ) { | 
|  | if ( ( aExp == 0x7FF ) && aSig ) { | 
|  | aSign = 0; | 
|  | } | 
|  | goto invalid; | 
|  | } | 
|  | else if ( aExp < 0x3FF ) { | 
|  | if ( aExp || aSig ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSig |= LIT64( 0x0010000000000000 ); | 
|  | shiftCount = 0x433 - aExp; | 
|  | savedASig = aSig; | 
|  | aSig >>= shiftCount; | 
|  | z = aSig; | 
|  | if ( aSign ) { | 
|  | z = - z; | 
|  | } | 
|  | if ( ( (int16_t)z < 0 ) ^ aSign ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return aSign ? (int32_t) 0xffff8000 : 0x7FFF; | 
|  | } | 
|  | if ( ( aSig<<shiftCount ) != savedASig ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | return z; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the double-precision floating-point value | 
|  | | `a' to the 64-bit two's complement integer format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic---which means in particular that the conversion is rounded | 
|  | | according to the current rounding mode.  If `a' is a NaN, the largest | 
|  | | positive integer is returned.  Otherwise, if the conversion overflows, the | 
|  | | largest integer with the same sign as `a' is returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int64 float64_to_int64( float64 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, shiftCount; | 
|  | uint64_t aSig, aSigExtra; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | 
|  | shiftCount = 0x433 - aExp; | 
|  | if ( shiftCount <= 0 ) { | 
|  | if ( 0x43E < aExp ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | if (    ! aSign | 
|  | || (    ( aExp == 0x7FF ) | 
|  | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | 
|  | ) { | 
|  | return LIT64( 0x7FFFFFFFFFFFFFFF ); | 
|  | } | 
|  | return (int64_t) LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | aSigExtra = 0; | 
|  | aSig <<= - shiftCount; | 
|  | } | 
|  | else { | 
|  | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | 
|  | } | 
|  | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the double-precision floating-point value | 
|  | | `a' to the 64-bit two's complement integer format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic, except that the conversion is always rounded toward zero. | 
|  | | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if | 
|  | | the conversion overflows, the largest integer with the same sign as `a' is | 
|  | | returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, shiftCount; | 
|  | uint64_t aSig; | 
|  | int64 z; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | 
|  | shiftCount = aExp - 0x433; | 
|  | if ( 0 <= shiftCount ) { | 
|  | if ( 0x43E <= aExp ) { | 
|  | if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | if (    ! aSign | 
|  | || (    ( aExp == 0x7FF ) | 
|  | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | 
|  | ) { | 
|  | return LIT64( 0x7FFFFFFFFFFFFFFF ); | 
|  | } | 
|  | } | 
|  | return (int64_t) LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | z = aSig<<shiftCount; | 
|  | } | 
|  | else { | 
|  | if ( aExp < 0x3FE ) { | 
|  | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return 0; | 
|  | } | 
|  | z = aSig>>( - shiftCount ); | 
|  | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | } | 
|  | if ( aSign ) z = - z; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the double-precision floating-point value | 
|  | | `a' to the single-precision floating-point format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 float64_to_float32( float64 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint64_t aSig; | 
|  | uint32_t zSig; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | return packFloat32( aSign, 0xFF, 0 ); | 
|  | } | 
|  | shift64RightJamming( aSig, 22, &aSig ); | 
|  | zSig = aSig; | 
|  | if ( aExp || zSig ) { | 
|  | zSig |= 0x40000000; | 
|  | aExp -= 0x381; | 
|  | } | 
|  | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | 
|  | | half-precision floating-point value, returning the result.  After being | 
|  | | shifted into the proper positions, the three fields are simply added | 
|  | | together to form the result.  This means that any integer portion of `zSig' | 
|  | | will be added into the exponent.  Since a properly normalized significand | 
|  | | will have an integer portion equal to 1, the `zExp' input should be 1 less | 
|  | | than the desired result exponent whenever `zSig' is a complete, normalized | 
|  | | significand. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | static float16 packFloat16(flag zSign, int_fast16_t zExp, uint16_t zSig) | 
|  | { | 
|  | return make_float16( | 
|  | (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig); | 
|  | } | 
|  |  | 
|  | /* Half precision floats come in two formats: standard IEEE and "ARM" format. | 
|  | The latter gains extra exponent range by omitting the NaN/Inf encodings.  */ | 
|  |  | 
|  | float32 float16_to_float32(float16 a, flag ieee STATUS_PARAM) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint32_t aSig; | 
|  |  | 
|  | aSign = extractFloat16Sign(a); | 
|  | aExp = extractFloat16Exp(a); | 
|  | aSig = extractFloat16Frac(a); | 
|  |  | 
|  | if (aExp == 0x1f && ieee) { | 
|  | if (aSig) { | 
|  | return commonNaNToFloat32(float16ToCommonNaN(a STATUS_VAR) STATUS_VAR); | 
|  | } | 
|  | return packFloat32(aSign, 0xff, 0); | 
|  | } | 
|  | if (aExp == 0) { | 
|  | int8 shiftCount; | 
|  |  | 
|  | if (aSig == 0) { | 
|  | return packFloat32(aSign, 0, 0); | 
|  | } | 
|  |  | 
|  | shiftCount = countLeadingZeros32( aSig ) - 21; | 
|  | aSig = aSig << shiftCount; | 
|  | aExp = -shiftCount; | 
|  | } | 
|  | return packFloat32( aSign, aExp + 0x70, aSig << 13); | 
|  | } | 
|  |  | 
|  | float16 float32_to_float16(float32 a, flag ieee STATUS_PARAM) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint32_t aSig; | 
|  | uint32_t mask; | 
|  | uint32_t increment; | 
|  | int8 roundingMode; | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | if ( aExp == 0xFF ) { | 
|  | if (aSig) { | 
|  | /* Input is a NaN */ | 
|  | float16 r = commonNaNToFloat16( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | if (!ieee) { | 
|  | return packFloat16(aSign, 0, 0); | 
|  | } | 
|  | return r; | 
|  | } | 
|  | /* Infinity */ | 
|  | if (!ieee) { | 
|  | float_raise(float_flag_invalid STATUS_VAR); | 
|  | return packFloat16(aSign, 0x1f, 0x3ff); | 
|  | } | 
|  | return packFloat16(aSign, 0x1f, 0); | 
|  | } | 
|  | if (aExp == 0 && aSig == 0) { | 
|  | return packFloat16(aSign, 0, 0); | 
|  | } | 
|  | /* Decimal point between bits 22 and 23.  */ | 
|  | aSig |= 0x00800000; | 
|  | aExp -= 0x7f; | 
|  | if (aExp < -14) { | 
|  | mask = 0x00ffffff; | 
|  | if (aExp >= -24) { | 
|  | mask >>= 25 + aExp; | 
|  | } | 
|  | } else { | 
|  | mask = 0x00001fff; | 
|  | } | 
|  | if (aSig & mask) { | 
|  | float_raise( float_flag_underflow STATUS_VAR ); | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | switch (roundingMode) { | 
|  | case float_round_nearest_even: | 
|  | increment = (mask + 1) >> 1; | 
|  | if ((aSig & mask) == increment) { | 
|  | increment = aSig & (increment << 1); | 
|  | } | 
|  | break; | 
|  | case float_round_up: | 
|  | increment = aSign ? 0 : mask; | 
|  | break; | 
|  | case float_round_down: | 
|  | increment = aSign ? mask : 0; | 
|  | break; | 
|  | default: /* round_to_zero */ | 
|  | increment = 0; | 
|  | break; | 
|  | } | 
|  | aSig += increment; | 
|  | if (aSig >= 0x01000000) { | 
|  | aSig >>= 1; | 
|  | aExp++; | 
|  | } | 
|  | } else if (aExp < -14 | 
|  | && STATUS(float_detect_tininess) == float_tininess_before_rounding) { | 
|  | float_raise( float_flag_underflow STATUS_VAR); | 
|  | } | 
|  |  | 
|  | if (ieee) { | 
|  | if (aExp > 15) { | 
|  | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | 
|  | return packFloat16(aSign, 0x1f, 0); | 
|  | } | 
|  | } else { | 
|  | if (aExp > 16) { | 
|  | float_raise(float_flag_invalid | float_flag_inexact STATUS_VAR); | 
|  | return packFloat16(aSign, 0x1f, 0x3ff); | 
|  | } | 
|  | } | 
|  | if (aExp < -24) { | 
|  | return packFloat16(aSign, 0, 0); | 
|  | } | 
|  | if (aExp < -14) { | 
|  | aSig >>= -14 - aExp; | 
|  | aExp = -14; | 
|  | } | 
|  | return packFloat16(aSign, aExp + 14, aSig >> 13); | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the double-precision floating-point value | 
|  | | `a' to the extended double-precision floating-point format.  The conversion | 
|  | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 float64_to_floatx80( float64 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint64_t aSig; | 
|  |  | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | return | 
|  | packFloatx80( | 
|  | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the double-precision floating-point value | 
|  | | `a' to the quadruple-precision floating-point format.  The conversion is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 float64_to_float128( float64 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint64_t aSig, zSig0, zSig1; | 
|  |  | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | return packFloat128( aSign, 0x7FFF, 0, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | --aExp; | 
|  | } | 
|  | shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); | 
|  | return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Rounds the double-precision floating-point value `a' to an integer, and | 
|  | | returns the result as a double-precision floating-point value.  The | 
|  | | operation is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 float64_round_to_int( float64 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint64_t lastBitMask, roundBitsMask; | 
|  | int8 roundingMode; | 
|  | uint64_t z; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aExp = extractFloat64Exp( a ); | 
|  | if ( 0x433 <= aExp ) { | 
|  | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | 
|  | return propagateFloat64NaN( a, a STATUS_VAR ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | if ( aExp < 0x3FF ) { | 
|  | if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a; | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | aSign = extractFloat64Sign( a ); | 
|  | switch ( STATUS(float_rounding_mode) ) { | 
|  | case float_round_nearest_even: | 
|  | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | 
|  | return packFloat64( aSign, 0x3FF, 0 ); | 
|  | } | 
|  | break; | 
|  | case float_round_down: | 
|  | return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0); | 
|  | case float_round_up: | 
|  | return make_float64( | 
|  | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 )); | 
|  | } | 
|  | return packFloat64( aSign, 0, 0 ); | 
|  | } | 
|  | lastBitMask = 1; | 
|  | lastBitMask <<= 0x433 - aExp; | 
|  | roundBitsMask = lastBitMask - 1; | 
|  | z = float64_val(a); | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | if ( roundingMode == float_round_nearest_even ) { | 
|  | z += lastBitMask>>1; | 
|  | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | 
|  | } | 
|  | else if ( roundingMode != float_round_to_zero ) { | 
|  | if ( extractFloat64Sign( make_float64(z) ) ^ ( roundingMode == float_round_up ) ) { | 
|  | z += roundBitsMask; | 
|  | } | 
|  | } | 
|  | z &= ~ roundBitsMask; | 
|  | if ( z != float64_val(a) ) | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return make_float64(z); | 
|  |  | 
|  | } | 
|  |  | 
|  | float64 float64_trunc_to_int( float64 a STATUS_PARAM) | 
|  | { | 
|  | int oldmode; | 
|  | float64 res; | 
|  | oldmode = STATUS(float_rounding_mode); | 
|  | STATUS(float_rounding_mode) = float_round_to_zero; | 
|  | res = float64_round_to_int(a STATUS_VAR); | 
|  | STATUS(float_rounding_mode) = oldmode; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of adding the absolute values of the double-precision | 
|  | | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated | 
|  | | before being returned.  `zSign' is ignored if the result is a NaN. | 
|  | | The addition is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) | 
|  | { | 
|  | int_fast16_t aExp, bExp, zExp; | 
|  | uint64_t aSig, bSig, zSig; | 
|  | int_fast16_t expDiff; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | bSig = extractFloat64Frac( b ); | 
|  | bExp = extractFloat64Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | aSig <<= 9; | 
|  | bSig <<= 9; | 
|  | if ( 0 < expDiff ) { | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | --expDiff; | 
|  | } | 
|  | else { | 
|  | bSig |= LIT64( 0x2000000000000000 ); | 
|  | } | 
|  | shift64RightJamming( bSig, expDiff, &bSig ); | 
|  | zExp = aExp; | 
|  | } | 
|  | else if ( expDiff < 0 ) { | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | return packFloat64( zSign, 0x7FF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | ++expDiff; | 
|  | } | 
|  | else { | 
|  | aSig |= LIT64( 0x2000000000000000 ); | 
|  | } | 
|  | shift64RightJamming( aSig, - expDiff, &aSig ); | 
|  | zExp = bExp; | 
|  | } | 
|  | else { | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if (STATUS(flush_to_zero)) { | 
|  | if (aSig | bSig) { | 
|  | float_raise(float_flag_output_denormal STATUS_VAR); | 
|  | } | 
|  | return packFloat64(zSign, 0, 0); | 
|  | } | 
|  | return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); | 
|  | } | 
|  | zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; | 
|  | zExp = aExp; | 
|  | goto roundAndPack; | 
|  | } | 
