|  | #include "cpu.h" | 
|  | #include "internals.h" | 
|  | #include "exec/gdbstub.h" | 
|  | #include "exec/helper-proto.h" | 
|  | #include "qemu/host-utils.h" | 
|  | #include "sysemu/arch_init.h" | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "qemu/bitops.h" | 
|  | #include "qemu/crc32c.h" | 
|  | #include "exec/cpu_ldst.h" | 
|  | #include "arm_ldst.h" | 
|  | #include <zlib.h> /* For crc32 */ | 
|  | #include "exec/semihost.h" | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | static inline bool get_phys_addr(CPUARMState *env, target_ulong address, | 
|  | int access_type, ARMMMUIdx mmu_idx, | 
|  | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | 
|  | target_ulong *page_size, uint32_t *fsr); | 
|  |  | 
|  | /* Definitions for the PMCCNTR and PMCR registers */ | 
|  | #define PMCRD   0x8 | 
|  | #define PMCRC   0x4 | 
|  | #define PMCRE   0x1 | 
|  | #endif | 
|  |  | 
|  | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) | 
|  | { | 
|  | int nregs; | 
|  |  | 
|  | /* VFP data registers are always little-endian.  */ | 
|  | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | 
|  | if (reg < nregs) { | 
|  | stfq_le_p(buf, env->vfp.regs[reg]); | 
|  | return 8; | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_NEON)) { | 
|  | /* Aliases for Q regs.  */ | 
|  | nregs += 16; | 
|  | if (reg < nregs) { | 
|  | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | 
|  | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | 
|  | return 16; | 
|  | } | 
|  | } | 
|  | switch (reg - nregs) { | 
|  | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | 
|  | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | 
|  | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | 
|  | { | 
|  | int nregs; | 
|  |  | 
|  | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | 
|  | if (reg < nregs) { | 
|  | env->vfp.regs[reg] = ldfq_le_p(buf); | 
|  | return 8; | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_NEON)) { | 
|  | nregs += 16; | 
|  | if (reg < nregs) { | 
|  | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | 
|  | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | 
|  | return 16; | 
|  | } | 
|  | } | 
|  | switch (reg - nregs) { | 
|  | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | 
|  | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | 
|  | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) | 
|  | { | 
|  | switch (reg) { | 
|  | case 0 ... 31: | 
|  | /* 128 bit FP register */ | 
|  | stfq_le_p(buf, env->vfp.regs[reg * 2]); | 
|  | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | 
|  | return 16; | 
|  | case 32: | 
|  | /* FPSR */ | 
|  | stl_p(buf, vfp_get_fpsr(env)); | 
|  | return 4; | 
|  | case 33: | 
|  | /* FPCR */ | 
|  | stl_p(buf, vfp_get_fpcr(env)); | 
|  | return 4; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | 
|  | { | 
|  | switch (reg) { | 
|  | case 0 ... 31: | 
|  | /* 128 bit FP register */ | 
|  | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | 
|  | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | 
|  | return 16; | 
|  | case 32: | 
|  | /* FPSR */ | 
|  | vfp_set_fpsr(env, ldl_p(buf)); | 
|  | return 4; | 
|  | case 33: | 
|  | /* FPCR */ | 
|  | vfp_set_fpcr(env, ldl_p(buf)); | 
|  | return 4; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | assert(ri->fieldoffset); | 
|  | if (cpreg_field_is_64bit(ri)) { | 
|  | return CPREG_FIELD64(env, ri); | 
|  | } else { | 
|  | return CPREG_FIELD32(env, ri); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | assert(ri->fieldoffset); | 
|  | if (cpreg_field_is_64bit(ri)) { | 
|  | CPREG_FIELD64(env, ri) = value; | 
|  | } else { | 
|  | CPREG_FIELD32(env, ri) = value; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return (char *)env + ri->fieldoffset; | 
|  | } | 
|  |  | 
|  | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | /* Raw read of a coprocessor register (as needed for migration, etc). */ | 
|  | if (ri->type & ARM_CP_CONST) { | 
|  | return ri->resetvalue; | 
|  | } else if (ri->raw_readfn) { | 
|  | return ri->raw_readfn(env, ri); | 
|  | } else if (ri->readfn) { | 
|  | return ri->readfn(env, ri); | 
|  | } else { | 
|  | return raw_read(env, ri); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t v) | 
|  | { | 
|  | /* Raw write of a coprocessor register (as needed for migration, etc). | 
|  | * Note that constant registers are treated as write-ignored; the | 
|  | * caller should check for success by whether a readback gives the | 
|  | * value written. | 
|  | */ | 
|  | if (ri->type & ARM_CP_CONST) { | 
|  | return; | 
|  | } else if (ri->raw_writefn) { | 
|  | ri->raw_writefn(env, ri, v); | 
|  | } else if (ri->writefn) { | 
|  | ri->writefn(env, ri, v); | 
|  | } else { | 
|  | raw_write(env, ri, v); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) | 
|  | { | 
|  | /* Return true if the regdef would cause an assertion if you called | 
|  | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | 
|  | * program bug for it not to have the NO_RAW flag). | 
|  | * NB that returning false here doesn't necessarily mean that calling | 
|  | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | 
|  | * read/write access functions which are safe for raw use" from "has | 
|  | * read/write access functions which have side effects but has forgotten | 
|  | * to provide raw access functions". | 
|  | * The tests here line up with the conditions in read/write_raw_cp_reg() | 
|  | * and assertions in raw_read()/raw_write(). | 
|  | */ | 
|  | if ((ri->type & ARM_CP_CONST) || | 
|  | ri->fieldoffset || | 
|  | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool write_cpustate_to_list(ARMCPU *cpu) | 
|  | { | 
|  | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | 
|  | int i; | 
|  | bool ok = true; | 
|  |  | 
|  | for (i = 0; i < cpu->cpreg_array_len; i++) { | 
|  | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | 
|  | const ARMCPRegInfo *ri; | 
|  |  | 
|  | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | 
|  | if (!ri) { | 
|  | ok = false; | 
|  | continue; | 
|  | } | 
|  | if (ri->type & ARM_CP_NO_RAW) { | 
|  | continue; | 
|  | } | 
|  | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); | 
|  | } | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | bool write_list_to_cpustate(ARMCPU *cpu) | 
|  | { | 
|  | int i; | 
|  | bool ok = true; | 
|  |  | 
|  | for (i = 0; i < cpu->cpreg_array_len; i++) { | 
|  | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | 
|  | uint64_t v = cpu->cpreg_values[i]; | 
|  | const ARMCPRegInfo *ri; | 
|  |  | 
|  | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | 
|  | if (!ri) { | 
|  | ok = false; | 
|  | continue; | 
|  | } | 
|  | if (ri->type & ARM_CP_NO_RAW) { | 
|  | continue; | 
|  | } | 
|  | /* Write value and confirm it reads back as written | 
|  | * (to catch read-only registers and partially read-only | 
|  | * registers where the incoming migration value doesn't match) | 
|  | */ | 
|  | write_raw_cp_reg(&cpu->env, ri, v); | 
|  | if (read_raw_cp_reg(&cpu->env, ri) != v) { | 
|  | ok = false; | 
|  | } | 
|  | } | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | static void add_cpreg_to_list(gpointer key, gpointer opaque) | 
|  | { | 
|  | ARMCPU *cpu = opaque; | 
|  | uint64_t regidx; | 
|  | const ARMCPRegInfo *ri; | 
|  |  | 
|  | regidx = *(uint32_t *)key; | 
|  | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | 
|  |  | 
|  | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { | 
|  | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); | 
|  | /* The value array need not be initialized at this point */ | 
|  | cpu->cpreg_array_len++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void count_cpreg(gpointer key, gpointer opaque) | 
|  | { | 
|  | ARMCPU *cpu = opaque; | 
|  | uint64_t regidx; | 
|  | const ARMCPRegInfo *ri; | 
|  |  | 
|  | regidx = *(uint32_t *)key; | 
|  | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | 
|  |  | 
|  | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { | 
|  | cpu->cpreg_array_len++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | 
|  | { | 
|  | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); | 
|  | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | 
|  |  | 
|  | if (aidx > bidx) { | 
|  | return 1; | 
|  | } | 
|  | if (aidx < bidx) { | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void init_cpreg_list(ARMCPU *cpu) | 
|  | { | 
|  | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | 
|  | * Note that we require cpreg_tuples[] to be sorted by key ID. | 
|  | */ | 
|  | GList *keys; | 
|  | int arraylen; | 
|  |  | 
|  | keys = g_hash_table_get_keys(cpu->cp_regs); | 
|  | keys = g_list_sort(keys, cpreg_key_compare); | 
|  |  | 
|  | cpu->cpreg_array_len = 0; | 
|  |  | 
|  | g_list_foreach(keys, count_cpreg, cpu); | 
|  |  | 
|  | arraylen = cpu->cpreg_array_len; | 
|  | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | 
|  | cpu->cpreg_values = g_new(uint64_t, arraylen); | 
|  | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | 
|  | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | 
|  | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | 
|  | cpu->cpreg_array_len = 0; | 
|  |  | 
|  | g_list_foreach(keys, add_cpreg_to_list, cpu); | 
|  |  | 
|  | assert(cpu->cpreg_array_len == arraylen); | 
|  |  | 
|  | g_list_free(keys); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but | 
|  | * they are accessible when EL3 is using AArch64 regardless of EL3.NS. | 
|  | * | 
|  | * access_el3_aa32ns: Used to check AArch32 register views. | 
|  | * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. | 
|  | */ | 
|  | static CPAccessResult access_el3_aa32ns(CPUARMState *env, | 
|  | const ARMCPRegInfo *ri) | 
|  | { | 
|  | bool secure = arm_is_secure_below_el3(env); | 
|  |  | 
|  | assert(!arm_el_is_aa64(env, 3)); | 
|  | if (secure) { | 
|  | return CP_ACCESS_TRAP_UNCATEGORIZED; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, | 
|  | const ARMCPRegInfo *ri) | 
|  | { | 
|  | if (!arm_el_is_aa64(env, 3)) { | 
|  | return access_el3_aa32ns(env, ri); | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | raw_write(env, ri, value); | 
|  | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ | 
|  | } | 
|  |  | 
|  | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | if (raw_read(env, ri) != value) { | 
|  | /* Unlike real hardware the qemu TLB uses virtual addresses, | 
|  | * not modified virtual addresses, so this causes a TLB flush. | 
|  | */ | 
|  | tlb_flush(CPU(cpu), 1); | 
|  | raw_write(env, ri, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) | 
|  | && !extended_addresses_enabled(env)) { | 
|  | /* For VMSA (when not using the LPAE long descriptor page table | 
|  | * format) this register includes the ASID, so do a TLB flush. | 
|  | * For PMSA it is purely a process ID and no action is needed. | 
|  | */ | 
|  | tlb_flush(CPU(cpu), 1); | 
|  | } | 
|  | raw_write(env, ri, value); | 
|  | } | 
|  |  | 
|  | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Invalidate all (TLBIALL) */ | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | tlb_flush(CPU(cpu), 1); | 
|  | } | 
|  |  | 
|  | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | 
|  | } | 
|  |  | 
|  | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Invalidate by ASID (TLBIASID) */ | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | tlb_flush(CPU(cpu), value == 0); | 
|  | } | 
|  |  | 
|  | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | 
|  | } | 
|  |  | 
|  | /* IS variants of TLB operations must affect all cores */ | 
|  | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | CPUState *other_cs; | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | tlb_flush(other_cs, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | CPUState *other_cs; | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | tlb_flush(other_cs, value == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | CPUState *other_cs; | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | CPUState *other_cs; | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo cp_reginfo[] = { | 
|  | /* Define the secure and non-secure FCSE identifier CP registers | 
|  | * separately because there is no secure bank in V8 (no _EL3).  This allows | 
|  | * the secure register to be properly reset and migrated. There is also no | 
|  | * v8 EL1 version of the register so the non-secure instance stands alone. | 
|  | */ | 
|  | { .name = "FCSEIDR(NS)", | 
|  | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | 
|  | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | 
|  | { .name = "FCSEIDR(S)", | 
|  | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | 
|  | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | 
|  | /* Define the secure and non-secure context identifier CP registers | 
|  | * separately because there is no secure bank in V8 (no _EL3).  This allows | 
|  | * the secure register to be properly reset and migrated.  In the | 
|  | * non-secure case, the 32-bit register will have reset and migration | 
|  | * disabled during registration as it is handled by the 64-bit instance. | 
|  | */ | 
|  | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | 
|  | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), | 
|  | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | 
|  | { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, | 
|  | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | 
|  | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), | 
|  | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | 
|  | /* NB: Some of these registers exist in v8 but with more precise | 
|  | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | 
|  | */ | 
|  | /* MMU Domain access control / MPU write buffer control */ | 
|  | { .name = "DACR", | 
|  | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | 
|  | .access = PL1_RW, .resetvalue = 0, | 
|  | .writefn = dacr_write, .raw_writefn = raw_write, | 
|  | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | 
|  | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | 
|  | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. | 
|  | * For v6 and v5, these mappings are overly broad. | 
|  | */ | 
|  | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, | 
|  | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | 
|  | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | 
|  | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | 
|  | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | 
|  | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | 
|  | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | 
|  | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | 
|  | /* Cache maintenance ops; some of this space may be overridden later. */ | 
|  | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | 
|  | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | 
|  | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo not_v6_cp_reginfo[] = { | 
|  | /* Not all pre-v6 cores implemented this WFI, so this is slightly | 
|  | * over-broad. | 
|  | */ | 
|  | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | 
|  | .access = PL1_W, .type = ARM_CP_WFI }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | 
|  | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | 
|  | * is UNPREDICTABLE; we choose to NOP as most implementations do). | 
|  | */ | 
|  | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | 
|  | .access = PL1_W, .type = ARM_CP_WFI }, | 
|  | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice | 
|  | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | 
|  | * OMAPCP will override this space. | 
|  | */ | 
|  | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | 
|  | .resetvalue = 0 }, | 
|  | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | 
|  | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | 
|  | .resetvalue = 0 }, | 
|  | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ | 
|  | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | 
|  | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, | 
|  | .resetvalue = 0 }, | 
|  | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; | 
|  | * implementing it as RAZ means the "debug architecture version" bits | 
|  | * will read as a reserved value, which should cause Linux to not try | 
|  | * to use the debug hardware. | 
|  | */ | 
|  | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | /* MMU TLB control. Note that the wildcarding means we cover not just | 
|  | * the unified TLB ops but also the dside/iside/inner-shareable variants. | 
|  | */ | 
|  | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | 
|  | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | 
|  | .type = ARM_CP_NO_RAW }, | 
|  | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, | 
|  | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | 
|  | .type = ARM_CP_NO_RAW }, | 
|  | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, | 
|  | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | 
|  | .type = ARM_CP_NO_RAW }, | 
|  | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, | 
|  | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | 
|  | .type = ARM_CP_NO_RAW }, | 
|  | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, | 
|  | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | 
|  | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | 
|  | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | uint32_t mask = 0; | 
|  |  | 
|  | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | 
|  | if (!arm_feature(env, ARM_FEATURE_V8)) { | 
|  | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | 
|  | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | 
|  | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | 
|  | */ | 
|  | if (arm_feature(env, ARM_FEATURE_VFP)) { | 
|  | /* VFP coprocessor: cp10 & cp11 [23:20] */ | 
|  | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | 
|  |  | 
|  | if (!arm_feature(env, ARM_FEATURE_NEON)) { | 
|  | /* ASEDIS [31] bit is RAO/WI */ | 
|  | value |= (1 << 31); | 
|  | } | 
|  |  | 
|  | /* VFPv3 and upwards with NEON implement 32 double precision | 
|  | * registers (D0-D31). | 
|  | */ | 
|  | if (!arm_feature(env, ARM_FEATURE_NEON) || | 
|  | !arm_feature(env, ARM_FEATURE_VFP3)) { | 
|  | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | 
|  | value |= (1 << 30); | 
|  | } | 
|  | } | 
|  | value &= mask; | 
|  | } | 
|  | env->cp15.cpacr_el1 = value; | 
|  | } | 
|  |  | 
|  | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | if (arm_feature(env, ARM_FEATURE_V8)) { | 
|  | /* Check if CPACR accesses are to be trapped to EL2 */ | 
|  | if (arm_current_el(env) == 1 && | 
|  | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { | 
|  | return CP_ACCESS_TRAP_EL2; | 
|  | /* Check if CPACR accesses are to be trapped to EL3 */ | 
|  | } else if (arm_current_el(env) < 3 && | 
|  | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | 
|  | return CP_ACCESS_TRAP_EL3; | 
|  | } | 
|  | } | 
|  |  | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | /* Check if CPTR accesses are set to trap to EL3 */ | 
|  | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | 
|  | return CP_ACCESS_TRAP_EL3; | 
|  | } | 
|  |  | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo v6_cp_reginfo[] = { | 
|  | /* prefetch by MVA in v6, NOP in v7 */ | 
|  | { .name = "MVA_prefetch", | 
