|  | #include "exec.h" | 
|  | #include "host-utils.h" | 
|  | #include "helper.h" | 
|  |  | 
|  | //#define DEBUG_MMU | 
|  | //#define DEBUG_MXCC | 
|  | //#define DEBUG_UNALIGNED | 
|  | //#define DEBUG_UNASSIGNED | 
|  | //#define DEBUG_ASI | 
|  | //#define DEBUG_PCALL | 
|  | //#define DEBUG_PSTATE | 
|  |  | 
|  | #ifdef DEBUG_MMU | 
|  | #define DPRINTF_MMU(fmt, ...)                                   \ | 
|  | do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0) | 
|  | #else | 
|  | #define DPRINTF_MMU(fmt, ...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_MXCC | 
|  | #define DPRINTF_MXCC(fmt, ...)                                  \ | 
|  | do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0) | 
|  | #else | 
|  | #define DPRINTF_MXCC(fmt, ...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_ASI | 
|  | #define DPRINTF_ASI(fmt, ...)                                   \ | 
|  | do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_PSTATE | 
|  | #define DPRINTF_PSTATE(fmt, ...)                                   \ | 
|  | do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0) | 
|  | #else | 
|  | #define DPRINTF_PSTATE(fmt, ...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | #ifndef TARGET_ABI32 | 
|  | #define AM_CHECK(env1) ((env1)->pstate & PS_AM) | 
|  | #else | 
|  | #define AM_CHECK(env1) (1) | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #define DT0 (env->dt0) | 
|  | #define DT1 (env->dt1) | 
|  | #define QT0 (env->qt0) | 
|  | #define QT1 (env->qt1) | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64) | 
|  | static void do_unassigned_access(target_ulong addr, int is_write, int is_exec, | 
|  | int is_asi, int size); | 
|  | #endif | 
|  |  | 
|  | #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) | 
|  | // Calculates TSB pointer value for fault page size 8k or 64k | 
|  | static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register, | 
|  | uint64_t tag_access_register, | 
|  | int page_size) | 
|  | { | 
|  | uint64_t tsb_base = tsb_register & ~0x1fffULL; | 
|  | int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0; | 
|  | int tsb_size  = tsb_register & 0xf; | 
|  |  | 
|  | // discard lower 13 bits which hold tag access context | 
|  | uint64_t tag_access_va = tag_access_register & ~0x1fffULL; | 
|  |  | 
|  | // now reorder bits | 
|  | uint64_t tsb_base_mask = ~0x1fffULL; | 
|  | uint64_t va = tag_access_va; | 
|  |  | 
|  | // move va bits to correct position | 
|  | if (page_size == 8*1024) { | 
|  | va >>= 9; | 
|  | } else if (page_size == 64*1024) { | 
|  | va >>= 12; | 
|  | } | 
|  |  | 
|  | if (tsb_size) { | 
|  | tsb_base_mask <<= tsb_size; | 
|  | } | 
|  |  | 
|  | // calculate tsb_base mask and adjust va if split is in use | 
|  | if (tsb_split) { | 
|  | if (page_size == 8*1024) { | 
|  | va &= ~(1ULL << (13 + tsb_size)); | 
|  | } else if (page_size == 64*1024) { | 
|  | va |= (1ULL << (13 + tsb_size)); | 
|  | } | 
|  | tsb_base_mask <<= 1; | 
|  | } | 
|  |  | 
|  | return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL; | 
|  | } | 
|  |  | 
|  | // Calculates tag target register value by reordering bits | 
|  | // in tag access register | 
|  | static uint64_t ultrasparc_tag_target(uint64_t tag_access_register) | 
|  | { | 
|  | return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22); | 
|  | } | 
|  |  | 
|  | static void replace_tlb_entry(SparcTLBEntry *tlb, | 
|  | uint64_t tlb_tag, uint64_t tlb_tte, | 
|  | CPUState *env1) | 
|  | { | 
|  | target_ulong mask, size, va, offset; | 
|  |  | 
|  | // flush page range if translation is valid | 
|  | if (TTE_IS_VALID(tlb->tte)) { | 
|  |  | 
|  | mask = 0xffffffffffffe000ULL; | 
|  | mask <<= 3 * ((tlb->tte >> 61) & 3); | 
|  | size = ~mask + 1; | 
|  |  | 
|  | va = tlb->tag & mask; | 
|  |  | 
|  | for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) { | 
|  | tlb_flush_page(env1, va + offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | tlb->tag = tlb_tag; | 
|  | tlb->tte = tlb_tte; | 
|  | } | 
|  |  | 
|  | static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, | 
|  | const char* strmmu, CPUState *env1) | 
|  | { | 
|  | unsigned int i; | 
|  | target_ulong mask; | 
|  | uint64_t context; | 
|  |  | 
|  | int is_demap_context = (demap_addr >> 6) & 1; | 
|  |  | 
|  | // demap context | 
|  | switch ((demap_addr >> 4) & 3) { | 
|  | case 0: // primary | 
|  | context = env1->dmmu.mmu_primary_context; | 
|  | break; | 
|  | case 1: // secondary | 
|  | context = env1->dmmu.mmu_secondary_context; | 
|  | break; | 
|  | case 2: // nucleus | 
|  | context = 0; | 
|  | break; | 
|  | case 3: // reserved | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 64; i++) { | 
|  | if (TTE_IS_VALID(tlb[i].tte)) { | 
|  |  | 
|  | if (is_demap_context) { | 
|  | // will remove non-global entries matching context value | 
|  | if (TTE_IS_GLOBAL(tlb[i].tte) || | 
|  | !tlb_compare_context(&tlb[i], context)) { | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | // demap page | 
|  | // will remove any entry matching VA | 
|  | mask = 0xffffffffffffe000ULL; | 
|  | mask <<= 3 * ((tlb[i].tte >> 61) & 3); | 
|  |  | 
|  | if (!compare_masked(demap_addr, tlb[i].tag, mask)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // entry should be global or matching context value | 
|  | if (!TTE_IS_GLOBAL(tlb[i].tte) && | 
|  | !tlb_compare_context(&tlb[i], context)) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | replace_tlb_entry(&tlb[i], 0, 0, env1); | 
|  | #ifdef DEBUG_MMU | 
|  | DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i); | 
|  | dump_mmu(env1); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, | 
|  | uint64_t tlb_tag, uint64_t tlb_tte, | 
|  | const char* strmmu, CPUState *env1) | 
|  | { | 
|  | unsigned int i, replace_used; | 
|  |  | 
|  | // Try replacing invalid entry | 
|  | for (i = 0; i < 64; i++) { | 
|  | if (!TTE_IS_VALID(tlb[i].tte)) { | 
|  | replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); | 
|  | #ifdef DEBUG_MMU | 
|  | DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i); | 
|  | dump_mmu(env1); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All entries are valid, try replacing unlocked entry | 
|  |  | 
|  | for (replace_used = 0; replace_used < 2; ++replace_used) { | 
|  |  | 
|  | // Used entries are not replaced on first pass | 
|  |  | 
|  | for (i = 0; i < 64; i++) { | 
|  | if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) { | 
|  |  | 
|  | replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); | 
|  | #ifdef DEBUG_MMU | 
|  | DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n", | 
|  | strmmu, (replace_used?"used":"unused"), i); | 
|  | dump_mmu(env1); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now reset used bit and search for unused entries again | 
|  |  | 
|  | for (i = 0; i < 64; i++) { | 
|  | TTE_SET_UNUSED(tlb[i].tte); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG_MMU | 
|  | DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu); | 
|  | #endif | 
|  | // error state? | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static inline target_ulong address_mask(CPUState *env1, target_ulong addr) | 
|  | { | 
|  | #ifdef TARGET_SPARC64 | 
|  | if (AM_CHECK(env1)) | 
|  | addr &= 0xffffffffULL; | 
|  | #endif | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* returns true if access using this ASI is to have address translated by MMU | 
|  | otherwise access is to raw physical address */ | 
|  | static inline int is_translating_asi(int asi) | 
|  | { | 
|  | #ifdef TARGET_SPARC64 | 
|  | /* Ultrasparc IIi translating asi | 
|  | - note this list is defined by cpu implementation | 
|  | */ | 
|  | switch (asi) { | 
|  | case 0x04 ... 0x11: | 
|  | case 0x18 ... 0x19: | 
|  | case 0x24 ... 0x2C: | 
|  | case 0x70 ... 0x73: | 
|  | case 0x78 ... 0x79: | 
|  | case 0x80 ... 0xFF: | 
|  | return 1; | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | /* TODO: check sparc32 bits */ | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline target_ulong asi_address_mask(CPUState *env1, | 
|  | int asi, target_ulong addr) | 
|  | { | 
|  | if (is_translating_asi(asi)) { | 
|  | return address_mask(env, addr); | 
|  | } else { | 
|  | return addr; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raise_exception(int tt) | 
|  | { | 
|  | env->exception_index = tt; | 
|  | cpu_loop_exit(); | 
|  | } | 
|  |  | 
|  | void HELPER(raise_exception)(int tt) | 
|  | { | 
|  | raise_exception(tt); | 
|  | } | 
|  |  | 
|  | void helper_check_align(target_ulong addr, uint32_t align) | 
|  | { | 
|  | if (addr & align) { | 
|  | #ifdef DEBUG_UNALIGNED | 
|  | printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx | 
|  | "\n", addr, env->pc); | 
|  | #endif | 
|  | raise_exception(TT_UNALIGNED); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define F_HELPER(name, p) void helper_f##name##p(void) | 
|  |  | 
|  | #define F_BINOP(name)                                           \ | 
|  | float32 helper_f ## name ## s (float32 src1, float32 src2)  \ | 
|  | {                                                           \ | 
|  | return float32_ ## name (src1, src2, &env->fp_status);  \ | 
|  | }                                                           \ | 
|  | F_HELPER(name, d)                                           \ | 
|  | {                                                           \ | 
|  | DT0 = float64_ ## name (DT0, DT1, &env->fp_status);     \ | 
|  | }                                                           \ | 
|  | F_HELPER(name, q)                                           \ | 
|  | {                                                           \ | 
|  | QT0 = float128_ ## name (QT0, QT1, &env->fp_status);    \ | 
|  | } | 
|  |  | 
|  | F_BINOP(add); | 
|  | F_BINOP(sub); | 
|  | F_BINOP(mul); | 
|  | F_BINOP(div); | 
|  | #undef F_BINOP | 
|  |  | 
|  | void helper_fsmuld(float32 src1, float32 src2) | 
|  | { | 
|  | DT0 = float64_mul(float32_to_float64(src1, &env->fp_status), | 
|  | float32_to_float64(src2, &env->fp_status), | 
|  | &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fdmulq(void) | 
|  | { | 
|  | QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status), | 
|  | float64_to_float128(DT1, &env->fp_status), | 
|  | &env->fp_status); | 
|  | } | 
|  |  | 
|  | float32 helper_fnegs(float32 src) | 
|  | { | 
|  | return float32_chs(src); | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | F_HELPER(neg, d) | 
|  | { | 
|  | DT0 = float64_chs(DT1); | 
|  | } | 
|  |  | 
|  | F_HELPER(neg, q) | 
|  | { | 
|  | QT0 = float128_chs(QT1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Integer to float conversion.  */ | 
|  | float32 helper_fitos(int32_t src) | 
|  | { | 
|  | return int32_to_float32(src, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fitod(int32_t src) | 
|  | { | 
|  | DT0 = int32_to_float64(src, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fitoq(int32_t src) | 
|  | { | 
|  | QT0 = int32_to_float128(src, &env->fp_status); | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | float32 helper_fxtos(void) | 
|  | { | 
|  | return int64_to_float32(*((int64_t *)&DT1), &env->fp_status); | 
|  | } | 
|  |  | 
|  | F_HELPER(xto, d) | 
|  | { | 
|  | DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status); | 
|  | } | 
|  |  | 
|  | F_HELPER(xto, q) | 
|  | { | 
|  | QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status); | 
|  | } | 
|  | #endif | 
|  | #undef F_HELPER | 
|  |  | 
|  | /* floating point conversion */ | 
|  | float32 helper_fdtos(void) | 
|  | { | 
|  | return float64_to_float32(DT1, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fstod(float32 src) | 
|  | { | 
|  | DT0 = float32_to_float64(src, &env->fp_status); | 
|  | } | 
|  |  | 
|  | float32 helper_fqtos(void) | 
|  | { | 
|  | return float128_to_float32(QT1, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fstoq(float32 src) | 
|  | { | 
|  | QT0 = float32_to_float128(src, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fqtod(void) | 
|  | { | 
|  | DT0 = float128_to_float64(QT1, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fdtoq(void) | 
|  | { | 
|  | QT0 = float64_to_float128(DT1, &env->fp_status); | 
|  | } | 
|  |  | 
|  | /* Float to integer conversion.  */ | 
|  | int32_t helper_fstoi(float32 src) | 
|  | { | 
|  | return float32_to_int32_round_to_zero(src, &env->fp_status); | 
|  | } | 
|  |  | 
|  | int32_t helper_fdtoi(void) | 
|  | { | 
|  | return float64_to_int32_round_to_zero(DT1, &env->fp_status); | 
|  | } | 
|  |  | 
|  | int32_t helper_fqtoi(void) | 
|  | { | 
|  | return float128_to_int32_round_to_zero(QT1, &env->fp_status); | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | void helper_fstox(float32 src) | 
|  | { | 
|  | *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fdtox(void) | 
|  | { | 
|  | *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fqtox(void) | 
|  | { | 
|  | *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_faligndata(void) | 
|  | { | 
|  | uint64_t tmp; | 
|  |  | 
|  | tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8); | 
|  | /* on many architectures a shift of 64 does nothing */ | 
|  | if ((env->gsr & 7) != 0) { | 
|  | tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8); | 
|  | } | 
|  | *((uint64_t *)&DT0) = tmp; | 
|  | } | 
|  |  | 
|  | #ifdef HOST_WORDS_BIGENDIAN | 
|  | #define VIS_B64(n) b[7 - (n)] | 
|  | #define VIS_W64(n) w[3 - (n)] | 
|  | #define VIS_SW64(n) sw[3 - (n)] | 
|  | #define VIS_L64(n) l[1 - (n)] | 
|  | #define VIS_B32(n) b[3 - (n)] | 
|  | #define VIS_W32(n) w[1 - (n)] | 
|  | #else | 
|  | #define VIS_B64(n) b[n] | 
|  | #define VIS_W64(n) w[n] | 
|  | #define VIS_SW64(n) sw[n] | 
|  | #define VIS_L64(n) l[n] | 
|  | #define VIS_B32(n) b[n] | 
|  | #define VIS_W32(n) w[n] | 
|  | #endif | 
|  |  | 
|  | typedef union { | 
|  | uint8_t b[8]; | 
|  | uint16_t w[4]; | 
|  | int16_t sw[4]; | 
|  | uint32_t l[2]; | 
|  | float64 d; | 
|  | } vis64; | 
|  |  | 
|  | typedef union { | 
|  | uint8_t b[4]; | 
|  | uint16_t w[2]; | 
|  | uint32_t l; | 
|  | float32 f; | 
|  | } vis32; | 
|  |  | 
|  | void helper_fpmerge(void) | 
|  | { | 
|  | vis64 s, d; | 
|  |  | 
|  | s.d = DT0; | 
|  | d.d = DT1; | 
|  |  | 
|  | // Reverse calculation order to handle overlap | 
|  | d.VIS_B64(7) = s.VIS_B64(3); | 
|  | d.VIS_B64(6) = d.VIS_B64(3); | 
|  | d.VIS_B64(5) = s.VIS_B64(2); | 
|  | d.VIS_B64(4) = d.VIS_B64(2); | 
|  | d.VIS_B64(3) = s.VIS_B64(1); | 
|  | d.VIS_B64(2) = d.VIS_B64(1); | 
|  | d.VIS_B64(1) = s.VIS_B64(0); | 
|  | //d.VIS_B64(0) = d.VIS_B64(0); | 
|  |  | 
|  | DT0 = d.d; | 
|  | } | 
|  |  | 
|  | void helper_fmul8x16(void) | 
|  | { | 
|  | vis64 s, d; | 
|  | uint32_t tmp; | 
|  |  | 
|  | s.d = DT0; | 
|  | d.d = DT1; | 