|  | aSig |= LIT64( 0x2000000000000000 ); | 
|  | zSig = ( aSig + bSig )<<1; | 
|  | --zExp; | 
|  | if ( (int64_t) zSig < 0 ) { | 
|  | zSig = aSig + bSig; | 
|  | ++zExp; | 
|  | } | 
|  | roundAndPack: | 
|  | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of subtracting the absolute values of the double- | 
|  | | precision floating-point values `a' and `b'.  If `zSign' is 1, the | 
|  | | difference is negated before being returned.  `zSign' is ignored if the | 
|  | | result is a NaN.  The subtraction is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) | 
|  | { | 
|  | int_fast16_t aExp, bExp, zExp; | 
|  | uint64_t aSig, bSig, zSig; | 
|  | int_fast16_t expDiff; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | bSig = extractFloat64Frac( b ); | 
|  | bExp = extractFloat64Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | aSig <<= 10; | 
|  | bSig <<= 10; | 
|  | if ( 0 < expDiff ) goto aExpBigger; | 
|  | if ( expDiff < 0 ) goto bExpBigger; | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | aExp = 1; | 
|  | bExp = 1; | 
|  | } | 
|  | if ( bSig < aSig ) goto aBigger; | 
|  | if ( aSig < bSig ) goto bBigger; | 
|  | return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | 
|  | bExpBigger: | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | return packFloat64( zSign ^ 1, 0x7FF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | ++expDiff; | 
|  | } | 
|  | else { | 
|  | aSig |= LIT64( 0x4000000000000000 ); | 
|  | } | 
|  | shift64RightJamming( aSig, - expDiff, &aSig ); | 
|  | bSig |= LIT64( 0x4000000000000000 ); | 
|  | bBigger: | 
|  | zSig = bSig - aSig; | 
|  | zExp = bExp; | 
|  | zSign ^= 1; | 
|  | goto normalizeRoundAndPack; | 
|  | aExpBigger: | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | --expDiff; | 
|  | } | 
|  | else { | 
|  | bSig |= LIT64( 0x4000000000000000 ); | 
|  | } | 
|  | shift64RightJamming( bSig, expDiff, &bSig ); | 
|  | aSig |= LIT64( 0x4000000000000000 ); | 
|  | aBigger: | 
|  | zSig = aSig - bSig; | 
|  | zExp = aExp; | 
|  | normalizeRoundAndPack: | 
|  | --zExp; | 
|  | return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of adding the double-precision floating-point values `a' | 
|  | | and `b'.  The operation is performed according to the IEC/IEEE Standard for | 
|  | | Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 float64_add( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return addFloat64Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  | else { | 
|  | return subFloat64Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of subtracting the double-precision floating-point values | 
|  | | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard | 
|  | | for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 float64_sub( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return subFloat64Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  | else { | 
|  | return addFloat64Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of multiplying the double-precision floating-point values | 
|  | | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard | 
|  | | for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 float64_mul( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int_fast16_t aExp, bExp, zExp; | 
|  | uint64_t aSig, bSig, zSig0, zSig1; | 
|  |  | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSig = extractFloat64Frac( b ); | 
|  | bExp = extractFloat64Exp( b ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | 
|  | return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | if ( ( bExp | bSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  | return packFloat64( zSign, 0x7FF, 0 ); | 
|  | } | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  | return packFloat64( zSign, 0x7FF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); | 
|  | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | zExp = aExp + bExp - 0x3FF; | 
|  | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | 
|  | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | 
|  | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | 
|  | zSig0 |= ( zSig1 != 0 ); | 
|  | if ( 0 <= (int64_t) ( zSig0<<1 ) ) { | 
|  | zSig0 <<= 1; | 
|  | --zExp; | 
|  | } | 
|  | return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of dividing the double-precision floating-point value `a' | 
|  | | by the corresponding value `b'.  The operation is performed according to | 
|  | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 float64_div( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int_fast16_t aExp, bExp, zExp; | 
|  | uint64_t aSig, bSig, zSig; | 
|  | uint64_t rem0, rem1; | 
|  | uint64_t term0, term1; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSig = extractFloat64Frac( b ); | 
|  | bExp = extractFloat64Exp( b ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  | return packFloat64( zSign, 0x7FF, 0 ); | 
|  | } | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | return packFloat64( zSign, 0, 0 ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  | float_raise( float_flag_divbyzero STATUS_VAR); | 
|  | return packFloat64( zSign, 0x7FF, 0 ); | 
|  | } | 
|  | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | zExp = aExp - bExp + 0x3FD; | 
|  | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | 
|  | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | 
|  | if ( bSig <= ( aSig + aSig ) ) { | 
|  | aSig >>= 1; | 
|  | ++zExp; | 
|  | } | 
|  | zSig = estimateDiv128To64( aSig, 0, bSig ); | 
|  | if ( ( zSig & 0x1FF ) <= 2 ) { | 
|  | mul64To128( bSig, zSig, &term0, &term1 ); | 
|  | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | 
|  | while ( (int64_t) rem0 < 0 ) { | 
|  | --zSig; | 
|  | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | 
|  | } | 
|  | zSig |= ( rem1 != 0 ); | 
|  | } | 
|  | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the remainder of the double-precision floating-point value `a' | 
|  | | with respect to the corresponding value `b'.  The operation is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 float64_rem( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, zSign; | 
|  | int_fast16_t aExp, bExp, expDiff; | 
|  | uint64_t aSig, bSig; | 
|  | uint64_t q, alternateASig; | 
|  | int64_t sigMean; | 
|  |  | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSig = extractFloat64Frac( b ); | 
|  | bExp = extractFloat64Exp( b ); | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | 
|  | return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return a; | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | expDiff = aExp - bExp; | 
|  | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | 
|  | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | 
|  | if ( expDiff < 0 ) { | 
|  | if ( expDiff < -1 ) return a; | 
|  | aSig >>= 1; | 
|  | } | 
|  | q = ( bSig <= aSig ); | 
|  | if ( q ) aSig -= bSig; | 
|  | expDiff -= 64; | 
|  | while ( 0 < expDiff ) { | 
|  | q = estimateDiv128To64( aSig, 0, bSig ); | 
|  | q = ( 2 < q ) ? q - 2 : 0; | 
|  | aSig = - ( ( bSig>>2 ) * q ); | 
|  | expDiff -= 62; | 
|  | } | 
|  | expDiff += 64; | 
|  | if ( 0 < expDiff ) { | 
|  | q = estimateDiv128To64( aSig, 0, bSig ); | 
|  | q = ( 2 < q ) ? q - 2 : 0; | 
|  | q >>= 64 - expDiff; | 
|  | bSig >>= 2; | 
|  | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | 
|  | } | 
|  | else { | 
|  | aSig >>= 2; | 
|  | bSig >>= 2; | 
|  | } | 
|  | do { | 
|  | alternateASig = aSig; | 
|  | ++q; | 
|  | aSig -= bSig; | 
|  | } while ( 0 <= (int64_t) aSig ); | 
|  | sigMean = aSig + alternateASig; | 
|  | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | 
|  | aSig = alternateASig; | 
|  | } | 
|  | zSign = ( (int64_t) aSig < 0 ); | 
|  | if ( zSign ) aSig = - aSig; | 
|  | return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of multiplying the double-precision floating-point values | 
|  | | `a' and `b' then adding 'c', with no intermediate rounding step after the | 
|  | | multiplication.  The operation is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic 754-2008. | 
|  | | The flags argument allows the caller to select negation of the | 
|  | | addend, the intermediate product, or the final result. (The difference | 
|  | | between this and having the caller do a separate negation is that negating | 
|  | | externally will flip the sign bit on NaNs.) | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 float64_muladd(float64 a, float64 b, float64 c, int flags STATUS_PARAM) | 
|  | { | 
|  | flag aSign, bSign, cSign, zSign; | 
|  | int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff; | 
|  | uint64_t aSig, bSig, cSig; | 
|  | flag pInf, pZero, pSign; | 
|  | uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1; | 
|  | int shiftcount; | 
|  | flag signflip, infzero; | 
|  |  | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  | c = float64_squash_input_denormal(c STATUS_VAR); | 
|  | aSig = extractFloat64Frac(a); | 
|  | aExp = extractFloat64Exp(a); | 
|  | aSign = extractFloat64Sign(a); | 
|  | bSig = extractFloat64Frac(b); | 
|  | bExp = extractFloat64Exp(b); | 
|  | bSign = extractFloat64Sign(b); | 
|  | cSig = extractFloat64Frac(c); | 
|  | cExp = extractFloat64Exp(c); | 
|  | cSign = extractFloat64Sign(c); | 
|  |  | 
|  | infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) || | 
|  | (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0)); | 
|  |  | 
|  | /* It is implementation-defined whether the cases of (0,inf,qnan) | 
|  | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | 
|  | * they return if they do), so we have to hand this information | 
|  | * off to the target-specific pick-a-NaN routine. | 
|  | */ | 
|  | if (((aExp == 0x7ff) && aSig) || | 
|  | ((bExp == 0x7ff) && bSig) || | 
|  | ((cExp == 0x7ff) && cSig)) { | 
|  | return propagateFloat64MulAddNaN(a, b, c, infzero STATUS_VAR); | 
|  | } | 
|  |  | 
|  | if (infzero) { | 
|  | float_raise(float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  |  | 
|  | if (flags & float_muladd_negate_c) { | 
|  | cSign ^= 1; | 
|  | } | 
|  |  | 
|  | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | 
|  |  | 
|  | /* Work out the sign and type of the product */ | 
|  | pSign = aSign ^ bSign; | 
|  | if (flags & float_muladd_negate_product) { | 
|  | pSign ^= 1; | 
|  | } | 
|  | pInf = (aExp == 0x7ff) || (bExp == 0x7ff); | 
|  | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | 
|  |  | 
|  | if (cExp == 0x7ff) { | 
|  | if (pInf && (pSign ^ cSign)) { | 
|  | /* addition of opposite-signed infinities => InvalidOperation */ | 
|  | float_raise(float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  | /* Otherwise generate an infinity of the same sign */ | 
|  | return packFloat64(cSign ^ signflip, 0x7ff, 0); | 
|  | } | 
|  |  | 
|  | if (pInf) { | 
|  | return packFloat64(pSign ^ signflip, 0x7ff, 0); | 
|  | } | 
|  |  | 
|  | if (pZero) { | 
|  | if (cExp == 0) { | 
|  | if (cSig == 0) { | 
|  | /* Adding two exact zeroes */ | 
|  | if (pSign == cSign) { | 
|  | zSign = pSign; | 
|  | } else if (STATUS(float_rounding_mode) == float_round_down) { | 
|  | zSign = 1; | 
|  | } else { | 
|  | zSign = 0; | 
|  | } | 
|  | return packFloat64(zSign ^ signflip, 0, 0); | 
|  | } | 
|  | /* Exact zero plus a denorm */ | 
|  | if (STATUS(flush_to_zero)) { | 
|  | float_raise(float_flag_output_denormal STATUS_VAR); | 
|  | return packFloat64(cSign ^ signflip, 0, 0); | 
|  | } | 
|  | } | 
|  | /* Zero plus something non-zero : just return the something */ | 
|  | return make_float64(float64_val(c) ^ ((uint64_t)signflip << 63)); | 
|  | } | 
|  |  | 
|  | if (aExp == 0) { | 
|  | normalizeFloat64Subnormal(aSig, &aExp, &aSig); | 
|  | } | 
|  | if (bExp == 0) { | 
|  | normalizeFloat64Subnormal(bSig, &bExp, &bSig); | 
|  | } | 
|  |  | 
|  | /* Calculate the actual result a * b + c */ | 
|  |  | 
|  | /* Multiply first; this is easy. */ | 
|  | /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff | 
|  | * because we want the true exponent, not the "one-less-than" | 
|  | * flavour that roundAndPackFloat64() takes. | 
|  | */ | 
|  | pExp = aExp + bExp - 0x3fe; | 
|  | aSig = (aSig | LIT64(0x0010000000000000))<<10; | 
|  | bSig = (bSig | LIT64(0x0010000000000000))<<11; | 
|  | mul64To128(aSig, bSig, &pSig0, &pSig1); | 
|  | if ((int64_t)(pSig0 << 1) >= 0) { | 
|  | shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1); | 
|  | pExp--; | 
|  | } | 
|  |  | 
|  | zSign = pSign ^ signflip; | 
|  |  | 
|  | /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit | 
|  | * bit in position 126. | 
|  | */ | 
|  | if (cExp == 0) { | 
|  | if (!cSig) { | 
|  | /* Throw out the special case of c being an exact zero now */ | 
|  | shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1); | 
|  | return roundAndPackFloat64(zSign, pExp - 1, | 
|  | pSig1 STATUS_VAR); | 
|  | } | 
|  | normalizeFloat64Subnormal(cSig, &cExp, &cSig); | 
|  | } | 
|  |  | 
|  | /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the | 
|  | * significand of the addend, with the explicit bit in position 126. | 
|  | */ | 
|  | cSig0 = cSig << (126 - 64 - 52); | 
|  | cSig1 = 0; | 
|  | cSig0 |= LIT64(0x4000000000000000); | 
|  | expDiff = pExp - cExp; | 
|  |  | 
|  | if (pSign == cSign) { | 
|  | /* Addition */ | 
|  | if (expDiff > 0) { | 
|  | /* scale c to match p */ | 
|  | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | 
|  | zExp = pExp; | 