|  | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | 
|  | .access = PL0_W, .type = ARM_CP_NOP }, | 
|  | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, | 
|  | .access = PL0_W, .type = ARM_CP_NOP }, | 
|  | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, | 
|  | .access = PL0_W, .type = ARM_CP_NOP }, | 
|  | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, | 
|  | .access = PL1_RW, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), | 
|  | offsetof(CPUARMState, cp15.ifar_ns) }, | 
|  | .resetvalue = 0, }, | 
|  | /* Watchpoint Fault Address Register : should actually only be present | 
|  | * for 1136, 1176, 11MPCore. | 
|  | */ | 
|  | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | 
|  | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | 
|  | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, | 
|  | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, | 
|  | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), | 
|  | .resetvalue = 0, .writefn = cpacr_write }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | /* Performance monitor registers user accessibility is controlled | 
|  | * by PMUSERENR. | 
|  | */ | 
|  | if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) { | 
|  | return CP_ACCESS_TRAP; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  |  | 
|  | static inline bool arm_ccnt_enabled(CPUARMState *env) | 
|  | { | 
|  | /* This does not support checking PMCCFILTR_EL0 register */ | 
|  |  | 
|  | if (!(env->cp15.c9_pmcr & PMCRE)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void pmccntr_sync(CPUARMState *env) | 
|  | { | 
|  | uint64_t temp_ticks; | 
|  |  | 
|  | temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), | 
|  | get_ticks_per_sec(), 1000000); | 
|  |  | 
|  | if (env->cp15.c9_pmcr & PMCRD) { | 
|  | /* Increment once every 64 processor clock cycles */ | 
|  | temp_ticks /= 64; | 
|  | } | 
|  |  | 
|  | if (arm_ccnt_enabled(env)) { | 
|  | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | pmccntr_sync(env); | 
|  |  | 
|  | if (value & PMCRC) { | 
|  | /* The counter has been reset */ | 
|  | env->cp15.c15_ccnt = 0; | 
|  | } | 
|  |  | 
|  | /* only the DP, X, D and E bits are writable */ | 
|  | env->cp15.c9_pmcr &= ~0x39; | 
|  | env->cp15.c9_pmcr |= (value & 0x39); | 
|  |  | 
|  | pmccntr_sync(env); | 
|  | } | 
|  |  | 
|  | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | uint64_t total_ticks; | 
|  |  | 
|  | if (!arm_ccnt_enabled(env)) { | 
|  | /* Counter is disabled, do not change value */ | 
|  | return env->cp15.c15_ccnt; | 
|  | } | 
|  |  | 
|  | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), | 
|  | get_ticks_per_sec(), 1000000); | 
|  |  | 
|  | if (env->cp15.c9_pmcr & PMCRD) { | 
|  | /* Increment once every 64 processor clock cycles */ | 
|  | total_ticks /= 64; | 
|  | } | 
|  | return total_ticks - env->cp15.c15_ccnt; | 
|  | } | 
|  |  | 
|  | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | uint64_t total_ticks; | 
|  |  | 
|  | if (!arm_ccnt_enabled(env)) { | 
|  | /* Counter is disabled, set the absolute value */ | 
|  | env->cp15.c15_ccnt = value; | 
|  | return; | 
|  | } | 
|  |  | 
|  | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), | 
|  | get_ticks_per_sec(), 1000000); | 
|  |  | 
|  | if (env->cp15.c9_pmcr & PMCRD) { | 
|  | /* Increment once every 64 processor clock cycles */ | 
|  | total_ticks /= 64; | 
|  | } | 
|  | env->cp15.c15_ccnt = total_ticks - value; | 
|  | } | 
|  |  | 
|  | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | uint64_t cur_val = pmccntr_read(env, NULL); | 
|  |  | 
|  | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_USER_ONLY */ | 
|  |  | 
|  | void pmccntr_sync(CPUARMState *env) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | pmccntr_sync(env); | 
|  | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | 
|  | pmccntr_sync(env); | 
|  | } | 
|  |  | 
|  | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | value &= (1 << 31); | 
|  | env->cp15.c9_pmcnten |= value; | 
|  | } | 
|  |  | 
|  | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | value &= (1 << 31); | 
|  | env->cp15.c9_pmcnten &= ~value; | 
|  | } | 
|  |  | 
|  | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | env->cp15.c9_pmovsr &= ~value; | 
|  | } | 
|  |  | 
|  | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | env->cp15.c9_pmxevtyper = value & 0xff; | 
|  | } | 
|  |  | 
|  | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | env->cp15.c9_pmuserenr = value & 1; | 
|  | } | 
|  |  | 
|  | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* We have no event counters so only the C bit can be changed */ | 
|  | value &= (1 << 31); | 
|  | env->cp15.c9_pminten |= value; | 
|  | } | 
|  |  | 
|  | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | value &= (1 << 31); | 
|  | env->cp15.c9_pminten &= ~value; | 
|  | } | 
|  |  | 
|  | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Note that even though the AArch64 view of this register has bits | 
|  | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | 
|  | * architectural requirements for bits which are RES0 only in some | 
|  | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | 
|  | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | 
|  | */ | 
|  | raw_write(env, ri, value & ~0x1FULL); | 
|  | } | 
|  |  | 
|  | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | 
|  | { | 
|  | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | 
|  | * For bits that vary between AArch32/64, code needs to check the | 
|  | * current execution mode before directly using the feature bit. | 
|  | */ | 
|  | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | 
|  |  | 
|  | if (!arm_feature(env, ARM_FEATURE_EL2)) { | 
|  | valid_mask &= ~SCR_HCE; | 
|  |  | 
|  | /* On ARMv7, SMD (or SCD as it is called in v7) is only | 
|  | * supported if EL2 exists. The bit is UNK/SBZP when | 
|  | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | 
|  | * when EL2 is unavailable. | 
|  | * On ARMv8, this bit is always available. | 
|  | */ | 
|  | if (arm_feature(env, ARM_FEATURE_V7) && | 
|  | !arm_feature(env, ARM_FEATURE_V8)) { | 
|  | valid_mask &= ~SCR_SMD; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Clear all-context RES0 bits.  */ | 
|  | value &= valid_mask; | 
|  | raw_write(env, ri, value); | 
|  | } | 
|  |  | 
|  | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | 
|  | * bank | 
|  | */ | 
|  | uint32_t index = A32_BANKED_REG_GET(env, csselr, | 
|  | ri->secure & ARM_CP_SECSTATE_S); | 
|  |  | 
|  | return cpu->ccsidr[index]; | 
|  | } | 
|  |  | 
|  | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | raw_write(env, ri, value & 0xf); | 
|  | } | 
|  |  | 
|  | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | CPUState *cs = ENV_GET_CPU(env); | 
|  | uint64_t ret = 0; | 
|  |  | 
|  | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | 
|  | ret |= CPSR_I; | 
|  | } | 
|  | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | 
|  | ret |= CPSR_F; | 
|  | } | 
|  | /* External aborts are not possible in QEMU so A bit is always clear */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo v7_cp_reginfo[] = { | 
|  | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ | 
|  | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | /* Performance monitors are implementation defined in v7, | 
|  | * but with an ARM recommended set of registers, which we | 
|  | * follow (although we don't actually implement any counters) | 
|  | * | 
|  | * Performance registers fall into three categories: | 
|  | *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | 
|  | *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | 
|  | *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | 
|  | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | 
|  | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | 
|  | */ | 
|  | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | 
|  | .access = PL0_RW, .type = ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | 
|  | .writefn = pmcntenset_write, | 
|  | .accessfn = pmreg_access, | 
|  | .raw_writefn = raw_write }, | 
|  | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | 
|  | .access = PL0_RW, .accessfn = pmreg_access, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | 
|  | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | 
|  | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, | 
|  | .access = PL0_RW, | 
|  | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | 
|  | .accessfn = pmreg_access, | 
|  | .writefn = pmcntenclr_write, | 
|  | .type = ARM_CP_ALIAS }, | 
|  | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | 
|  | .access = PL0_RW, .accessfn = pmreg_access, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | 
|  | .writefn = pmcntenclr_write }, | 
|  | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, | 
|  | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | 
|  | .accessfn = pmreg_access, | 
|  | .writefn = pmovsr_write, | 
|  | .raw_writefn = raw_write }, | 
|  | /* Unimplemented so WI. */ | 
|  | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, | 
|  | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, | 
|  | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. | 
|  | * We choose to RAZ/WI. | 
|  | */ | 
|  | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | 
|  | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, | 
|  | .accessfn = pmreg_access }, | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, | 
|  | .readfn = pmccntr_read, .writefn = pmccntr_write32, | 
|  | .accessfn = pmreg_access }, | 
|  | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | 
|  | .access = PL0_RW, .accessfn = pmreg_access, | 
|  | .type = ARM_CP_IO, | 
|  | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | 
|  | #endif | 
|  | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | 
|  | .writefn = pmccfiltr_write, | 
|  | .access = PL0_RW, .accessfn = pmreg_access, | 
|  | .type = ARM_CP_IO, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | 
|  | .resetvalue = 0, }, | 
|  | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, | 
|  | .access = PL0_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | 
|  | .accessfn = pmreg_access, .writefn = pmxevtyper_write, | 
|  | .raw_writefn = raw_write }, | 
|  | /* Unimplemented, RAZ/WI. */ | 
|  | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, | 
|  | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, | 
|  | .accessfn = pmreg_access }, | 
|  | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL0_R | PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | 
|  | .resetvalue = 0, | 
|  | .writefn = pmuserenr_write, .raw_writefn = raw_write }, | 
|  | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | 
|  | .resetvalue = 0, | 
|  | .writefn = pmintenset_write, .raw_writefn = raw_write }, | 
|  | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, | 
|  | .access = PL1_RW, .type = ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | 
|  | .writefn = pmintenclr_write, }, | 
|  | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .writefn = vbar_write, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), | 
|  | offsetof(CPUARMState, cp15.vbar_ns) }, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | 
|  | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, | 
|  | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | 
|  | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | 
|  | offsetof(CPUARMState, cp15.csselr_ns) } }, | 
|  | /* Auxiliary ID register: this actually has an IMPDEF value but for now | 
|  | * just RAZ for all cores: | 
|  | */ | 
|  | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | /* Auxiliary fault status registers: these also are IMPDEF, and we | 
|  | * choose to RAZ/WI for all cores. | 
|  | */ | 
|  | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | 
|  | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | 
|  | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | /* MAIR can just read-as-written because we don't implement caches | 
|  | * and so don't need to care about memory attributes. | 
|  | */ | 
|  | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | 
|  | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), | 
|  | .resetvalue = 0 }, | 
|  | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | 
|  | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | 
|  | .resetvalue = 0 }, | 
|  | /* For non-long-descriptor page tables these are PRRR and NMRR; | 
|  | * regardless they still act as reads-as-written for QEMU. | 
|  | */ | 
|  | /* MAIR0/1 are defined separately from their 64-bit counterpart which | 
|  | * allows them to assign the correct fieldoffset based on the endianness | 
|  | * handled in the field definitions. | 
|  | */ | 
|  | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, | 
|  | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), | 
|  | offsetof(CPUARMState, cp15.mair0_ns) }, | 
|  | .resetfn = arm_cp_reset_ignore }, | 
|  | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, | 
|  | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), | 
|  | offsetof(CPUARMState, cp15.mair1_ns) }, | 
|  | .resetfn = arm_cp_reset_ignore }, | 
|  | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, | 
|  | /* 32 bit ITLB invalidates */ | 
|  | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, | 
|  | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, | 
|  | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, | 
|  | /* 32 bit DTLB invalidates */ | 
|  | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, | 
|  | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, | 
|  | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, | 
|  | /* 32 bit TLB invalidates */ | 
|  | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, | 
|  | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, | 
|  | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, | 
|  | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | 
|  | /* 32 bit TLB invalidates, Inner Shareable */ | 
|  | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, | 
|  | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, | 
|  | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, | 
|  | .writefn = tlbiasid_is_write }, | 
|  | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, | 
|  | .writefn = tlbimvaa_is_write }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | value &= 1; | 
|  | env->teecr = value; | 
|  | } | 
|  |  | 
|  | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | if (arm_current_el(env) == 0 && (env->teecr & 1)) { | 
|  | return CP_ACCESS_TRAP; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | 
|  | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | 
|  | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | 
|  | .resetvalue = 0, | 
|  | .writefn = teecr_write }, | 
|  | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | 
|  | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | 
|  | .accessfn = teehbr_access, .resetvalue = 0 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo v6k_cp_reginfo[] = { | 
|  | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | 
|  | .access = PL0_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, | 
|  | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, | 
|  | .access = PL0_RW, | 
|  | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), | 
|  | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | 
|  | .resetfn = arm_cp_reset_ignore }, | 
|  | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | 
|  | .access = PL0_R|PL1_W, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), | 
|  | .resetvalue = 0}, | 
|  | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, | 
|  | .access = PL0_R|PL1_W, | 
|  | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), | 
|  | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | 
|  | .resetfn = arm_cp_reset_ignore }, | 
|  | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, | 
|  | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | 
|  | .access = PL1_RW, | 
|  | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | 
|  | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | 
|  | .resetvalue = 0 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  |  | 
|  | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | 
|  | if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { | 
|  | return CP_ACCESS_TRAP; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | 
|  | { | 
|  | unsigned int cur_el = arm_current_el(env); | 
|  | bool secure = arm_is_secure(env); | 
|  |  | 
|  | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ | 
|  | if (cur_el == 0 && | 
|  | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { | 
|  | return CP_ACCESS_TRAP; | 
|  | } | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_EL2) && | 
|  | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | 
|  | !extract32(env->cp15.cnthctl_el2, 0, 1)) { | 
|  | return CP_ACCESS_TRAP_EL2; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | 
|  | { | 
|  | unsigned int cur_el = arm_current_el(env); | 
|  | bool secure = arm_is_secure(env); | 
|  |  | 
|  | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if | 
|  | * EL0[PV]TEN is zero. | 
|  | */ | 
|  | if (cur_el == 0 && | 
|  | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | 
|  | return CP_ACCESS_TRAP; | 
|  | } | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_EL2) && | 
|  | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | 
|  | !extract32(env->cp15.cnthctl_el2, 1, 1)) { | 
|  | return CP_ACCESS_TRAP_EL2; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static CPAccessResult gt_pct_access(CPUARMState *env, | 
|  | const ARMCPRegInfo *ri) | 
|  | { | 
|  | return gt_counter_access(env, GTIMER_PHYS); | 
|  | } | 
|  |  | 
|  | static CPAccessResult gt_vct_access(CPUARMState *env, | 
|  | const ARMCPRegInfo *ri) | 
|  | { | 
|  | return gt_counter_access(env, GTIMER_VIRT); | 
|  | } | 
|  |  | 
|  | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return gt_timer_access(env, GTIMER_PHYS); | 
|  | } | 
|  |  | 
|  | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return gt_timer_access(env, GTIMER_VIRT); | 
|  | } | 
|  |  | 
|  | static CPAccessResult gt_stimer_access(CPUARMState *env, | 
|  | const ARMCPRegInfo *ri) | 
|  | { | 
|  | /* The AArch64 register view of the secure physical timer is | 
|  | * always accessible from EL3, and configurably accessible from | 
|  | * Secure EL1. | 
|  | */ | 
|  | switch (arm_current_el(env)) { | 
|  | case 1: | 
|  | if (!arm_is_secure(env)) { | 
|  | return CP_ACCESS_TRAP; | 
|  | } | 
|  | if (!(env->cp15.scr_el3 & SCR_ST)) { | 
|  | return CP_ACCESS_TRAP_EL3; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | case 0: | 
|  | case 2: | 
|  | return CP_ACCESS_TRAP; | 
|  | case 3: | 
|  | return CP_ACCESS_OK; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t gt_get_countervalue(CPUARMState *env) | 
|  | { | 
|  | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; | 
|  | } | 
|  |  | 
|  | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | 
|  | { | 
|  | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | 
|  |  | 
|  | if (gt->ctl & 1) { | 
|  | /* Timer enabled: calculate and set current ISTATUS, irq, and | 
|  | * reset timer to when ISTATUS next has to change | 
|  | */ | 
|  | uint64_t offset = timeridx == GTIMER_VIRT ? | 