|  |  | 
|  | #define PMUL(r)                                                 \ | 
|  | tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r);       \ | 
|  | if ((tmp & 0xff) > 0x7f)                                    \ | 
|  | tmp += 0x100;                                           \ | 
|  | d.VIS_W64(r) = tmp >> 8; | 
|  |  | 
|  | PMUL(0); | 
|  | PMUL(1); | 
|  | PMUL(2); | 
|  | PMUL(3); | 
|  | #undef PMUL | 
|  |  | 
|  | DT0 = d.d; | 
|  | } | 
|  |  | 
|  | void helper_fmul8x16al(void) | 
|  | { | 
|  | vis64 s, d; | 
|  | uint32_t tmp; | 
|  |  | 
|  | s.d = DT0; | 
|  | d.d = DT1; | 
|  |  | 
|  | #define PMUL(r)                                                 \ | 
|  | tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r);       \ | 
|  | if ((tmp & 0xff) > 0x7f)                                    \ | 
|  | tmp += 0x100;                                           \ | 
|  | d.VIS_W64(r) = tmp >> 8; | 
|  |  | 
|  | PMUL(0); | 
|  | PMUL(1); | 
|  | PMUL(2); | 
|  | PMUL(3); | 
|  | #undef PMUL | 
|  |  | 
|  | DT0 = d.d; | 
|  | } | 
|  |  | 
|  | void helper_fmul8x16au(void) | 
|  | { | 
|  | vis64 s, d; | 
|  | uint32_t tmp; | 
|  |  | 
|  | s.d = DT0; | 
|  | d.d = DT1; | 
|  |  | 
|  | #define PMUL(r)                                                 \ | 
|  | tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r);       \ | 
|  | if ((tmp & 0xff) > 0x7f)                                    \ | 
|  | tmp += 0x100;                                           \ | 
|  | d.VIS_W64(r) = tmp >> 8; | 
|  |  | 
|  | PMUL(0); | 
|  | PMUL(1); | 
|  | PMUL(2); | 
|  | PMUL(3); | 
|  | #undef PMUL | 
|  |  | 
|  | DT0 = d.d; | 
|  | } | 
|  |  | 
|  | void helper_fmul8sux16(void) | 
|  | { | 
|  | vis64 s, d; | 
|  | uint32_t tmp; | 
|  |  | 
|  | s.d = DT0; | 
|  | d.d = DT1; | 
|  |  | 
|  | #define PMUL(r)                                                         \ | 
|  | tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \ | 
|  | if ((tmp & 0xff) > 0x7f)                                            \ | 
|  | tmp += 0x100;                                                   \ | 
|  | d.VIS_W64(r) = tmp >> 8; | 
|  |  | 
|  | PMUL(0); | 
|  | PMUL(1); | 
|  | PMUL(2); | 
|  | PMUL(3); | 
|  | #undef PMUL | 
|  |  | 
|  | DT0 = d.d; | 
|  | } | 
|  |  | 
|  | void helper_fmul8ulx16(void) | 
|  | { | 
|  | vis64 s, d; | 
|  | uint32_t tmp; | 
|  |  | 
|  | s.d = DT0; | 
|  | d.d = DT1; | 
|  |  | 
|  | #define PMUL(r)                                                         \ | 
|  | tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \ | 
|  | if ((tmp & 0xff) > 0x7f)                                            \ | 
|  | tmp += 0x100;                                                   \ | 
|  | d.VIS_W64(r) = tmp >> 8; | 
|  |  | 
|  | PMUL(0); | 
|  | PMUL(1); | 
|  | PMUL(2); | 
|  | PMUL(3); | 
|  | #undef PMUL | 
|  |  | 
|  | DT0 = d.d; | 
|  | } | 
|  |  | 
|  | void helper_fmuld8sux16(void) | 
|  | { | 
|  | vis64 s, d; | 
|  | uint32_t tmp; | 
|  |  | 
|  | s.d = DT0; | 
|  | d.d = DT1; | 
|  |  | 
|  | #define PMUL(r)                                                         \ | 
|  | tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \ | 
|  | if ((tmp & 0xff) > 0x7f)                                            \ | 
|  | tmp += 0x100;                                                   \ | 
|  | d.VIS_L64(r) = tmp; | 
|  |  | 
|  | // Reverse calculation order to handle overlap | 
|  | PMUL(1); | 
|  | PMUL(0); | 
|  | #undef PMUL | 
|  |  | 
|  | DT0 = d.d; | 
|  | } | 
|  |  | 
|  | void helper_fmuld8ulx16(void) | 
|  | { | 
|  | vis64 s, d; | 
|  | uint32_t tmp; | 
|  |  | 
|  | s.d = DT0; | 
|  | d.d = DT1; | 
|  |  | 
|  | #define PMUL(r)                                                         \ | 
|  | tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \ | 
|  | if ((tmp & 0xff) > 0x7f)                                            \ | 
|  | tmp += 0x100;                                                   \ | 
|  | d.VIS_L64(r) = tmp; | 
|  |  | 
|  | // Reverse calculation order to handle overlap | 
|  | PMUL(1); | 
|  | PMUL(0); | 
|  | #undef PMUL | 
|  |  | 
|  | DT0 = d.d; | 
|  | } | 
|  |  | 
|  | void helper_fexpand(void) | 
|  | { | 
|  | vis32 s; | 
|  | vis64 d; | 
|  |  | 
|  | s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff); | 
|  | d.d = DT1; | 
|  | d.VIS_W64(0) = s.VIS_B32(0) << 4; | 
|  | d.VIS_W64(1) = s.VIS_B32(1) << 4; | 
|  | d.VIS_W64(2) = s.VIS_B32(2) << 4; | 
|  | d.VIS_W64(3) = s.VIS_B32(3) << 4; | 
|  |  | 
|  | DT0 = d.d; | 
|  | } | 
|  |  | 
|  | #define VIS_HELPER(name, F)                             \ | 
|  | void name##16(void)                                 \ | 
|  | {                                                   \ | 
|  | vis64 s, d;                                     \ | 
|  | \ | 
|  | s.d = DT0;                                      \ | 
|  | d.d = DT1;                                      \ | 
|  | \ | 
|  | d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0));   \ | 
|  | d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1));   \ | 
|  | d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2));   \ | 
|  | d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3));   \ | 
|  | \ | 
|  | DT0 = d.d;                                      \ | 
|  | }                                                   \ | 
|  | \ | 
|  | uint32_t name##16s(uint32_t src1, uint32_t src2)    \ | 
|  | {                                                   \ | 
|  | vis32 s, d;                                     \ | 
|  | \ | 
|  | s.l = src1;                                     \ | 
|  | d.l = src2;                                     \ | 
|  | \ | 
|  | d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0));   \ | 
|  | d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1));   \ | 
|  | \ | 
|  | return d.l;                                     \ | 
|  | }                                                   \ | 
|  | \ | 
|  | void name##32(void)                                 \ | 
|  | {                                                   \ | 
|  | vis64 s, d;                                     \ | 
|  | \ | 
|  | s.d = DT0;                                      \ | 
|  | d.d = DT1;                                      \ | 
|  | \ | 
|  | d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0));   \ | 
|  | d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1));   \ | 
|  | \ | 
|  | DT0 = d.d;                                      \ | 
|  | }                                                   \ | 
|  | \ | 
|  | uint32_t name##32s(uint32_t src1, uint32_t src2)    \ | 
|  | {                                                   \ | 
|  | vis32 s, d;                                     \ | 
|  | \ | 
|  | s.l = src1;                                     \ | 
|  | d.l = src2;                                     \ | 
|  | \ | 
|  | d.l = F(d.l, s.l);                              \ | 
|  | \ | 
|  | return d.l;                                     \ | 
|  | } | 
|  |  | 
|  | #define FADD(a, b) ((a) + (b)) | 
|  | #define FSUB(a, b) ((a) - (b)) | 
|  | VIS_HELPER(helper_fpadd, FADD) | 
|  | VIS_HELPER(helper_fpsub, FSUB) | 
|  |  | 
|  | #define VIS_CMPHELPER(name, F)                                        \ | 
|  | void name##16(void)                                           \ | 
|  | {                                                             \ | 
|  | vis64 s, d;                                               \ | 
|  | \ | 
|  | s.d = DT0;                                                \ | 
|  | d.d = DT1;                                                \ | 
|  | \ | 
|  | d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0;       \ | 
|  | d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0;      \ | 
|  | d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0;      \ | 
|  | d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0;      \ | 
|  | \ | 
|  | DT0 = d.d;                                                \ | 
|  | }                                                             \ | 
|  | \ | 
|  | void name##32(void)                                           \ | 
|  | {                                                             \ | 
|  | vis64 s, d;                                               \ | 
|  | \ | 
|  | s.d = DT0;                                                \ | 
|  | d.d = DT1;                                                \ | 
|  | \ | 
|  | d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0;       \ | 
|  | d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0;      \ | 
|  | \ | 
|  | DT0 = d.d;                                                \ | 
|  | } | 
|  |  | 
|  | #define FCMPGT(a, b) ((a) > (b)) | 
|  | #define FCMPEQ(a, b) ((a) == (b)) | 
|  | #define FCMPLE(a, b) ((a) <= (b)) | 
|  | #define FCMPNE(a, b) ((a) != (b)) | 
|  |  | 
|  | VIS_CMPHELPER(helper_fcmpgt, FCMPGT) | 
|  | VIS_CMPHELPER(helper_fcmpeq, FCMPEQ) | 
|  | VIS_CMPHELPER(helper_fcmple, FCMPLE) | 
|  | VIS_CMPHELPER(helper_fcmpne, FCMPNE) | 
|  | #endif | 
|  |  | 
|  | void helper_check_ieee_exceptions(void) | 
|  | { | 
|  | target_ulong status; | 
|  |  | 
|  | status = get_float_exception_flags(&env->fp_status); | 
|  | if (status) { | 
|  | /* Copy IEEE 754 flags into FSR */ | 
|  | if (status & float_flag_invalid) | 
|  | env->fsr |= FSR_NVC; | 
|  | if (status & float_flag_overflow) | 
|  | env->fsr |= FSR_OFC; | 
|  | if (status & float_flag_underflow) | 
|  | env->fsr |= FSR_UFC; | 
|  | if (status & float_flag_divbyzero) | 
|  | env->fsr |= FSR_DZC; | 
|  | if (status & float_flag_inexact) | 
|  | env->fsr |= FSR_NXC; | 
|  |  | 
|  | if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) { | 
|  | /* Unmasked exception, generate a trap */ | 
|  | env->fsr |= FSR_FTT_IEEE_EXCP; | 
|  | raise_exception(TT_FP_EXCP); | 
|  | } else { | 
|  | /* Accumulate exceptions */ | 
|  | env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_clear_float_exceptions(void) | 
|  | { | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | } | 
|  |  | 
|  | float32 helper_fabss(float32 src) | 
|  | { | 
|  | return float32_abs(src); | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | void helper_fabsd(void) | 
|  | { | 
|  | DT0 = float64_abs(DT1); | 
|  | } | 
|  |  | 
|  | void helper_fabsq(void) | 
|  | { | 
|  | QT0 = float128_abs(QT1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | float32 helper_fsqrts(float32 src) | 
|  | { | 
|  | return float32_sqrt(src, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fsqrtd(void) | 
|  | { | 
|  | DT0 = float64_sqrt(DT1, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_fsqrtq(void) | 
|  | { | 
|  | QT0 = float128_sqrt(QT1, &env->fp_status); | 
|  | } | 
|  |  | 
|  | #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \ | 
|  | void glue(helper_, name) (void)                                     \ | 
|  | {                                                                   \ | 
|  | target_ulong new_fsr;                                           \ | 
|  | \ | 
|  | env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \ | 
|  | switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \ | 
|  | case float_relation_unordered:                                  \ | 
|  | new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \ | 
|  | if ((env->fsr & FSR_NVM) || TRAP) {                         \ | 
|  | env->fsr |= new_fsr;                                    \ | 
|  | env->fsr |= FSR_NVC;                                    \ | 
|  | env->fsr |= FSR_FTT_IEEE_EXCP;                          \ | 
|  | raise_exception(TT_FP_EXCP);                            \ | 
|  | } else {                                                    \ | 
|  | env->fsr |= FSR_NVA;                                    \ | 
|  | }                                                           \ | 
|  | break;                                                      \ | 
|  | case float_relation_less:                                       \ | 
|  | new_fsr = FSR_FCC0 << FS;                                   \ | 
|  | break;                                                      \ | 
|  | case float_relation_greater:                                    \ | 
|  | new_fsr = FSR_FCC1 << FS;                                   \ | 
|  | break;                                                      \ | 
|  | default:                                                        \ | 
|  | new_fsr = 0;                                                \ | 
|  | break;                                                      \ | 
|  | }                                                               \ | 
|  | env->fsr |= new_fsr;                                            \ | 
|  | } | 
|  | #define GEN_FCMPS(name, size, FS, TRAP)                                 \ | 
|  | void glue(helper_, name)(float32 src1, float32 src2)                \ | 
|  | {                                                                   \ | 
|  | target_ulong new_fsr;                                           \ | 
|  | \ | 
|  | env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \ | 
|  | switch (glue(size, _compare) (src1, src2, &env->fp_status)) {   \ | 
|  | case float_relation_unordered:                                  \ | 
|  | new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \ | 
|  | if ((env->fsr & FSR_NVM) || TRAP) {                         \ | 
|  | env->fsr |= new_fsr;                                    \ | 
|  | env->fsr |= FSR_NVC;                                    \ | 
|  | env->fsr |= FSR_FTT_IEEE_EXCP;                          \ | 
|  | raise_exception(TT_FP_EXCP);                            \ | 
|  | } else {                                                    \ | 
|  | env->fsr |= FSR_NVA;                                    \ | 
|  | }                                                           \ | 
|  | break;                                                      \ | 
|  | case float_relation_less:                                       \ | 
|  | new_fsr = FSR_FCC0 << FS;                                   \ | 
|  | break;                                                      \ | 
|  | case float_relation_greater:                                    \ | 
|  | new_fsr = FSR_FCC1 << FS;                                   \ | 
|  | break;                                                      \ | 
|  | default:                                                        \ | 
|  | new_fsr = 0;                                                \ | 
|  | break;                                                      \ | 
|  | }                                                               \ | 
|  | env->fsr |= new_fsr;                                            \ | 
|  | } | 
|  |  | 
|  | GEN_FCMPS(fcmps, float32, 0, 0); | 