|  | } else if (expDiff < 0) { | 
|  | /* scale p to match c */ | 
|  | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | 
|  | zExp = cExp; | 
|  | } else { | 
|  | /* no scaling needed */ | 
|  | zExp = cExp; | 
|  | } | 
|  | /* Add significands and make sure explicit bit ends up in posn 126 */ | 
|  | add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | 
|  | if ((int64_t)zSig0 < 0) { | 
|  | shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1); | 
|  | } else { | 
|  | zExp--; | 
|  | } | 
|  | shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1); | 
|  | return roundAndPackFloat64(zSign, zExp, zSig1 STATUS_VAR); | 
|  | } else { | 
|  | /* Subtraction */ | 
|  | if (expDiff > 0) { | 
|  | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | 
|  | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | 
|  | zExp = pExp; | 
|  | } else if (expDiff < 0) { | 
|  | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | 
|  | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | 
|  | zExp = cExp; | 
|  | zSign ^= 1; | 
|  | } else { | 
|  | zExp = pExp; | 
|  | if (lt128(cSig0, cSig1, pSig0, pSig1)) { | 
|  | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | 
|  | } else if (lt128(pSig0, pSig1, cSig0, cSig1)) { | 
|  | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | 
|  | zSign ^= 1; | 
|  | } else { | 
|  | /* Exact zero */ | 
|  | zSign = signflip; | 
|  | if (STATUS(float_rounding_mode) == float_round_down) { | 
|  | zSign ^= 1; | 
|  | } | 
|  | return packFloat64(zSign, 0, 0); | 
|  | } | 
|  | } | 
|  | --zExp; | 
|  | /* Do the equivalent of normalizeRoundAndPackFloat64() but | 
|  | * starting with the significand in a pair of uint64_t. | 
|  | */ | 
|  | if (zSig0) { | 
|  | shiftcount = countLeadingZeros64(zSig0) - 1; | 
|  | shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1); | 
|  | if (zSig1) { | 
|  | zSig0 |= 1; | 
|  | } | 
|  | zExp -= shiftcount; | 
|  | } else { | 
|  | shiftcount = countLeadingZeros64(zSig1) - 1; | 
|  | zSig0 = zSig1 << shiftcount; | 
|  | zExp -= (shiftcount + 64); | 
|  | } | 
|  | return roundAndPackFloat64(zSign, zExp, zSig0 STATUS_VAR); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the square root of the double-precision floating-point value `a'. | 
|  | | The operation is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 float64_sqrt( float64 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp, zExp; | 
|  | uint64_t aSig, zSig, doubleZSig; | 
|  | uint64_t rem0, rem1, term0, term1; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR ); | 
|  | if ( ! aSign ) return a; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  | if ( aSign ) { | 
|  | if ( ( aExp | aSig ) == 0 ) return a; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return float64_zero; | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | 
|  | aSig |= LIT64( 0x0010000000000000 ); | 
|  | zSig = estimateSqrt32( aExp, aSig>>21 ); | 
|  | aSig <<= 9 - ( aExp & 1 ); | 
|  | zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); | 
|  | if ( ( zSig & 0x1FF ) <= 5 ) { | 
|  | doubleZSig = zSig<<1; | 
|  | mul64To128( zSig, zSig, &term0, &term1 ); | 
|  | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | 
|  | while ( (int64_t) rem0 < 0 ) { | 
|  | --zSig; | 
|  | doubleZSig -= 2; | 
|  | add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); | 
|  | } | 
|  | zSig |= ( ( rem0 | rem1 ) != 0 ); | 
|  | } | 
|  | return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the binary log of the double-precision floating-point value `a'. | 
|  | | The operation is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | float64 float64_log2( float64 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, zSign; | 
|  | int_fast16_t aExp; | 
|  | uint64_t aSig, aSig0, aSig1, zSig, i; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  |  | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | if ( aSign ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return float64_default_nan; | 
|  | } | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  |  | 
|  | aExp -= 0x3FF; | 
|  | aSig |= LIT64( 0x0010000000000000 ); | 
|  | zSign = aExp < 0; | 
|  | zSig = (uint64_t)aExp << 52; | 
|  | for (i = 1LL << 51; i > 0; i >>= 1) { | 
|  | mul64To128( aSig, aSig, &aSig0, &aSig1 ); | 
|  | aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); | 
|  | if ( aSig & LIT64( 0x0020000000000000 ) ) { | 
|  | aSig >>= 1; | 
|  | zSig |= i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ( zSign ) | 
|  | zSig = -zSig; | 
|  | return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point value `a' is equal to the | 
|  | | corresponding value `b', and 0 otherwise.  The invalid exception is raised | 
|  | | if either operand is a NaN.  Otherwise, the comparison is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float64_eq( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | uint64_t av, bv; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | av = float64_val(a); | 
|  | bv = float64_val(b); | 
|  | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point value `a' is less than or | 
|  | | equal to the corresponding value `b', and 0 otherwise.  The invalid | 
|  | | exception is raised if either operand is a NaN.  The comparison is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float64_le( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | uint64_t av, bv; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | av = float64_val(a); | 
|  | bv = float64_val(b); | 
|  | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); | 
|  | return ( av == bv ) || ( aSign ^ ( av < bv ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point value `a' is less than | 
|  | | the corresponding value `b', and 0 otherwise.  The invalid exception is | 
|  | | raised if either operand is a NaN.  The comparison is performed according | 
|  | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float64_lt( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | uint64_t av, bv; | 
|  |  | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | av = float64_val(a); | 
|  | bv = float64_val(b); | 
|  | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); | 
|  | return ( av != bv ) && ( aSign ^ ( av < bv ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | 
|  | | be compared, and 0 otherwise.  The invalid exception is raised if either | 
|  | | operand is a NaN.  The comparison is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float64_unordered( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point value `a' is equal to the | 
|  | | corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an | 
|  | | exception.The comparison is performed according to the IEC/IEEE Standard | 
|  | | for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float64_eq_quiet( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | uint64_t av, bv; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | av = float64_val(a); | 
|  | bv = float64_val(b); | 
|  | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point value `a' is less than or | 
|  | | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not | 
|  | | cause an exception.  Otherwise, the comparison is performed according to the | 
|  | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float64_le_quiet( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | uint64_t av, bv; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | av = float64_val(a); | 
|  | bv = float64_val(b); | 
|  | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); | 
|  | return ( av == bv ) || ( aSign ^ ( av < bv ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point value `a' is less than | 
|  | | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an | 
|  | | exception.  Otherwise, the comparison is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float64_lt_quiet( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | uint64_t av, bv; | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | av = float64_val(a); | 
|  | bv = float64_val(b); | 
|  | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); | 
|  | return ( av != bv ) && ( aSign ^ ( av < bv ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | 
|  | | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The | 
|  | | comparison is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | b = float64_squash_input_denormal(b STATUS_VAR); | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the extended double-precision floating- | 
|  | | point value `a' to the 32-bit two's complement integer format.  The | 
|  | | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic---which means in particular that the conversion | 
|  | | is rounded according to the current rounding mode.  If `a' is a NaN, the | 
|  | | largest positive integer is returned.  Otherwise, if the conversion | 
|  | | overflows, the largest integer with the same sign as `a' is returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int32 floatx80_to_int32( floatx80 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, shiftCount; | 
|  | uint64_t aSig; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; | 
|  | shiftCount = 0x4037 - aExp; | 
|  | if ( shiftCount <= 0 ) shiftCount = 1; | 
|  | shift64RightJamming( aSig, shiftCount, &aSig ); | 
|  | return roundAndPackInt32( aSign, aSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the extended double-precision floating- | 
|  | | point value `a' to the 32-bit two's complement integer format.  The | 
|  | | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic, except that the conversion is always rounded | 
|  | | toward zero.  If `a' is a NaN, the largest positive integer is returned. | 
|  | | Otherwise, if the conversion overflows, the largest integer with the same | 
|  | | sign as `a' is returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, shiftCount; | 
|  | uint64_t aSig, savedASig; | 
|  | int32_t z; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | if ( 0x401E < aExp ) { | 
|  | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; | 
|  | goto invalid; | 
|  | } | 
|  | else if ( aExp < 0x3FFF ) { | 
|  | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return 0; | 
|  | } | 
|  | shiftCount = 0x403E - aExp; | 
|  | savedASig = aSig; | 
|  | aSig >>= shiftCount; | 
|  | z = aSig; | 
|  | if ( aSign ) z = - z; | 
|  | if ( ( z < 0 ) ^ aSign ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; | 
|  | } | 
|  | if ( ( aSig<<shiftCount ) != savedASig ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the extended double-precision floating- | 
|  | | point value `a' to the 64-bit two's complement integer format.  The | 
|  | | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic---which means in particular that the conversion | 
|  | | is rounded according to the current rounding mode.  If `a' is a NaN, | 
|  | | the largest positive integer is returned.  Otherwise, if the conversion | 
|  | | overflows, the largest integer with the same sign as `a' is returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int64 floatx80_to_int64( floatx80 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, shiftCount; | 
|  | uint64_t aSig, aSigExtra; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | shiftCount = 0x403E - aExp; | 
|  | if ( shiftCount <= 0 ) { | 
|  | if ( shiftCount ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | if (    ! aSign | 
|  | || (    ( aExp == 0x7FFF ) | 
|  | && ( aSig != LIT64( 0x8000000000000000 ) ) ) | 
|  | ) { | 
|  | return LIT64( 0x7FFFFFFFFFFFFFFF ); | 
|  | } | 
|  | return (int64_t) LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | aSigExtra = 0; | 
|  | } | 
|  | else { | 
|  | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | 
|  | } | 
|  | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the extended double-precision floating- | 
|  | | point value `a' to the 64-bit two's complement integer format.  The | 
|  | | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic, except that the conversion is always rounded | 
|  | | toward zero.  If `a' is a NaN, the largest positive integer is returned. | 
|  | | Otherwise, if the conversion overflows, the largest integer with the same | 
|  | | sign as `a' is returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, shiftCount; | 
|  | uint64_t aSig; | 
|  | int64 z; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | shiftCount = aExp - 0x403E; | 
|  | if ( 0 <= shiftCount ) { | 
|  | aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); | 
|  | if ( ( a.high != 0xC03E ) || aSig ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { | 
|  | return LIT64( 0x7FFFFFFFFFFFFFFF ); | 
|  | } | 
|  | } | 
|  | return (int64_t) LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | else if ( aExp < 0x3FFF ) { | 
|  | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return 0; | 
|  | } | 
|  | z = aSig>>( - shiftCount ); | 
|  | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | if ( aSign ) z = - z; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the extended double-precision floating- | 
|  | | point value `a' to the single-precision floating-point format.  The | 
|  | | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 floatx80_to_float32( floatx80 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp; | 
|  | uint64_t aSig; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( aSig<<1 ) ) { | 