|  | cpu->env.cp15.cntvoff_el2 : 0; | 
|  | uint64_t count = gt_get_countervalue(&cpu->env); | 
|  | /* Note that this must be unsigned 64 bit arithmetic: */ | 
|  | int istatus = count - offset >= gt->cval; | 
|  | uint64_t nexttick; | 
|  |  | 
|  | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | 
|  | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | 
|  | (istatus && !(gt->ctl & 2))); | 
|  | if (istatus) { | 
|  | /* Next transition is when count rolls back over to zero */ | 
|  | nexttick = UINT64_MAX; | 
|  | } else { | 
|  | /* Next transition is when we hit cval */ | 
|  | nexttick = gt->cval + offset; | 
|  | } | 
|  | /* Note that the desired next expiry time might be beyond the | 
|  | * signed-64-bit range of a QEMUTimer -- in this case we just | 
|  | * set the timer for as far in the future as possible. When the | 
|  | * timer expires we will reset the timer for any remaining period. | 
|  | */ | 
|  | if (nexttick > INT64_MAX / GTIMER_SCALE) { | 
|  | nexttick = INT64_MAX / GTIMER_SCALE; | 
|  | } | 
|  | timer_mod(cpu->gt_timer[timeridx], nexttick); | 
|  | } else { | 
|  | /* Timer disabled: ISTATUS and timer output always clear */ | 
|  | gt->ctl &= ~4; | 
|  | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | 
|  | timer_del(cpu->gt_timer[timeridx]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | int timeridx) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | timer_del(cpu->gt_timer[timeridx]); | 
|  | } | 
|  |  | 
|  | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return gt_get_countervalue(env); | 
|  | } | 
|  |  | 
|  | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return gt_get_countervalue(env) - env->cp15.cntvoff_el2; | 
|  | } | 
|  |  | 
|  | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | int timeridx, | 
|  | uint64_t value) | 
|  | { | 
|  | env->cp15.c14_timer[timeridx].cval = value; | 
|  | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | 
|  | } | 
|  |  | 
|  | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | int timeridx) | 
|  | { | 
|  | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; | 
|  |  | 
|  | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - | 
|  | (gt_get_countervalue(env) - offset)); | 
|  | } | 
|  |  | 
|  | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | int timeridx, | 
|  | uint64_t value) | 
|  | { | 
|  | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; | 
|  |  | 
|  | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + | 
|  | sextract64(value, 0, 32); | 
|  | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | 
|  | } | 
|  |  | 
|  | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | int timeridx, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; | 
|  |  | 
|  | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); | 
|  | if ((oldval ^ value) & 1) { | 
|  | /* Enable toggled */ | 
|  | gt_recalc_timer(cpu, timeridx); | 
|  | } else if ((oldval ^ value) & 2) { | 
|  | /* IMASK toggled: don't need to recalculate, | 
|  | * just set the interrupt line based on ISTATUS | 
|  | */ | 
|  | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | 
|  | (oldval & 4) && !(value & 2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | gt_timer_reset(env, ri, GTIMER_PHYS); | 
|  | } | 
|  |  | 
|  | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_cval_write(env, ri, GTIMER_PHYS, value); | 
|  | } | 
|  |  | 
|  | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return gt_tval_read(env, ri, GTIMER_PHYS); | 
|  | } | 
|  |  | 
|  | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_tval_write(env, ri, GTIMER_PHYS, value); | 
|  | } | 
|  |  | 
|  | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_ctl_write(env, ri, GTIMER_PHYS, value); | 
|  | } | 
|  |  | 
|  | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | gt_timer_reset(env, ri, GTIMER_VIRT); | 
|  | } | 
|  |  | 
|  | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_cval_write(env, ri, GTIMER_VIRT, value); | 
|  | } | 
|  |  | 
|  | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return gt_tval_read(env, ri, GTIMER_VIRT); | 
|  | } | 
|  |  | 
|  | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_tval_write(env, ri, GTIMER_VIRT, value); | 
|  | } | 
|  |  | 
|  | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_ctl_write(env, ri, GTIMER_VIRT, value); | 
|  | } | 
|  |  | 
|  | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | raw_write(env, ri, value); | 
|  | gt_recalc_timer(cpu, GTIMER_VIRT); | 
|  | } | 
|  |  | 
|  | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | gt_timer_reset(env, ri, GTIMER_HYP); | 
|  | } | 
|  |  | 
|  | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_cval_write(env, ri, GTIMER_HYP, value); | 
|  | } | 
|  |  | 
|  | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return gt_tval_read(env, ri, GTIMER_HYP); | 
|  | } | 
|  |  | 
|  | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_tval_write(env, ri, GTIMER_HYP, value); | 
|  | } | 
|  |  | 
|  | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_ctl_write(env, ri, GTIMER_HYP, value); | 
|  | } | 
|  |  | 
|  | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | gt_timer_reset(env, ri, GTIMER_SEC); | 
|  | } | 
|  |  | 
|  | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_cval_write(env, ri, GTIMER_SEC, value); | 
|  | } | 
|  |  | 
|  | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return gt_tval_read(env, ri, GTIMER_SEC); | 
|  | } | 
|  |  | 
|  | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_tval_write(env, ri, GTIMER_SEC, value); | 
|  | } | 
|  |  | 
|  | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | gt_ctl_write(env, ri, GTIMER_SEC, value); | 
|  | } | 
|  |  | 
|  | void arm_gt_ptimer_cb(void *opaque) | 
|  | { | 
|  | ARMCPU *cpu = opaque; | 
|  |  | 
|  | gt_recalc_timer(cpu, GTIMER_PHYS); | 
|  | } | 
|  |  | 
|  | void arm_gt_vtimer_cb(void *opaque) | 
|  | { | 
|  | ARMCPU *cpu = opaque; | 
|  |  | 
|  | gt_recalc_timer(cpu, GTIMER_VIRT); | 
|  | } | 
|  |  | 
|  | void arm_gt_htimer_cb(void *opaque) | 
|  | { | 
|  | ARMCPU *cpu = opaque; | 
|  |  | 
|  | gt_recalc_timer(cpu, GTIMER_HYP); | 
|  | } | 
|  |  | 
|  | void arm_gt_stimer_cb(void *opaque) | 
|  | { | 
|  | ARMCPU *cpu = opaque; | 
|  |  | 
|  | gt_recalc_timer(cpu, GTIMER_SEC); | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | 
|  | /* Note that CNTFRQ is purely reads-as-written for the benefit | 
|  | * of software; writing it doesn't actually change the timer frequency. | 
|  | * Our reset value matches the fixed frequency we implement the timer at. | 
|  | */ | 
|  | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | 
|  | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | 
|  | }, | 
|  | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | 
|  | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), | 
|  | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | 
|  | }, | 
|  | /* overall control: mostly access permissions */ | 
|  | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | 
|  | .resetvalue = 0, | 
|  | }, | 
|  | /* per-timer control */ | 
|  | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | 
|  | .secure = ARM_CP_SECSTATE_NS, | 
|  | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, | 
|  | .accessfn = gt_ptimer_access, | 
|  | .fieldoffset = offsetoflow32(CPUARMState, | 
|  | cp15.c14_timer[GTIMER_PHYS].ctl), | 
|  | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | { .name = "CNTP_CTL(S)", | 
|  | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | 
|  | .secure = ARM_CP_SECSTATE_S, | 
|  | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, | 
|  | .accessfn = gt_ptimer_access, | 
|  | .fieldoffset = offsetoflow32(CPUARMState, | 
|  | cp15.c14_timer[GTIMER_SEC].ctl), | 
|  | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | 
|  | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, | 
|  | .accessfn = gt_ptimer_access, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), | 
|  | .resetvalue = 0, | 
|  | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | 
|  | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, | 
|  | .accessfn = gt_vtimer_access, | 
|  | .fieldoffset = offsetoflow32(CPUARMState, | 
|  | cp15.c14_timer[GTIMER_VIRT].ctl), | 
|  | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | 
|  | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, | 
|  | .accessfn = gt_vtimer_access, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), | 
|  | .resetvalue = 0, | 
|  | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | 
|  | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | 
|  | .secure = ARM_CP_SECSTATE_NS, | 
|  | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | 
|  | .accessfn = gt_ptimer_access, | 
|  | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, | 
|  | }, | 
|  | { .name = "CNTP_TVAL(S)", | 
|  | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | 
|  | .secure = ARM_CP_SECSTATE_S, | 
|  | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | 
|  | .accessfn = gt_ptimer_access, | 
|  | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | 
|  | }, | 
|  | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | 
|  | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | 
|  | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, | 
|  | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, | 
|  | }, | 
|  | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, | 
|  | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | 
|  | .accessfn = gt_vtimer_access, | 
|  | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, | 
|  | }, | 
|  | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | 
|  | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | 
|  | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, | 
|  | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, | 
|  | }, | 
|  | /* The counter itself */ | 
|  | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | 
|  | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, | 
|  | .accessfn = gt_pct_access, | 
|  | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, | 
|  | }, | 
|  | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | 
|  | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, | 
|  | .accessfn = gt_pct_access, .readfn = gt_cnt_read, | 
|  | }, | 
|  | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | 
|  | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, | 
|  | .accessfn = gt_vct_access, | 
|  | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, | 
|  | }, | 
|  | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | 
|  | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, | 
|  | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, | 
|  | }, | 
|  | /* Comparison value, indicating when the timer goes off */ | 
|  | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | 
|  | .secure = ARM_CP_SECSTATE_NS, | 
|  | .access = PL1_RW | PL0_R, | 
|  | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | 
|  | .accessfn = gt_ptimer_access, | 
|  | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, | 
|  | .secure = ARM_CP_SECSTATE_S, | 
|  | .access = PL1_RW | PL0_R, | 
|  | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | 
|  | .accessfn = gt_ptimer_access, | 
|  | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | 
|  | .access = PL1_RW | PL0_R, | 
|  | .type = ARM_CP_IO, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | 
|  | .resetvalue = 0, .accessfn = gt_ptimer_access, | 
|  | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | 
|  | .access = PL1_RW | PL0_R, | 
|  | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | 
|  | .accessfn = gt_vtimer_access, | 
|  | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | 
|  | .access = PL1_RW | PL0_R, | 
|  | .type = ARM_CP_IO, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | 
|  | .resetvalue = 0, .accessfn = gt_vtimer_access, | 
|  | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | /* Secure timer -- this is actually restricted to only EL3 | 
|  | * and configurably Secure-EL1 via the accessfn. | 
|  | */ | 
|  | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | 
|  | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | 
|  | .accessfn = gt_stimer_access, | 
|  | .readfn = gt_sec_tval_read, | 
|  | .writefn = gt_sec_tval_write, | 
|  | .resetfn = gt_sec_timer_reset, | 
|  | }, | 
|  | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | 
|  | .type = ARM_CP_IO, .access = PL1_RW, | 
|  | .accessfn = gt_stimer_access, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | 
|  | .resetvalue = 0, | 
|  | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | 
|  | .type = ARM_CP_IO, .access = PL1_RW, | 
|  | .accessfn = gt_stimer_access, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | 
|  | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | 
|  | }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | #else | 
|  | /* In user-mode none of the generic timer registers are accessible, | 
|  | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, | 
|  | * so instead just don't register any of them. | 
|  | */ | 
|  | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | 
|  | { | 
|  | if (arm_feature(env, ARM_FEATURE_LPAE)) { | 
|  | raw_write(env, ri, value); | 
|  | } else if (arm_feature(env, ARM_FEATURE_V7)) { | 
|  | raw_write(env, ri, value & 0xfffff6ff); | 
|  | } else { | 
|  | raw_write(env, ri, value & 0xfffff1ff); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | /* get_phys_addr() isn't present for user-mode-only targets */ | 
|  |  | 
|  | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | if (ri->opc2 & 4) { | 
|  | /* The ATS12NSO* operations must trap to EL3 if executed in | 
|  | * Secure EL1 (which can only happen if EL3 is AArch64). | 
|  | * They are simply UNDEF if executed from NS EL1. | 
|  | * They function normally from EL2 or EL3. | 
|  | */ | 
|  | if (arm_current_el(env) == 1) { | 
|  | if (arm_is_secure_below_el3(env)) { | 
|  | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; | 
|  | } | 
|  | return CP_ACCESS_TRAP_UNCATEGORIZED; | 
|  | } | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, | 
|  | int access_type, ARMMMUIdx mmu_idx) | 
|  | { | 
|  | hwaddr phys_addr; | 
|  | target_ulong page_size; | 
|  | int prot; | 
|  | uint32_t fsr; | 
|  | bool ret; | 
|  | uint64_t par64; | 
|  | MemTxAttrs attrs = {}; | 
|  |  | 
|  | ret = get_phys_addr(env, value, access_type, mmu_idx, | 
|  | &phys_addr, &attrs, &prot, &page_size, &fsr); | 
|  | if (extended_addresses_enabled(env)) { | 
|  | /* fsr is a DFSR/IFSR value for the long descriptor | 
|  | * translation table format, but with WnR always clear. | 
|  | * Convert it to a 64-bit PAR. | 
|  | */ | 
|  | par64 = (1 << 11); /* LPAE bit always set */ | 
|  | if (!ret) { | 
|  | par64 |= phys_addr & ~0xfffULL; | 
|  | if (!attrs.secure) { | 
|  | par64 |= (1 << 9); /* NS */ | 
|  | } | 
|  | /* We don't set the ATTR or SH fields in the PAR. */ | 
|  | } else { | 
|  | par64 |= 1; /* F */ | 
|  | par64 |= (fsr & 0x3f) << 1; /* FS */ | 
|  | /* Note that S2WLK and FSTAGE are always zero, because we don't | 
|  | * implement virtualization and therefore there can't be a stage 2 | 
|  | * fault. | 
|  | */ | 
|  | } | 
|  | } else { | 
|  | /* fsr is a DFSR/IFSR value for the short descriptor | 
|  | * translation table format (with WnR always clear). | 
|  | * Convert it to a 32-bit PAR. | 
|  | */ | 
|  | if (!ret) { | 
|  | /* We do not set any attribute bits in the PAR */ | 
|  | if (page_size == (1 << 24) | 
|  | && arm_feature(env, ARM_FEATURE_V7)) { | 
|  | par64 = (phys_addr & 0xff000000) | (1 << 1); | 
|  | } else { | 
|  | par64 = phys_addr & 0xfffff000; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | par64 |= (1 << 9); /* NS */ | 
|  | } | 
|  | } else { | 
|  | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | | 
|  | ((fsr & 0xf) << 1) | 1; | 
|  | } | 
|  | } | 
|  | return par64; | 
|  | } | 
|  |  | 
|  | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | 
|  | { | 
|  | int access_type = ri->opc2 & 1; | 
|  | uint64_t par64; | 
|  | ARMMMUIdx mmu_idx; | 
|  | int el = arm_current_el(env); | 
|  | bool secure = arm_is_secure_below_el3(env); | 
|  |  | 
|  | switch (ri->opc2 & 6) { | 
|  | case 0: | 
|  | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ | 
|  | switch (el) { | 
|  | case 3: | 
|  | mmu_idx = ARMMMUIdx_S1E3; | 
|  | break; | 
|  | case 2: | 
|  | mmu_idx = ARMMMUIdx_S1NSE1; | 
|  | break; | 
|  | case 1: | 
|  | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | 
|  | switch (el) { | 
|  | case 3: | 
|  | mmu_idx = ARMMMUIdx_S1SE0; | 
|  | break; | 
|  | case 2: | 
|  | mmu_idx = ARMMMUIdx_S1NSE0; | 
|  | break; | 
|  | case 1: | 
|  | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | break; | 
|  | case 4: | 
|  | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | 
|  | mmu_idx = ARMMMUIdx_S12NSE1; | 
|  | break; | 
|  | case 6: | 
|  | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | 
|  | mmu_idx = ARMMMUIdx_S12NSE0; | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | par64 = do_ats_write(env, value, access_type, mmu_idx); | 
|  |  | 
|  | A32_BANKED_CURRENT_REG_SET(env, par, par64); | 
|  | } | 
|  |  | 
|  | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | int access_type = ri->opc2 & 1; | 
|  | uint64_t par64; | 
|  |  | 
|  | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); | 
|  |  | 
|  | A32_BANKED_CURRENT_REG_SET(env, par, par64); | 
|  | } | 
|  |  | 
|  | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { | 
|  | return CP_ACCESS_TRAP; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | int access_type = ri->opc2 & 1; | 
|  | ARMMMUIdx mmu_idx; | 
|  | int secure = arm_is_secure_below_el3(env); | 
|  |  | 
|  | switch (ri->opc2 & 6) { | 
|  | case 0: | 
|  | switch (ri->opc1) { | 
|  | case 0: /* AT S1E1R, AT S1E1W */ | 
|  | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | 
|  | break; | 
|  | case 4: /* AT S1E2R, AT S1E2W */ | 
|  | mmu_idx = ARMMMUIdx_S1E2; | 
|  | break; | 
|  | case 6: /* AT S1E3R, AT S1E3W */ | 
|  | mmu_idx = ARMMMUIdx_S1E3; | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | break; | 
|  | case 2: /* AT S1E0R, AT S1E0W */ | 
|  | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | 
|  | break; | 
|  | case 4: /* AT S12E1R, AT S12E1W */ | 
|  | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; | 
|  | break; | 
|  | case 6: /* AT S12E0R, AT S12E0W */ | 
|  | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const ARMCPRegInfo vapa_cp_reginfo[] = { | 
|  | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .resetvalue = 0, | 
|  | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), | 
|  | offsetoflow32(CPUARMState, cp15.par_ns) }, | 
|  | .writefn = par_write }, | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | /* This underdecoding is safe because the reginfo is NO_RAW. */ | 
|  | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | 
|  | .access = PL1_W, .accessfn = ats_access, | 
|  | .writefn = ats_write, .type = ARM_CP_NO_RAW }, | 
|  | #endif | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | /* Return basic MPU access permission bits.  */ | 
|  | static uint32_t simple_mpu_ap_bits(uint32_t val) | 
|  | { | 
|  | uint32_t ret; | 
|  | uint32_t mask; | 
|  | int i; | 
|  | ret = 0; | 
|  | mask = 3; | 
|  | for (i = 0; i < 16; i += 2) { | 
|  | ret |= (val >> i) & mask; | 