|  | GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0); | 
|  |  | 
|  | GEN_FCMPS(fcmpes, float32, 0, 1); | 
|  | GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1); | 
|  |  | 
|  | GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0); | 
|  | GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1); | 
|  |  | 
|  | static uint32_t compute_all_flags(void) | 
|  | { | 
|  | return env->psr & PSR_ICC; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_flags(void) | 
|  | { | 
|  | return env->psr & PSR_CARRY; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_NZ_icc(int32_t dst) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (dst == 0) { | 
|  | ret = PSR_ZERO; | 
|  | } else if (dst < 0) { | 
|  | ret = PSR_NEG; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | static uint32_t compute_all_flags_xcc(void) | 
|  | { | 
|  | return env->xcc & PSR_ICC; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_flags_xcc(void) | 
|  | { | 
|  | return env->xcc & PSR_CARRY; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_NZ_xcc(target_long dst) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (!dst) { | 
|  | ret = PSR_ZERO; | 
|  | } else if (dst < 0) { | 
|  | ret = PSR_NEG; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline uint32_t get_V_div_icc(target_ulong src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (src2 != 0) { | 
|  | ret = PSR_OVF; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_all_div(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_icc(CC_DST); | 
|  | ret |= get_V_div_icc(CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_div(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (dst < src1) { | 
|  | ret = PSR_CARRY; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1, | 
|  | uint32_t src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) { | 
|  | ret = PSR_CARRY; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1, | 
|  | uint32_t src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) { | 
|  | ret = PSR_OVF; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (dst < src1) { | 
|  | ret = PSR_CARRY; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1, | 
|  | target_ulong src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) { | 
|  | ret = PSR_CARRY; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1, | 
|  | target_ulong src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) { | 
|  | ret = PSR_OVF; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_all_add_xcc(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_xcc(CC_DST); | 
|  | ret |= get_C_add_xcc(CC_DST, CC_SRC); | 
|  | ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_add_xcc(void) | 
|  | { | 
|  | return get_C_add_xcc(CC_DST, CC_SRC); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static uint32_t compute_all_add(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_icc(CC_DST); | 
|  | ret |= get_C_add_icc(CC_DST, CC_SRC); | 
|  | ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_add(void) | 
|  | { | 
|  | return get_C_add_icc(CC_DST, CC_SRC); | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | static uint32_t compute_all_addx_xcc(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_xcc(CC_DST); | 
|  | ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2); | 
|  | ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_addx_xcc(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static uint32_t compute_all_addx(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_icc(CC_DST); | 
|  | ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2); | 
|  | ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_addx(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if ((src1 | src2) & 0x3) { | 
|  | ret = PSR_OVF; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_all_tadd(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_icc(CC_DST); | 
|  | ret |= get_C_add_icc(CC_DST, CC_SRC); | 
|  | ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); | 
|  | ret |= get_V_tag_icc(CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_all_taddtv(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_icc(CC_DST); | 
|  | ret |= get_C_add_icc(CC_DST, CC_SRC); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (src1 < src2) { | 
|  | ret = PSR_CARRY; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1, | 
|  | uint32_t src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) { | 
|  | ret = PSR_CARRY; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1, | 
|  | uint32_t src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) { | 
|  | ret = PSR_OVF; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (src1 < src2) { | 
|  | ret = PSR_CARRY; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1, | 
|  | target_ulong src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) { | 
|  | ret = PSR_CARRY; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1, | 
|  | target_ulong src2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) { | 
|  | ret = PSR_OVF; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_all_sub_xcc(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_xcc(CC_DST); | 
|  | ret |= get_C_sub_xcc(CC_SRC, CC_SRC2); | 
|  | ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_sub_xcc(void) | 
|  | { | 
|  | return get_C_sub_xcc(CC_SRC, CC_SRC2); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static uint32_t compute_all_sub(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_icc(CC_DST); | 
|  | ret |= get_C_sub_icc(CC_SRC, CC_SRC2); | 
|  | ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_sub(void) | 
|  | { | 
|  | return get_C_sub_icc(CC_SRC, CC_SRC2); | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | static uint32_t compute_all_subx_xcc(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_xcc(CC_DST); | 
|  | ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2); | 
|  | ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_subx_xcc(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static uint32_t compute_all_subx(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_icc(CC_DST); | 
|  | ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2); | 
|  | ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_subx(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_all_tsub(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_icc(CC_DST); | 
|  | ret |= get_C_sub_icc(CC_SRC, CC_SRC2); | 
|  | ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); | 
|  | ret |= get_V_tag_icc(CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_all_tsubtv(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = get_NZ_icc(CC_DST); | 
|  | ret |= get_C_sub_icc(CC_SRC, CC_SRC2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t compute_all_logic(void) | 
|  | { | 
|  | return get_NZ_icc(CC_DST); | 
|  | } | 
|  |  | 
|  | static uint32_t compute_C_logic(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | static uint32_t compute_all_logic_xcc(void) | 
|  | { | 
|  | return get_NZ_xcc(CC_DST); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | typedef struct CCTable { | 
|  | uint32_t (*compute_all)(void); /* return all the flags */ | 
|  | uint32_t (*compute_c)(void);  /* return the C flag */ | 
|  | } CCTable; | 
|  |  | 
|  | static const CCTable icc_table[CC_OP_NB] = { | 
|  | /* CC_OP_DYNAMIC should never happen */ | 
|  | [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags }, | 
|  | [CC_OP_DIV] = { compute_all_div, compute_C_div }, | 
|  | [CC_OP_ADD] = { compute_all_add, compute_C_add }, | 
|  | [CC_OP_ADDX] = { compute_all_addx, compute_C_addx }, | 
|  | [CC_OP_TADD] = { compute_all_tadd, compute_C_add }, | 
|  | [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add }, | 
|  | [CC_OP_SUB] = { compute_all_sub, compute_C_sub }, | 
|  | [CC_OP_SUBX] = { compute_all_subx, compute_C_subx }, | 
|  | [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub }, | 
|  | [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub }, | 
|  | [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic }, | 
|  | }; | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | static const CCTable xcc_table[CC_OP_NB] = { | 
|  | /* CC_OP_DYNAMIC should never happen */ | 
|  | [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc }, | 
|  | [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic }, | 
|  | [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc }, | 
|  | [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc }, | 
|  | [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc }, | 
|  | [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc }, | 
|  | [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc }, | 
|  | [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc }, | 
|  | [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc }, | 
|  | [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc }, | 
|  | [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic }, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | void helper_compute_psr(void) | 
|  | { | 
|  | uint32_t new_psr; | 
|  |  | 
|  | new_psr = icc_table[CC_OP].compute_all(); | 
|  | env->psr = new_psr; | 
|  | #ifdef TARGET_SPARC64 | 
|  | new_psr = xcc_table[CC_OP].compute_all(); | 
|  | env->xcc = new_psr; | 
|  | #endif | 
|  | CC_OP = CC_OP_FLAGS; | 
|  | } | 
|  |  | 
|  | uint32_t helper_compute_C_icc(void) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void memcpy32(target_ulong *dst, const target_ulong *src) | 
|  | { | 
|  | dst[0] = src[0]; | 
|  | dst[1] = src[1]; | 
|  | dst[2] = src[2]; | 
|  | dst[3] = src[3]; | 
|  | dst[4] = src[4]; | 
|  | dst[5] = src[5]; | 
|  | dst[6] = src[6]; | 
|  | dst[7] = src[7]; | 
|  | } | 
|  |  | 
|  | static void set_cwp(int new_cwp) | 
|  | { | 
|  | /* put the modified wrap registers at their proper location */ | 
|  | if (env->cwp == env->nwindows - 1) { | 
|  | memcpy32(env->regbase, env->regbase + env->nwindows * 16); | 
|  | } | 
|  | env->cwp = new_cwp; | 
|  |  | 
|  | /* put the wrap registers at their temporary location */ | 
|  | if (new_cwp == env->nwindows - 1) { | 
|  | memcpy32(env->regbase + env->nwindows * 16, env->regbase); | 
|  | } | 
|  | env->regwptr = env->regbase + (new_cwp * 16); | 
|  | } | 
|  |  | 
|  | void cpu_set_cwp(CPUState *env1, int new_cwp) | 
|  | { | 
|  | CPUState *saved_env; | 
|  |  | 
|  | saved_env = env; | 
|  | env = env1; | 
|  | set_cwp(new_cwp); | 
|  | env = saved_env; | 
|  | } | 
|  |  | 
|  | static target_ulong get_psr(void) | 
|  | { | 
|  | helper_compute_psr(); | 
|  |  | 
|  | #if !defined (TARGET_SPARC64) | 
|  | return env->version | (env->psr & PSR_ICC) | | 
|  | (env->psref? PSR_EF : 0) | | 
|  | (env->psrpil << 8) | | 
|  | (env->psrs? PSR_S : 0) | | 
|  | (env->psrps? PSR_PS : 0) | | 
|  | (env->psret? PSR_ET : 0) | env->cwp; | 
|  | #else | 
|  | return env->psr & PSR_ICC; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | target_ulong cpu_get_psr(CPUState *env1) | 
|  | { | 
|  | CPUState *saved_env; | 
|  | target_ulong ret; | 
|  |  | 
|  | saved_env = env; | 
|  | env = env1; | 
|  | ret = get_psr(); | 
|  | env = saved_env; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void put_psr(target_ulong val) | 
|  | { | 
|  | env->psr = val & PSR_ICC; | 
|  | #if !defined (TARGET_SPARC64) | 
|  | env->psref = (val & PSR_EF)? 1 : 0; | 
|  | env->psrpil = (val & PSR_PIL) >> 8; | 
|  | #endif | 
|  | #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY)) | 
|  | cpu_check_irqs(env); | 
|  | #endif | 
|  | #if !defined (TARGET_SPARC64) | 
|  | env->psrs = (val & PSR_S)? 1 : 0; | 
|  | env->psrps = (val & PSR_PS)? 1 : 0; | 
|  | env->psret = (val & PSR_ET)? 1 : 0; | 
|  | set_cwp(val & PSR_CWP); | 
|  | #endif | 
|  | env->cc_op = CC_OP_FLAGS; | 
|  | } | 
|  |  | 
|  | void cpu_put_psr(CPUState *env1, target_ulong val) | 
|  | { | 
|  | CPUState *saved_env; | 
|  |  | 
|  | saved_env = env; | 
|  | env = env1; | 
|  | put_psr(val); | 
|  | env = saved_env; | 
|  | } | 
|  |  | 
|  | static int cwp_inc(int cwp) | 
|  | { | 
|  | if (unlikely(cwp >= env->nwindows)) { | 
|  | cwp -= env->nwindows; | 
|  | } | 
|  | return cwp; | 
|  | } | 
|  |  | 
|  | int cpu_cwp_inc(CPUState *env1, int cwp) | 
|  | { | 
|  | CPUState *saved_env; | 
|  | target_ulong ret; | 
|  |  | 
|  | saved_env = env; | 
|  | env = env1; | 
|  | ret = cwp_inc(cwp); | 
|  | env = saved_env; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cwp_dec(int cwp) | 
|  | { | 
|  | if (unlikely(cwp < 0)) { | 
|  | cwp += env->nwindows; | 
|  | } | 
|  | return cwp; | 
|  | } | 
|  |  | 
|  | int cpu_cwp_dec(CPUState *env1, int cwp) | 
|  | { | 
|  | CPUState *saved_env; | 
|  | target_ulong ret; | 
|  |  | 
|  | saved_env = env; | 
|  | env = env1; | 
|  | ret = cwp_dec(cwp); | 
|  | env = saved_env; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | GEN_FCMPS(fcmps_fcc1, float32, 22, 0); | 
|  | GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0); | 
|  | GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0); | 
|  |  | 
|  | GEN_FCMPS(fcmps_fcc2, float32, 24, 0); | 
|  | GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0); | 
|  | GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0); | 
|  |  | 
|  | GEN_FCMPS(fcmps_fcc3, float32, 26, 0); | 
|  | GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0); | 
|  | GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0); | 
|  |  | 
|  | GEN_FCMPS(fcmpes_fcc1, float32, 22, 1); | 
|  | GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1); | 
|  | GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1); | 
|  |  | 
|  | GEN_FCMPS(fcmpes_fcc2, float32, 24, 1); | 
|  | GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1); | 
|  | GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1); | 
|  |  | 
|  | GEN_FCMPS(fcmpes_fcc3, float32, 26, 1); | 
|  | GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1); | 
|  | GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1); | 
|  | #endif | 
|  | #undef GEN_FCMPS | 
|  |  | 
|  | #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \ | 
|  | defined(DEBUG_MXCC) | 
|  | static void dump_mxcc(CPUState *env) | 
|  | { | 
|  | printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 | 
|  | "\n", | 
|  | env->mxccdata[0], env->mxccdata[1], | 
|  | env->mxccdata[2], env->mxccdata[3]); | 
|  | printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 | 
|  | "\n" | 
|  | "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 | 
|  | "\n", | 
|  | env->mxccregs[0], env->mxccregs[1], | 
|  | env->mxccregs[2], env->mxccregs[3], | 
|  | env->mxccregs[4], env->mxccregs[5], | 
|  | env->mxccregs[6], env->mxccregs[7]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ | 
|  | && defined(DEBUG_ASI) | 
|  | static void dump_asi(const char *txt, target_ulong addr, int asi, int size, | 