|  | return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | } | 
|  | return packFloat32( aSign, 0xFF, 0 ); | 
|  | } | 
|  | shift64RightJamming( aSig, 33, &aSig ); | 
|  | if ( aExp || aSig ) aExp -= 0x3F81; | 
|  | return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the extended double-precision floating- | 
|  | | point value `a' to the double-precision floating-point format.  The | 
|  | | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 floatx80_to_float64( floatx80 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp; | 
|  | uint64_t aSig, zSig; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( aSig<<1 ) ) { | 
|  | return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | } | 
|  | return packFloat64( aSign, 0x7FF, 0 ); | 
|  | } | 
|  | shift64RightJamming( aSig, 1, &zSig ); | 
|  | if ( aExp || aSig ) aExp -= 0x3C01; | 
|  | return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the extended double-precision floating- | 
|  | | point value `a' to the quadruple-precision floating-point format.  The | 
|  | | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 floatx80_to_float128( floatx80 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int_fast16_t aExp; | 
|  | uint64_t aSig, zSig0, zSig1; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { | 
|  | return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | } | 
|  | shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); | 
|  | return packFloat128( aSign, aExp, zSig0, zSig1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Rounds the extended double-precision floating-point value `a' to an integer, | 
|  | | and returns the result as an extended quadruple-precision floating-point | 
|  | | value.  The operation is performed according to the IEC/IEEE Standard for | 
|  | | Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp; | 
|  | uint64_t lastBitMask, roundBitsMask; | 
|  | int8 roundingMode; | 
|  | floatx80 z; | 
|  |  | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | if ( 0x403E <= aExp ) { | 
|  | if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { | 
|  | return propagateFloatx80NaN( a, a STATUS_VAR ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | if ( aExp < 0x3FFF ) { | 
|  | if (    ( aExp == 0 ) | 
|  | && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { | 
|  | return a; | 
|  | } | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | switch ( STATUS(float_rounding_mode) ) { | 
|  | case float_round_nearest_even: | 
|  | if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) | 
|  | ) { | 
|  | return | 
|  | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | break; | 
|  | case float_round_down: | 
|  | return | 
|  | aSign ? | 
|  | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | 
|  | : packFloatx80( 0, 0, 0 ); | 
|  | case float_round_up: | 
|  | return | 
|  | aSign ? packFloatx80( 1, 0, 0 ) | 
|  | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | return packFloatx80( aSign, 0, 0 ); | 
|  | } | 
|  | lastBitMask = 1; | 
|  | lastBitMask <<= 0x403E - aExp; | 
|  | roundBitsMask = lastBitMask - 1; | 
|  | z = a; | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | if ( roundingMode == float_round_nearest_even ) { | 
|  | z.low += lastBitMask>>1; | 
|  | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | 
|  | } | 
|  | else if ( roundingMode != float_round_to_zero ) { | 
|  | if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { | 
|  | z.low += roundBitsMask; | 
|  | } | 
|  | } | 
|  | z.low &= ~ roundBitsMask; | 
|  | if ( z.low == 0 ) { | 
|  | ++z.high; | 
|  | z.low = LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of adding the absolute values of the extended double- | 
|  | | precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is | 
|  | | negated before being returned.  `zSign' is ignored if the result is a NaN. | 
|  | | The addition is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM) | 
|  | { | 
|  | int32 aExp, bExp, zExp; | 
|  | uint64_t aSig, bSig, zSig0, zSig1; | 
|  | int32 expDiff; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | bSig = extractFloatx80Frac( b ); | 
|  | bExp = extractFloatx80Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | if ( 0 < expDiff ) { | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) --expDiff; | 
|  | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | 
|  | zExp = aExp; | 
|  | } | 
|  | else if ( expDiff < 0 ) { | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( aExp == 0 ) ++expDiff; | 
|  | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | 
|  | zExp = bExp; | 
|  | } | 
|  | else { | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { | 
|  | return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | zSig1 = 0; | 
|  | zSig0 = aSig + bSig; | 
|  | if ( aExp == 0 ) { | 
|  | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | 
|  | goto roundAndPack; | 
|  | } | 
|  | zExp = aExp; | 
|  | goto shiftRight1; | 
|  | } | 
|  | zSig0 = aSig + bSig; | 
|  | if ( (int64_t) zSig0 < 0 ) goto roundAndPack; | 
|  | shiftRight1: | 
|  | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | 
|  | zSig0 |= LIT64( 0x8000000000000000 ); | 
|  | ++zExp; | 
|  | roundAndPack: | 
|  | return | 
|  | roundAndPackFloatx80( | 
|  | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of subtracting the absolute values of the extended | 
|  | | double-precision floating-point values `a' and `b'.  If `zSign' is 1, the | 
|  | | difference is negated before being returned.  `zSign' is ignored if the | 
|  | | result is a NaN.  The subtraction is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM ) | 
|  | { | 
|  | int32 aExp, bExp, zExp; | 
|  | uint64_t aSig, bSig, zSig0, zSig1; | 
|  | int32 expDiff; | 
|  | floatx80 z; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | bSig = extractFloatx80Frac( b ); | 
|  | bExp = extractFloatx80Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | if ( 0 < expDiff ) goto aExpBigger; | 
|  | if ( expDiff < 0 ) goto bExpBigger; | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { | 
|  | return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | aExp = 1; | 
|  | bExp = 1; | 
|  | } | 
|  | zSig1 = 0; | 
|  | if ( bSig < aSig ) goto aBigger; | 
|  | if ( aSig < bSig ) goto bBigger; | 
|  | return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | 
|  | bExpBigger: | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( aExp == 0 ) ++expDiff; | 
|  | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | 
|  | bBigger: | 
|  | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | 
|  | zExp = bExp; | 
|  | zSign ^= 1; | 
|  | goto normalizeRoundAndPack; | 
|  | aExpBigger: | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) --expDiff; | 
|  | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | 
|  | aBigger: | 
|  | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | 
|  | zExp = aExp; | 
|  | normalizeRoundAndPack: | 
|  | return | 
|  | normalizeRoundAndPackFloatx80( | 
|  | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of adding the extended double-precision floating-point | 
|  | | values `a' and `b'.  The operation is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return addFloatx80Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  | else { | 
|  | return subFloatx80Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of subtracting the extended double-precision floating- | 
|  | | point values `a' and `b'.  The operation is performed according to the | 
|  | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return subFloatx80Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  | else { | 
|  | return addFloatx80Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of multiplying the extended double-precision floating- | 
|  | | point values `a' and `b'.  The operation is performed according to the | 
|  | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int32 aExp, bExp, zExp; | 
|  | uint64_t aSig, bSig, zSig0, zSig1; | 
|  | floatx80 z; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSig = extractFloatx80Frac( b ); | 
|  | bExp = extractFloatx80Exp( b ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if (    (uint64_t) ( aSig<<1 ) | 
|  | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | 
|  | return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | if ( ( bExp | bSig ) == 0 ) goto invalid; | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | 
|  | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | 
|  | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | zExp = aExp + bExp - 0x3FFE; | 
|  | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | 
|  | if ( 0 < (int64_t) zSig0 ) { | 
|  | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); | 
|  | --zExp; | 
|  | } | 
|  | return | 
|  | roundAndPackFloatx80( | 
|  | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of dividing the extended double-precision floating-point | 
|  | | value `a' by the corresponding value `b'.  The operation is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int32 aExp, bExp, zExp; | 
|  | uint64_t aSig, bSig, zSig0, zSig1; | 
|  | uint64_t rem0, rem1, rem2, term0, term1, term2; | 
|  | floatx80 z; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSig = extractFloatx80Frac( b ); | 
|  | bExp = extractFloatx80Exp( b ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | goto invalid; | 
|  | } | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | return packFloatx80( zSign, 0, 0 ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | float_raise( float_flag_divbyzero STATUS_VAR); | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | 
|  | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | zExp = aExp - bExp + 0x3FFE; | 
|  | rem1 = 0; | 
|  | if ( bSig <= aSig ) { | 
|  | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | 
|  | ++zExp; | 
|  | } | 
|  | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | 
|  | mul64To128( bSig, zSig0, &term0, &term1 ); | 
|  | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | 
|  | while ( (int64_t) rem0 < 0 ) { | 
|  | --zSig0; | 
|  | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | 
|  | } | 
|  | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | 
|  | if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { | 
|  | mul64To128( bSig, zSig1, &term1, &term2 ); | 
|  | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | 
|  | while ( (int64_t) rem1 < 0 ) { | 
|  | --zSig1; | 
|  | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | 
|  | } | 
|  | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | 
|  | } | 
|  | return | 
|  | roundAndPackFloatx80( | 
|  | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the remainder of the extended double-precision floating-point value | 
|  | | `a' with respect to the corresponding value `b'.  The operation is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, zSign; | 
|  | int32 aExp, bExp, expDiff; | 
|  | uint64_t aSig0, aSig1, bSig; | 
|  | uint64_t q, term0, term1, alternateASig0, alternateASig1; | 
|  | floatx80 z; | 
|  |  | 
|  | aSig0 = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSig = extractFloatx80Frac( b ); | 
|  | bExp = extractFloatx80Exp( b ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if (    (uint64_t) ( aSig0<<1 ) | 
|  | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | 
|  | return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | goto invalid; | 
|  | } | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; | 
|  | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | 
|  | } | 
|  | bSig |= LIT64( 0x8000000000000000 ); | 
|  | zSign = aSign; | 
|  | expDiff = aExp - bExp; | 
|  | aSig1 = 0; | 
|  | if ( expDiff < 0 ) { | 
|  | if ( expDiff < -1 ) return a; | 
|  | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | 
|  | expDiff = 0; | 
|  | } | 
|  | q = ( bSig <= aSig0 ); | 
|  | if ( q ) aSig0 -= bSig; | 
|  | expDiff -= 64; | 
|  | while ( 0 < expDiff ) { | 
|  | q = estimateDiv128To64( aSig0, aSig1, bSig ); | 
|  | q = ( 2 < q ) ? q - 2 : 0; | 
|  | mul64To128( bSig, q, &term0, &term1 ); | 
|  | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | 
|  | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | 
|  | expDiff -= 62; | 
|  | } | 
|  | expDiff += 64; | 
|  | if ( 0 < expDiff ) { | 
|  | q = estimateDiv128To64( aSig0, aSig1, bSig ); | 
|  | q = ( 2 < q ) ? q - 2 : 0; | 
|  | q >>= 64 - expDiff; | 
|  | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | 
|  | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | 
|  | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | 
|  | while ( le128( term0, term1, aSig0, aSig1 ) ) { | 
|  | ++q; | 
|  | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | 
|  | } | 
|  | } | 
|  | else { | 
|  | term1 = 0; | 
|  | term0 = bSig; | 
|  | } | 
|  | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | 
|  | if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | 
|  | || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | 
|  | && ( q & 1 ) ) | 
|  | ) { | 
|  | aSig0 = alternateASig0; | 
|  | aSig1 = alternateASig1; | 
|  | zSign = ! zSign; | 
|  | } | 
|  | return | 
|  | normalizeRoundAndPackFloatx80( | 
|  | 80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the square root of the extended double-precision floating-point | 
|  | | value `a'.  The operation is performed according to the IEC/IEEE Standard | 