|  | mask <<= 2; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Pad basic MPU access permission bits to extended format.  */ | 
|  | static uint32_t extended_mpu_ap_bits(uint32_t val) | 
|  | { | 
|  | uint32_t ret; | 
|  | uint32_t mask; | 
|  | int i; | 
|  | ret = 0; | 
|  | mask = 3; | 
|  | for (i = 0; i < 16; i += 2) { | 
|  | ret |= (val & mask) << i; | 
|  | mask <<= 2; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); | 
|  | } | 
|  |  | 
|  | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); | 
|  | } | 
|  |  | 
|  | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); | 
|  | } | 
|  |  | 
|  | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); | 
|  | } | 
|  |  | 
|  | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | 
|  |  | 
|  | if (!u32p) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | u32p += env->cp15.c6_rgnr; | 
|  | return *u32p; | 
|  | } | 
|  |  | 
|  | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | 
|  |  | 
|  | if (!u32p) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | u32p += env->cp15.c6_rgnr; | 
|  | tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */ | 
|  | *u32p = value; | 
|  | } | 
|  |  | 
|  | static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | 
|  |  | 
|  | if (!u32p) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); | 
|  | } | 
|  |  | 
|  | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | uint32_t nrgs = cpu->pmsav7_dregion; | 
|  |  | 
|  | if (value >= nrgs) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | 
|  | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | raw_write(env, ri, value); | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | 
|  | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, | 
|  | .access = PL1_RW, .type = ARM_CP_NO_RAW, | 
|  | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | 
|  | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | 
|  | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, | 
|  | .access = PL1_RW, .type = ARM_CP_NO_RAW, | 
|  | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | 
|  | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | 
|  | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, | 
|  | .access = PL1_RW, .type = ARM_CP_NO_RAW, | 
|  | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | 
|  | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | 
|  | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), | 
|  | .writefn = pmsav7_rgnr_write }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { | 
|  | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .type = ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), | 
|  | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, | 
|  | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | 
|  | .access = PL1_RW, .type = ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), | 
|  | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, | 
|  | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), | 
|  | .resetvalue = 0, }, | 
|  | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), | 
|  | .resetvalue = 0, }, | 
|  | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | 
|  | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | 
|  | /* Protection region base and size registers */ | 
|  | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, | 
|  | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | 
|  | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | 
|  | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | 
|  | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | 
|  | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | 
|  | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | 
|  | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | 
|  | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | 
|  | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | 
|  | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | 
|  | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | 
|  | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | 
|  | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | 
|  | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | 
|  | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | TCR *tcr = raw_ptr(env, ri); | 
|  | int maskshift = extract32(value, 0, 3); | 
|  |  | 
|  | if (!arm_feature(env, ARM_FEATURE_V8)) { | 
|  | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | 
|  | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | 
|  | * using Long-desciptor translation table format */ | 
|  | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | 
|  | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | 
|  | /* In an implementation that includes the Security Extensions | 
|  | * TTBCR has additional fields PD0 [4] and PD1 [5] for | 
|  | * Short-descriptor translation table format. | 
|  | */ | 
|  | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | 
|  | } else { | 
|  | value &= TTBCR_N; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update the masks corresponding to the TCR bank being written | 
|  | * Note that we always calculate mask and base_mask, but | 
|  | * they are only used for short-descriptor tables (ie if EAE is 0); | 
|  | * for long-descriptor tables the TCR fields are used differently | 
|  | * and the mask and base_mask values are meaningless. | 
|  | */ | 
|  | tcr->raw_tcr = value; | 
|  | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | 
|  | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | 
|  | } | 
|  |  | 
|  | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_LPAE)) { | 
|  | /* With LPAE the TTBCR could result in a change of ASID | 
|  | * via the TTBCR.A1 bit, so do a TLB flush. | 
|  | */ | 
|  | tlb_flush(CPU(cpu), 1); | 
|  | } | 
|  | vmsa_ttbcr_raw_write(env, ri, value); | 
|  | } | 
|  |  | 
|  | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | TCR *tcr = raw_ptr(env, ri); | 
|  |  | 
|  | /* Reset both the TCR as well as the masks corresponding to the bank of | 
|  | * the TCR being reset. | 
|  | */ | 
|  | tcr->raw_tcr = 0; | 
|  | tcr->mask = 0; | 
|  | tcr->base_mask = 0xffffc000u; | 
|  | } | 
|  |  | 
|  | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | TCR *tcr = raw_ptr(env, ri); | 
|  |  | 
|  | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ | 
|  | tlb_flush(CPU(cpu), 1); | 
|  | tcr->raw_tcr = value; | 
|  | } | 
|  |  | 
|  | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* 64 bit accesses to the TTBRs can change the ASID and so we | 
|  | * must flush the TLB. | 
|  | */ | 
|  | if (cpreg_field_is_64bit(ri)) { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | tlb_flush(CPU(cpu), 1); | 
|  | } | 
|  | raw_write(env, ri, value); | 
|  | } | 
|  |  | 
|  | static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */ | 
|  | if (raw_read(env, ri) != value) { | 
|  | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, | 
|  | ARMMMUIdx_S2NS, -1); | 
|  | raw_write(env, ri, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { | 
|  | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .type = ARM_CP_ALIAS, | 
|  | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), | 
|  | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, | 
|  | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | 
|  | .access = PL1_RW, .resetvalue = 0, | 
|  | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | 
|  | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | 
|  | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .resetvalue = 0, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | 
|  | offsetof(CPUARMState, cp15.dfar_ns) } }, | 
|  | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | 
|  | .resetvalue = 0, }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | 
|  | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, | 
|  | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | 
|  | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | 
|  | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, | 
|  | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | 
|  | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | 
|  | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | 
|  | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | 
|  | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, | 
|  | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | 
|  | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, | 
|  | .raw_writefn = vmsa_ttbcr_raw_write, | 
|  | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), | 
|  | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | env->cp15.c15_ticonfig = value & 0xe7; | 
|  | /* The OS_TYPE bit in this register changes the reported CPUID! */ | 
|  | env->cp15.c0_cpuid = (value & (1 << 5)) ? | 
|  | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | 
|  | } | 
|  |  | 
|  | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | env->cp15.c15_threadid = value & 0xffff; | 
|  | } | 
|  |  | 
|  | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Wait-for-interrupt (deprecated) */ | 
|  | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); | 
|  | } | 
|  |  | 
|  | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* On OMAP there are registers indicating the max/min index of dcache lines | 
|  | * containing a dirty line; cache flush operations have to reset these. | 
|  | */ | 
|  | env->cp15.c15_i_max = 0x000; | 
|  | env->cp15.c15_i_min = 0xff0; | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo omap_cp_reginfo[] = { | 
|  | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | 
|  | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | 
|  | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), | 
|  | .resetvalue = 0, }, | 
|  | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .type = ARM_CP_NOP }, | 
|  | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | 
|  | .writefn = omap_ticonfig_write }, | 
|  | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | 
|  | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .resetvalue = 0xff0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | 
|  | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | 
|  | .writefn = omap_threadid_write }, | 
|  | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | 
|  | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | 
|  | .type = ARM_CP_NO_RAW, | 
|  | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, | 
|  | /* TODO: Peripheral port remap register: | 
|  | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | 
|  | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | 
|  | * when MMU is off. | 
|  | */ | 
|  | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | 
|  | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | 
|  | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, | 
|  | .writefn = omap_cachemaint_write }, | 
|  | { .name = "C9", .cp = 15, .crn = 9, | 
|  | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | 
|  | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | env->cp15.c15_cpar = value & 0x3fff; | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo xscale_cp_reginfo[] = { | 
|  | { .name = "XSCALE_CPAR", | 
|  | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | 
|  | .writefn = xscale_cpar_write, }, | 
|  | { .name = "XSCALE_AUXCR", | 
|  | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | 
|  | .resetvalue = 0, }, | 
|  | /* XScale specific cache-lockdown: since we have no cache we NOP these | 
|  | * and hope the guest does not really rely on cache behaviour. | 
|  | */ | 
|  | { .name = "XSCALE_LOCK_ICACHE_LINE", | 
|  | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | { .name = "XSCALE_UNLOCK_ICACHE", | 
|  | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | { .name = "XSCALE_DCACHE_LOCK", | 
|  | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | 
|  | .access = PL1_RW, .type = ARM_CP_NOP }, | 
|  | { .name = "XSCALE_UNLOCK_DCACHE", | 
|  | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | 
|  | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | 
|  | * implementation of this implementation-defined space. | 
|  | * Ideally this should eventually disappear in favour of actually | 
|  | * implementing the correct behaviour for all cores. | 
|  | */ | 
|  | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | 
|  | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | 
|  | .access = PL1_RW, | 
|  | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, | 
|  | .resetvalue = 0 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { | 
|  | /* Cache status: RAZ because we have no cache so it's always clean */ | 
|  | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | 
|  | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, | 
|  | .resetvalue = 0 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | 
|  | /* We never have a a block transfer operation in progress */ | 
|  | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | 
|  | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, | 
|  | .resetvalue = 0 }, | 
|  | /* The cache ops themselves: these all NOP for QEMU */ | 
|  | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | 
|  | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | 
|  | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | 
|  | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | 
|  | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | 
|  | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | 
|  | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | 
|  | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | 
|  | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | 
|  | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | 
|  | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | 
|  | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | 
|  | /* The cache test-and-clean instructions always return (1 << 30) | 
|  | * to indicate that there are no dirty cache lines. | 
|  | */ | 
|  | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | 
|  | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, | 
|  | .resetvalue = (1 << 30) }, | 
|  | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, | 
|  | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, | 
|  | .resetvalue = (1 << 30) }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo strongarm_cp_reginfo[] = { | 
|  | /* Ignore ReadBuffer accesses */ | 
|  | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | 
|  | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | 
|  | .access = PL1_RW, .resetvalue = 0, | 
|  | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | unsigned int cur_el = arm_current_el(env); | 
|  | bool secure = arm_is_secure(env); | 
|  |  | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | 
|  | return env->cp15.vpidr_el2; | 
|  | } | 
|  | return raw_read(env, ri); | 
|  | } | 
|  |  | 
|  | static uint64_t mpidr_read_val(CPUARMState *env) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); | 
|  | uint64_t mpidr = cpu->mp_affinity; | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_V7MP)) { | 
|  | mpidr |= (1U << 31); | 
|  | /* Cores which are uniprocessor (non-coherent) | 
|  | * but still implement the MP extensions set | 
|  | * bit 30. (For instance, Cortex-R5). | 
|  | */ | 
|  | if (cpu->mp_is_up) { | 
|  | mpidr |= (1u << 30); | 
|  | } | 
|  | } | 
|  | return mpidr; | 
|  | } | 
|  |  | 
|  | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | unsigned int cur_el = arm_current_el(env); | 
|  | bool secure = arm_is_secure(env); | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | 
|  | return env->cp15.vmpidr_el2; | 
|  | } | 
|  | return mpidr_read_val(env); | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | 
|  | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | 
|  | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo lpae_cp_reginfo[] = { | 
|  | /* NOP AMAIR0/1 */ | 
|  | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ | 
|  | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, | 
|  | .access = PL1_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, | 
|  | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | 
|  | offsetof(CPUARMState, cp15.par_ns)} }, | 
|  | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, | 
|  | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | 
|  | offsetof(CPUARMState, cp15.ttbr0_ns) }, | 
|  | .writefn = vmsa_ttbr_write, }, | 
|  | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, | 
|  | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | 
|  | offsetof(CPUARMState, cp15.ttbr1_ns) }, | 
|  | .writefn = vmsa_ttbr_write, }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return vfp_get_fpcr(env); | 
|  | } | 
|  |  | 
|  | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | vfp_set_fpcr(env, value); | 
|  | } | 
|  |  | 
|  | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return vfp_get_fpsr(env); | 
|  | } | 
|  |  | 
|  | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | vfp_set_fpsr(env, value); | 
|  | } | 
|  |  | 
|  | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { | 
|  | return CP_ACCESS_TRAP; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | env->daif = value & PSTATE_DAIF; | 
|  | } | 
|  |  | 
|  | static CPAccessResult aa64_cacheop_access(CPUARMState *env, | 
|  | const ARMCPRegInfo *ri) | 
|  | { | 
|  | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | 
|  | * SCTLR_EL1.UCI is set. | 
|  | */ | 
|  | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { | 
|  | return CP_ACCESS_TRAP; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions | 
|  | * Page D4-1736 (DDI0487A.b) | 
|  | */ | 
|  |  | 
|  | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | if (arm_is_secure_below_el3(env)) { | 
|  | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | 
|  | } else { | 
|  | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | bool sec = arm_is_secure_below_el3(env); | 
|  | CPUState *other_cs; | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | if (sec) { | 
|  | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | 
|  | } else { | 
|  | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | 
|  | ARMMMUIdx_S12NSE0, -1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Note that the 'ALL' scope must invalidate both stage 1 and | 
|  | * stage 2 translations, whereas most other scopes only invalidate | 
|  | * stage 1 translations. | 
|  | */ | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | if (arm_is_secure_below_el3(env)) { | 
|  | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | 
|  | } else { | 
|  | if (arm_feature(env, ARM_FEATURE_EL2)) { | 
|  | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, | 
|  | ARMMMUIdx_S2NS, -1); | 
|  | } else { | 
|  | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1); | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Note that the 'ALL' scope must invalidate both stage 1 and | 
|  | * stage 2 translations, whereas most other scopes only invalidate | 
|  | * stage 1 translations. | 
|  | */ | 
|  | bool sec = arm_is_secure_below_el3(env); | 
|  | bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); | 
|  | CPUState *other_cs; | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | if (sec) { | 
|  | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | 
|  | } else if (has_el2) { | 
|  | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | 
|  | ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); | 