|  | uint64_t r1) | 
|  | { | 
|  | switch (size) | 
|  | { | 
|  | case 1: | 
|  | DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, | 
|  | addr, asi, r1 & 0xff); | 
|  | break; | 
|  | case 2: | 
|  | DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, | 
|  | addr, asi, r1 & 0xffff); | 
|  | break; | 
|  | case 4: | 
|  | DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, | 
|  | addr, asi, r1 & 0xffffffff); | 
|  | break; | 
|  | case 8: | 
|  | DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, | 
|  | addr, asi, r1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef TARGET_SPARC64 | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) | 
|  | { | 
|  | uint64_t ret = 0; | 
|  | #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) | 
|  | uint32_t last_addr = addr; | 
|  | #endif | 
|  |  | 
|  | helper_check_align(addr, size - 1); | 
|  | switch (asi) { | 
|  | case 2: /* SuperSparc MXCC registers */ | 
|  | switch (addr) { | 
|  | case 0x01c00a00: /* MXCC control register */ | 
|  | if (size == 8) | 
|  | ret = env->mxccregs[3]; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | case 0x01c00a04: /* MXCC control register */ | 
|  | if (size == 4) | 
|  | ret = env->mxccregs[3]; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | case 0x01c00c00: /* Module reset register */ | 
|  | if (size == 8) { | 
|  | ret = env->mxccregs[5]; | 
|  | // should we do something here? | 
|  | } else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | case 0x01c00f00: /* MBus port address register */ | 
|  | if (size == 8) | 
|  | ret = env->mxccregs[7]; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | default: | 
|  | DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | } | 
|  | DPRINTF_MXCC("asi = %d, size = %d, sign = %d, " | 
|  | "addr = %08x -> ret = %" PRIx64 "," | 
|  | "addr = %08x\n", asi, size, sign, last_addr, ret, addr); | 
|  | #ifdef DEBUG_MXCC | 
|  | dump_mxcc(env); | 
|  | #endif | 
|  | break; | 
|  | case 3: /* MMU probe */ | 
|  | { | 
|  | int mmulev; | 
|  |  | 
|  | mmulev = (addr >> 8) & 15; | 
|  | if (mmulev > 4) | 
|  | ret = 0; | 
|  | else | 
|  | ret = mmu_probe(env, addr, mmulev); | 
|  | DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", | 
|  | addr, mmulev, ret); | 
|  | } | 
|  | break; | 
|  | case 4: /* read MMU regs */ | 
|  | { | 
|  | int reg = (addr >> 8) & 0x1f; | 
|  |  | 
|  | ret = env->mmuregs[reg]; | 
|  | if (reg == 3) /* Fault status cleared on read */ | 
|  | env->mmuregs[3] = 0; | 
|  | else if (reg == 0x13) /* Fault status read */ | 
|  | ret = env->mmuregs[3]; | 
|  | else if (reg == 0x14) /* Fault address read */ | 
|  | ret = env->mmuregs[4]; | 
|  | DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); | 
|  | } | 
|  | break; | 
|  | case 5: // Turbosparc ITLB Diagnostic | 
|  | case 6: // Turbosparc DTLB Diagnostic | 
|  | case 7: // Turbosparc IOTLB Diagnostic | 
|  | break; | 
|  | case 9: /* Supervisor code access */ | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_code(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_code(addr); | 
|  | break; | 
|  | default: | 
|  | case 4: | 
|  | ret = ldl_code(addr); | 
|  | break; | 
|  | case 8: | 
|  | ret = ldq_code(addr); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0xa: /* User data access */ | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_user(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_user(addr); | 
|  | break; | 
|  | default: | 
|  | case 4: | 
|  | ret = ldl_user(addr); | 
|  | break; | 
|  | case 8: | 
|  | ret = ldq_user(addr); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0xb: /* Supervisor data access */ | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_kernel(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_kernel(addr); | 
|  | break; | 
|  | default: | 
|  | case 4: | 
|  | ret = ldl_kernel(addr); | 
|  | break; | 
|  | case 8: | 
|  | ret = ldq_kernel(addr); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0xc: /* I-cache tag */ | 
|  | case 0xd: /* I-cache data */ | 
|  | case 0xe: /* D-cache tag */ | 
|  | case 0xf: /* D-cache data */ | 
|  | break; | 
|  | case 0x20: /* MMU passthrough */ | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_phys(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_phys(addr); | 
|  | break; | 
|  | default: | 
|  | case 4: | 
|  | ret = ldl_phys(addr); | 
|  | break; | 
|  | case 8: | 
|  | ret = ldq_phys(addr); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_phys((target_phys_addr_t)addr | 
|  | | ((target_phys_addr_t)(asi & 0xf) << 32)); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_phys((target_phys_addr_t)addr | 
|  | | ((target_phys_addr_t)(asi & 0xf) << 32)); | 
|  | break; | 
|  | default: | 
|  | case 4: | 
|  | ret = ldl_phys((target_phys_addr_t)addr | 
|  | | ((target_phys_addr_t)(asi & 0xf) << 32)); | 
|  | break; | 
|  | case 8: | 
|  | ret = ldq_phys((target_phys_addr_t)addr | 
|  | | ((target_phys_addr_t)(asi & 0xf) << 32)); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0x30: // Turbosparc secondary cache diagnostic | 
|  | case 0x31: // Turbosparc RAM snoop | 
|  | case 0x32: // Turbosparc page table descriptor diagnostic | 
|  | case 0x39: /* data cache diagnostic register */ | 
|  | case 0x4c: /* SuperSPARC MMU Breakpoint Action register */ | 
|  | ret = 0; | 
|  | break; | 
|  | case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */ | 
|  | { | 
|  | int reg = (addr >> 8) & 3; | 
|  |  | 
|  | switch(reg) { | 
|  | case 0: /* Breakpoint Value (Addr) */ | 
|  | ret = env->mmubpregs[reg]; | 
|  | break; | 
|  | case 1: /* Breakpoint Mask */ | 
|  | ret = env->mmubpregs[reg]; | 
|  | break; | 
|  | case 2: /* Breakpoint Control */ | 
|  | ret = env->mmubpregs[reg]; | 
|  | break; | 
|  | case 3: /* Breakpoint Status */ | 
|  | ret = env->mmubpregs[reg]; | 
|  | env->mmubpregs[reg] = 0ULL; | 
|  | break; | 
|  | } | 
|  | DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg, | 
|  | ret); | 
|  | } | 
|  | break; | 
|  | case 8: /* User code access, XXX */ | 
|  | default: | 
|  | do_unassigned_access(addr, 0, 0, asi, size); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | if (sign) { | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = (int8_t) ret; | 
|  | break; | 
|  | case 2: | 
|  | ret = (int16_t) ret; | 
|  | break; | 
|  | case 4: | 
|  | ret = (int32_t) ret; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | #ifdef DEBUG_ASI | 
|  | dump_asi("read ", last_addr, asi, size, ret); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) | 
|  | { | 
|  | helper_check_align(addr, size - 1); | 
|  | switch(asi) { | 
|  | case 2: /* SuperSparc MXCC registers */ | 
|  | switch (addr) { | 
|  | case 0x01c00000: /* MXCC stream data register 0 */ | 
|  | if (size == 8) | 
|  | env->mxccdata[0] = val; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | case 0x01c00008: /* MXCC stream data register 1 */ | 
|  | if (size == 8) | 
|  | env->mxccdata[1] = val; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | case 0x01c00010: /* MXCC stream data register 2 */ | 
|  | if (size == 8) | 
|  | env->mxccdata[2] = val; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | case 0x01c00018: /* MXCC stream data register 3 */ | 
|  | if (size == 8) | 
|  | env->mxccdata[3] = val; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | case 0x01c00100: /* MXCC stream source */ | 
|  | if (size == 8) | 
|  | env->mxccregs[0] = val; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + | 
|  | 0); | 
|  | env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + | 
|  | 8); | 
|  | env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + | 
|  | 16); | 
|  | env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + | 
|  | 24); | 
|  | break; | 
|  | case 0x01c00200: /* MXCC stream destination */ | 
|  | if (size == 8) | 
|  | env->mxccregs[1] = val; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, | 
|  | env->mxccdata[0]); | 
|  | stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, | 
|  | env->mxccdata[1]); | 
|  | stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, | 
|  | env->mxccdata[2]); | 
|  | stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, | 
|  | env->mxccdata[3]); | 
|  | break; | 
|  | case 0x01c00a00: /* MXCC control register */ | 
|  | if (size == 8) | 
|  | env->mxccregs[3] = val; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | case 0x01c00a04: /* MXCC control register */ | 
|  | if (size == 4) | 
|  | env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL) | 
|  | | val; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | case 0x01c00e00: /* MXCC error register  */ | 
|  | // writing a 1 bit clears the error | 
|  | if (size == 8) | 
|  | env->mxccregs[6] &= ~val; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | case 0x01c00f00: /* MBus port address register */ | 
|  | if (size == 8) | 
|  | env->mxccregs[7] = val; | 
|  | else | 
|  | DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | default: | 
|  | DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, | 
|  | size); | 
|  | break; | 
|  | } | 
|  | DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n", | 
|  | asi, size, addr, val); | 
|  | #ifdef DEBUG_MXCC | 
|  | dump_mxcc(env); | 
|  | #endif | 
|  | break; | 
|  | case 3: /* MMU flush */ | 
|  | { | 
|  | int mmulev; | 
|  |  | 
|  | mmulev = (addr >> 8) & 15; | 
|  | DPRINTF_MMU("mmu flush level %d\n", mmulev); | 
|  | switch (mmulev) { | 
|  | case 0: // flush page | 
|  | tlb_flush_page(env, addr & 0xfffff000); | 
|  | break; | 
|  | case 1: // flush segment (256k) | 
|  | case 2: // flush region (16M) | 
|  | case 3: // flush context (4G) | 
|  | case 4: // flush entire | 
|  | tlb_flush(env, 1); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | #ifdef DEBUG_MMU | 
|  | dump_mmu(env); | 
|  | #endif | 
|  | } | 
|  | break; | 
|  | case 4: /* write MMU regs */ | 
|  | { | 
|  | int reg = (addr >> 8) & 0x1f; | 
|  | uint32_t oldreg; | 
|  |  | 
|  | oldreg = env->mmuregs[reg]; | 
|  | switch(reg) { | 
|  | case 0: // Control Register | 
|  | env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | | 
|  | (val & 0x00ffffff); | 
|  | // Mappings generated during no-fault mode or MMU | 
|  | // disabled mode are invalid in normal mode | 
|  | if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) != | 
|  | (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) | 
|  | tlb_flush(env, 1); | 
|  | break; | 
|  | case 1: // Context Table Pointer Register | 
|  | env->mmuregs[reg] = val & env->def->mmu_ctpr_mask; | 
|  | break; | 
|  | case 2: // Context Register | 
|  | env->mmuregs[reg] = val & env->def->mmu_cxr_mask; | 
|  | if (oldreg != env->mmuregs[reg]) { | 
|  | /* we flush when the MMU context changes because | 
|  | QEMU has no MMU context support */ | 
|  | tlb_flush(env, 1); | 
|  | } | 
|  | break; | 
|  | case 3: // Synchronous Fault Status Register with Clear | 
|  | case 4: // Synchronous Fault Address Register | 
|  | break; | 
|  | case 0x10: // TLB Replacement Control Register | 
|  | env->mmuregs[reg] = val & env->def->mmu_trcr_mask; | 
|  | break; | 
|  | case 0x13: // Synchronous Fault Status Register with Read and Clear | 
|  | env->mmuregs[3] = val & env->def->mmu_sfsr_mask; | 
|  | break; | 
|  | case 0x14: // Synchronous Fault Address Register | 
|  | env->mmuregs[4] = val; | 
|  | break; | 
|  | default: | 
|  | env->mmuregs[reg] = val; | 
|  | break; | 
|  | } | 
|  | if (oldreg != env->mmuregs[reg]) { | 
|  | DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", | 
|  | reg, oldreg, env->mmuregs[reg]); | 
|  | } | 
|  | #ifdef DEBUG_MMU | 
|  | dump_mmu(env); | 
|  | #endif | 
|  | } | 
|  | break; | 
|  | case 5: // Turbosparc ITLB Diagnostic | 
|  | case 6: // Turbosparc DTLB Diagnostic | 
|  | case 7: // Turbosparc IOTLB Diagnostic | 
|  | break; | 
|  | case 0xa: /* User data access */ | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_user(addr, val); | 
|  | break; | 
|  | case 2: | 
|  | stw_user(addr, val); | 
|  | break; | 
|  | default: | 
|  | case 4: | 
|  | stl_user(addr, val); | 
|  | break; | 
|  | case 8: | 
|  | stq_user(addr, val); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0xb: /* Supervisor data access */ | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_kernel(addr, val); | 
|  | break; | 
|  | case 2: | 
|  | stw_kernel(addr, val); | 
|  | break; | 
|  | default: | 
|  | case 4: | 
|  | stl_kernel(addr, val); | 
|  | break; | 
|  | case 8: | 
|  | stq_kernel(addr, val); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0xc: /* I-cache tag */ | 
|  | case 0xd: /* I-cache data */ | 
|  | case 0xe: /* D-cache tag */ | 
|  | case 0xf: /* D-cache data */ | 
|  | case 0x10: /* I/D-cache flush page */ | 
|  | case 0x11: /* I/D-cache flush segment */ | 
|  | case 0x12: /* I/D-cache flush region */ | 
|  | case 0x13: /* I/D-cache flush context */ | 
|  | case 0x14: /* I/D-cache flush user */ | 
|  | break; | 
|  | case 0x17: /* Block copy, sta access */ | 
|  | { | 
|  | // val = src | 
|  | // addr = dst | 
|  | // copy 32 bytes | 
|  | unsigned int i; | 
|  | uint32_t src = val & ~3, dst = addr & ~3, temp; | 
|  |  | 
|  | for (i = 0; i < 32; i += 4, src += 4, dst += 4) { | 
|  | temp = ldl_kernel(src); | 
|  | stl_kernel(dst, temp); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 0x1f: /* Block fill, stda access */ | 
|  | { | 
|  | // addr = dst | 
|  | // fill 32 bytes with val | 
|  | unsigned int i; | 
|  | uint32_t dst = addr & 7; | 
|  |  | 
|  | for (i = 0; i < 32; i += 8, dst += 8) | 
|  | stq_kernel(dst, val); | 
|  | } | 
|  | break; | 
|  | case 0x20: /* MMU passthrough */ | 
|  | { | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_phys(addr, val); | 
|  | break; | 
|  | case 2: | 
|  | stw_phys(addr, val); | 
|  | break; | 
|  | case 4: | 
|  | default: | 
|  | stl_phys(addr, val); | 
|  | break; | 
|  | case 8: | 
|  | stq_phys(addr, val); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ | 
|  | { | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_phys((target_phys_addr_t)addr | 
|  | | ((target_phys_addr_t)(asi & 0xf) << 32), val); | 
|  | break; | 
|  | case 2: | 
|  | stw_phys((target_phys_addr_t)addr | 
|  | | ((target_phys_addr_t)(asi & 0xf) << 32), val); | 
|  | break; | 
|  | case 4: | 
|  | default: | 
|  | stl_phys((target_phys_addr_t)addr | 
|  | | ((target_phys_addr_t)(asi & 0xf) << 32), val); | 
|  | break; | 
|  | case 8: | 
|  | stq_phys((target_phys_addr_t)addr | 
|  | | ((target_phys_addr_t)(asi & 0xf) << 32), val); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic | 
|  | case 0x31: // store buffer data, Ross RT620 I-cache flush or | 
|  | // Turbosparc snoop RAM | 
|  | case 0x32: // store buffer control or Turbosparc page table | 
|  | // descriptor diagnostic | 