|  | | for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, zExp; | 
|  | uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; | 
|  | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | 
|  | floatx80 z; | 
|  |  | 
|  | aSig0 = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (uint64_t) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR ); | 
|  | if ( ! aSign ) return a; | 
|  | goto invalid; | 
|  | } | 
|  | if ( aSign ) { | 
|  | if ( ( aExp | aSig0 ) == 0 ) return a; | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | 
|  | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | 
|  | } | 
|  | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | 
|  | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | 
|  | shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); | 
|  | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | 
|  | doubleZSig0 = zSig0<<1; | 
|  | mul64To128( zSig0, zSig0, &term0, &term1 ); | 
|  | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | 
|  | while ( (int64_t) rem0 < 0 ) { | 
|  | --zSig0; | 
|  | doubleZSig0 -= 2; | 
|  | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | 
|  | } | 
|  | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | 
|  | if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { | 
|  | if ( zSig1 == 0 ) zSig1 = 1; | 
|  | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | 
|  | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | 
|  | mul64To128( zSig1, zSig1, &term2, &term3 ); | 
|  | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | 
|  | while ( (int64_t) rem1 < 0 ) { | 
|  | --zSig1; | 
|  | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | 
|  | term3 |= 1; | 
|  | term2 |= doubleZSig0; | 
|  | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | 
|  | } | 
|  | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | 
|  | } | 
|  | shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); | 
|  | zSig0 |= doubleZSig0; | 
|  | return | 
|  | roundAndPackFloatx80( | 
|  | STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point value `a' is equal | 
|  | | to the corresponding value `b', and 0 otherwise.  The invalid exception is | 
|  | | raised if either operand is a NaN.  Otherwise, the comparison is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | return | 
|  | ( a.low == b.low ) | 
|  | && (    ( a.high == b.high ) | 
|  | || (    ( a.low == 0 ) | 
|  | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) | 
|  | ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point value `a' is | 
|  | | less than or equal to the corresponding value `b', and 0 otherwise.  The | 
|  | | invalid exception is raised if either operand is a NaN.  The comparison is | 
|  | | performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | == 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? le128( b.high, b.low, a.high, a.low ) | 
|  | : le128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point value `a' is | 
|  | | less than the corresponding value `b', and 0 otherwise.  The invalid | 
|  | | exception is raised if either operand is a NaN.  The comparison is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | != 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? lt128( b.high, b.low, a.high, a.low ) | 
|  | : lt128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point values `a' and `b' | 
|  | | cannot be compared, and 0 otherwise.  The invalid exception is raised if | 
|  | | either operand is a NaN.   The comparison is performed according to the | 
|  | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point value `a' is | 
|  | | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not | 
|  | | cause an exception.  The comparison is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | if (    floatx80_is_signaling_nan( a ) | 
|  | || floatx80_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return | 
|  | ( a.low == b.low ) | 
|  | && (    ( a.high == b.high ) | 
|  | || (    ( a.low == 0 ) | 
|  | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) | 
|  | ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point value `a' is less | 
|  | | than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs | 
|  | | do not cause an exception.  Otherwise, the comparison is performed according | 
|  | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | if (    floatx80_is_signaling_nan( a ) | 
|  | || floatx80_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | == 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? le128( b.high, b.low, a.high, a.low ) | 
|  | : le128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point value `a' is less | 
|  | | than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause | 
|  | | an exception.  Otherwise, the comparison is performed according to the | 
|  | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | if (    floatx80_is_signaling_nan( a ) | 
|  | || floatx80_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | != 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? lt128( b.high, b.low, a.high, a.low ) | 
|  | : lt128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point values `a' and `b' | 
|  | | cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception. | 
|  | | The comparison is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | if (    floatx80_is_signaling_nan( a ) | 
|  | || floatx80_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the quadruple-precision floating-point | 
|  | | value `a' to the 32-bit two's complement integer format.  The conversion | 
|  | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic---which means in particular that the conversion is rounded | 
|  | | according to the current rounding mode.  If `a' is a NaN, the largest | 
|  | | positive integer is returned.  Otherwise, if the conversion overflows, the | 
|  | | largest integer with the same sign as `a' is returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int32 float128_to_int32( float128 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, shiftCount; | 
|  | uint64_t aSig0, aSig1; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; | 
|  | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | 
|  | aSig0 |= ( aSig1 != 0 ); | 
|  | shiftCount = 0x4028 - aExp; | 
|  | if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); | 
|  | return roundAndPackInt32( aSign, aSig0 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the quadruple-precision floating-point | 
|  | | value `a' to the 32-bit two's complement integer format.  The conversion | 
|  | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic, except that the conversion is always rounded toward zero.  If | 
|  | | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the | 
|  | | conversion overflows, the largest integer with the same sign as `a' is | 
|  | | returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, shiftCount; | 
|  | uint64_t aSig0, aSig1, savedASig; | 
|  | int32_t z; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | aSig0 |= ( aSig1 != 0 ); | 
|  | if ( 0x401E < aExp ) { | 
|  | if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; | 
|  | goto invalid; | 
|  | } | 
|  | else if ( aExp < 0x3FFF ) { | 
|  | if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | return 0; | 
|  | } | 
|  | aSig0 |= LIT64( 0x0001000000000000 ); | 
|  | shiftCount = 0x402F - aExp; | 
|  | savedASig = aSig0; | 
|  | aSig0 >>= shiftCount; | 
|  | z = aSig0; | 
|  | if ( aSign ) z = - z; | 
|  | if ( ( z < 0 ) ^ aSign ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; | 
|  | } | 
|  | if ( ( aSig0<<shiftCount ) != savedASig ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the quadruple-precision floating-point | 
|  | | value `a' to the 64-bit two's complement integer format.  The conversion | 
|  | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic---which means in particular that the conversion is rounded | 
|  | | according to the current rounding mode.  If `a' is a NaN, the largest | 
|  | | positive integer is returned.  Otherwise, if the conversion overflows, the | 
|  | | largest integer with the same sign as `a' is returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int64 float128_to_int64( float128 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, shiftCount; | 
|  | uint64_t aSig0, aSig1; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | 
|  | shiftCount = 0x402F - aExp; | 
|  | if ( shiftCount <= 0 ) { | 
|  | if ( 0x403E < aExp ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | if (    ! aSign | 
|  | || (    ( aExp == 0x7FFF ) | 
|  | && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) | 
|  | ) | 
|  | ) { | 
|  | return LIT64( 0x7FFFFFFFFFFFFFFF ); | 
|  | } | 
|  | return (int64_t) LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); | 
|  | } | 
|  | else { | 
|  | shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); | 
|  | } | 
|  | return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the quadruple-precision floating-point | 
|  | | value `a' to the 64-bit two's complement integer format.  The conversion | 
|  | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic, except that the conversion is always rounded toward zero. | 
|  | | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if | 
|  | | the conversion overflows, the largest integer with the same sign as `a' is | 
|  | | returned. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, shiftCount; | 
|  | uint64_t aSig0, aSig1; | 
|  | int64 z; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | 
|  | shiftCount = aExp - 0x402F; | 
|  | if ( 0 < shiftCount ) { | 
|  | if ( 0x403E <= aExp ) { | 
|  | aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); | 
|  | if (    ( a.high == LIT64( 0xC03E000000000000 ) ) | 
|  | && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { | 
|  | if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | else { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { | 
|  | return LIT64( 0x7FFFFFFFFFFFFFFF ); | 
|  | } | 
|  | } | 
|  | return (int64_t) LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); | 
|  | if ( (uint64_t) ( aSig1<<shiftCount ) ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if ( aExp < 0x3FFF ) { | 
|  | if ( aExp | aSig0 | aSig1 ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | z = aSig0>>( - shiftCount ); | 
|  | if (    aSig1 | 
|  | || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | } | 
|  | if ( aSign ) z = - z; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the quadruple-precision floating-point | 
|  | | value `a' to the single-precision floating-point format.  The conversion | 
|  | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 float128_to_float32( float128 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp; | 
|  | uint64_t aSig0, aSig1; | 
|  | uint32_t zSig; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( aSig0 | aSig1 ) { | 
|  | return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | } | 
|  | return packFloat32( aSign, 0xFF, 0 ); | 
|  | } | 
|  | aSig0 |= ( aSig1 != 0 ); | 
|  | shift64RightJamming( aSig0, 18, &aSig0 ); | 
|  | zSig = aSig0; | 
|  | if ( aExp || zSig ) { | 
|  | zSig |= 0x40000000; | 
|  | aExp -= 0x3F81; | 
|  | } | 
|  | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the quadruple-precision floating-point | 
|  | | value `a' to the double-precision floating-point format.  The conversion | 
|  | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | 
|  | | Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 float128_to_float64( float128 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp; | 
|  | uint64_t aSig0, aSig1; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( aSig0 | aSig1 ) { | 
|  | return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | } | 
|  | return packFloat64( aSign, 0x7FF, 0 ); | 
|  | } | 
|  | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | 
|  | aSig0 |= ( aSig1 != 0 ); | 
|  | if ( aExp || aSig0 ) { | 
|  | aSig0 |= LIT64( 0x4000000000000000 ); | 
|  | aExp -= 0x3C01; | 
|  | } | 
|  | return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the quadruple-precision floating-point | 
|  | | value `a' to the extended double-precision floating-point format.  The | 
|  | | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 float128_to_floatx80( float128 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp; | 
|  | uint64_t aSig0, aSig1; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( aSig0 | aSig1 ) { | 
|  | return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | 
|  | } | 
|  | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); | 
|  | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | 
|  | } | 
|  | else { | 
|  | aSig0 |= LIT64( 0x0001000000000000 ); | 
|  | } | 
|  | shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); | 
|  | return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Rounds the quadruple-precision floating-point value `a' to an integer, and | 
|  | | returns the result as a quadruple-precision floating-point value.  The | 
|  | | operation is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 float128_round_to_int( float128 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp; | 
|  | uint64_t lastBitMask, roundBitsMask; | 
|  | int8 roundingMode; | 
|  | float128 z; | 
|  |  | 
|  | aExp = extractFloat128Exp( a ); | 
|  | if ( 0x402F <= aExp ) { | 