|  | } else { | 
|  | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | 
|  | ARMMMUIdx_S12NSE0, -1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | CPUState *other_cs; | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | CPUState *other_cs; | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Invalidate by VA, EL1&0 (AArch64 version). | 
|  | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, | 
|  | * since we don't support flush-for-specific-ASID-only or | 
|  | * flush-last-level-only. | 
|  | */ | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  | uint64_t pageaddr = sextract64(value << 12, 0, 56); | 
|  |  | 
|  | if (arm_is_secure_below_el3(env)) { | 
|  | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1, | 
|  | ARMMMUIdx_S1SE0, -1); | 
|  | } else { | 
|  | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1, | 
|  | ARMMMUIdx_S12NSE0, -1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Invalidate by VA, EL2 | 
|  | * Currently handles both VAE2 and VALE2, since we don't support | 
|  | * flush-last-level-only. | 
|  | */ | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  | uint64_t pageaddr = sextract64(value << 12, 0, 56); | 
|  |  | 
|  | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Invalidate by VA, EL3 | 
|  | * Currently handles both VAE3 and VALE3, since we don't support | 
|  | * flush-last-level-only. | 
|  | */ | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  | uint64_t pageaddr = sextract64(value << 12, 0, 56); | 
|  |  | 
|  | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1); | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | bool sec = arm_is_secure_below_el3(env); | 
|  | CPUState *other_cs; | 
|  | uint64_t pageaddr = sextract64(value << 12, 0, 56); | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | if (sec) { | 
|  | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1, | 
|  | ARMMMUIdx_S1SE0, -1); | 
|  | } else { | 
|  | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1, | 
|  | ARMMMUIdx_S12NSE0, -1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | CPUState *other_cs; | 
|  | uint64_t pageaddr = sextract64(value << 12, 0, 56); | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | CPUState *other_cs; | 
|  | uint64_t pageaddr = sextract64(value << 12, 0, 56); | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Invalidate by IPA. This has to invalidate any structures that | 
|  | * contain only stage 2 translation information, but does not need | 
|  | * to apply to structures that contain combined stage 1 and stage 2 | 
|  | * translation information. | 
|  | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | 
|  | */ | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  | uint64_t pageaddr; | 
|  |  | 
|  | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | pageaddr = sextract64(value << 12, 0, 48); | 
|  |  | 
|  | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); | 
|  | } | 
|  |  | 
|  | static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | CPUState *other_cs; | 
|  | uint64_t pageaddr; | 
|  |  | 
|  | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | pageaddr = sextract64(value << 12, 0, 48); | 
|  |  | 
|  | CPU_FOREACH(other_cs) { | 
|  | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | /* We don't implement EL2, so the only control on DC ZVA is the | 
|  | * bit in the SCTLR which can prohibit access for EL0. | 
|  | */ | 
|  | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { | 
|  | return CP_ACCESS_TRAP; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | int dzp_bit = 1 << 4; | 
|  |  | 
|  | /* DZP indicates whether DC ZVA access is allowed */ | 
|  | if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) { | 
|  | dzp_bit = 0; | 
|  | } | 
|  | return cpu->dcz_blocksize | dzp_bit; | 
|  | } | 
|  |  | 
|  | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | if (!(env->pstate & PSTATE_SP)) { | 
|  | /* Access to SP_EL0 is undefined if it's being used as | 
|  | * the stack pointer. | 
|  | */ | 
|  | return CP_ACCESS_TRAP_UNCATEGORIZED; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | return env->pstate & PSTATE_SP; | 
|  | } | 
|  |  | 
|  | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | 
|  | { | 
|  | update_spsel(env, val); | 
|  | } | 
|  |  | 
|  | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | if (raw_read(env, ri) == value) { | 
|  | /* Skip the TLB flush if nothing actually changed; Linux likes | 
|  | * to do a lot of pointless SCTLR writes. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | raw_write(env, ri, value); | 
|  | /* ??? Lots of these bits are not implemented.  */ | 
|  | /* This may enable/disable the MMU, so do a TLB flush.  */ | 
|  | tlb_flush(CPU(cpu), 1); | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo v8_cp_reginfo[] = { | 
|  | /* Minimal set of EL0-visible registers. This will need to be expanded | 
|  | * significantly for system emulation of AArch64 CPUs. | 
|  | */ | 
|  | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | 
|  | .access = PL0_RW, .type = ARM_CP_NZCV }, | 
|  | { .name = "DAIF", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | 
|  | .type = ARM_CP_NO_RAW, | 
|  | .access = PL0_RW, .accessfn = aa64_daif_access, | 
|  | .fieldoffset = offsetof(CPUARMState, daif), | 
|  | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | 
|  | { .name = "FPCR", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | 
|  | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | 
|  | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | 
|  | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | 
|  | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | 
|  | .access = PL0_R, .type = ARM_CP_NO_RAW, | 
|  | .readfn = aa64_dczid_read }, | 
|  | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | 
|  | .access = PL0_W, .type = ARM_CP_DC_ZVA, | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | /* Avoid overhead of an access check that always passes in user-mode */ | 
|  | .accessfn = aa64_zva_access, | 
|  | #endif | 
|  | }, | 
|  | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | 
|  | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | 
|  | /* Cache ops: all NOPs since we don't emulate caches */ | 
|  | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | 
|  | .access = PL0_W, .type = ARM_CP_NOP, | 
|  | .accessfn = aa64_cacheop_access }, | 
|  | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | 
|  | .access = PL0_W, .type = ARM_CP_NOP, | 
|  | .accessfn = aa64_cacheop_access }, | 
|  | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | 
|  | .access = PL0_W, .type = ARM_CP_NOP, | 
|  | .accessfn = aa64_cacheop_access }, | 
|  | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | 
|  | .access = PL0_W, .type = ARM_CP_NOP, | 
|  | .accessfn = aa64_cacheop_access }, | 
|  | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | /* TLBI operations */ | 
|  | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vmalle1is_write }, | 
|  | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae1is_write }, | 
|  | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vmalle1is_write }, | 
|  | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae1is_write }, | 
|  | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae1is_write }, | 
|  | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae1is_write }, | 
|  | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vmalle1_write }, | 
|  | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae1_write }, | 
|  | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vmalle1_write }, | 
|  | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae1_write }, | 
|  | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae1_write }, | 
|  | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae1_write }, | 
|  | { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_ipas2e1is_write }, | 
|  | { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_ipas2e1is_write }, | 
|  | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_alle1is_write }, | 
|  | { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_alle1is_write }, | 
|  | { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_ipas2e1_write }, | 
|  | { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_ipas2e1_write }, | 
|  | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_alle1_write }, | 
|  | { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_alle1is_write }, | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | /* 64 bit address translation operations */ | 
|  | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | 
|  | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ | 
|  | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | 
|  | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | 
|  | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, | 
|  | .access = PL1_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), | 
|  | .writefn = par_write }, | 
|  | #endif | 
|  | /* TLB invalidate last level of translation table walk */ | 
|  | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, | 
|  | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, | 
|  | .writefn = tlbimvaa_is_write }, | 
|  | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, | 
|  | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, | 
|  | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, | 
|  | /* 32 bit cache operations */ | 
|  | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | 
|  | .type = ARM_CP_NOP, .access = PL1_W }, | 
|  | /* MMU Domain access control / MPU write buffer control */ | 
|  | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .resetvalue = 0, | 
|  | .writefn = dacr_write, .raw_writefn = raw_write, | 
|  | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | 
|  | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | 
|  | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | 
|  | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, | 
|  | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) }, | 
|  | /* We rely on the access checks not allowing the guest to write to the | 
|  | * state field when SPSel indicates that it's being used as the stack | 
|  | * pointer. | 
|  | */ | 
|  | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | 
|  | .access = PL1_RW, .accessfn = sp_el0_access, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, | 
|  | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | 
|  | .access = PL2_RW, .type = ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, | 
|  | { .name = "SPSel", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | 
|  | .type = ARM_CP_NO_RAW, | 
|  | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */ | 
|  | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { | 
|  | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, | 
|  | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | 
|  | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_NO_RAW, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | 
|  | .access = PL2_RW, | 
|  | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | 
|  | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | 
|  | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | 
|  | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | 
|  | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | 
|  | .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, | 
|  | .cp = 15, .opc1 = 6, .crm = 2, | 
|  | .access = PL2_RW, .accessfn = access_el3_aa32ns, | 
|  | .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, | 
|  | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | 
|  | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | 
|  | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | 
|  | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | uint64_t valid_mask = HCR_MASK; | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_EL3)) { | 
|  | valid_mask &= ~HCR_HCD; | 
|  | } else { | 
|  | valid_mask &= ~HCR_TSC; | 
|  | } | 
|  |  | 
|  | /* Clear RES0 bits.  */ | 
|  | value &= valid_mask; | 
|  |  | 
|  | /* These bits change the MMU setup: | 
|  | * HCR_VM enables stage 2 translation | 
|  | * HCR_PTW forbids certain page-table setups | 
|  | * HCR_DC Disables stage1 and enables stage2 translation | 
|  | */ | 
|  | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | 
|  | tlb_flush(CPU(cpu), 1); | 
|  | } | 
|  | raw_write(env, ri, value); | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo el2_cp_reginfo[] = { | 
|  | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | 
|  | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | 
|  | .writefn = hcr_write }, | 
|  | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, .resetvalue = 0, | 
|  | .writefn = dacr_write, .raw_writefn = raw_write, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | 
|  | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, | 
|  | .access = PL2_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | 
|  | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, | 
|  | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | 
|  | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | 
|  | .access = PL2_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | 
|  | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | 
|  | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) }, | 
|  | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, .writefn = vbar_write, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | 
|  | .resetvalue = 0 }, | 
|  | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | 
|  | .access = PL3_RW, .type = ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, | 
|  | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | 
|  | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, | 
|  | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | 
|  | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | 
|  | .resetvalue = 0 }, | 
|  | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | 
|  | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | 
|  | .access = PL2_RW, .type = ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | 
|  | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | 
|  | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | 
|  | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | 
|  | .access = PL2_RW, .writefn = vmsa_tcr_el1_write, | 
|  | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, | 
|  | { .name = "VTCR", .state = ARM_CP_STATE_AA32, | 
|  | .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | 
|  | .access = PL2_RW, .accessfn = access_el3_aa32ns, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | 
|  | { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | 
|  | .access = PL2_RW, .type = ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | 
|  | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, | 
|  | .cp = 15, .opc1 = 6, .crm = 2, | 
|  | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | 
|  | .access = PL2_RW, .accessfn = access_el3_aa32ns, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), | 
|  | .writefn = vttbr_write }, | 
|  | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | 
|  | .access = PL2_RW, .writefn = vttbr_write, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, | 
|  | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | 
|  | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | 
|  | .access = PL2_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | 
|  | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, | 
|  | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | 
|  | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, | 
|  | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | 
|  | .type = ARM_CP_NO_RAW, .access = PL2_W, | 
|  | .writefn = tlbi_aa64_alle2_write }, | 
|  | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | 
|  | .type = ARM_CP_NO_RAW, .access = PL2_W, | 
|  | .writefn = tlbi_aa64_vae2_write }, | 
|  | { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae2_write }, | 
|  | { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_alle2is_write }, | 
|  | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | 
|  | .type = ARM_CP_NO_RAW, .access = PL2_W, | 
|  | .writefn = tlbi_aa64_vae2is_write }, | 
|  | { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | 
|  | .access = PL2_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae2is_write }, | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | /* Unlike the other EL2-related AT operations, these must | 
|  | * UNDEF from EL3 if EL2 is not implemented, which is why we | 
|  | * define them here rather than with the rest of the AT ops. | 
|  | */ | 
|  | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | 
|  | .access = PL2_W, .accessfn = at_s1e2_access, | 
|  | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | 
|  | .access = PL2_W, .accessfn = at_s1e2_access, | 
|  | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | 
|  | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE | 
|  | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | 
|  | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | 
|  | * to behave as if SCR.NS was 1. | 
|  | */ | 
|  | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | 
|  | .access = PL2_W, | 
|  | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | 
|  | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | 
|  | .access = PL2_W, | 
|  | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | 
|  | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | 
|  | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | 
|  | * reset values as IMPDEF. We choose to reset to 3 to comply with | 
|  | * both ARMv7 and ARMv8. | 
|  | */ | 
|  | .access = PL2_RW, .resetvalue = 3, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | 
|  | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | 
|  | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | 
|  | .writefn = gt_cntvoff_write, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | 
|  | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | 
|  | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | 
|  | .writefn = gt_cntvoff_write, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | 
|  | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | 
|  | .type = ARM_CP_IO, .access = PL2_RW, | 
|  | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | 
|  | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | 
|  | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | 
|  | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | 
|  | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | 
|  | .type = ARM_CP_IO, .access = PL2_RW, | 
|  | .resetfn = gt_hyp_timer_reset, | 
|  | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | 
|  | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .type = ARM_CP_IO, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | 
|  | .access = PL2_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | 
|  | .resetvalue = 0, | 
|  | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | 
|  | #endif | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo el3_cp_reginfo[] = { | 
|  | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | 
|  | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | 
|  | .resetvalue = 0, .writefn = scr_write }, | 
|  | { .name = "SCR",  .type = ARM_CP_ALIAS, | 
|  | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, | 