|  | case 0x36: /* I-cache flash clear */ | 
|  | case 0x37: /* D-cache flash clear */ | 
|  | case 0x4c: /* breakpoint action */ | 
|  | break; | 
|  | case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/ | 
|  | { | 
|  | int reg = (addr >> 8) & 3; | 
|  |  | 
|  | switch(reg) { | 
|  | case 0: /* Breakpoint Value (Addr) */ | 
|  | env->mmubpregs[reg] = (val & 0xfffffffffULL); | 
|  | break; | 
|  | case 1: /* Breakpoint Mask */ | 
|  | env->mmubpregs[reg] = (val & 0xfffffffffULL); | 
|  | break; | 
|  | case 2: /* Breakpoint Control */ | 
|  | env->mmubpregs[reg] = (val & 0x7fULL); | 
|  | break; | 
|  | case 3: /* Breakpoint Status */ | 
|  | env->mmubpregs[reg] = (val & 0xfULL); | 
|  | break; | 
|  | } | 
|  | DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg, | 
|  | env->mmuregs[reg]); | 
|  | } | 
|  | break; | 
|  | case 8: /* User code access, XXX */ | 
|  | case 9: /* Supervisor code access, XXX */ | 
|  | default: | 
|  | do_unassigned_access(addr, 1, 0, asi, size); | 
|  | break; | 
|  | } | 
|  | #ifdef DEBUG_ASI | 
|  | dump_asi("write", addr, asi, size, val); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_USER_ONLY */ | 
|  | #else /* TARGET_SPARC64 */ | 
|  |  | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) | 
|  | { | 
|  | uint64_t ret = 0; | 
|  | #if defined(DEBUG_ASI) | 
|  | target_ulong last_addr = addr; | 
|  | #endif | 
|  |  | 
|  | if (asi < 0x80) | 
|  | raise_exception(TT_PRIV_ACT); | 
|  |  | 
|  | helper_check_align(addr, size - 1); | 
|  | addr = asi_address_mask(env, asi, addr); | 
|  |  | 
|  | switch (asi) { | 
|  | case 0x82: // Primary no-fault | 
|  | case 0x8a: // Primary no-fault LE | 
|  | if (page_check_range(addr, size, PAGE_READ) == -1) { | 
|  | #ifdef DEBUG_ASI | 
|  | dump_asi("read ", last_addr, asi, size, ret); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | // Fall through | 
|  | case 0x80: // Primary | 
|  | case 0x88: // Primary LE | 
|  | { | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_raw(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_raw(addr); | 
|  | break; | 
|  | case 4: | 
|  | ret = ldl_raw(addr); | 
|  | break; | 
|  | default: | 
|  | case 8: | 
|  | ret = ldq_raw(addr); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 0x83: // Secondary no-fault | 
|  | case 0x8b: // Secondary no-fault LE | 
|  | if (page_check_range(addr, size, PAGE_READ) == -1) { | 
|  | #ifdef DEBUG_ASI | 
|  | dump_asi("read ", last_addr, asi, size, ret); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | // Fall through | 
|  | case 0x81: // Secondary | 
|  | case 0x89: // Secondary LE | 
|  | // XXX | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Convert from little endian */ | 
|  | switch (asi) { | 
|  | case 0x88: // Primary LE | 
|  | case 0x89: // Secondary LE | 
|  | case 0x8a: // Primary no-fault LE | 
|  | case 0x8b: // Secondary no-fault LE | 
|  | switch(size) { | 
|  | case 2: | 
|  | ret = bswap16(ret); | 
|  | break; | 
|  | case 4: | 
|  | ret = bswap32(ret); | 
|  | break; | 
|  | case 8: | 
|  | ret = bswap64(ret); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Convert to signed number */ | 
|  | if (sign) { | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = (int8_t) ret; | 
|  | break; | 
|  | case 2: | 
|  | ret = (int16_t) ret; | 
|  | break; | 
|  | case 4: | 
|  | ret = (int32_t) ret; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | #ifdef DEBUG_ASI | 
|  | dump_asi("read ", last_addr, asi, size, ret); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) | 
|  | { | 
|  | #ifdef DEBUG_ASI | 
|  | dump_asi("write", addr, asi, size, val); | 
|  | #endif | 
|  | if (asi < 0x80) | 
|  | raise_exception(TT_PRIV_ACT); | 
|  |  | 
|  | helper_check_align(addr, size - 1); | 
|  | addr = asi_address_mask(env, asi, addr); | 
|  |  | 
|  | /* Convert to little endian */ | 
|  | switch (asi) { | 
|  | case 0x88: // Primary LE | 
|  | case 0x89: // Secondary LE | 
|  | switch(size) { | 
|  | case 2: | 
|  | val = bswap16(val); | 
|  | break; | 
|  | case 4: | 
|  | val = bswap32(val); | 
|  | break; | 
|  | case 8: | 
|  | val = bswap64(val); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch(asi) { | 
|  | case 0x80: // Primary | 
|  | case 0x88: // Primary LE | 
|  | { | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_raw(addr, val); | 
|  | break; | 
|  | case 2: | 
|  | stw_raw(addr, val); | 
|  | break; | 
|  | case 4: | 
|  | stl_raw(addr, val); | 
|  | break; | 
|  | case 8: | 
|  | default: | 
|  | stq_raw(addr, val); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 0x81: // Secondary | 
|  | case 0x89: // Secondary LE | 
|  | // XXX | 
|  | return; | 
|  |  | 
|  | case 0x82: // Primary no-fault, RO | 
|  | case 0x83: // Secondary no-fault, RO | 
|  | case 0x8a: // Primary no-fault LE, RO | 
|  | case 0x8b: // Secondary no-fault LE, RO | 
|  | default: | 
|  | do_unassigned_access(addr, 1, 0, 1, size); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_USER_ONLY */ | 
|  |  | 
|  | uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) | 
|  | { | 
|  | uint64_t ret = 0; | 
|  | #if defined(DEBUG_ASI) | 
|  | target_ulong last_addr = addr; | 
|  | #endif | 
|  |  | 
|  | asi &= 0xff; | 
|  |  | 
|  | if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) | 
|  | || (cpu_has_hypervisor(env) | 
|  | && asi >= 0x30 && asi < 0x80 | 
|  | && !(env->hpstate & HS_PRIV))) | 
|  | raise_exception(TT_PRIV_ACT); | 
|  |  | 
|  | helper_check_align(addr, size - 1); | 
|  | addr = asi_address_mask(env, asi, addr); | 
|  |  | 
|  | switch (asi) { | 
|  | case 0x82: // Primary no-fault | 
|  | case 0x8a: // Primary no-fault LE | 
|  | case 0x83: // Secondary no-fault | 
|  | case 0x8b: // Secondary no-fault LE | 
|  | { | 
|  | /* secondary space access has lowest asi bit equal to 1 */ | 
|  | int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX | 
|  | : MMU_KERNEL_SECONDARY_IDX; | 
|  |  | 
|  | if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) { | 
|  | #ifdef DEBUG_ASI | 
|  | dump_asi("read ", last_addr, asi, size, ret); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | // Fall through | 
|  | case 0x10: // As if user primary | 
|  | case 0x11: // As if user secondary | 
|  | case 0x18: // As if user primary LE | 
|  | case 0x19: // As if user secondary LE | 
|  | case 0x80: // Primary | 
|  | case 0x81: // Secondary | 
|  | case 0x88: // Primary LE | 
|  | case 0x89: // Secondary LE | 
|  | case 0xe2: // UA2007 Primary block init | 
|  | case 0xe3: // UA2007 Secondary block init | 
|  | if ((asi & 0x80) && (env->pstate & PS_PRIV)) { | 
|  | if (cpu_hypervisor_mode(env)) { | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_hypv(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_hypv(addr); | 
|  | break; | 
|  | case 4: | 
|  | ret = ldl_hypv(addr); | 
|  | break; | 
|  | default: | 
|  | case 8: | 
|  | ret = ldq_hypv(addr); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | /* secondary space access has lowest asi bit equal to 1 */ | 
|  | if (asi & 1) { | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_kernel_secondary(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_kernel_secondary(addr); | 
|  | break; | 
|  | case 4: | 
|  | ret = ldl_kernel_secondary(addr); | 
|  | break; | 
|  | default: | 
|  | case 8: | 
|  | ret = ldq_kernel_secondary(addr); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_kernel(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_kernel(addr); | 
|  | break; | 
|  | case 4: | 
|  | ret = ldl_kernel(addr); | 
|  | break; | 
|  | default: | 
|  | case 8: | 
|  | ret = ldq_kernel(addr); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* secondary space access has lowest asi bit equal to 1 */ | 
|  | if (asi & 1) { | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_user_secondary(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_user_secondary(addr); | 
|  | break; | 
|  | case 4: | 
|  | ret = ldl_user_secondary(addr); | 
|  | break; | 
|  | default: | 
|  | case 8: | 
|  | ret = ldq_user_secondary(addr); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_user(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_user(addr); | 
|  | break; | 
|  | case 4: | 
|  | ret = ldl_user(addr); | 
|  | break; | 
|  | default: | 
|  | case 8: | 
|  | ret = ldq_user(addr); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 0x14: // Bypass | 
|  | case 0x15: // Bypass, non-cacheable | 
|  | case 0x1c: // Bypass LE | 
|  | case 0x1d: // Bypass, non-cacheable LE | 
|  | { | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_phys(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_phys(addr); | 
|  | break; | 
|  | case 4: | 
|  | ret = ldl_phys(addr); | 
|  | break; | 
|  | default: | 
|  | case 8: | 
|  | ret = ldq_phys(addr); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 0x24: // Nucleus quad LDD 128 bit atomic | 
|  | case 0x2c: // Nucleus quad LDD 128 bit atomic LE | 
|  | //  Only ldda allowed | 
|  | raise_exception(TT_ILL_INSN); | 
|  | return 0; | 
|  | case 0x04: // Nucleus | 
|  | case 0x0c: // Nucleus Little Endian (LE) | 
|  | { | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = ldub_nucleus(addr); | 
|  | break; | 
|  | case 2: | 
|  | ret = lduw_nucleus(addr); | 
|  | break; | 
|  | case 4: | 
|  | ret = ldl_nucleus(addr); | 
|  | break; | 
|  | default: | 
|  | case 8: | 
|  | ret = ldq_nucleus(addr); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 0x4a: // UPA config | 
|  | // XXX | 
|  | break; | 
|  | case 0x45: // LSU | 
|  | ret = env->lsu; | 
|  | break; | 
|  | case 0x50: // I-MMU regs | 
|  | { | 
|  | int reg = (addr >> 3) & 0xf; | 
|  |  | 
|  | if (reg == 0) { | 
|  | // I-TSB Tag Target register | 
|  | ret = ultrasparc_tag_target(env->immu.tag_access); | 
|  | } else { | 
|  | ret = env->immuregs[reg]; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case 0x51: // I-MMU 8k TSB pointer | 
|  | { | 
|  | // env->immuregs[5] holds I-MMU TSB register value | 
|  | // env->immuregs[6] holds I-MMU Tag Access register value | 
|  | ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, | 
|  | 8*1024); | 
|  | break; | 
|  | } | 
|  | case 0x52: // I-MMU 64k TSB pointer | 
|  | { | 
|  | // env->immuregs[5] holds I-MMU TSB register value | 
|  | // env->immuregs[6] holds I-MMU Tag Access register value | 
|  | ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, | 
|  | 64*1024); | 
|  | break; | 
|  | } | 
|  | case 0x55: // I-MMU data access | 
|  | { | 
|  | int reg = (addr >> 3) & 0x3f; | 
|  |  | 
|  | ret = env->itlb[reg].tte; | 
|  | break; | 
|  | } | 
|  | case 0x56: // I-MMU tag read | 
|  | { | 
|  | int reg = (addr >> 3) & 0x3f; | 
|  |  | 
|  | ret = env->itlb[reg].tag; | 
|  | break; | 
|  | } | 
|  | case 0x58: // D-MMU regs | 
|  | { | 
|  | int reg = (addr >> 3) & 0xf; | 
|  |  | 
|  | if (reg == 0) { | 
|  | // D-TSB Tag Target register | 
|  | ret = ultrasparc_tag_target(env->dmmu.tag_access); | 
|  | } else { | 
|  | ret = env->dmmuregs[reg]; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 0x59: // D-MMU 8k TSB pointer | 
|  | { | 
|  | // env->dmmuregs[5] holds D-MMU TSB register value | 
|  | // env->dmmuregs[6] holds D-MMU Tag Access register value | 
|  | ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, | 
|  | 8*1024); | 
|  | break; | 
|  | } | 
|  | case 0x5a: // D-MMU 64k TSB pointer | 
|  | { | 
|  | // env->dmmuregs[5] holds D-MMU TSB register value | 
|  | // env->dmmuregs[6] holds D-MMU Tag Access register value | 
|  | ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, | 
|  | 64*1024); | 
|  | break; | 
|  | } | 
|  | case 0x5d: // D-MMU data access | 
|  | { | 
|  | int reg = (addr >> 3) & 0x3f; | 
|  |  | 
|  | ret = env->dtlb[reg].tte; | 
|  | break; | 
|  | } | 
|  | case 0x5e: // D-MMU tag read | 
|  | { | 
|  | int reg = (addr >> 3) & 0x3f; | 
|  |  | 
|  | ret = env->dtlb[reg].tag; | 
|  | break; | 
|  | } | 
|  | case 0x46: // D-cache data | 
|  | case 0x47: // D-cache tag access | 
|  | case 0x4b: // E-cache error enable | 
|  | case 0x4c: // E-cache asynchronous fault status | 
|  | case 0x4d: // E-cache asynchronous fault address | 
|  | case 0x4e: // E-cache tag data | 
|  | case 0x66: // I-cache instruction access | 
|  | case 0x67: // I-cache tag access | 
|  | case 0x6e: // I-cache predecode | 
|  | case 0x6f: // I-cache LRU etc. | 
|  | case 0x76: // E-cache tag | 
|  | case 0x7e: // E-cache tag | 
|  | break; | 
|  | case 0x5b: // D-MMU data pointer | 
|  | case 0x48: // Interrupt dispatch, RO | 
|  | case 0x49: // Interrupt data receive | 
|  | case 0x7f: // Incoming interrupt vector, RO | 
|  | // XXX | 
|  | break; | 
|  | case 0x54: // I-MMU data in, WO | 
|  | case 0x57: // I-MMU demap, WO | 
|  | case 0x5c: // D-MMU data in, WO | 
|  | case 0x5f: // D-MMU demap, WO | 
|  | case 0x77: // Interrupt vector, WO | 
|  | default: | 
|  | do_unassigned_access(addr, 0, 0, 1, size); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Convert from little endian */ | 
|  | switch (asi) { | 
|  | case 0x0c: // Nucleus Little Endian (LE) | 
|  | case 0x18: // As if user primary LE | 
|  | case 0x19: // As if user secondary LE | 
|  | case 0x1c: // Bypass LE | 
|  | case 0x1d: // Bypass, non-cacheable LE | 
|  | case 0x88: // Primary LE | 
|  | case 0x89: // Secondary LE | 
|  | case 0x8a: // Primary no-fault LE | 
|  | case 0x8b: // Secondary no-fault LE | 
|  | switch(size) { | 
|  | case 2: | 
|  | ret = bswap16(ret); | 
|  | break; | 
|  | case 4: | 
|  | ret = bswap32(ret); | 
|  | break; | 
|  | case 8: | 
|  | ret = bswap64(ret); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Convert to signed number */ | 
|  | if (sign) { | 
|  | switch(size) { | 
|  | case 1: | 
|  | ret = (int8_t) ret; | 
|  | break; | 
|  | case 2: | 
|  | ret = (int16_t) ret; | 
|  | break; | 
|  | case 4: | 
|  | ret = (int32_t) ret; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | #ifdef DEBUG_ASI | 
|  | dump_asi("read ", last_addr, asi, size, ret); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) | 
|  | { | 
|  | #ifdef DEBUG_ASI | 
|  | dump_asi("write", addr, asi, size, val); | 
|  | #endif | 
|  |  | 
|  | asi &= 0xff; | 
|  |  | 
|  | if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) | 
|  | || (cpu_has_hypervisor(env) | 
|  | && asi >= 0x30 && asi < 0x80 | 
|  | && !(env->hpstate & HS_PRIV))) | 
|  | raise_exception(TT_PRIV_ACT); | 
|  |  | 
|  | helper_check_align(addr, size - 1); | 
|  | addr = asi_address_mask(env, asi, addr); | 
|  |  | 
|  | /* Convert to little endian */ | 
|  | switch (asi) { | 
|  | case 0x0c: // Nucleus Little Endian (LE) | 
|  | case 0x18: // As if user primary LE | 
|  | case 0x19: // As if user secondary LE | 
|  | case 0x1c: // Bypass LE | 
|  | case 0x1d: // Bypass, non-cacheable LE | 
|  | case 0x88: // Primary LE | 