|  | if ( 0x406F <= aExp ) { | 
|  | if (    ( aExp == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) | 
|  | ) { | 
|  | return propagateFloat128NaN( a, a STATUS_VAR ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | lastBitMask = 1; | 
|  | lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; | 
|  | roundBitsMask = lastBitMask - 1; | 
|  | z = a; | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | if ( roundingMode == float_round_nearest_even ) { | 
|  | if ( lastBitMask ) { | 
|  | add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); | 
|  | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | 
|  | } | 
|  | else { | 
|  | if ( (int64_t) z.low < 0 ) { | 
|  | ++z.high; | 
|  | if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if ( roundingMode != float_round_to_zero ) { | 
|  | if (   extractFloat128Sign( z ) | 
|  | ^ ( roundingMode == float_round_up ) ) { | 
|  | add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); | 
|  | } | 
|  | } | 
|  | z.low &= ~ roundBitsMask; | 
|  | } | 
|  | else { | 
|  | if ( aExp < 0x3FFF ) { | 
|  | if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | aSign = extractFloat128Sign( a ); | 
|  | switch ( STATUS(float_rounding_mode) ) { | 
|  | case float_round_nearest_even: | 
|  | if (    ( aExp == 0x3FFE ) | 
|  | && (   extractFloat128Frac0( a ) | 
|  | | extractFloat128Frac1( a ) ) | 
|  | ) { | 
|  | return packFloat128( aSign, 0x3FFF, 0, 0 ); | 
|  | } | 
|  | break; | 
|  | case float_round_down: | 
|  | return | 
|  | aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) | 
|  | : packFloat128( 0, 0, 0, 0 ); | 
|  | case float_round_up: | 
|  | return | 
|  | aSign ? packFloat128( 1, 0, 0, 0 ) | 
|  | : packFloat128( 0, 0x3FFF, 0, 0 ); | 
|  | } | 
|  | return packFloat128( aSign, 0, 0, 0 ); | 
|  | } | 
|  | lastBitMask = 1; | 
|  | lastBitMask <<= 0x402F - aExp; | 
|  | roundBitsMask = lastBitMask - 1; | 
|  | z.low = 0; | 
|  | z.high = a.high; | 
|  | roundingMode = STATUS(float_rounding_mode); | 
|  | if ( roundingMode == float_round_nearest_even ) { | 
|  | z.high += lastBitMask>>1; | 
|  | if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { | 
|  | z.high &= ~ lastBitMask; | 
|  | } | 
|  | } | 
|  | else if ( roundingMode != float_round_to_zero ) { | 
|  | if (   extractFloat128Sign( z ) | 
|  | ^ ( roundingMode == float_round_up ) ) { | 
|  | z.high |= ( a.low != 0 ); | 
|  | z.high += roundBitsMask; | 
|  | } | 
|  | } | 
|  | z.high &= ~ roundBitsMask; | 
|  | } | 
|  | if ( ( z.low != a.low ) || ( z.high != a.high ) ) { | 
|  | STATUS(float_exception_flags) |= float_flag_inexact; | 
|  | } | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of adding the absolute values of the quadruple-precision | 
|  | | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated | 
|  | | before being returned.  `zSign' is ignored if the result is a NaN. | 
|  | | The addition is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) | 
|  | { | 
|  | int32 aExp, bExp, zExp; | 
|  | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; | 
|  | int32 expDiff; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | bSig1 = extractFloat128Frac1( b ); | 
|  | bSig0 = extractFloat128Frac0( b ); | 
|  | bExp = extractFloat128Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | if ( 0 < expDiff ) { | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | --expDiff; | 
|  | } | 
|  | else { | 
|  | bSig0 |= LIT64( 0x0001000000000000 ); | 
|  | } | 
|  | shift128ExtraRightJamming( | 
|  | bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); | 
|  | zExp = aExp; | 
|  | } | 
|  | else if ( expDiff < 0 ) { | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | return packFloat128( zSign, 0x7FFF, 0, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | ++expDiff; | 
|  | } | 
|  | else { | 
|  | aSig0 |= LIT64( 0x0001000000000000 ); | 
|  | } | 
|  | shift128ExtraRightJamming( | 
|  | aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); | 
|  | zExp = bExp; | 
|  | } | 
|  | else { | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | 
|  | return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | 
|  | if ( aExp == 0 ) { | 
|  | if (STATUS(flush_to_zero)) { | 
|  | if (zSig0 | zSig1) { | 
|  | float_raise(float_flag_output_denormal STATUS_VAR); | 
|  | } | 
|  | return packFloat128(zSign, 0, 0, 0); | 
|  | } | 
|  | return packFloat128( zSign, 0, zSig0, zSig1 ); | 
|  | } | 
|  | zSig2 = 0; | 
|  | zSig0 |= LIT64( 0x0002000000000000 ); | 
|  | zExp = aExp; | 
|  | goto shiftRight1; | 
|  | } | 
|  | aSig0 |= LIT64( 0x0001000000000000 ); | 
|  | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | 
|  | --zExp; | 
|  | if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; | 
|  | ++zExp; | 
|  | shiftRight1: | 
|  | shift128ExtraRightJamming( | 
|  | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | 
|  | roundAndPack: | 
|  | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of subtracting the absolute values of the quadruple- | 
|  | | precision floating-point values `a' and `b'.  If `zSign' is 1, the | 
|  | | difference is negated before being returned.  `zSign' is ignored if the | 
|  | | result is a NaN.  The subtraction is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) | 
|  | { | 
|  | int32 aExp, bExp, zExp; | 
|  | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; | 
|  | int32 expDiff; | 
|  | float128 z; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | bSig1 = extractFloat128Frac1( b ); | 
|  | bSig0 = extractFloat128Frac0( b ); | 
|  | bExp = extractFloat128Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | 
|  | shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); | 
|  | if ( 0 < expDiff ) goto aExpBigger; | 
|  | if ( expDiff < 0 ) goto bExpBigger; | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | 
|  | return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.low = float128_default_nan_low; | 
|  | z.high = float128_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | aExp = 1; | 
|  | bExp = 1; | 
|  | } | 
|  | if ( bSig0 < aSig0 ) goto aBigger; | 
|  | if ( aSig0 < bSig0 ) goto bBigger; | 
|  | if ( bSig1 < aSig1 ) goto aBigger; | 
|  | if ( aSig1 < bSig1 ) goto bBigger; | 
|  | return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 ); | 
|  | bExpBigger: | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | ++expDiff; | 
|  | } | 
|  | else { | 
|  | aSig0 |= LIT64( 0x4000000000000000 ); | 
|  | } | 
|  | shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | 
|  | bSig0 |= LIT64( 0x4000000000000000 ); | 
|  | bBigger: | 
|  | sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); | 
|  | zExp = bExp; | 
|  | zSign ^= 1; | 
|  | goto normalizeRoundAndPack; | 
|  | aExpBigger: | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | --expDiff; | 
|  | } | 
|  | else { | 
|  | bSig0 |= LIT64( 0x4000000000000000 ); | 
|  | } | 
|  | shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); | 
|  | aSig0 |= LIT64( 0x4000000000000000 ); | 
|  | aBigger: | 
|  | sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | 
|  | zExp = aExp; | 
|  | normalizeRoundAndPack: | 
|  | --zExp; | 
|  | return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of adding the quadruple-precision floating-point values | 
|  | | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard | 
|  | | for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 float128_add( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | aSign = extractFloat128Sign( a ); | 
|  | bSign = extractFloat128Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return addFloat128Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  | else { | 
|  | return subFloat128Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of subtracting the quadruple-precision floating-point | 
|  | | values `a' and `b'.  The operation is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 float128_sub( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | aSign = extractFloat128Sign( a ); | 
|  | bSign = extractFloat128Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return subFloat128Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  | else { | 
|  | return addFloat128Sigs( a, b, aSign STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of multiplying the quadruple-precision floating-point | 
|  | | values `a' and `b'.  The operation is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 float128_mul( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int32 aExp, bExp, zExp; | 
|  | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; | 
|  | float128 z; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | bSig1 = extractFloat128Frac1( b ); | 
|  | bSig0 = extractFloat128Frac0( b ); | 
|  | bExp = extractFloat128Exp( b ); | 
|  | bSign = extractFloat128Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if (    ( aSig0 | aSig1 ) | 
|  | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | 
|  | return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; | 
|  | return packFloat128( zSign, 0x7FFF, 0, 0 ); | 
|  | } | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.low = float128_default_nan_low; | 
|  | z.high = float128_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | return packFloat128( zSign, 0x7FFF, 0, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | 
|  | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | 
|  | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | 
|  | } | 
|  | zExp = aExp + bExp - 0x4000; | 
|  | aSig0 |= LIT64( 0x0001000000000000 ); | 
|  | shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); | 
|  | mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); | 
|  | add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); | 
|  | zSig2 |= ( zSig3 != 0 ); | 
|  | if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { | 
|  | shift128ExtraRightJamming( | 
|  | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | 
|  | ++zExp; | 
|  | } | 
|  | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of dividing the quadruple-precision floating-point value | 
|  | | `a' by the corresponding value `b'.  The operation is performed according to | 
|  | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 float128_div( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int32 aExp, bExp, zExp; | 
|  | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; | 
|  | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | 
|  | float128 z; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | bSig1 = extractFloat128Frac1( b ); | 
|  | bSig0 = extractFloat128Frac0( b ); | 
|  | bExp = extractFloat128Exp( b ); | 
|  | bSign = extractFloat128Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | goto invalid; | 
|  | } | 
|  | return packFloat128( zSign, 0x7FFF, 0, 0 ); | 
|  | } | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | return packFloat128( zSign, 0, 0, 0 ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( ( bSig0 | bSig1 ) == 0 ) { | 
|  | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.low = float128_default_nan_low; | 
|  | z.high = float128_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | float_raise( float_flag_divbyzero STATUS_VAR); | 
|  | return packFloat128( zSign, 0x7FFF, 0, 0 ); | 
|  | } | 
|  | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | 
|  | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | 
|  | } | 
|  | zExp = aExp - bExp + 0x3FFD; | 
|  | shortShift128Left( | 
|  | aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); | 
|  | shortShift128Left( | 
|  | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | 
|  | if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { | 
|  | shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); | 
|  | ++zExp; | 
|  | } | 
|  | zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); | 
|  | mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); | 
|  | sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); | 
|  | while ( (int64_t) rem0 < 0 ) { | 
|  | --zSig0; | 
|  | add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); | 
|  | } | 
|  | zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); | 
|  | if ( ( zSig1 & 0x3FFF ) <= 4 ) { | 
|  | mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); | 
|  | sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); | 
|  | while ( (int64_t) rem1 < 0 ) { | 
|  | --zSig1; | 
|  | add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); | 
|  | } | 
|  | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | 
|  | } | 
|  | shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); | 
|  | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the remainder of the quadruple-precision floating-point value `a' | 
|  | | with respect to the corresponding value `b'.  The operation is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 float128_rem( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, zSign; | 
|  | int32 aExp, bExp, expDiff; | 
|  | uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; | 
|  | uint64_t allZero, alternateASig0, alternateASig1, sigMean1; | 
|  | int64_t sigMean0; | 
|  | float128 z; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | bSig1 = extractFloat128Frac1( b ); | 
|  | bSig0 = extractFloat128Frac0( b ); | 
|  | bExp = extractFloat128Exp( b ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if (    ( aSig0 | aSig1 ) | 
|  | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | 