|  | .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | 
|  | .writefn = scr_write }, | 
|  | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | 
|  | .access = PL3_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | 
|  | { .name = "SDER", | 
|  | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | 
|  | .access = PL3_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | 
|  | /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */ | 
|  | { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | 
|  | .access = PL3_W | PL1_R, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) }, | 
|  | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | 
|  | .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, | 
|  | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */ | 
|  | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, | 
|  | .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) }, | 
|  | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | 
|  | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | 
|  | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | 
|  | .access = PL3_RW, .writefn = vmsa_tcr_el1_write, | 
|  | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, | 
|  | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, | 
|  | .access = PL3_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | 
|  | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, | 
|  | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | 
|  | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | 
|  | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | 
|  | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, | 
|  | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) }, | 
|  | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | 
|  | .access = PL3_RW, .writefn = vbar_write, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | 
|  | .resetvalue = 0 }, | 
|  | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | 
|  | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | 
|  | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | 
|  | .access = PL3_RW, .resetvalue = 0, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | 
|  | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | 
|  | .access = PL3_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | 
|  | .access = PL3_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | 
|  | .access = PL3_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, | 
|  | .access = PL3_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_alle3is_write }, | 
|  | { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, | 
|  | .access = PL3_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae3is_write }, | 
|  | { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, | 
|  | .access = PL3_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae3is_write }, | 
|  | { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, | 
|  | .access = PL3_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_alle3_write }, | 
|  | { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, | 
|  | .access = PL3_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae3_write }, | 
|  | { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, | 
|  | .access = PL3_W, .type = ARM_CP_NO_RAW, | 
|  | .writefn = tlbi_aa64_vae3_write }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | 
|  | * but the AArch32 CTR has its own reginfo struct) | 
|  | */ | 
|  | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { | 
|  | return CP_ACCESS_TRAP; | 
|  | } | 
|  | return CP_ACCESS_OK; | 
|  | } | 
|  |  | 
|  | static const ARMCPRegInfo debug_cp_reginfo[] = { | 
|  | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped | 
|  | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; | 
|  | * unlike DBGDRAR it is never accessible from EL0. | 
|  | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | 
|  | * accessor. | 
|  | */ | 
|  | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ | 
|  | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), | 
|  | .resetvalue = 0 }, | 
|  | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. | 
|  | * We don't implement the configurable EL0 access. | 
|  | */ | 
|  | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | 
|  | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | 
|  | .type = ARM_CP_ALIAS, | 
|  | .access = PL1_R, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, | 
|  | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ | 
|  | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | 
|  | .access = PL1_W, .type = ARM_CP_NOP }, | 
|  | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ | 
|  | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | 
|  | .access = PL1_RW, .type = ARM_CP_NOP }, | 
|  | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't | 
|  | * implement vector catch debug events yet. | 
|  | */ | 
|  | { .name = "DBGVCR", | 
|  | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | 
|  | .access = PL1_RW, .type = ARM_CP_NOP }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | 
|  | /* 64 bit access versions of the (dummy) debug registers */ | 
|  | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | 
|  | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | 
|  | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | 
|  | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  |  | 
|  | void hw_watchpoint_update(ARMCPU *cpu, int n) | 
|  | { | 
|  | CPUARMState *env = &cpu->env; | 
|  | vaddr len = 0; | 
|  | vaddr wvr = env->cp15.dbgwvr[n]; | 
|  | uint64_t wcr = env->cp15.dbgwcr[n]; | 
|  | int mask; | 
|  | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | 
|  |  | 
|  | if (env->cpu_watchpoint[n]) { | 
|  | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | 
|  | env->cpu_watchpoint[n] = NULL; | 
|  | } | 
|  |  | 
|  | if (!extract64(wcr, 0, 1)) { | 
|  | /* E bit clear : watchpoint disabled */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (extract64(wcr, 3, 2)) { | 
|  | case 0: | 
|  | /* LSC 00 is reserved and must behave as if the wp is disabled */ | 
|  | return; | 
|  | case 1: | 
|  | flags |= BP_MEM_READ; | 
|  | break; | 
|  | case 2: | 
|  | flags |= BP_MEM_WRITE; | 
|  | break; | 
|  | case 3: | 
|  | flags |= BP_MEM_ACCESS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Attempts to use both MASK and BAS fields simultaneously are | 
|  | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | 
|  | * thus generating a watchpoint for every byte in the masked region. | 
|  | */ | 
|  | mask = extract64(wcr, 24, 4); | 
|  | if (mask == 1 || mask == 2) { | 
|  | /* Reserved values of MASK; we must act as if the mask value was | 
|  | * some non-reserved value, or as if the watchpoint were disabled. | 
|  | * We choose the latter. | 
|  | */ | 
|  | return; | 
|  | } else if (mask) { | 
|  | /* Watchpoint covers an aligned area up to 2GB in size */ | 
|  | len = 1ULL << mask; | 
|  | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | 
|  | * whether the watchpoint fires when the unmasked bits match; we opt | 
|  | * to generate the exceptions. | 
|  | */ | 
|  | wvr &= ~(len - 1); | 
|  | } else { | 
|  | /* Watchpoint covers bytes defined by the byte address select bits */ | 
|  | int bas = extract64(wcr, 5, 8); | 
|  | int basstart; | 
|  |  | 
|  | if (bas == 0) { | 
|  | /* This must act as if the watchpoint is disabled */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (extract64(wvr, 2, 1)) { | 
|  | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | 
|  | * ignored, and BAS[3:0] define which bytes to watch. | 
|  | */ | 
|  | bas &= 0xf; | 
|  | } | 
|  | /* The BAS bits are supposed to be programmed to indicate a contiguous | 
|  | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | 
|  | * we fire for each byte in the word/doubleword addressed by the WVR. | 
|  | * We choose to ignore any non-zero bits after the first range of 1s. | 
|  | */ | 
|  | basstart = ctz32(bas); | 
|  | len = cto32(bas >> basstart); | 
|  | wvr += basstart; | 
|  | } | 
|  |  | 
|  | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | 
|  | &env->cpu_watchpoint[n]); | 
|  | } | 
|  |  | 
|  | void hw_watchpoint_update_all(ARMCPU *cpu) | 
|  | { | 
|  | int i; | 
|  | CPUARMState *env = &cpu->env; | 
|  |  | 
|  | /* Completely clear out existing QEMU watchpoints and our array, to | 
|  | * avoid possible stale entries following migration load. | 
|  | */ | 
|  | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | 
|  | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | 
|  | hw_watchpoint_update(cpu, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | int i = ri->crm; | 
|  |  | 
|  | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | 
|  | * register reads and behaves as if values written are sign extended. | 
|  | * Bits [1:0] are RES0. | 
|  | */ | 
|  | value = sextract64(value, 0, 49) & ~3ULL; | 
|  |  | 
|  | raw_write(env, ri, value); | 
|  | hw_watchpoint_update(cpu, i); | 
|  | } | 
|  |  | 
|  | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | int i = ri->crm; | 
|  |  | 
|  | raw_write(env, ri, value); | 
|  | hw_watchpoint_update(cpu, i); | 
|  | } | 
|  |  | 
|  | void hw_breakpoint_update(ARMCPU *cpu, int n) | 
|  | { | 
|  | CPUARMState *env = &cpu->env; | 
|  | uint64_t bvr = env->cp15.dbgbvr[n]; | 
|  | uint64_t bcr = env->cp15.dbgbcr[n]; | 
|  | vaddr addr; | 
|  | int bt; | 
|  | int flags = BP_CPU; | 
|  |  | 
|  | if (env->cpu_breakpoint[n]) { | 
|  | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | 
|  | env->cpu_breakpoint[n] = NULL; | 
|  | } | 
|  |  | 
|  | if (!extract64(bcr, 0, 1)) { | 
|  | /* E bit clear : watchpoint disabled */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | bt = extract64(bcr, 20, 4); | 
|  |  | 
|  | switch (bt) { | 
|  | case 4: /* unlinked address mismatch (reserved if AArch64) */ | 
|  | case 5: /* linked address mismatch (reserved if AArch64) */ | 
|  | qemu_log_mask(LOG_UNIMP, | 
|  | "arm: address mismatch breakpoint types not implemented"); | 
|  | return; | 
|  | case 0: /* unlinked address match */ | 
|  | case 1: /* linked address match */ | 
|  | { | 
|  | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | 
|  | * we behave as if the register was sign extended. Bits [1:0] are | 
|  | * RES0. The BAS field is used to allow setting breakpoints on 16 | 
|  | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | 
|  | * a bp will fire if the addresses covered by the bp and the addresses | 
|  | * covered by the insn overlap but the insn doesn't start at the | 
|  | * start of the bp address range. We choose to require the insn and | 
|  | * the bp to have the same address. The constraints on writing to | 
|  | * BAS enforced in dbgbcr_write mean we have only four cases: | 
|  | *  0b0000  => no breakpoint | 
|  | *  0b0011  => breakpoint on addr | 
|  | *  0b1100  => breakpoint on addr + 2 | 
|  | *  0b1111  => breakpoint on addr | 
|  | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | 
|  | */ | 
|  | int bas = extract64(bcr, 5, 4); | 
|  | addr = sextract64(bvr, 0, 49) & ~3ULL; | 
|  | if (bas == 0) { | 
|  | return; | 
|  | } | 
|  | if (bas == 0xc) { | 
|  | addr += 2; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 2: /* unlinked context ID match */ | 
|  | case 8: /* unlinked VMID match (reserved if no EL2) */ | 
|  | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | 
|  | qemu_log_mask(LOG_UNIMP, | 
|  | "arm: unlinked context breakpoint types not implemented"); | 
|  | return; | 
|  | case 9: /* linked VMID match (reserved if no EL2) */ | 
|  | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | 
|  | case 3: /* linked context ID match */ | 
|  | default: | 
|  | /* We must generate no events for Linked context matches (unless | 
|  | * they are linked to by some other bp/wp, which is handled in | 
|  | * updates for the linking bp/wp). We choose to also generate no events | 
|  | * for reserved values. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | 
|  | } | 
|  |  | 
|  | void hw_breakpoint_update_all(ARMCPU *cpu) | 
|  | { | 
|  | int i; | 
|  | CPUARMState *env = &cpu->env; | 
|  |  | 
|  | /* Completely clear out existing QEMU breakpoints and our array, to | 
|  | * avoid possible stale entries following migration load. | 
|  | */ | 
|  | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | 
|  | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | 
|  | hw_breakpoint_update(cpu, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | int i = ri->crm; | 
|  |  | 
|  | raw_write(env, ri, value); | 
|  | hw_breakpoint_update(cpu, i); | 
|  | } | 
|  |  | 
|  | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | int i = ri->crm; | 
|  |  | 
|  | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | 
|  | * copy of BAS[0]. | 
|  | */ | 
|  | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | 
|  | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | 
|  |  | 
|  | raw_write(env, ri, value); | 
|  | hw_breakpoint_update(cpu, i); | 
|  | } | 
|  |  | 
|  | static void define_debug_regs(ARMCPU *cpu) | 
|  | { | 
|  | /* Define v7 and v8 architectural debug registers. | 
|  | * These are just dummy implementations for now. | 
|  | */ | 
|  | int i; | 
|  | int wrps, brps, ctx_cmps; | 
|  | ARMCPRegInfo dbgdidr = { | 
|  | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | 
|  | }; | 
|  |  | 
|  | /* Note that all these register fields hold "number of Xs minus 1". */ | 
|  | brps = extract32(cpu->dbgdidr, 24, 4); | 
|  | wrps = extract32(cpu->dbgdidr, 28, 4); | 
|  | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); | 
|  |  | 
|  | assert(ctx_cmps <= brps); | 
|  |  | 
|  | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | 
|  | * of the debug registers such as number of breakpoints; | 
|  | * check that if they both exist then they agree. | 
|  | */ | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | 
|  | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | 
|  | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | 
|  | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); | 
|  | } | 
|  |  | 
|  | define_one_arm_cp_reg(cpu, &dbgdidr); | 
|  | define_arm_cp_regs(cpu, debug_cp_reginfo); | 
|  |  | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | 
|  | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < brps + 1; i++) { | 
|  | ARMCPRegInfo dbgregs[] = { | 
|  | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, | 
|  | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), | 
|  | .writefn = dbgbvr_write, .raw_writefn = raw_write | 
|  | }, | 
|  | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, | 
|  | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), | 
|  | .writefn = dbgbcr_write, .raw_writefn = raw_write | 
|  | }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  | define_arm_cp_regs(cpu, dbgregs); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < wrps + 1; i++) { | 
|  | ARMCPRegInfo dbgregs[] = { | 
|  | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, | 
|  | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), | 
|  | .writefn = dbgwvr_write, .raw_writefn = raw_write | 
|  | }, | 
|  | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, | 
|  | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | 
|  | .access = PL1_RW, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), | 
|  | .writefn = dbgwcr_write, .raw_writefn = raw_write | 
|  | }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  | define_arm_cp_regs(cpu, dbgregs); | 
|  | } | 
|  | } | 
|  |  | 
|  | void register_cp_regs_for_features(ARMCPU *cpu) | 
|  | { | 
|  | /* Register all the coprocessor registers based on feature bits */ | 
|  | CPUARMState *env = &cpu->env; | 
|  | if (arm_feature(env, ARM_FEATURE_M)) { | 
|  | /* M profile has no coprocessor registers */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | define_arm_cp_regs(cpu, cp_reginfo); | 
|  | if (!arm_feature(env, ARM_FEATURE_V8)) { | 
|  | /* Must go early as it is full of wildcards that may be | 
|  | * overridden by later definitions. | 
|  | */ | 
|  | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | 
|  | } | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_V6)) { | 
|  | /* The ID registers all have impdef reset values */ | 
|  | ARMCPRegInfo v6_idregs[] = { | 
|  | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_pfr0 }, | 
|  | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_pfr1 }, | 
|  | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_dfr0 }, | 
|  | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_afr0 }, | 
|  | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_mmfr0 }, | 
|  | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_mmfr1 }, | 
|  | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_mmfr2 }, | 
|  | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_mmfr3 }, | 
|  | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_isar0 }, | 
|  | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_isar1 }, | 
|  | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_isar2 }, | 
|  | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_isar3 }, | 
|  | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_isar4 }, | 
|  | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_isar5 }, | 
|  | /* 6..7 are as yet unallocated and must RAZ */ | 
|  | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | 
|  | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | 
|  | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  | define_arm_cp_regs(cpu, v6_idregs); | 
|  | define_arm_cp_regs(cpu, v6_cp_reginfo); | 
|  | } else { | 
|  | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_V6K)) { | 
|  | define_arm_cp_regs(cpu, v6k_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_V7MP) && | 
|  | !arm_feature(env, ARM_FEATURE_MPU)) { | 
|  | define_arm_cp_regs(cpu, v7mp_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_V7)) { | 
|  | /* v7 performance monitor control register: same implementor | 
|  | * field as main ID register, and we implement only the cycle | 
|  | * count register. | 
|  | */ | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | ARMCPRegInfo pmcr = { | 
|  | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | 
|  | .access = PL0_RW, | 
|  | .type = ARM_CP_IO | ARM_CP_ALIAS, | 
|  | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), | 
|  | .accessfn = pmreg_access, .writefn = pmcr_write, | 
|  | .raw_writefn = raw_write, | 
|  | }; | 
|  | ARMCPRegInfo pmcr64 = { | 
|  | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | 
|  | .access = PL0_RW, .accessfn = pmreg_access, | 
|  | .type = ARM_CP_IO, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | 
|  | .resetvalue = cpu->midr & 0xff000000, | 
|  | .writefn = pmcr_write, .raw_writefn = raw_write, | 
|  | }; | 
|  | define_one_arm_cp_reg(cpu, &pmcr); | 
|  | define_one_arm_cp_reg(cpu, &pmcr64); | 
|  | #endif | 
|  | ARMCPRegInfo clidr = { | 
|  | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr | 
|  | }; | 
|  | define_one_arm_cp_reg(cpu, &clidr); | 
|  | define_arm_cp_regs(cpu, v7_cp_reginfo); | 
|  | define_debug_regs(cpu); | 
|  | } else { | 
|  | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_V8)) { | 
|  | /* AArch64 ID registers, which all have impdef reset values */ | 
|  | ARMCPRegInfo v8_idregs[] = { | 
|  | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_aa64pfr0 }, | 