|  | case 0x89: // Secondary LE | 
|  | switch(size) { | 
|  | case 2: | 
|  | val = bswap16(val); | 
|  | break; | 
|  | case 4: | 
|  | val = bswap32(val); | 
|  | break; | 
|  | case 8: | 
|  | val = bswap64(val); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch(asi) { | 
|  | case 0x10: // As if user primary | 
|  | case 0x11: // As if user secondary | 
|  | case 0x18: // As if user primary LE | 
|  | case 0x19: // As if user secondary LE | 
|  | case 0x80: // Primary | 
|  | case 0x81: // Secondary | 
|  | case 0x88: // Primary LE | 
|  | case 0x89: // Secondary LE | 
|  | case 0xe2: // UA2007 Primary block init | 
|  | case 0xe3: // UA2007 Secondary block init | 
|  | if ((asi & 0x80) && (env->pstate & PS_PRIV)) { | 
|  | if (cpu_hypervisor_mode(env)) { | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_hypv(addr, val); | 
|  | break; | 
|  | case 2: | 
|  | stw_hypv(addr, val); | 
|  | break; | 
|  | case 4: | 
|  | stl_hypv(addr, val); | 
|  | break; | 
|  | case 8: | 
|  | default: | 
|  | stq_hypv(addr, val); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | /* secondary space access has lowest asi bit equal to 1 */ | 
|  | if (asi & 1) { | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_kernel_secondary(addr, val); | 
|  | break; | 
|  | case 2: | 
|  | stw_kernel_secondary(addr, val); | 
|  | break; | 
|  | case 4: | 
|  | stl_kernel_secondary(addr, val); | 
|  | break; | 
|  | case 8: | 
|  | default: | 
|  | stq_kernel_secondary(addr, val); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_kernel(addr, val); | 
|  | break; | 
|  | case 2: | 
|  | stw_kernel(addr, val); | 
|  | break; | 
|  | case 4: | 
|  | stl_kernel(addr, val); | 
|  | break; | 
|  | case 8: | 
|  | default: | 
|  | stq_kernel(addr, val); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* secondary space access has lowest asi bit equal to 1 */ | 
|  | if (asi & 1) { | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_user_secondary(addr, val); | 
|  | break; | 
|  | case 2: | 
|  | stw_user_secondary(addr, val); | 
|  | break; | 
|  | case 4: | 
|  | stl_user_secondary(addr, val); | 
|  | break; | 
|  | case 8: | 
|  | default: | 
|  | stq_user_secondary(addr, val); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_user(addr, val); | 
|  | break; | 
|  | case 2: | 
|  | stw_user(addr, val); | 
|  | break; | 
|  | case 4: | 
|  | stl_user(addr, val); | 
|  | break; | 
|  | case 8: | 
|  | default: | 
|  | stq_user(addr, val); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 0x14: // Bypass | 
|  | case 0x15: // Bypass, non-cacheable | 
|  | case 0x1c: // Bypass LE | 
|  | case 0x1d: // Bypass, non-cacheable LE | 
|  | { | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_phys(addr, val); | 
|  | break; | 
|  | case 2: | 
|  | stw_phys(addr, val); | 
|  | break; | 
|  | case 4: | 
|  | stl_phys(addr, val); | 
|  | break; | 
|  | case 8: | 
|  | default: | 
|  | stq_phys(addr, val); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 0x24: // Nucleus quad LDD 128 bit atomic | 
|  | case 0x2c: // Nucleus quad LDD 128 bit atomic LE | 
|  | //  Only ldda allowed | 
|  | raise_exception(TT_ILL_INSN); | 
|  | return; | 
|  | case 0x04: // Nucleus | 
|  | case 0x0c: // Nucleus Little Endian (LE) | 
|  | { | 
|  | switch(size) { | 
|  | case 1: | 
|  | stb_nucleus(addr, val); | 
|  | break; | 
|  | case 2: | 
|  | stw_nucleus(addr, val); | 
|  | break; | 
|  | case 4: | 
|  | stl_nucleus(addr, val); | 
|  | break; | 
|  | default: | 
|  | case 8: | 
|  | stq_nucleus(addr, val); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case 0x4a: // UPA config | 
|  | // XXX | 
|  | return; | 
|  | case 0x45: // LSU | 
|  | { | 
|  | uint64_t oldreg; | 
|  |  | 
|  | oldreg = env->lsu; | 
|  | env->lsu = val & (DMMU_E | IMMU_E); | 
|  | // Mappings generated during D/I MMU disabled mode are | 
|  | // invalid in normal mode | 
|  | if (oldreg != env->lsu) { | 
|  | DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", | 
|  | oldreg, env->lsu); | 
|  | #ifdef DEBUG_MMU | 
|  | dump_mmu(env); | 
|  | #endif | 
|  | tlb_flush(env, 1); | 
|  | } | 
|  | return; | 
|  | } | 
|  | case 0x50: // I-MMU regs | 
|  | { | 
|  | int reg = (addr >> 3) & 0xf; | 
|  | uint64_t oldreg; | 
|  |  | 
|  | oldreg = env->immuregs[reg]; | 
|  | switch(reg) { | 
|  | case 0: // RO | 
|  | return; | 
|  | case 1: // Not in I-MMU | 
|  | case 2: | 
|  | return; | 
|  | case 3: // SFSR | 
|  | if ((val & 1) == 0) | 
|  | val = 0; // Clear SFSR | 
|  | env->immu.sfsr = val; | 
|  | break; | 
|  | case 4: // RO | 
|  | return; | 
|  | case 5: // TSB access | 
|  | DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016" | 
|  | PRIx64 "\n", env->immu.tsb, val); | 
|  | env->immu.tsb = val; | 
|  | break; | 
|  | case 6: // Tag access | 
|  | env->immu.tag_access = val; | 
|  | break; | 
|  | case 7: | 
|  | case 8: | 
|  | return; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (oldreg != env->immuregs[reg]) { | 
|  | DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" | 
|  | PRIx64 "\n", reg, oldreg, env->immuregs[reg]); | 
|  | } | 
|  | #ifdef DEBUG_MMU | 
|  | dump_mmu(env); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  | case 0x54: // I-MMU data in | 
|  | replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env); | 
|  | return; | 
|  | case 0x55: // I-MMU data access | 
|  | { | 
|  | // TODO: auto demap | 
|  |  | 
|  | unsigned int i = (addr >> 3) & 0x3f; | 
|  |  | 
|  | replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env); | 
|  |  | 
|  | #ifdef DEBUG_MMU | 
|  | DPRINTF_MMU("immu data access replaced entry [%i]\n", i); | 
|  | dump_mmu(env); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  | case 0x57: // I-MMU demap | 
|  | demap_tlb(env->itlb, addr, "immu", env); | 
|  | return; | 
|  | case 0x58: // D-MMU regs | 
|  | { | 
|  | int reg = (addr >> 3) & 0xf; | 
|  | uint64_t oldreg; | 
|  |  | 
|  | oldreg = env->dmmuregs[reg]; | 
|  | switch(reg) { | 
|  | case 0: // RO | 
|  | case 4: | 
|  | return; | 
|  | case 3: // SFSR | 
|  | if ((val & 1) == 0) { | 
|  | val = 0; // Clear SFSR, Fault address | 
|  | env->dmmu.sfar = 0; | 
|  | } | 
|  | env->dmmu.sfsr = val; | 
|  | break; | 
|  | case 1: // Primary context | 
|  | env->dmmu.mmu_primary_context = val; | 
|  | /* can be optimized to only flush MMU_USER_IDX | 
|  | and MMU_KERNEL_IDX entries */ | 
|  | tlb_flush(env, 1); | 
|  | break; | 
|  | case 2: // Secondary context | 
|  | env->dmmu.mmu_secondary_context = val; | 
|  | /* can be optimized to only flush MMU_USER_SECONDARY_IDX | 
|  | and MMU_KERNEL_SECONDARY_IDX entries */ | 
|  | tlb_flush(env, 1); | 
|  | break; | 
|  | case 5: // TSB access | 
|  | DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016" | 
|  | PRIx64 "\n", env->dmmu.tsb, val); | 
|  | env->dmmu.tsb = val; | 
|  | break; | 
|  | case 6: // Tag access | 
|  | env->dmmu.tag_access = val; | 
|  | break; | 
|  | case 7: // Virtual Watchpoint | 
|  | case 8: // Physical Watchpoint | 
|  | default: | 
|  | env->dmmuregs[reg] = val; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (oldreg != env->dmmuregs[reg]) { | 
|  | DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" | 
|  | PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); | 
|  | } | 
|  | #ifdef DEBUG_MMU | 
|  | dump_mmu(env); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  | case 0x5c: // D-MMU data in | 
|  | replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env); | 
|  | return; | 
|  | case 0x5d: // D-MMU data access | 
|  | { | 
|  | unsigned int i = (addr >> 3) & 0x3f; | 
|  |  | 
|  | replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env); | 
|  |  | 
|  | #ifdef DEBUG_MMU | 
|  | DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i); | 
|  | dump_mmu(env); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  | case 0x5f: // D-MMU demap | 
|  | demap_tlb(env->dtlb, addr, "dmmu", env); | 
|  | return; | 
|  | case 0x49: // Interrupt data receive | 
|  | // XXX | 
|  | return; | 
|  | case 0x46: // D-cache data | 
|  | case 0x47: // D-cache tag access | 
|  | case 0x4b: // E-cache error enable | 
|  | case 0x4c: // E-cache asynchronous fault status | 
|  | case 0x4d: // E-cache asynchronous fault address | 
|  | case 0x4e: // E-cache tag data | 
|  | case 0x66: // I-cache instruction access | 
|  | case 0x67: // I-cache tag access | 
|  | case 0x6e: // I-cache predecode | 
|  | case 0x6f: // I-cache LRU etc. | 
|  | case 0x76: // E-cache tag | 
|  | case 0x7e: // E-cache tag | 
|  | return; | 
|  | case 0x51: // I-MMU 8k TSB pointer, RO | 
|  | case 0x52: // I-MMU 64k TSB pointer, RO | 
|  | case 0x56: // I-MMU tag read, RO | 
|  | case 0x59: // D-MMU 8k TSB pointer, RO | 
|  | case 0x5a: // D-MMU 64k TSB pointer, RO | 
|  | case 0x5b: // D-MMU data pointer, RO | 
|  | case 0x5e: // D-MMU tag read, RO | 
|  | case 0x48: // Interrupt dispatch, RO | 
|  | case 0x7f: // Incoming interrupt vector, RO | 
|  | case 0x82: // Primary no-fault, RO | 
|  | case 0x83: // Secondary no-fault, RO | 
|  | case 0x8a: // Primary no-fault LE, RO | 
|  | case 0x8b: // Secondary no-fault LE, RO | 
|  | default: | 
|  | do_unassigned_access(addr, 1, 0, 1, size); | 
|  | return; | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_USER_ONLY */ | 
|  |  | 
|  | void helper_ldda_asi(target_ulong addr, int asi, int rd) | 
|  | { | 
|  | if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) | 
|  | || (cpu_has_hypervisor(env) | 
|  | && asi >= 0x30 && asi < 0x80 | 
|  | && !(env->hpstate & HS_PRIV))) | 
|  | raise_exception(TT_PRIV_ACT); | 
|  |  | 
|  | addr = asi_address_mask(env, asi, addr); | 
|  |  | 
|  | switch (asi) { | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | case 0x24: // Nucleus quad LDD 128 bit atomic | 
|  | case 0x2c: // Nucleus quad LDD 128 bit atomic LE | 
|  | helper_check_align(addr, 0xf); | 
|  | if (rd == 0) { | 
|  | env->gregs[1] = ldq_nucleus(addr + 8); | 
|  | if (asi == 0x2c) | 
|  | bswap64s(&env->gregs[1]); | 
|  | } else if (rd < 8) { | 
|  | env->gregs[rd] = ldq_nucleus(addr); | 
|  | env->gregs[rd + 1] = ldq_nucleus(addr + 8); | 
|  | if (asi == 0x2c) { | 
|  | bswap64s(&env->gregs[rd]); | 
|  | bswap64s(&env->gregs[rd + 1]); | 
|  | } | 
|  | } else { | 
|  | env->regwptr[rd] = ldq_nucleus(addr); | 
|  | env->regwptr[rd + 1] = ldq_nucleus(addr + 8); | 
|  | if (asi == 0x2c) { | 
|  | bswap64s(&env->regwptr[rd]); | 
|  | bswap64s(&env->regwptr[rd + 1]); | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | helper_check_align(addr, 0x3); | 
|  | if (rd == 0) | 
|  | env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0); | 
|  | else if (rd < 8) { | 
|  | env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0); | 
|  | env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0); | 
|  | } else { | 
|  | env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0); | 
|  | env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_ldf_asi(target_ulong addr, int asi, int size, int rd) | 
|  | { | 
|  | unsigned int i; | 
|  | target_ulong val; | 
|  |  | 
|  | helper_check_align(addr, 3); | 
|  | addr = asi_address_mask(env, asi, addr); | 
|  |  | 
|  | switch (asi) { | 
|  | case 0xf0: // Block load primary | 
|  | case 0xf1: // Block load secondary | 
|  | case 0xf8: // Block load primary LE | 
|  | case 0xf9: // Block load secondary LE | 
|  | if (rd & 7) { | 
|  | raise_exception(TT_ILL_INSN); | 
|  | return; | 
|  | } | 
|  | helper_check_align(addr, 0x3f); | 
|  | for (i = 0; i < 16; i++) { | 
|  | *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4, | 
|  | 0); | 
|  | addr += 4; | 
|  | } | 
|  |  | 
|  | return; | 
|  | case 0x70: // Block load primary, user privilege | 
|  | case 0x71: // Block load secondary, user privilege | 
|  | if (rd & 7) { | 
|  | raise_exception(TT_ILL_INSN); | 
|  | return; | 
|  | } | 
|  | helper_check_align(addr, 0x3f); | 
|  | for (i = 0; i < 16; i++) { | 
|  | *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x1f, 4, | 
|  | 0); | 
|  | addr += 4; | 
|  | } | 
|  |  | 
|  | return; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | val = helper_ld_asi(addr, asi, size, 0); | 
|  | switch(size) { | 
|  | default: | 
|  | case 4: | 
|  | *((uint32_t *)&env->fpr[rd]) = val; | 
|  | break; | 
|  | case 8: | 
|  | *((int64_t *)&DT0) = val; | 
|  | break; | 
|  | case 16: | 
|  | // XXX | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_stf_asi(target_ulong addr, int asi, int size, int rd) | 
|  | { | 
|  | unsigned int i; | 
|  | target_ulong val = 0; | 
|  |  | 
|  | helper_check_align(addr, 3); | 
|  | addr = asi_address_mask(env, asi, addr); | 
|  |  | 
|  | switch (asi) { | 
|  | case 0xe0: // UA2007 Block commit store primary (cache flush) | 
|  | case 0xe1: // UA2007 Block commit store secondary (cache flush) | 
|  | case 0xf0: // Block store primary | 
|  | case 0xf1: // Block store secondary | 
|  | case 0xf8: // Block store primary LE | 
|  | case 0xf9: // Block store secondary LE | 
|  | if (rd & 7) { | 
|  | raise_exception(TT_ILL_INSN); | 
|  | return; | 
|  | } | 
|  | helper_check_align(addr, 0x3f); | 
|  | for (i = 0; i < 16; i++) { | 
|  | val = *(uint32_t *)&env->fpr[rd++]; | 
|  | helper_st_asi(addr, val, asi & 0x8f, 4); | 
|  | addr += 4; | 
|  | } | 
|  |  | 
|  | return; | 
|  | case 0x70: // Block store primary, user privilege | 
|  | case 0x71: // Block store secondary, user privilege | 
|  | if (rd & 7) { | 
|  | raise_exception(TT_ILL_INSN); | 
|  | return; | 
|  | } | 
|  | helper_check_align(addr, 0x3f); | 
|  | for (i = 0; i < 16; i++) { | 
|  | val = *(uint32_t *)&env->fpr[rd++]; | 
|  | helper_st_asi(addr, val, asi & 0x1f, 4); | 
|  | addr += 4; | 
|  | } | 
|  |  | 
|  | return; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch(size) { | 
|  | default: | 
|  | case 4: | 
|  | val = *((uint32_t *)&env->fpr[rd]); | 
|  | break; | 
|  | case 8: | 
|  | val = *((int64_t *)&DT0); | 
|  | break; | 
|  | case 16: | 
|  | // XXX | 
|  | break; | 
|  | } | 
|  | helper_st_asi(addr, val, asi, size); | 
|  | } | 
|  |  | 
|  | target_ulong helper_cas_asi(target_ulong addr, target_ulong val1, | 
|  | target_ulong val2, uint32_t asi) | 
|  | { | 
|  | target_ulong ret; | 
|  |  | 
|  | val2 &= 0xffffffffUL; | 
|  | ret = helper_ld_asi(addr, asi, 4, 0); | 
|  | ret &= 0xffffffffUL; | 
|  | if (val2 == ret) | 
|  | helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | target_ulong helper_casx_asi(target_ulong addr, target_ulong val1, | 
|  | target_ulong val2, uint32_t asi) | 
|  | { | 
|  | target_ulong ret; | 
|  |  | 
|  | ret = helper_ld_asi(addr, asi, 8, 0); | 
|  | if (val2 == ret) | 
|  | helper_st_asi(addr, val1, asi, 8); | 
|  | return ret; | 
|  | } | 
|  | #endif /* TARGET_SPARC64 */ | 
|  |  | 
|  | #ifndef TARGET_SPARC64 | 
|  | void helper_rett(void) | 
|  | { | 