|  | return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | } | 
|  | goto invalid; | 
|  | } | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( ( bSig0 | bSig1 ) == 0 ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.low = float128_default_nan_low; | 
|  | z.high = float128_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( ( aSig0 | aSig1 ) == 0 ) return a; | 
|  | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | 
|  | } | 
|  | expDiff = aExp - bExp; | 
|  | if ( expDiff < -1 ) return a; | 
|  | shortShift128Left( | 
|  | aSig0 | LIT64( 0x0001000000000000 ), | 
|  | aSig1, | 
|  | 15 - ( expDiff < 0 ), | 
|  | &aSig0, | 
|  | &aSig1 | 
|  | ); | 
|  | shortShift128Left( | 
|  | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | 
|  | q = le128( bSig0, bSig1, aSig0, aSig1 ); | 
|  | if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | 
|  | expDiff -= 64; | 
|  | while ( 0 < expDiff ) { | 
|  | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | 
|  | q = ( 4 < q ) ? q - 4 : 0; | 
|  | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | 
|  | shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); | 
|  | shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); | 
|  | sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); | 
|  | expDiff -= 61; | 
|  | } | 
|  | if ( -64 < expDiff ) { | 
|  | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | 
|  | q = ( 4 < q ) ? q - 4 : 0; | 
|  | q >>= - expDiff; | 
|  | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | 
|  | expDiff += 52; | 
|  | if ( expDiff < 0 ) { | 
|  | shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | 
|  | } | 
|  | else { | 
|  | shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); | 
|  | } | 
|  | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | 
|  | sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); | 
|  | } | 
|  | else { | 
|  | shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); | 
|  | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | 
|  | } | 
|  | do { | 
|  | alternateASig0 = aSig0; | 
|  | alternateASig1 = aSig1; | 
|  | ++q; | 
|  | sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | 
|  | } while ( 0 <= (int64_t) aSig0 ); | 
|  | add128( | 
|  | aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); | 
|  | if (    ( sigMean0 < 0 ) | 
|  | || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { | 
|  | aSig0 = alternateASig0; | 
|  | aSig1 = alternateASig1; | 
|  | } | 
|  | zSign = ( (int64_t) aSig0 < 0 ); | 
|  | if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); | 
|  | return | 
|  | normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the square root of the quadruple-precision floating-point value `a'. | 
|  | | The operation is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 float128_sqrt( float128 a STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, zExp; | 
|  | uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; | 
|  | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | 
|  | float128 z; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR ); | 
|  | if ( ! aSign ) return a; | 
|  | goto invalid; | 
|  | } | 
|  | if ( aSign ) { | 
|  | if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; | 
|  | invalid: | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.low = float128_default_nan_low; | 
|  | z.high = float128_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); | 
|  | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | 
|  | } | 
|  | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; | 
|  | aSig0 |= LIT64( 0x0001000000000000 ); | 
|  | zSig0 = estimateSqrt32( aExp, aSig0>>17 ); | 
|  | shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); | 
|  | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | 
|  | doubleZSig0 = zSig0<<1; | 
|  | mul64To128( zSig0, zSig0, &term0, &term1 ); | 
|  | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | 
|  | while ( (int64_t) rem0 < 0 ) { | 
|  | --zSig0; | 
|  | doubleZSig0 -= 2; | 
|  | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | 
|  | } | 
|  | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | 
|  | if ( ( zSig1 & 0x1FFF ) <= 5 ) { | 
|  | if ( zSig1 == 0 ) zSig1 = 1; | 
|  | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | 
|  | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | 
|  | mul64To128( zSig1, zSig1, &term2, &term3 ); | 
|  | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | 
|  | while ( (int64_t) rem1 < 0 ) { | 
|  | --zSig1; | 
|  | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | 
|  | term3 |= 1; | 
|  | term2 |= doubleZSig0; | 
|  | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | 
|  | } | 
|  | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | 
|  | } | 
|  | shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); | 
|  | return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | 
|  | | the corresponding value `b', and 0 otherwise.  The invalid exception is | 
|  | | raised if either operand is a NaN.  Otherwise, the comparison is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float128_eq( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  |  | 
|  | if (    (    ( extractFloat128Exp( a ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | 
|  | || (    ( extractFloat128Exp( b ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | return | 
|  | ( a.low == b.low ) | 
|  | && (    ( a.high == b.high ) | 
|  | || (    ( a.low == 0 ) | 
|  | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) | 
|  | ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point value `a' is less than | 
|  | | or equal to the corresponding value `b', and 0 otherwise.  The invalid | 
|  | | exception is raised if either operand is a NaN.  The comparison is performed | 
|  | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float128_le( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloat128Exp( a ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | 
|  | || (    ( extractFloat128Exp( b ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat128Sign( a ); | 
|  | bSign = extractFloat128Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | == 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? le128( b.high, b.low, a.high, a.low ) | 
|  | : le128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point value `a' is less than | 
|  | | the corresponding value `b', and 0 otherwise.  The invalid exception is | 
|  | | raised if either operand is a NaN.  The comparison is performed according | 
|  | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float128_lt( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloat128Exp( a ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | 
|  | || (    ( extractFloat128Exp( b ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat128Sign( a ); | 
|  | bSign = extractFloat128Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | != 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? lt128( b.high, b.low, a.high, a.low ) | 
|  | : lt128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | 
|  | | be compared, and 0 otherwise.  The invalid exception is raised if either | 
|  | | operand is a NaN. The comparison is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float128_unordered( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | if (    (    ( extractFloat128Exp( a ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | 
|  | || (    ( extractFloat128Exp( b ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | 
|  | | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an | 
|  | | exception.  The comparison is performed according to the IEC/IEEE Standard | 
|  | | for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float128_eq_quiet( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  |  | 
|  | if (    (    ( extractFloat128Exp( a ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | 
|  | || (    ( extractFloat128Exp( b ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | 
|  | ) { | 
|  | if (    float128_is_signaling_nan( a ) | 
|  | || float128_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return | 
|  | ( a.low == b.low ) | 
|  | && (    ( a.high == b.high ) | 
|  | || (    ( a.low == 0 ) | 
|  | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) | 
|  | ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point value `a' is less than | 
|  | | or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not | 
|  | | cause an exception.  Otherwise, the comparison is performed according to the | 
|  | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float128_le_quiet( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloat128Exp( a ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | 
|  | || (    ( extractFloat128Exp( b ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | 
|  | ) { | 
|  | if (    float128_is_signaling_nan( a ) | 
|  | || float128_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat128Sign( a ); | 
|  | bSign = extractFloat128Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | == 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? le128( b.high, b.low, a.high, a.low ) | 
|  | : le128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point value `a' is less than | 
|  | | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an | 
|  | | exception.  Otherwise, the comparison is performed according to the IEC/IEEE | 
|  | | Standard for Binary Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float128_lt_quiet( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloat128Exp( a ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | 
|  | || (    ( extractFloat128Exp( b ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | 
|  | ) { | 
|  | if (    float128_is_signaling_nan( a ) | 
|  | || float128_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat128Sign( a ); | 
|  | bSign = extractFloat128Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | != 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? lt128( b.high, b.low, a.high, a.low ) | 
|  | : lt128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | 
|  | | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The | 
|  | | comparison is performed according to the IEC/IEEE Standard for Binary | 
|  | | Floating-Point Arithmetic. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float128_unordered_quiet( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | if (    (    ( extractFloat128Exp( a ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | 
|  | || (    ( extractFloat128Exp( b ) == 0x7FFF ) | 
|  | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | 
|  | ) { | 
|  | if (    float128_is_signaling_nan( a ) | 
|  | || float128_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* misc functions */ | 
|  | float32 uint32_to_float32( uint32 a STATUS_PARAM ) | 
|  | { | 
|  | return int64_to_float32(a STATUS_VAR); | 
|  | } | 
|  |  | 
|  | float64 uint32_to_float64( uint32 a STATUS_PARAM ) | 
|  | { | 
|  | return int64_to_float64(a STATUS_VAR); | 
|  | } | 
|  |  | 
|  | uint32 float32_to_uint32( float32 a STATUS_PARAM ) | 
|  | { | 
|  | int64_t v; | 
|  | uint32 res; | 
|  |  | 
|  | v = float32_to_int64(a STATUS_VAR); | 
|  | if (v < 0) { | 
|  | res = 0; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else if (v > 0xffffffff) { | 
|  | res = 0xffffffff; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else { | 
|  | res = v; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32 float32_to_uint32_round_to_zero( float32 a STATUS_PARAM ) | 
|  | { | 
|  | int64_t v; | 
|  | uint32 res; | 
|  |  | 
|  | v = float32_to_int64_round_to_zero(a STATUS_VAR); | 
|  | if (v < 0) { | 
|  | res = 0; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else if (v > 0xffffffff) { | 
|  | res = 0xffffffff; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else { | 
|  | res = v; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint_fast16_t float32_to_uint16_round_to_zero(float32 a STATUS_PARAM) | 
|  | { | 
|  | int64_t v; | 
|  | uint_fast16_t res; | 
|  |  | 
|  | v = float32_to_int64_round_to_zero(a STATUS_VAR); | 
|  | if (v < 0) { | 
|  | res = 0; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else if (v > 0xffff) { | 
|  | res = 0xffff; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else { | 
|  | res = v; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32 float64_to_uint32( float64 a STATUS_PARAM ) | 
|  | { | 
|  | int64_t v; | 
|  | uint32 res; | 
|  |  | 
|  | v = float64_to_int64(a STATUS_VAR); | 
|  | if (v < 0) { | 
|  | res = 0; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else if (v > 0xffffffff) { | 
|  | res = 0xffffffff; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else { | 
|  | res = v; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32 float64_to_uint32_round_to_zero( float64 a STATUS_PARAM ) | 
|  | { | 
|  | int64_t v; | 
|  | uint32 res; | 
|  |  | 
|  | v = float64_to_int64_round_to_zero(a STATUS_VAR); | 
|  | if (v < 0) { | 
|  | res = 0; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else if (v > 0xffffffff) { | 
|  | res = 0xffffffff; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else { | 
|  | res = v; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint_fast16_t float64_to_uint16_round_to_zero(float64 a STATUS_PARAM) | 
|  | { | 
|  | int64_t v; | 
|  | uint_fast16_t res; | 
|  |  | 