|  | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_aa64pfr1}, | 
|  | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | /* We mask out the PMUVer field, because we don't currently | 
|  | * implement the PMU. Not advertising it prevents the guest | 
|  | * from trying to use it and getting UNDEFs on registers we | 
|  | * don't implement. | 
|  | */ | 
|  | .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, | 
|  | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_aa64dfr1 }, | 
|  | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_aa64afr0 }, | 
|  | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_aa64afr1 }, | 
|  | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_aa64isar0 }, | 
|  | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_aa64isar1 }, | 
|  | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_aa64mmfr0 }, | 
|  | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->id_aa64mmfr1 }, | 
|  | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->mvfr0 }, | 
|  | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->mvfr1 }, | 
|  | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->mvfr2 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ | 
|  | if (!arm_feature(env, ARM_FEATURE_EL3) && | 
|  | !arm_feature(env, ARM_FEATURE_EL2)) { | 
|  | ARMCPRegInfo rvbar = { | 
|  | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | 
|  | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | 
|  | }; | 
|  | define_one_arm_cp_reg(cpu, &rvbar); | 
|  | } | 
|  | define_arm_cp_regs(cpu, v8_idregs); | 
|  | define_arm_cp_regs(cpu, v8_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_EL2)) { | 
|  | uint64_t vmpidr_def = mpidr_read_val(env); | 
|  | ARMCPRegInfo vpidr_regs[] = { | 
|  | { .name = "VPIDR", .state = ARM_CP_STATE_AA32, | 
|  | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, .accessfn = access_el3_aa32ns, | 
|  | .resetvalue = cpu->midr, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | 
|  | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, .resetvalue = cpu->midr, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | 
|  | { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, | 
|  | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | 
|  | .access = PL2_RW, .accessfn = access_el3_aa32ns, | 
|  | .resetvalue = vmpidr_def, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | 
|  | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | 
|  | .access = PL2_RW, | 
|  | .resetvalue = vmpidr_def, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  | define_arm_cp_regs(cpu, vpidr_regs); | 
|  | define_arm_cp_regs(cpu, el2_cp_reginfo); | 
|  | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ | 
|  | if (!arm_feature(env, ARM_FEATURE_EL3)) { | 
|  | ARMCPRegInfo rvbar = { | 
|  | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | 
|  | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | 
|  | }; | 
|  | define_one_arm_cp_reg(cpu, &rvbar); | 
|  | } | 
|  | } else { | 
|  | /* If EL2 is missing but higher ELs are enabled, we need to | 
|  | * register the no_el2 reginfos. | 
|  | */ | 
|  | if (arm_feature(env, ARM_FEATURE_EL3)) { | 
|  | /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value | 
|  | * of MIDR_EL1 and MPIDR_EL1. | 
|  | */ | 
|  | ARMCPRegInfo vpidr_regs[] = { | 
|  | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | 
|  | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | 
|  | .type = ARM_CP_CONST, .resetvalue = cpu->midr, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | 
|  | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | 
|  | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | 
|  | .type = ARM_CP_NO_RAW, | 
|  | .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  | define_arm_cp_regs(cpu, vpidr_regs); | 
|  | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); | 
|  | } | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_EL3)) { | 
|  | define_arm_cp_regs(cpu, el3_cp_reginfo); | 
|  | ARMCPRegInfo rvbar = { | 
|  | .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | 
|  | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar | 
|  | }; | 
|  | define_one_arm_cp_reg(cpu, &rvbar); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_MPU)) { | 
|  | if (arm_feature(env, ARM_FEATURE_V6)) { | 
|  | /* PMSAv6 not implemented */ | 
|  | assert(arm_feature(env, ARM_FEATURE_V7)); | 
|  | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | 
|  | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | 
|  | } else { | 
|  | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | 
|  | } | 
|  | } else { | 
|  | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | 
|  | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { | 
|  | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { | 
|  | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_VAPA)) { | 
|  | define_arm_cp_regs(cpu, vapa_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { | 
|  | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | 
|  | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | 
|  | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { | 
|  | define_arm_cp_regs(cpu, omap_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { | 
|  | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | 
|  | define_arm_cp_regs(cpu, xscale_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | 
|  | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_LPAE)) { | 
|  | define_arm_cp_regs(cpu, lpae_cp_reginfo); | 
|  | } | 
|  | /* Slightly awkwardly, the OMAP and StrongARM cores need all of | 
|  | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | 
|  | * be read-only (ie write causes UNDEF exception). | 
|  | */ | 
|  | { | 
|  | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { | 
|  | /* Pre-v8 MIDR space. | 
|  | * Note that the MIDR isn't a simple constant register because | 
|  | * of the TI925 behaviour where writes to another register can | 
|  | * cause the MIDR value to change. | 
|  | * | 
|  | * Unimplemented registers in the c15 0 0 0 space default to | 
|  | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | 
|  | * and friends override accordingly. | 
|  | */ | 
|  | { .name = "MIDR", | 
|  | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, | 
|  | .access = PL1_R, .resetvalue = cpu->midr, | 
|  | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, | 
|  | .readfn = midr_read, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | 
|  | .type = ARM_CP_OVERRIDE }, | 
|  | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ | 
|  | { .name = "DUMMY", | 
|  | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "DUMMY", | 
|  | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "DUMMY", | 
|  | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "DUMMY", | 
|  | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | { .name = "DUMMY", | 
|  | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { | 
|  | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | 
|  | .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, | 
|  | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | 
|  | .readfn = midr_read }, | 
|  | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ | 
|  | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | 
|  | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | 
|  | .access = PL1_R, .resetvalue = cpu->midr }, | 
|  | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | 
|  | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | 
|  | .access = PL1_R, .resetvalue = cpu->midr }, | 
|  | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  | ARMCPRegInfo id_cp_reginfo[] = { | 
|  | /* These are common to v8 and pre-v8 */ | 
|  | { .name = "CTR", | 
|  | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | 
|  | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | 
|  | .access = PL0_R, .accessfn = ctr_el0_access, | 
|  | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | 
|  | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | 
|  | { .name = "TCMTR", | 
|  | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  | /* TLBTR is specific to VMSA */ | 
|  | ARMCPRegInfo id_tlbtr_reginfo = { | 
|  | .name = "TLBTR", | 
|  | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, | 
|  | }; | 
|  | /* MPUIR is specific to PMSA V6+ */ | 
|  | ARMCPRegInfo id_mpuir_reginfo = { | 
|  | .name = "MPUIR", | 
|  | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | 
|  | .access = PL1_R, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->pmsav7_dregion << 8 | 
|  | }; | 
|  | ARMCPRegInfo crn0_wi_reginfo = { | 
|  | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | 
|  | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | 
|  | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | 
|  | }; | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | 
|  | arm_feature(env, ARM_FEATURE_STRONGARM)) { | 
|  | ARMCPRegInfo *r; | 
|  | /* Register the blanket "writes ignored" value first to cover the | 
|  | * whole space. Then update the specific ID registers to allow write | 
|  | * access, so that they ignore writes rather than causing them to | 
|  | * UNDEF. | 
|  | */ | 
|  | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | 
|  | for (r = id_pre_v8_midr_cp_reginfo; | 
|  | r->type != ARM_CP_SENTINEL; r++) { | 
|  | r->access = PL1_RW; | 
|  | } | 
|  | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { | 
|  | r->access = PL1_RW; | 
|  | } | 
|  | id_tlbtr_reginfo.access = PL1_RW; | 
|  | id_tlbtr_reginfo.access = PL1_RW; | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_V8)) { | 
|  | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | 
|  | } else { | 
|  | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | 
|  | } | 
|  | define_arm_cp_regs(cpu, id_cp_reginfo); | 
|  | if (!arm_feature(env, ARM_FEATURE_MPU)) { | 
|  | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); | 
|  | } else if (arm_feature(env, ARM_FEATURE_V7)) { | 
|  | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_MPIDR)) { | 
|  | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | 
|  | } | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_AUXCR)) { | 
|  | ARMCPRegInfo auxcr_reginfo[] = { | 
|  | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | 
|  | .access = PL1_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = cpu->reset_auxcr }, | 
|  | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | 
|  | .access = PL2_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | 
|  | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | 
|  | .access = PL3_RW, .type = ARM_CP_CONST, | 
|  | .resetvalue = 0 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  | define_arm_cp_regs(cpu, auxcr_reginfo); | 
|  | } | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_CBAR)) { | 
|  | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | 
|  | /* 32 bit view is [31:18] 0...0 [43:32]. */ | 
|  | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | 
|  | | extract64(cpu->reset_cbar, 32, 12); | 
|  | ARMCPRegInfo cbar_reginfo[] = { | 
|  | { .name = "CBAR", | 
|  | .type = ARM_CP_CONST, | 
|  | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | 
|  | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | 
|  | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | 
|  | .type = ARM_CP_CONST, | 
|  | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | 
|  | .access = PL1_R, .resetvalue = cbar32 }, | 
|  | REGINFO_SENTINEL | 
|  | }; | 
|  | /* We don't implement a r/w 64 bit CBAR currently */ | 
|  | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | 
|  | define_arm_cp_regs(cpu, cbar_reginfo); | 
|  | } else { | 
|  | ARMCPRegInfo cbar = { | 
|  | .name = "CBAR", | 
|  | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | 
|  | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | 
|  | .fieldoffset = offsetof(CPUARMState, | 
|  | cp15.c15_config_base_address) | 
|  | }; | 
|  | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | 
|  | cbar.access = PL1_R; | 
|  | cbar.fieldoffset = 0; | 
|  | cbar.type = ARM_CP_CONST; | 
|  | } | 
|  | define_one_arm_cp_reg(cpu, &cbar); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Generic registers whose values depend on the implementation */ | 
|  | { | 
|  | ARMCPRegInfo sctlr = { | 
|  | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, | 
|  | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | 
|  | .access = PL1_RW, | 
|  | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | 
|  | offsetof(CPUARMState, cp15.sctlr_ns) }, | 
|  | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, | 
|  | .raw_writefn = raw_write, | 
|  | }; | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | 
|  | /* Normally we would always end the TB on an SCTLR write, but Linux | 
|  | * arch/arm/mach-pxa/sleep.S expects two instructions following | 
|  | * an MMU enable to execute from cache.  Imitate this behaviour. | 
|  | */ | 
|  | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | 
|  | } | 
|  | define_one_arm_cp_reg(cpu, &sctlr); | 
|  | } | 
|  | } | 
|  |  | 
|  | ARMCPU *cpu_arm_init(const char *cpu_model) | 
|  | { | 
|  | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); | 
|  | } | 
|  |  | 
|  | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | CPUARMState *env = &cpu->env; | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | 
|  | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | 
|  | aarch64_fpu_gdb_set_reg, | 
|  | 34, "aarch64-fpu.xml", 0); | 
|  | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | 
|  | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, | 
|  | 51, "arm-neon.xml", 0); | 
|  | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | 
|  | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, | 
|  | 35, "arm-vfp3.xml", 0); | 
|  | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | 
|  | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, | 
|  | 19, "arm-vfp.xml", 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Sort alphabetically by type name, except for "any". */ | 
|  | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | 
|  | { | 
|  | ObjectClass *class_a = (ObjectClass *)a; | 
|  | ObjectClass *class_b = (ObjectClass *)b; | 
|  | const char *name_a, *name_b; | 
|  |  | 
|  | name_a = object_class_get_name(class_a); | 
|  | name_b = object_class_get_name(class_b); | 
|  | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { | 
|  | return 1; | 
|  | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { | 
|  | return -1; | 
|  | } else { | 
|  | return strcmp(name_a, name_b); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void arm_cpu_list_entry(gpointer data, gpointer user_data) | 
|  | { | 
|  | ObjectClass *oc = data; | 
|  | CPUListState *s = user_data; | 
|  | const char *typename; | 
|  | char *name; | 
|  |  | 
|  | typename = object_class_get_name(oc); | 
|  | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | 
|  | (*s->cpu_fprintf)(s->file, "  %s\n", | 
|  | name); | 
|  | g_free(name); | 
|  | } | 
|  |  | 
|  | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | 
|  | { | 
|  | CPUListState s = { | 
|  | .file = f, | 
|  | .cpu_fprintf = cpu_fprintf, | 
|  | }; | 
|  | GSList *list; | 
|  |  | 
|  | list = object_class_get_list(TYPE_ARM_CPU, false); | 
|  | list = g_slist_sort(list, arm_cpu_list_compare); | 
|  | (*cpu_fprintf)(f, "Available CPUs:\n"); | 
|  | g_slist_foreach(list, arm_cpu_list_entry, &s); | 
|  | g_slist_free(list); | 
|  | #ifdef CONFIG_KVM | 
|  | /* The 'host' CPU type is dynamically registered only if KVM is | 
|  | * enabled, so we have to special-case it here: | 
|  | */ | 
|  | (*cpu_fprintf)(f, "  host (only available in KVM mode)\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void arm_cpu_add_definition(gpointer data, gpointer user_data) | 
|  | { | 
|  | ObjectClass *oc = data; | 
|  | CpuDefinitionInfoList **cpu_list = user_data; | 
|  | CpuDefinitionInfoList *entry; | 
|  | CpuDefinitionInfo *info; | 
|  | const char *typename; | 
|  |  | 
|  | typename = object_class_get_name(oc); | 
|  | info = g_malloc0(sizeof(*info)); | 
|  | info->name = g_strndup(typename, | 
|  | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | 
|  |  | 
|  | entry = g_malloc0(sizeof(*entry)); | 
|  | entry->value = info; | 
|  | entry->next = *cpu_list; | 
|  | *cpu_list = entry; | 
|  | } | 
|  |  | 
|  | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | 
|  | { | 
|  | CpuDefinitionInfoList *cpu_list = NULL; | 
|  | GSList *list; | 
|  |  | 
|  | list = object_class_get_list(TYPE_ARM_CPU, false); | 
|  | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | 
|  | g_slist_free(list); | 
|  |  | 
|  | return cpu_list; | 
|  | } | 
|  |  | 
|  | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, | 
|  | void *opaque, int state, int secstate, | 
|  | int crm, int opc1, int opc2) | 
|  | { | 
|  | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | 
|  | * add a single reginfo struct to the hash table. | 
|  | */ | 
|  | uint32_t *key = g_new(uint32_t, 1); | 
|  | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | 
|  | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | 
|  | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; | 
|  |  | 
|  | /* Reset the secure state to the specific incoming state.  This is | 
|  | * necessary as the register may have been defined with both states. | 
|  | */ | 
|  | r2->secure = secstate; | 
|  |  | 
|  | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | 
|  | /* Register is banked (using both entries in array). | 
|  | * Overwriting fieldoffset as the array is only used to define | 
|  | * banked registers but later only fieldoffset is used. | 
|  | */ | 
|  | r2->fieldoffset = r->bank_fieldoffsets[ns]; | 
|  | } | 
|  |  | 
|  | if (state == ARM_CP_STATE_AA32) { | 
|  | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | 
|  | /* If the register is banked then we don't need to migrate or | 
|  | * reset the 32-bit instance in certain cases: | 
|  | * | 
|  | * 1) If the register has both 32-bit and 64-bit instances then we | 
|  | *    can count on the 64-bit instance taking care of the | 
|  | *    non-secure bank. | 
|  | * 2) If ARMv8 is enabled then we can count on a 64-bit version | 
|  | *    taking care of the secure bank.  This requires that separate | 
|  | *    32 and 64-bit definitions are provided. | 
|  | */ | 
|  | if ((r->state == ARM_CP_STATE_BOTH && ns) || | 
|  | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | 
|  | r2->type |= ARM_CP_ALIAS; | 
|  | } | 
|  | } else if ((secstate != r->secure) && !ns) { | 
|  | /* The register is not banked so we only want to allow migration of | 
|  | * the non-secure instance. | 
|  | */ | 
|  | r2->type |= ARM_CP_ALIAS; | 
|  | } | 
|  |  | 
|  | if (r->state == ARM_CP_STATE_BOTH) { | 
|  | /* We assume it is a cp15 register if the .cp field is left unset. | 
|  | */ | 
|  | if (r2->cp == 0) { | 
|  | r2->cp = 15; | 
|  | } | 
|  |  | 
|  | #ifdef HOST_WORDS_BIGENDIAN | 
|  | if (r2->fieldoffset) { | 
|  | r2->fieldoffset += sizeof(uint32_t); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  | if (state == ARM_CP_STATE_AA64) { | 
|  | /* To allow abbreviation of ARMCPRegInfo | 
|  | * definitions, we treat cp == 0 as equivalent to | 
|  | * the value for "standard guest-visible sysreg". | 
|  | * STATE_BOTH definitions are also always "standard | 
|  | * sysreg" in their AArch64 view (the .cp value may | 