|  | unsigned int cwp; | 
|  |  | 
|  | if (env->psret == 1) | 
|  | raise_exception(TT_ILL_INSN); | 
|  |  | 
|  | env->psret = 1; | 
|  | cwp = cwp_inc(env->cwp + 1) ; | 
|  | if (env->wim & (1 << cwp)) { | 
|  | raise_exception(TT_WIN_UNF); | 
|  | } | 
|  | set_cwp(cwp); | 
|  | env->psrs = env->psrps; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | target_ulong helper_udiv(target_ulong a, target_ulong b) | 
|  | { | 
|  | uint64_t x0; | 
|  | uint32_t x1; | 
|  |  | 
|  | x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32); | 
|  | x1 = (b & 0xffffffff); | 
|  |  | 
|  | if (x1 == 0) { | 
|  | raise_exception(TT_DIV_ZERO); | 
|  | } | 
|  |  | 
|  | x0 = x0 / x1; | 
|  | if (x0 > 0xffffffff) { | 
|  | env->cc_src2 = 1; | 
|  | return 0xffffffff; | 
|  | } else { | 
|  | env->cc_src2 = 0; | 
|  | return x0; | 
|  | } | 
|  | } | 
|  |  | 
|  | target_ulong helper_sdiv(target_ulong a, target_ulong b) | 
|  | { | 
|  | int64_t x0; | 
|  | int32_t x1; | 
|  |  | 
|  | x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32); | 
|  | x1 = (b & 0xffffffff); | 
|  |  | 
|  | if (x1 == 0) { | 
|  | raise_exception(TT_DIV_ZERO); | 
|  | } | 
|  |  | 
|  | x0 = x0 / x1; | 
|  | if ((int32_t) x0 != x0) { | 
|  | env->cc_src2 = 1; | 
|  | return x0 < 0? 0x80000000: 0x7fffffff; | 
|  | } else { | 
|  | env->cc_src2 = 0; | 
|  | return x0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_stdf(target_ulong addr, int mem_idx) | 
|  | { | 
|  | helper_check_align(addr, 7); | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | switch (mem_idx) { | 
|  | case MMU_USER_IDX: | 
|  | stfq_user(addr, DT0); | 
|  | break; | 
|  | case MMU_KERNEL_IDX: | 
|  | stfq_kernel(addr, DT0); | 
|  | break; | 
|  | #ifdef TARGET_SPARC64 | 
|  | case MMU_HYPV_IDX: | 
|  | stfq_hypv(addr, DT0); | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx); | 
|  | break; | 
|  | } | 
|  | #else | 
|  | stfq_raw(address_mask(env, addr), DT0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void helper_lddf(target_ulong addr, int mem_idx) | 
|  | { | 
|  | helper_check_align(addr, 7); | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | switch (mem_idx) { | 
|  | case MMU_USER_IDX: | 
|  | DT0 = ldfq_user(addr); | 
|  | break; | 
|  | case MMU_KERNEL_IDX: | 
|  | DT0 = ldfq_kernel(addr); | 
|  | break; | 
|  | #ifdef TARGET_SPARC64 | 
|  | case MMU_HYPV_IDX: | 
|  | DT0 = ldfq_hypv(addr); | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx); | 
|  | break; | 
|  | } | 
|  | #else | 
|  | DT0 = ldfq_raw(address_mask(env, addr)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void helper_ldqf(target_ulong addr, int mem_idx) | 
|  | { | 
|  | // XXX add 128 bit load | 
|  | CPU_QuadU u; | 
|  |  | 
|  | helper_check_align(addr, 7); | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | switch (mem_idx) { | 
|  | case MMU_USER_IDX: | 
|  | u.ll.upper = ldq_user(addr); | 
|  | u.ll.lower = ldq_user(addr + 8); | 
|  | QT0 = u.q; | 
|  | break; | 
|  | case MMU_KERNEL_IDX: | 
|  | u.ll.upper = ldq_kernel(addr); | 
|  | u.ll.lower = ldq_kernel(addr + 8); | 
|  | QT0 = u.q; | 
|  | break; | 
|  | #ifdef TARGET_SPARC64 | 
|  | case MMU_HYPV_IDX: | 
|  | u.ll.upper = ldq_hypv(addr); | 
|  | u.ll.lower = ldq_hypv(addr + 8); | 
|  | QT0 = u.q; | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx); | 
|  | break; | 
|  | } | 
|  | #else | 
|  | u.ll.upper = ldq_raw(address_mask(env, addr)); | 
|  | u.ll.lower = ldq_raw(address_mask(env, addr + 8)); | 
|  | QT0 = u.q; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void helper_stqf(target_ulong addr, int mem_idx) | 
|  | { | 
|  | // XXX add 128 bit store | 
|  | CPU_QuadU u; | 
|  |  | 
|  | helper_check_align(addr, 7); | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | switch (mem_idx) { | 
|  | case MMU_USER_IDX: | 
|  | u.q = QT0; | 
|  | stq_user(addr, u.ll.upper); | 
|  | stq_user(addr + 8, u.ll.lower); | 
|  | break; | 
|  | case MMU_KERNEL_IDX: | 
|  | u.q = QT0; | 
|  | stq_kernel(addr, u.ll.upper); | 
|  | stq_kernel(addr + 8, u.ll.lower); | 
|  | break; | 
|  | #ifdef TARGET_SPARC64 | 
|  | case MMU_HYPV_IDX: | 
|  | u.q = QT0; | 
|  | stq_hypv(addr, u.ll.upper); | 
|  | stq_hypv(addr + 8, u.ll.lower); | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx); | 
|  | break; | 
|  | } | 
|  | #else | 
|  | u.q = QT0; | 
|  | stq_raw(address_mask(env, addr), u.ll.upper); | 
|  | stq_raw(address_mask(env, addr + 8), u.ll.lower); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void set_fsr(void) | 
|  | { | 
|  | int rnd_mode; | 
|  |  | 
|  | switch (env->fsr & FSR_RD_MASK) { | 
|  | case FSR_RD_NEAREST: | 
|  | rnd_mode = float_round_nearest_even; | 
|  | break; | 
|  | default: | 
|  | case FSR_RD_ZERO: | 
|  | rnd_mode = float_round_to_zero; | 
|  | break; | 
|  | case FSR_RD_POS: | 
|  | rnd_mode = float_round_up; | 
|  | break; | 
|  | case FSR_RD_NEG: | 
|  | rnd_mode = float_round_down; | 
|  | break; | 
|  | } | 
|  | set_float_rounding_mode(rnd_mode, &env->fp_status); | 
|  | } | 
|  |  | 
|  | void helper_ldfsr(uint32_t new_fsr) | 
|  | { | 
|  | env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK); | 
|  | set_fsr(); | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | void helper_ldxfsr(uint64_t new_fsr) | 
|  | { | 
|  | env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK); | 
|  | set_fsr(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void helper_debug(void) | 
|  | { | 
|  | env->exception_index = EXCP_DEBUG; | 
|  | cpu_loop_exit(); | 
|  | } | 
|  |  | 
|  | #ifndef TARGET_SPARC64 | 
|  | /* XXX: use another pointer for %iN registers to avoid slow wrapping | 
|  | handling ? */ | 
|  | void helper_save(void) | 
|  | { | 
|  | uint32_t cwp; | 
|  |  | 
|  | cwp = cwp_dec(env->cwp - 1); | 
|  | if (env->wim & (1 << cwp)) { | 
|  | raise_exception(TT_WIN_OVF); | 
|  | } | 
|  | set_cwp(cwp); | 
|  | } | 
|  |  | 
|  | void helper_restore(void) | 
|  | { | 
|  | uint32_t cwp; | 
|  |  | 
|  | cwp = cwp_inc(env->cwp + 1); | 
|  | if (env->wim & (1 << cwp)) { | 
|  | raise_exception(TT_WIN_UNF); | 
|  | } | 
|  | set_cwp(cwp); | 
|  | } | 
|  |  | 
|  | void helper_wrpsr(target_ulong new_psr) | 
|  | { | 
|  | if ((new_psr & PSR_CWP) >= env->nwindows) { | 
|  | raise_exception(TT_ILL_INSN); | 
|  | } else { | 
|  | cpu_put_psr(env, new_psr); | 
|  | } | 
|  | } | 
|  |  | 
|  | target_ulong helper_rdpsr(void) | 
|  | { | 
|  | return get_psr(); | 
|  | } | 
|  |  | 
|  | #else | 
|  | /* XXX: use another pointer for %iN registers to avoid slow wrapping | 
|  | handling ? */ | 
|  | void helper_save(void) | 
|  | { | 
|  | uint32_t cwp; | 
|  |  | 
|  | cwp = cwp_dec(env->cwp - 1); | 
|  | if (env->cansave == 0) { | 
|  | raise_exception(TT_SPILL | (env->otherwin != 0 ? | 
|  | (TT_WOTHER | ((env->wstate & 0x38) >> 1)): | 
|  | ((env->wstate & 0x7) << 2))); | 
|  | } else { | 
|  | if (env->cleanwin - env->canrestore == 0) { | 
|  | // XXX Clean windows without trap | 
|  | raise_exception(TT_CLRWIN); | 
|  | } else { | 
|  | env->cansave--; | 
|  | env->canrestore++; | 
|  | set_cwp(cwp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_restore(void) | 
|  | { | 
|  | uint32_t cwp; | 
|  |  | 
|  | cwp = cwp_inc(env->cwp + 1); | 
|  | if (env->canrestore == 0) { | 
|  | raise_exception(TT_FILL | (env->otherwin != 0 ? | 
|  | (TT_WOTHER | ((env->wstate & 0x38) >> 1)): | 
|  | ((env->wstate & 0x7) << 2))); | 
|  | } else { | 
|  | env->cansave++; | 
|  | env->canrestore--; | 
|  | set_cwp(cwp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_flushw(void) | 
|  | { | 
|  | if (env->cansave != env->nwindows - 2) { | 
|  | raise_exception(TT_SPILL | (env->otherwin != 0 ? | 
|  | (TT_WOTHER | ((env->wstate & 0x38) >> 1)): | 
|  | ((env->wstate & 0x7) << 2))); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_saved(void) | 
|  | { | 
|  | env->cansave++; | 
|  | if (env->otherwin == 0) | 
|  | env->canrestore--; | 
|  | else | 
|  | env->otherwin--; | 
|  | } | 
|  |  | 
|  | void helper_restored(void) | 
|  | { | 
|  | env->canrestore++; | 
|  | if (env->cleanwin < env->nwindows - 1) | 
|  | env->cleanwin++; | 
|  | if (env->otherwin == 0) | 
|  | env->cansave--; | 
|  | else | 
|  | env->otherwin--; | 
|  | } | 
|  |  | 
|  | static target_ulong get_ccr(void) | 
|  | { | 
|  | target_ulong psr; | 
|  |  | 
|  | psr = get_psr(); | 
|  |  | 
|  | return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20); | 
|  | } | 
|  |  | 
|  | target_ulong cpu_get_ccr(CPUState *env1) | 
|  | { | 
|  | CPUState *saved_env; | 
|  | target_ulong ret; | 
|  |  | 
|  | saved_env = env; | 
|  | env = env1; | 
|  | ret = get_ccr(); | 
|  | env = saved_env; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void put_ccr(target_ulong val) | 
|  | { | 
|  | target_ulong tmp = val; | 
|  |  | 
|  | env->xcc = (tmp >> 4) << 20; | 
|  | env->psr = (tmp & 0xf) << 20; | 
|  | CC_OP = CC_OP_FLAGS; | 
|  | } | 
|  |  | 
|  | void cpu_put_ccr(CPUState *env1, target_ulong val) | 
|  | { | 
|  | CPUState *saved_env; | 
|  |  | 
|  | saved_env = env; | 
|  | env = env1; | 
|  | put_ccr(val); | 
|  | env = saved_env; | 
|  | } | 
|  |  | 
|  | static target_ulong get_cwp64(void) | 
|  | { | 
|  | return env->nwindows - 1 - env->cwp; | 
|  | } | 
|  |  | 
|  | target_ulong cpu_get_cwp64(CPUState *env1) | 
|  | { | 
|  | CPUState *saved_env; | 
|  | target_ulong ret; | 
|  |  | 
|  | saved_env = env; | 
|  | env = env1; | 
|  | ret = get_cwp64(); | 
|  | env = saved_env; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void put_cwp64(int cwp) | 
|  | { | 
|  | if (unlikely(cwp >= env->nwindows || cwp < 0)) { | 
|  | cwp %= env->nwindows; | 
|  | } | 
|  | set_cwp(env->nwindows - 1 - cwp); | 
|  | } | 
|  |  | 
|  | void cpu_put_cwp64(CPUState *env1, int cwp) | 
|  | { | 
|  | CPUState *saved_env; | 
|  |  | 
|  | saved_env = env; | 
|  | env = env1; | 
|  | put_cwp64(cwp); | 
|  | env = saved_env; | 
|  | } | 
|  |  | 
|  | target_ulong helper_rdccr(void) | 
|  | { | 
|  | return get_ccr(); | 
|  | } | 
|  |  | 
|  | void helper_wrccr(target_ulong new_ccr) | 
|  | { | 
|  | put_ccr(new_ccr); | 
|  | } | 
|  |  | 
|  | // CWP handling is reversed in V9, but we still use the V8 register | 
|  | // order. | 
|  | target_ulong helper_rdcwp(void) | 
|  | { | 
|  | return get_cwp64(); | 
|  | } | 
|  |  | 
|  | void helper_wrcwp(target_ulong new_cwp) | 
|  | { | 
|  | put_cwp64(new_cwp); | 
|  | } | 
|  |  | 
|  | // This function uses non-native bit order | 
|  | #define GET_FIELD(X, FROM, TO)                                  \ | 
|  | ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1)) | 
|  |  | 
|  | // This function uses the order in the manuals, i.e. bit 0 is 2^0 | 
|  | #define GET_FIELD_SP(X, FROM, TO)               \ | 
|  | GET_FIELD(X, 63 - (TO), 63 - (FROM)) | 
|  |  | 
|  | target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize) | 
|  | { | 
|  | return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) | | 
|  | (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) | | 
|  | (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) | | 
|  | (GET_FIELD_SP(pixel_addr, 56, 59) << 13) | | 
|  | (GET_FIELD_SP(pixel_addr, 35, 38) << 9) | | 
|  | (GET_FIELD_SP(pixel_addr, 13, 16) << 5) | | 
|  | (((pixel_addr >> 55) & 1) << 4) | | 
|  | (GET_FIELD_SP(pixel_addr, 33, 34) << 2) | | 
|  | GET_FIELD_SP(pixel_addr, 11, 12); | 
|  | } | 
|  |  | 
|  | target_ulong helper_alignaddr(target_ulong addr, target_ulong offset) | 
|  | { | 
|  | uint64_t tmp; | 
|  |  | 
|  | tmp = addr + offset; | 
|  | env->gsr &= ~7ULL; | 
|  | env->gsr |= tmp & 7ULL; | 
|  | return tmp & ~7ULL; | 
|  | } | 
|  |  | 
|  | target_ulong helper_popc(target_ulong val) | 
|  | { | 
|  | return ctpop64(val); | 
|  | } | 
|  |  | 
|  | static inline uint64_t *get_gregset(uint32_t pstate) | 
|  | { | 
|  | switch (pstate) { | 
|  | default: | 
|  | DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n", | 
|  | pstate, | 
|  | (pstate & PS_IG) ? " IG" : "", | 
|  | (pstate & PS_MG) ? " MG" : "", | 
|  | (pstate & PS_AG) ? " AG" : ""); | 
|  | /* pass through to normal set of global registers */ | 
|  | case 0: | 
|  | return env->bgregs; | 
|  | case PS_AG: | 
|  | return env->agregs; | 
|  | case PS_MG: | 
|  | return env->mgregs; | 
|  | case PS_IG: | 
|  | return env->igregs; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void change_pstate(uint32_t new_pstate) | 
|  | { | 
|  | uint32_t pstate_regs, new_pstate_regs; | 
|  | uint64_t *src, *dst; | 
|  |  | 
|  | if (env->def->features & CPU_FEATURE_GL) { | 
|  | // PS_AG is not implemented in this case | 
|  | new_pstate &= ~PS_AG; | 
|  | } | 
|  |  | 
|  | pstate_regs = env->pstate & 0xc01; | 
|  | new_pstate_regs = new_pstate & 0xc01; | 
|  |  | 
|  | if (new_pstate_regs != pstate_regs) { | 
|  | DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n", | 
|  | pstate_regs, new_pstate_regs); | 
|  | // Switch global register bank | 
|  | src = get_gregset(new_pstate_regs); | 
|  | dst = get_gregset(pstate_regs); | 
|  | memcpy32(dst, env->gregs); | 
|  | memcpy32(env->gregs, src); | 
|  | } | 
|  | else { | 
|  | DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n", | 
|  | new_pstate_regs); | 
|  | } | 
|  | env->pstate = new_pstate; | 
|  | } | 
|  |  | 
|  | void helper_wrpstate(target_ulong new_state) | 
|  | { | 
|  | change_pstate(new_state & 0xf3f); | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | if (cpu_interrupts_enabled(env)) { | 
|  | cpu_check_irqs(env); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void helper_wrpil(target_ulong new_pil) | 
|  | { | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n", | 
|  | env->psrpil, (uint32_t)new_pil); | 
|  |  | 
|  | env->psrpil = new_pil; | 
|  |  | 
|  | if (cpu_interrupts_enabled(env)) { | 
|  | cpu_check_irqs(env); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void helper_done(void) | 
|  | { | 
|  | trap_state* tsptr = cpu_tsptr(env); | 
|  |  | 
|  | env->pc = tsptr->tnpc; | 
|  | env->npc = tsptr->tnpc + 4; | 
|  | put_ccr(tsptr->tstate >> 32); | 
|  | env->asi = (tsptr->tstate >> 24) & 0xff; | 
|  | change_pstate((tsptr->tstate >> 8) & 0xf3f); | 
|  | put_cwp64(tsptr->tstate & 0xff); | 
|  | env->tl--; | 
|  |  | 
|  | DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl); | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | if (cpu_interrupts_enabled(env)) { | 
|  | cpu_check_irqs(env); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void helper_retry(void) | 
|  | { | 
|  | trap_state* tsptr = cpu_tsptr(env); | 
|  |  | 
|  | env->pc = tsptr->tpc; | 
|  | env->npc = tsptr->tnpc; | 
|  | put_ccr(tsptr->tstate >> 32); | 
|  | env->asi = (tsptr->tstate >> 24) & 0xff; | 
|  | change_pstate((tsptr->tstate >> 8) & 0xf3f); | 
|  | put_cwp64(tsptr->tstate & 0xff); | 