|  | v = float64_to_int64_round_to_zero(a STATUS_VAR); | 
|  | if (v < 0) { | 
|  | res = 0; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else if (v > 0xffff) { | 
|  | res = 0xffff; | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } else { | 
|  | res = v; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* FIXME: This looks broken.  */ | 
|  | uint64_t float64_to_uint64 (float64 a STATUS_PARAM) | 
|  | { | 
|  | int64_t v; | 
|  |  | 
|  | v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR)); | 
|  | v += float64_val(a); | 
|  | v = float64_to_int64(make_float64(v) STATUS_VAR); | 
|  |  | 
|  | return v - INT64_MIN; | 
|  | } | 
|  |  | 
|  | uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM) | 
|  | { | 
|  | int64_t v; | 
|  |  | 
|  | v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR)); | 
|  | v += float64_val(a); | 
|  | v = float64_to_int64_round_to_zero(make_float64(v) STATUS_VAR); | 
|  |  | 
|  | return v - INT64_MIN; | 
|  | } | 
|  |  | 
|  | #define COMPARE(s, nan_exp)                                                  \ | 
|  | INLINE int float ## s ## _compare_internal( float ## s a, float ## s b,      \ | 
|  | int is_quiet STATUS_PARAM )            \ | 
|  | {                                                                            \ | 
|  | flag aSign, bSign;                                                       \ | 
|  | uint ## s ## _t av, bv;                                                  \ | 
|  | a = float ## s ## _squash_input_denormal(a STATUS_VAR);                  \ | 
|  | b = float ## s ## _squash_input_denormal(b STATUS_VAR);                  \ | 
|  | \ | 
|  | if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) &&                    \ | 
|  | extractFloat ## s ## Frac( a ) ) ||                                 \ | 
|  | ( ( extractFloat ## s ## Exp( b ) == nan_exp ) &&                    \ | 
|  | extractFloat ## s ## Frac( b ) )) {                                \ | 
|  | if (!is_quiet ||                                                     \ | 
|  | float ## s ## _is_signaling_nan( a ) ||                          \ | 
|  | float ## s ## _is_signaling_nan( b ) ) {                         \ | 
|  | float_raise( float_flag_invalid STATUS_VAR);                     \ | 
|  | }                                                                    \ | 
|  | return float_relation_unordered;                                     \ | 
|  | }                                                                        \ | 
|  | aSign = extractFloat ## s ## Sign( a );                                  \ | 
|  | bSign = extractFloat ## s ## Sign( b );                                  \ | 
|  | av = float ## s ## _val(a);                                              \ | 
|  | bv = float ## s ## _val(b);                                              \ | 
|  | if ( aSign != bSign ) {                                                  \ | 
|  | if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) {                   \ | 
|  | /* zero case */                                                  \ | 
|  | return float_relation_equal;                                     \ | 
|  | } else {                                                             \ | 
|  | return 1 - (2 * aSign);                                          \ | 
|  | }                                                                    \ | 
|  | } else {                                                                 \ | 
|  | if (av == bv) {                                                      \ | 
|  | return float_relation_equal;                                     \ | 
|  | } else {                                                             \ | 
|  | return 1 - 2 * (aSign ^ ( av < bv ));                            \ | 
|  | }                                                                    \ | 
|  | }                                                                        \ | 
|  | }                                                                            \ | 
|  | \ | 
|  | int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM )        \ | 
|  | {                                                                            \ | 
|  | return float ## s ## _compare_internal(a, b, 0 STATUS_VAR);              \ | 
|  | }                                                                            \ | 
|  | \ | 
|  | int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM )  \ | 
|  | {                                                                            \ | 
|  | return float ## s ## _compare_internal(a, b, 1 STATUS_VAR);              \ | 
|  | } | 
|  |  | 
|  | COMPARE(32, 0xff) | 
|  | COMPARE(64, 0x7ff) | 
|  |  | 
|  | INLINE int floatx80_compare_internal( floatx80 a, floatx80 b, | 
|  | int is_quiet STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (( ( extractFloatx80Exp( a ) == 0x7fff ) && | 
|  | ( extractFloatx80Frac( a )<<1 ) ) || | 
|  | ( ( extractFloatx80Exp( b ) == 0x7fff ) && | 
|  | ( extractFloatx80Frac( b )<<1 ) )) { | 
|  | if (!is_quiet || | 
|  | floatx80_is_signaling_nan( a ) || | 
|  | floatx80_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return float_relation_unordered; | 
|  | } | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  |  | 
|  | if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && | 
|  | ( ( a.low | b.low ) == 0 ) ) { | 
|  | /* zero case */ | 
|  | return float_relation_equal; | 
|  | } else { | 
|  | return 1 - (2 * aSign); | 
|  | } | 
|  | } else { | 
|  | if (a.low == b.low && a.high == b.high) { | 
|  | return float_relation_equal; | 
|  | } else { | 
|  | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | return floatx80_compare_internal(a, b, 0 STATUS_VAR); | 
|  | } | 
|  |  | 
|  | int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | return floatx80_compare_internal(a, b, 1 STATUS_VAR); | 
|  | } | 
|  |  | 
|  | INLINE int float128_compare_internal( float128 a, float128 b, | 
|  | int is_quiet STATUS_PARAM ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (( ( extractFloat128Exp( a ) == 0x7fff ) && | 
|  | ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || | 
|  | ( ( extractFloat128Exp( b ) == 0x7fff ) && | 
|  | ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { | 
|  | if (!is_quiet || | 
|  | float128_is_signaling_nan( a ) || | 
|  | float128_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid STATUS_VAR); | 
|  | } | 
|  | return float_relation_unordered; | 
|  | } | 
|  | aSign = extractFloat128Sign( a ); | 
|  | bSign = extractFloat128Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { | 
|  | /* zero case */ | 
|  | return float_relation_equal; | 
|  | } else { | 
|  | return 1 - (2 * aSign); | 
|  | } | 
|  | } else { | 
|  | if (a.low == b.low && a.high == b.high) { | 
|  | return float_relation_equal; | 
|  | } else { | 
|  | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int float128_compare( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | return float128_compare_internal(a, b, 0 STATUS_VAR); | 
|  | } | 
|  |  | 
|  | int float128_compare_quiet( float128 a, float128 b STATUS_PARAM ) | 
|  | { | 
|  | return float128_compare_internal(a, b, 1 STATUS_VAR); | 
|  | } | 
|  |  | 
|  | /* min() and max() functions. These can't be implemented as | 
|  | * 'compare and pick one input' because that would mishandle | 
|  | * NaNs and +0 vs -0. | 
|  | */ | 
|  | #define MINMAX(s, nan_exp)                                              \ | 
|  | INLINE float ## s float ## s ## _minmax(float ## s a, float ## s b,     \ | 
|  | int ismin STATUS_PARAM )        \ | 
|  | {                                                                       \ | 
|  | flag aSign, bSign;                                                  \ | 
|  | uint ## s ## _t av, bv;                                             \ | 
|  | a = float ## s ## _squash_input_denormal(a STATUS_VAR);             \ | 
|  | b = float ## s ## _squash_input_denormal(b STATUS_VAR);             \ | 
|  | if (float ## s ## _is_any_nan(a) ||                                 \ | 
|  | float ## s ## _is_any_nan(b)) {                                 \ | 
|  | return propagateFloat ## s ## NaN(a, b STATUS_VAR);             \ | 
|  | }                                                                   \ | 
|  | aSign = extractFloat ## s ## Sign(a);                               \ | 
|  | bSign = extractFloat ## s ## Sign(b);                               \ | 
|  | av = float ## s ## _val(a);                                         \ | 
|  | bv = float ## s ## _val(b);                                         \ | 
|  | if (aSign != bSign) {                                               \ | 
|  | if (ismin) {                                                    \ | 
|  | return aSign ? a : b;                                       \ | 
|  | } else {                                                        \ | 
|  | return aSign ? b : a;                                       \ | 
|  | }                                                               \ | 
|  | } else {                                                            \ | 
|  | if (ismin) {                                                    \ | 
|  | return (aSign ^ (av < bv)) ? a : b;                         \ | 
|  | } else {                                                        \ | 
|  | return (aSign ^ (av < bv)) ? b : a;                         \ | 
|  | }                                                               \ | 
|  | }                                                                   \ | 
|  | }                                                                       \ | 
|  | \ | 
|  | float ## s float ## s ## _min(float ## s a, float ## s b STATUS_PARAM)  \ | 
|  | {                                                                       \ | 
|  | return float ## s ## _minmax(a, b, 1 STATUS_VAR);                   \ | 
|  | }                                                                       \ | 
|  | \ | 
|  | float ## s float ## s ## _max(float ## s a, float ## s b STATUS_PARAM)  \ | 
|  | {                                                                       \ | 
|  | return float ## s ## _minmax(a, b, 0 STATUS_VAR);                   \ | 
|  | } | 
|  |  | 
|  | MINMAX(32, 0xff) | 
|  | MINMAX(64, 0x7ff) | 
|  |  | 
|  |  | 
|  | /* Multiply A by 2 raised to the power N.  */ | 
|  | float32 float32_scalbn( float32 a, int n STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int16_t aExp; | 
|  | uint32_t aSig; | 
|  |  | 
|  | a = float32_squash_input_denormal(a STATUS_VAR); | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  |  | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) { | 
|  | return propagateFloat32NaN( a, a STATUS_VAR ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | if ( aExp != 0 ) | 
|  | aSig |= 0x00800000; | 
|  | else if ( aSig == 0 ) | 
|  | return a; | 
|  |  | 
|  | if (n > 0x200) { | 
|  | n = 0x200; | 
|  | } else if (n < -0x200) { | 
|  | n = -0x200; | 
|  | } | 
|  |  | 
|  | aExp += n - 1; | 
|  | aSig <<= 7; | 
|  | return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | float64 float64_scalbn( float64 a, int n STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int16_t aExp; | 
|  | uint64_t aSig; | 
|  |  | 
|  | a = float64_squash_input_denormal(a STATUS_VAR); | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  |  | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) { | 
|  | return propagateFloat64NaN( a, a STATUS_VAR ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | if ( aExp != 0 ) | 
|  | aSig |= LIT64( 0x0010000000000000 ); | 
|  | else if ( aSig == 0 ) | 
|  | return a; | 
|  |  | 
|  | if (n > 0x1000) { | 
|  | n = 0x1000; | 
|  | } else if (n < -0x1000) { | 
|  | n = -0x1000; | 
|  | } | 
|  |  | 
|  | aExp += n - 1; | 
|  | aSig <<= 10; | 
|  | return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32_t aExp; | 
|  | uint64_t aSig; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  |  | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( aSig<<1 ) { | 
|  | return propagateFloatx80NaN( a, a STATUS_VAR ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  |  | 
|  | if (aExp == 0 && aSig == 0) | 
|  | return a; | 
|  |  | 
|  | if (n > 0x10000) { | 
|  | n = 0x10000; | 
|  | } else if (n < -0x10000) { | 
|  | n = -0x10000; | 
|  | } | 
|  |  | 
|  | aExp += n; | 
|  | return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision), | 
|  | aSign, aExp, aSig, 0 STATUS_VAR ); | 
|  | } | 
|  |  | 
|  | float128 float128_scalbn( float128 a, int n STATUS_PARAM ) | 
|  | { | 
|  | flag aSign; | 
|  | int32_t aExp; | 
|  | uint64_t aSig0, aSig1; | 
|  |  | 
|  | aSig1 = extractFloat128Frac1( a ); | 
|  | aSig0 = extractFloat128Frac0( a ); | 
|  | aExp = extractFloat128Exp( a ); | 
|  | aSign = extractFloat128Sign( a ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( aSig0 | aSig1 ) { | 
|  | return propagateFloat128NaN( a, a STATUS_VAR ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | if ( aExp != 0 ) | 
|  | aSig0 |= LIT64( 0x0001000000000000 ); | 
|  | else if ( aSig0 == 0 && aSig1 == 0 ) | 
|  | return a; | 
|  |  | 
|  | if (n > 0x10000) { | 
|  | n = 0x10000; | 
|  | } else if (n < -0x10000) { | 
|  | n = -0x10000; | 
|  | } | 
|  |  | 
|  | aExp += n - 1; | 
|  | return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 | 
|  | STATUS_VAR ); | 
|  |  | 
|  | } |