|  | env->tl--; | 
|  |  | 
|  | DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl); | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | if (cpu_interrupts_enabled(env)) { | 
|  | cpu_check_irqs(env); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void do_modify_softint(const char* operation, uint32_t value) | 
|  | { | 
|  | if (env->softint != value) { | 
|  | env->softint = value; | 
|  | DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint); | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | if (cpu_interrupts_enabled(env)) { | 
|  | cpu_check_irqs(env); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_set_softint(uint64_t value) | 
|  | { | 
|  | do_modify_softint("helper_set_softint", env->softint | (uint32_t)value); | 
|  | } | 
|  |  | 
|  | void helper_clear_softint(uint64_t value) | 
|  | { | 
|  | do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value); | 
|  | } | 
|  |  | 
|  | void helper_write_softint(uint64_t value) | 
|  | { | 
|  | do_modify_softint("helper_write_softint", (uint32_t)value); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void helper_flush(target_ulong addr) | 
|  | { | 
|  | addr &= ~7; | 
|  | tb_invalidate_page_range(addr, addr + 8); | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | #ifdef DEBUG_PCALL | 
|  | static const char * const excp_names[0x80] = { | 
|  | [TT_TFAULT] = "Instruction Access Fault", | 
|  | [TT_TMISS] = "Instruction Access MMU Miss", | 
|  | [TT_CODE_ACCESS] = "Instruction Access Error", | 
|  | [TT_ILL_INSN] = "Illegal Instruction", | 
|  | [TT_PRIV_INSN] = "Privileged Instruction", | 
|  | [TT_NFPU_INSN] = "FPU Disabled", | 
|  | [TT_FP_EXCP] = "FPU Exception", | 
|  | [TT_TOVF] = "Tag Overflow", | 
|  | [TT_CLRWIN] = "Clean Windows", | 
|  | [TT_DIV_ZERO] = "Division By Zero", | 
|  | [TT_DFAULT] = "Data Access Fault", | 
|  | [TT_DMISS] = "Data Access MMU Miss", | 
|  | [TT_DATA_ACCESS] = "Data Access Error", | 
|  | [TT_DPROT] = "Data Protection Error", | 
|  | [TT_UNALIGNED] = "Unaligned Memory Access", | 
|  | [TT_PRIV_ACT] = "Privileged Action", | 
|  | [TT_EXTINT | 0x1] = "External Interrupt 1", | 
|  | [TT_EXTINT | 0x2] = "External Interrupt 2", | 
|  | [TT_EXTINT | 0x3] = "External Interrupt 3", | 
|  | [TT_EXTINT | 0x4] = "External Interrupt 4", | 
|  | [TT_EXTINT | 0x5] = "External Interrupt 5", | 
|  | [TT_EXTINT | 0x6] = "External Interrupt 6", | 
|  | [TT_EXTINT | 0x7] = "External Interrupt 7", | 
|  | [TT_EXTINT | 0x8] = "External Interrupt 8", | 
|  | [TT_EXTINT | 0x9] = "External Interrupt 9", | 
|  | [TT_EXTINT | 0xa] = "External Interrupt 10", | 
|  | [TT_EXTINT | 0xb] = "External Interrupt 11", | 
|  | [TT_EXTINT | 0xc] = "External Interrupt 12", | 
|  | [TT_EXTINT | 0xd] = "External Interrupt 13", | 
|  | [TT_EXTINT | 0xe] = "External Interrupt 14", | 
|  | [TT_EXTINT | 0xf] = "External Interrupt 15", | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | trap_state* cpu_tsptr(CPUState* env) | 
|  | { | 
|  | return &env->ts[env->tl & MAXTL_MASK]; | 
|  | } | 
|  |  | 
|  | void do_interrupt(CPUState *env) | 
|  | { | 
|  | int intno = env->exception_index; | 
|  | trap_state* tsptr; | 
|  |  | 
|  | #ifdef DEBUG_PCALL | 
|  | if (qemu_loglevel_mask(CPU_LOG_INT)) { | 
|  | static int count; | 
|  | const char *name; | 
|  |  | 
|  | if (intno < 0 || intno >= 0x180) | 
|  | name = "Unknown"; | 
|  | else if (intno >= 0x100) | 
|  | name = "Trap Instruction"; | 
|  | else if (intno >= 0xc0) | 
|  | name = "Window Fill"; | 
|  | else if (intno >= 0x80) | 
|  | name = "Window Spill"; | 
|  | else { | 
|  | name = excp_names[intno]; | 
|  | if (!name) | 
|  | name = "Unknown"; | 
|  | } | 
|  |  | 
|  | qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64 | 
|  | " SP=%016" PRIx64 "\n", | 
|  | count, name, intno, | 
|  | env->pc, | 
|  | env->npc, env->regwptr[6]); | 
|  | log_cpu_state(env, 0); | 
|  | #if 0 | 
|  | { | 
|  | int i; | 
|  | uint8_t *ptr; | 
|  |  | 
|  | qemu_log("       code="); | 
|  | ptr = (uint8_t *)env->pc; | 
|  | for(i = 0; i < 16; i++) { | 
|  | qemu_log(" %02x", ldub(ptr + i)); | 
|  | } | 
|  | qemu_log("\n"); | 
|  | } | 
|  | #endif | 
|  | count++; | 
|  | } | 
|  | #endif | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | if (env->tl >= env->maxtl) { | 
|  | cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d)," | 
|  | " Error state", env->exception_index, env->tl, env->maxtl); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | if (env->tl < env->maxtl - 1) { | 
|  | env->tl++; | 
|  | } else { | 
|  | env->pstate |= PS_RED; | 
|  | if (env->tl < env->maxtl) | 
|  | env->tl++; | 
|  | } | 
|  | tsptr = cpu_tsptr(env); | 
|  |  | 
|  | tsptr->tstate = (get_ccr() << 32) | | 
|  | ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) | | 
|  | get_cwp64(); | 
|  | tsptr->tpc = env->pc; | 
|  | tsptr->tnpc = env->npc; | 
|  | tsptr->tt = intno; | 
|  |  | 
|  | switch (intno) { | 
|  | case TT_IVEC: | 
|  | change_pstate(PS_PEF | PS_PRIV | PS_IG); | 
|  | break; | 
|  | case TT_TFAULT: | 
|  | case TT_DFAULT: | 
|  | case TT_TMISS ... TT_TMISS + 3: | 
|  | case TT_DMISS ... TT_DMISS + 3: | 
|  | case TT_DPROT ... TT_DPROT + 3: | 
|  | change_pstate(PS_PEF | PS_PRIV | PS_MG); | 
|  | break; | 
|  | default: | 
|  | change_pstate(PS_PEF | PS_PRIV | PS_AG); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (intno == TT_CLRWIN) { | 
|  | set_cwp(cwp_dec(env->cwp - 1)); | 
|  | } else if ((intno & 0x1c0) == TT_SPILL) { | 
|  | set_cwp(cwp_dec(env->cwp - env->cansave - 2)); | 
|  | } else if ((intno & 0x1c0) == TT_FILL) { | 
|  | set_cwp(cwp_inc(env->cwp + 1)); | 
|  | } | 
|  | env->tbr &= ~0x7fffULL; | 
|  | env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5); | 
|  | env->pc = env->tbr; | 
|  | env->npc = env->pc + 4; | 
|  | env->exception_index = -1; | 
|  | } | 
|  | #else | 
|  | #ifdef DEBUG_PCALL | 
|  | static const char * const excp_names[0x80] = { | 
|  | [TT_TFAULT] = "Instruction Access Fault", | 
|  | [TT_ILL_INSN] = "Illegal Instruction", | 
|  | [TT_PRIV_INSN] = "Privileged Instruction", | 
|  | [TT_NFPU_INSN] = "FPU Disabled", | 
|  | [TT_WIN_OVF] = "Window Overflow", | 
|  | [TT_WIN_UNF] = "Window Underflow", | 
|  | [TT_UNALIGNED] = "Unaligned Memory Access", | 
|  | [TT_FP_EXCP] = "FPU Exception", | 
|  | [TT_DFAULT] = "Data Access Fault", | 
|  | [TT_TOVF] = "Tag Overflow", | 
|  | [TT_EXTINT | 0x1] = "External Interrupt 1", | 
|  | [TT_EXTINT | 0x2] = "External Interrupt 2", | 
|  | [TT_EXTINT | 0x3] = "External Interrupt 3", | 
|  | [TT_EXTINT | 0x4] = "External Interrupt 4", | 
|  | [TT_EXTINT | 0x5] = "External Interrupt 5", | 
|  | [TT_EXTINT | 0x6] = "External Interrupt 6", | 
|  | [TT_EXTINT | 0x7] = "External Interrupt 7", | 
|  | [TT_EXTINT | 0x8] = "External Interrupt 8", | 
|  | [TT_EXTINT | 0x9] = "External Interrupt 9", | 
|  | [TT_EXTINT | 0xa] = "External Interrupt 10", | 
|  | [TT_EXTINT | 0xb] = "External Interrupt 11", | 
|  | [TT_EXTINT | 0xc] = "External Interrupt 12", | 
|  | [TT_EXTINT | 0xd] = "External Interrupt 13", | 
|  | [TT_EXTINT | 0xe] = "External Interrupt 14", | 
|  | [TT_EXTINT | 0xf] = "External Interrupt 15", | 
|  | [TT_TOVF] = "Tag Overflow", | 
|  | [TT_CODE_ACCESS] = "Instruction Access Error", | 
|  | [TT_DATA_ACCESS] = "Data Access Error", | 
|  | [TT_DIV_ZERO] = "Division By Zero", | 
|  | [TT_NCP_INSN] = "Coprocessor Disabled", | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | void do_interrupt(CPUState *env) | 
|  | { | 
|  | int cwp, intno = env->exception_index; | 
|  |  | 
|  | #ifdef DEBUG_PCALL | 
|  | if (qemu_loglevel_mask(CPU_LOG_INT)) { | 
|  | static int count; | 
|  | const char *name; | 
|  |  | 
|  | if (intno < 0 || intno >= 0x100) | 
|  | name = "Unknown"; | 
|  | else if (intno >= 0x80) | 
|  | name = "Trap Instruction"; | 
|  | else { | 
|  | name = excp_names[intno]; | 
|  | if (!name) | 
|  | name = "Unknown"; | 
|  | } | 
|  |  | 
|  | qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n", | 
|  | count, name, intno, | 
|  | env->pc, | 
|  | env->npc, env->regwptr[6]); | 
|  | log_cpu_state(env, 0); | 
|  | #if 0 | 
|  | { | 
|  | int i; | 
|  | uint8_t *ptr; | 
|  |  | 
|  | qemu_log("       code="); | 
|  | ptr = (uint8_t *)env->pc; | 
|  | for(i = 0; i < 16; i++) { | 
|  | qemu_log(" %02x", ldub(ptr + i)); | 
|  | } | 
|  | qemu_log("\n"); | 
|  | } | 
|  | #endif | 
|  | count++; | 
|  | } | 
|  | #endif | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | if (env->psret == 0) { | 
|  | cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", | 
|  | env->exception_index); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | env->psret = 0; | 
|  | cwp = cwp_dec(env->cwp - 1); | 
|  | set_cwp(cwp); | 
|  | env->regwptr[9] = env->pc; | 
|  | env->regwptr[10] = env->npc; | 
|  | env->psrps = env->psrs; | 
|  | env->psrs = 1; | 
|  | env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4); | 
|  | env->pc = env->tbr; | 
|  | env->npc = env->pc + 4; | 
|  | env->exception_index = -1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | static void do_unaligned_access(target_ulong addr, int is_write, int is_user, | 
|  | void *retaddr); | 
|  |  | 
|  | #define MMUSUFFIX _mmu | 
|  | #define ALIGNED_ONLY | 
|  |  | 
|  | #define SHIFT 0 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 1 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 2 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 3 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | /* XXX: make it generic ? */ | 
|  | static void cpu_restore_state2(void *retaddr) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | unsigned long pc; | 
|  |  | 
|  | if (retaddr) { | 
|  | /* now we have a real cpu fault */ | 
|  | pc = (unsigned long)retaddr; | 
|  | tb = tb_find_pc(pc); | 
|  | if (tb) { | 
|  | /* the PC is inside the translated code. It means that we have | 
|  | a virtual CPU fault */ | 
|  | cpu_restore_state(tb, env, pc, (void *)(long)env->cond); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_unaligned_access(target_ulong addr, int is_write, int is_user, | 
|  | void *retaddr) | 
|  | { | 
|  | #ifdef DEBUG_UNALIGNED | 
|  | printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx | 
|  | "\n", addr, env->pc); | 
|  | #endif | 
|  | cpu_restore_state2(retaddr); | 
|  | raise_exception(TT_UNALIGNED); | 
|  | } | 
|  |  | 
|  | /* try to fill the TLB and return an exception if error. If retaddr is | 
|  | NULL, it means that the function was called in C code (i.e. not | 
|  | from generated code or from helper.c) */ | 
|  | /* XXX: fix it to restore all registers */ | 
|  | void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr) | 
|  | { | 
|  | int ret; | 
|  | CPUState *saved_env; | 
|  |  | 
|  | /* XXX: hack to restore env in all cases, even if not called from | 
|  | generated code */ | 
|  | saved_env = env; | 
|  | env = cpu_single_env; | 
|  |  | 
|  | ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); | 
|  | if (ret) { | 
|  | cpu_restore_state2(retaddr); | 
|  | cpu_loop_exit(); | 
|  | } | 
|  | env = saved_env; | 
|  | } | 
|  |  | 
|  | #endif /* !CONFIG_USER_ONLY */ | 
|  |  | 
|  | #ifndef TARGET_SPARC64 | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, | 
|  | int is_asi, int size) | 
|  | { | 
|  | CPUState *saved_env; | 
|  | int fault_type; | 
|  |  | 
|  | /* XXX: hack to restore env in all cases, even if not called from | 
|  | generated code */ | 
|  | saved_env = env; | 
|  | env = cpu_single_env; | 
|  | #ifdef DEBUG_UNASSIGNED | 
|  | if (is_asi) | 
|  | printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx | 
|  | " asi 0x%02x from " TARGET_FMT_lx "\n", | 
|  | is_exec ? "exec" : is_write ? "write" : "read", size, | 
|  | size == 1 ? "" : "s", addr, is_asi, env->pc); | 
|  | else | 
|  | printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx | 
|  | " from " TARGET_FMT_lx "\n", | 
|  | is_exec ? "exec" : is_write ? "write" : "read", size, | 
|  | size == 1 ? "" : "s", addr, env->pc); | 
|  | #endif | 
|  | /* Don't overwrite translation and access faults */ | 
|  | fault_type = (env->mmuregs[3] & 0x1c) >> 2; | 
|  | if ((fault_type > 4) || (fault_type == 0)) { | 
|  | env->mmuregs[3] = 0; /* Fault status register */ | 
|  | if (is_asi) | 
|  | env->mmuregs[3] |= 1 << 16; | 
|  | if (env->psrs) | 
|  | env->mmuregs[3] |= 1 << 5; | 
|  | if (is_exec) | 
|  | env->mmuregs[3] |= 1 << 6; | 
|  | if (is_write) | 
|  | env->mmuregs[3] |= 1 << 7; | 
|  | env->mmuregs[3] |= (5 << 2) | 2; | 
|  | /* SuperSPARC will never place instruction fault addresses in the FAR */ | 
|  | if (!is_exec) { | 
|  | env->mmuregs[4] = addr; /* Fault address register */ | 
|  | } | 
|  | } | 
|  | /* overflow (same type fault was not read before another fault) */ | 
|  | if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) { | 
|  | env->mmuregs[3] |= 1; | 
|  | } | 
|  |  | 
|  | if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { | 
|  | if (is_exec) | 
|  | raise_exception(TT_CODE_ACCESS); | 
|  | else | 
|  | raise_exception(TT_DATA_ACCESS); | 
|  | } | 
|  |  | 
|  | /* flush neverland mappings created during no-fault mode, | 
|  | so the sequential MMU faults report proper fault types */ | 
|  | if (env->mmuregs[0] & MMU_NF) { | 
|  | tlb_flush(env, 1); | 
|  | } | 
|  |  | 
|  | env = saved_env; | 
|  | } | 
|  | #endif | 
|  | #else | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | static void do_unassigned_access(target_ulong addr, int is_write, int is_exec, | 
|  | int is_asi, int size) | 
|  | #else | 
|  | void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, | 
|  | int is_asi, int size) | 
|  | #endif | 
|  | { | 
|  | CPUState *saved_env; | 
|  |  | 
|  | /* XXX: hack to restore env in all cases, even if not called from | 
|  | generated code */ | 
|  | saved_env = env; | 
|  | env = cpu_single_env; | 
|  |  | 
|  | #ifdef DEBUG_UNASSIGNED | 
|  | printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx | 
|  | "\n", addr, env->pc); | 
|  | #endif | 
|  |  | 
|  | if (is_exec) | 
|  | raise_exception(TT_CODE_ACCESS); | 
|  | else | 
|  | raise_exception(TT_DATA_ACCESS); | 
|  |  | 
|  | env = saved_env; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | void helper_tick_set_count(void *opaque, uint64_t count) | 
|  | { | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | cpu_tick_set_count(opaque, count); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | uint64_t helper_tick_get_count(void *opaque) | 
|  | { | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | return cpu_tick_get_count(opaque); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void helper_tick_set_limit(void *opaque, uint64_t limit) | 
|  | { | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | cpu_tick_set_limit(opaque, limit); | 
|  | #endif | 
|  | } | 
|  | #endif |