|  | * be non-zero for the benefit of the AArch32 view). | 
|  | */ | 
|  | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { | 
|  | r2->cp = CP_REG_ARM64_SYSREG_CP; | 
|  | } | 
|  | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | 
|  | r2->opc0, opc1, opc2); | 
|  | } else { | 
|  | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); | 
|  | } | 
|  | if (opaque) { | 
|  | r2->opaque = opaque; | 
|  | } | 
|  | /* reginfo passed to helpers is correct for the actual access, | 
|  | * and is never ARM_CP_STATE_BOTH: | 
|  | */ | 
|  | r2->state = state; | 
|  | /* Make sure reginfo passed to helpers for wildcarded regs | 
|  | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | 
|  | */ | 
|  | r2->crm = crm; | 
|  | r2->opc1 = opc1; | 
|  | r2->opc2 = opc2; | 
|  | /* By convention, for wildcarded registers only the first | 
|  | * entry is used for migration; the others are marked as | 
|  | * ALIAS so we don't try to transfer the register | 
|  | * multiple times. Special registers (ie NOP/WFI) are | 
|  | * never migratable and not even raw-accessible. | 
|  | */ | 
|  | if ((r->type & ARM_CP_SPECIAL)) { | 
|  | r2->type |= ARM_CP_NO_RAW; | 
|  | } | 
|  | if (((r->crm == CP_ANY) && crm != 0) || | 
|  | ((r->opc1 == CP_ANY) && opc1 != 0) || | 
|  | ((r->opc2 == CP_ANY) && opc2 != 0)) { | 
|  | r2->type |= ARM_CP_ALIAS; | 
|  | } | 
|  |  | 
|  | /* Check that raw accesses are either forbidden or handled. Note that | 
|  | * we can't assert this earlier because the setup of fieldoffset for | 
|  | * banked registers has to be done first. | 
|  | */ | 
|  | if (!(r2->type & ARM_CP_NO_RAW)) { | 
|  | assert(!raw_accessors_invalid(r2)); | 
|  | } | 
|  |  | 
|  | /* Overriding of an existing definition must be explicitly | 
|  | * requested. | 
|  | */ | 
|  | if (!(r->type & ARM_CP_OVERRIDE)) { | 
|  | ARMCPRegInfo *oldreg; | 
|  | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | 
|  | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | 
|  | fprintf(stderr, "Register redefined: cp=%d %d bit " | 
|  | "crn=%d crm=%d opc1=%d opc2=%d, " | 
|  | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | 
|  | r2->crn, r2->crm, r2->opc1, r2->opc2, | 
|  | oldreg->name, r2->name); | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  | g_hash_table_insert(cpu->cp_regs, key, r2); | 
|  | } | 
|  |  | 
|  |  | 
|  | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, | 
|  | const ARMCPRegInfo *r, void *opaque) | 
|  | { | 
|  | /* Define implementations of coprocessor registers. | 
|  | * We store these in a hashtable because typically | 
|  | * there are less than 150 registers in a space which | 
|  | * is 16*16*16*8*8 = 262144 in size. | 
|  | * Wildcarding is supported for the crm, opc1 and opc2 fields. | 
|  | * If a register is defined twice then the second definition is | 
|  | * used, so this can be used to define some generic registers and | 
|  | * then override them with implementation specific variations. | 
|  | * At least one of the original and the second definition should | 
|  | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | 
|  | * against accidental use. | 
|  | * | 
|  | * The state field defines whether the register is to be | 
|  | * visible in the AArch32 or AArch64 execution state. If the | 
|  | * state is set to ARM_CP_STATE_BOTH then we synthesise a | 
|  | * reginfo structure for the AArch32 view, which sees the lower | 
|  | * 32 bits of the 64 bit register. | 
|  | * | 
|  | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | 
|  | * be wildcarded. AArch64 registers are always considered to be 64 | 
|  | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | 
|  | * the register, if any. | 
|  | */ | 
|  | int crm, opc1, opc2, state; | 
|  | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; | 
|  | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | 
|  | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | 
|  | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | 
|  | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | 
|  | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | 
|  | /* 64 bit registers have only CRm and Opc1 fields */ | 
|  | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | 
|  | /* op0 only exists in the AArch64 encodings */ | 
|  | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | 
|  | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | 
|  | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | 
|  | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | 
|  | * encodes a minimum access level for the register. We roll this | 
|  | * runtime check into our general permission check code, so check | 
|  | * here that the reginfo's specified permissions are strict enough | 
|  | * to encompass the generic architectural permission check. | 
|  | */ | 
|  | if (r->state != ARM_CP_STATE_AA32) { | 
|  | int mask = 0; | 
|  | switch (r->opc1) { | 
|  | case 0: case 1: case 2: | 
|  | /* min_EL EL1 */ | 
|  | mask = PL1_RW; | 
|  | break; | 
|  | case 3: | 
|  | /* min_EL EL0 */ | 
|  | mask = PL0_RW; | 
|  | break; | 
|  | case 4: | 
|  | /* min_EL EL2 */ | 
|  | mask = PL2_RW; | 
|  | break; | 
|  | case 5: | 
|  | /* unallocated encoding, so not possible */ | 
|  | assert(false); | 
|  | break; | 
|  | case 6: | 
|  | /* min_EL EL3 */ | 
|  | mask = PL3_RW; | 
|  | break; | 
|  | case 7: | 
|  | /* min_EL EL1, secure mode only (we don't check the latter) */ | 
|  | mask = PL1_RW; | 
|  | break; | 
|  | default: | 
|  | /* broken reginfo with out-of-range opc1 */ | 
|  | assert(false); | 
|  | break; | 
|  | } | 
|  | /* assert our permissions are not too lax (stricter is fine) */ | 
|  | assert((r->access & ~mask) == 0); | 
|  | } | 
|  |  | 
|  | /* Check that the register definition has enough info to handle | 
|  | * reads and writes if they are permitted. | 
|  | */ | 
|  | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | 
|  | if (r->access & PL3_R) { | 
|  | assert((r->fieldoffset || | 
|  | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | 
|  | r->readfn); | 
|  | } | 
|  | if (r->access & PL3_W) { | 
|  | assert((r->fieldoffset || | 
|  | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | 
|  | r->writefn); | 
|  | } | 
|  | } | 
|  | /* Bad type field probably means missing sentinel at end of reg list */ | 
|  | assert(cptype_valid(r->type)); | 
|  | for (crm = crmmin; crm <= crmmax; crm++) { | 
|  | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | 
|  | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | 
|  | for (state = ARM_CP_STATE_AA32; | 
|  | state <= ARM_CP_STATE_AA64; state++) { | 
|  | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | 
|  | continue; | 
|  | } | 
|  | if (state == ARM_CP_STATE_AA32) { | 
|  | /* Under AArch32 CP registers can be common | 
|  | * (same for secure and non-secure world) or banked. | 
|  | */ | 
|  | switch (r->secure) { | 
|  | case ARM_CP_SECSTATE_S: | 
|  | case ARM_CP_SECSTATE_NS: | 
|  | add_cpreg_to_hashtable(cpu, r, opaque, state, | 
|  | r->secure, crm, opc1, opc2); | 
|  | break; | 
|  | default: | 
|  | add_cpreg_to_hashtable(cpu, r, opaque, state, | 
|  | ARM_CP_SECSTATE_S, | 
|  | crm, opc1, opc2); | 
|  | add_cpreg_to_hashtable(cpu, r, opaque, state, | 
|  | ARM_CP_SECSTATE_NS, | 
|  | crm, opc1, opc2); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | /* AArch64 registers get mapped to non-secure instance | 
|  | * of AArch32 */ | 
|  | add_cpreg_to_hashtable(cpu, r, opaque, state, | 
|  | ARM_CP_SECSTATE_NS, | 
|  | crm, opc1, opc2); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | 
|  | const ARMCPRegInfo *regs, void *opaque) | 
|  | { | 
|  | /* Define a whole list of registers */ | 
|  | const ARMCPRegInfo *r; | 
|  | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | 
|  | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | 
|  | } | 
|  | } | 
|  |  | 
|  | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) | 
|  | { | 
|  | return g_hash_table_lookup(cpregs, &encoded_cp); | 
|  | } | 
|  |  | 
|  | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, | 
|  | uint64_t value) | 
|  | { | 
|  | /* Helper coprocessor write function for write-ignore registers */ | 
|  | } | 
|  |  | 
|  | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) | 
|  | { | 
|  | /* Helper coprocessor write function for read-as-zero registers */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) | 
|  | { | 
|  | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | 
|  | } | 
|  |  | 
|  | static int bad_mode_switch(CPUARMState *env, int mode) | 
|  | { | 
|  | /* Return true if it is not valid for us to switch to | 
|  | * this CPU mode (ie all the UNPREDICTABLE cases in | 
|  | * the ARM ARM CPSRWriteByInstr pseudocode). | 
|  | */ | 
|  | switch (mode) { | 
|  | case ARM_CPU_MODE_USR: | 
|  | case ARM_CPU_MODE_SYS: | 
|  | case ARM_CPU_MODE_SVC: | 
|  | case ARM_CPU_MODE_ABT: | 
|  | case ARM_CPU_MODE_UND: | 
|  | case ARM_CPU_MODE_IRQ: | 
|  | case ARM_CPU_MODE_FIQ: | 
|  | return 0; | 
|  | case ARM_CPU_MODE_MON: | 
|  | return !arm_is_secure(env); | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t cpsr_read(CPUARMState *env) | 
|  | { | 
|  | int ZF; | 
|  | ZF = (env->ZF == 0); | 
|  | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | 
|  | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) | 
|  | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | 
|  | | ((env->condexec_bits & 0xfc) << 8) | 
|  | | (env->GE << 16) | (env->daif & CPSR_AIF); | 
|  | } | 
|  |  | 
|  | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | 
|  | { | 
|  | uint32_t changed_daif; | 
|  |  | 
|  | if (mask & CPSR_NZCV) { | 
|  | env->ZF = (~val) & CPSR_Z; | 
|  | env->NF = val; | 
|  | env->CF = (val >> 29) & 1; | 
|  | env->VF = (val << 3) & 0x80000000; | 
|  | } | 
|  | if (mask & CPSR_Q) | 
|  | env->QF = ((val & CPSR_Q) != 0); | 
|  | if (mask & CPSR_T) | 
|  | env->thumb = ((val & CPSR_T) != 0); | 
|  | if (mask & CPSR_IT_0_1) { | 
|  | env->condexec_bits &= ~3; | 
|  | env->condexec_bits |= (val >> 25) & 3; | 
|  | } | 
|  | if (mask & CPSR_IT_2_7) { | 
|  | env->condexec_bits &= 3; | 
|  | env->condexec_bits |= (val >> 8) & 0xfc; | 
|  | } | 
|  | if (mask & CPSR_GE) { | 
|  | env->GE = (val >> 16) & 0xf; | 
|  | } | 
|  |  | 
|  | /* In a V7 implementation that includes the security extensions but does | 
|  | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | 
|  | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | 
|  | * bits respectively. | 
|  | * | 
|  | * In a V8 implementation, it is permitted for privileged software to | 
|  | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | 
|  | */ | 
|  | if (!arm_feature(env, ARM_FEATURE_V8) && | 
|  | arm_feature(env, ARM_FEATURE_EL3) && | 
|  | !arm_feature(env, ARM_FEATURE_EL2) && | 
|  | !arm_is_secure(env)) { | 
|  |  | 
|  | changed_daif = (env->daif ^ val) & mask; | 
|  |  | 
|  | if (changed_daif & CPSR_A) { | 
|  | /* Check to see if we are allowed to change the masking of async | 
|  | * abort exceptions from a non-secure state. | 
|  | */ | 
|  | if (!(env->cp15.scr_el3 & SCR_AW)) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "Ignoring attempt to switch CPSR_A flag from " | 
|  | "non-secure world with SCR.AW bit clear\n"); | 
|  | mask &= ~CPSR_A; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (changed_daif & CPSR_F) { | 
|  | /* Check to see if we are allowed to change the masking of FIQ | 
|  | * exceptions from a non-secure state. | 
|  | */ | 
|  | if (!(env->cp15.scr_el3 & SCR_FW)) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "Ignoring attempt to switch CPSR_F flag from " | 
|  | "non-secure world with SCR.FW bit clear\n"); | 
|  | mask &= ~CPSR_F; | 
|  | } | 
|  |  | 
|  | /* Check whether non-maskable FIQ (NMFI) support is enabled. | 
|  | * If this bit is set software is not allowed to mask | 
|  | * FIQs, but is allowed to set CPSR_F to 0. | 
|  | */ | 
|  | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | 
|  | (val & CPSR_F)) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "Ignoring attempt to enable CPSR_F flag " | 
|  | "(non-maskable FIQ [NMFI] support enabled)\n"); | 
|  | mask &= ~CPSR_F; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | env->daif &= ~(CPSR_AIF & mask); | 
|  | env->daif |= val & CPSR_AIF & mask; | 
|  |  | 
|  | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { | 
|  | if (bad_mode_switch(env, val & CPSR_M)) { | 
|  | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | 
|  | * We choose to ignore the attempt and leave the CPSR M field | 
|  | * untouched. | 
|  | */ | 
|  | mask &= ~CPSR_M; | 
|  | } else { | 
|  | switch_mode(env, val & CPSR_M); | 
|  | } | 
|  | } | 
|  | mask &= ~CACHED_CPSR_BITS; | 
|  | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | 
|  | } | 
|  |  | 
|  | /* Sign/zero extend */ | 
|  | uint32_t HELPER(sxtb16)(uint32_t x) | 
|  | { | 
|  | uint32_t res; | 
|  | res = (uint16_t)(int8_t)x; | 
|  | res |= (uint32_t)(int8_t)(x >> 16) << 16; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(uxtb16)(uint32_t x) | 
|  | { | 
|  | uint32_t res; | 
|  | res = (uint16_t)(uint8_t)x; | 
|  | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(clz)(uint32_t x) | 
|  | { | 
|  | return clz32(x); | 
|  | } | 
|  |  | 
|  | int32_t HELPER(sdiv)(int32_t num, int32_t den) | 
|  | { | 
|  | if (den == 0) | 
|  | return 0; | 
|  | if (num == INT_MIN && den == -1) | 
|  | return INT_MIN; | 
|  | return num / den; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | 
|  | { | 
|  | if (den == 0) | 
|  | return 0; | 
|  | return num / den; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(rbit)(uint32_t x) | 
|  | { | 
|  | x =  ((x & 0xff000000) >> 24) | 
|  | | ((x & 0x00ff0000) >> 8) | 
|  | | ((x & 0x0000ff00) << 8) | 
|  | | ((x & 0x000000ff) << 24); | 
|  | x =  ((x & 0xf0f0f0f0) >> 4) | 
|  | | ((x & 0x0f0f0f0f) << 4); | 
|  | x =  ((x & 0x88888888) >> 3) | 
|  | | ((x & 0x44444444) >> 1) | 
|  | | ((x & 0x22222222) << 1) | 
|  | | ((x & 0x11111111) << 3); | 
|  | return x; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | /* These should probably raise undefined insn exceptions.  */ | 
|  | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void switch_mode(CPUARMState *env, int mode) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | if (mode != ARM_CPU_MODE_USR) { | 
|  | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | cpu_abort(CPU(cpu), "banked r13 write\n"); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | cpu_abort(CPU(cpu), "banked r13 read\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, | 
|  | uint32_t cur_el, bool secure) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void aarch64_sync_64_to_32(CPUARMState *env) | 
|  | { | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* Map CPU modes onto saved register banks.  */ | 
|  | int bank_number(int mode) | 
|  | { | 
|  | switch (mode) { | 
|  | case ARM_CPU_MODE_USR: | 
|  | case ARM_CPU_MODE_SYS: | 
|  | return 0; | 
|  | case ARM_CPU_MODE_SVC: | 
|  | return 1; | 
|  | case ARM_CPU_MODE_ABT: | 
|  | return 2; | 
|  | case ARM_CPU_MODE_UND: | 
|  | return 3; | 
|  | case ARM_CPU_MODE_IRQ: | 
|  | return 4; | 
|  | case ARM_CPU_MODE_FIQ: | 
|  | return 5; | 
|  | case ARM_CPU_MODE_HYP: | 
|  | return 6; | 
|  | case ARM_CPU_MODE_MON: | 
|  | return 7; | 
|  | } | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | void switch_mode(CPUARMState *env, int mode) | 
|  | { | 
|  | int old_mode; | 
|  | int i; | 
|  |  | 
|  | old_mode = env->uncached_cpsr & CPSR_M; | 
|  | if (mode == old_mode) | 
|  | return; | 
|  |  | 
|  | if (old_mode == ARM_CPU_MODE_FIQ) { | 
|  | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | 
|  | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); | 
|  | } else if (mode == ARM_CPU_MODE_FIQ) { | 
|  | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | 
|  | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); | 
|  | } | 
|  |  | 
|  | i = bank_number(old_mode); | 
|  | env->banked_r13[i] = env->regs[13]; | 
|  | env->banked_r14[i] = env->regs[14]; | 
|  | env->banked_spsr[i] = env->spsr; | 
|  |  | 
|  | i = bank_number(mode); | 
|  | env->regs[13] = env->banked_r13[i]; | 
|  | env->regs[14] = env->banked_r14[i]; | 
|  | env->spsr = env->banked_spsr[i]; | 
|  | } | 
|  |  | 
|  | /* Physical Interrupt Target EL Lookup Table | 
|  | * | 
|  | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | 
|  | * | 
|  | * The below multi-dimensional table is used for looking up the target | 
|  | * exception level given numerous condition criteria.  Specifically, the | 
|  | * target EL is based on SCR and HCR routing controls as well as the | 
|  | * currently executing EL and secure state. | 
|  | * | 
|  | *    Dimensions: | 
|  | *    target_el_table[2][2][2][2][2][4] | 
|  | *                    |  |  |  |  |  +--- Current EL | 
|  | *                    |  |  |  |  +------ Non-secure(0)/Secure(1) | 
|  | *                    |  |  |  +--------- HCR mask override | 
|  | *                    |  |  +------------ SCR exec state control | 
|  | *                    |  +--------------- SCR mask override | 
|  | *                    +------------------ 32-bit(0)/64-bit(1) EL3 | 
|  | * | 
|  | *    The table values are as such: | 
|  | *    0-3 = EL0-EL3 | 
|  | *     -1 = Cannot occur | 
|  | * | 
|  | * The ARM ARM target EL table includes entries indicating that an "exception | 
|  | * is not taken".  The two cases where this is applicable are: | 
|  | *    1) An exception is taken from EL3 but the SCR does not have the exception | 
|  | *    routed to EL3. | 
|  | *    2) An exception is taken from EL2 but the HCR does not have the exception | 
|  | *    routed to EL2. | 
|  | * In these two cases, the below table contain a target of EL1.  This value is | 
|  | * returned as it is expected that the consumer of the table data will check | 
|  | * for "target EL >= current EL" to ensure the exception is not taken. | 
|  | * | 
|  | *            SCR     HCR | 
|  | *         64  EA     AMO                 From | 
|  | *        BIT IRQ     IMO      Non-secure         Secure | 
|  | *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3 | 
|  | */ | 
|  | const int8_t target_el_table[2][2][2][2][2][4] = { | 
|  | {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },}, | 
|  | {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},}, | 
|  | {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },}, | 
|  | {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},}, | 
|  | {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },}, | 
|  | {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},}, | 
|  | {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },}, | 
|  | {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},}, | 
|  | {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },}, | 
|  | {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},}, | 
|  | {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },}, | 
|  | {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},}, | 
|  | {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },}, | 
|  | {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},}, | 
|  | {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },}, | 
|  | {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Determine the target EL for physical exceptions | 
|  | */ | 
|  | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, | 
|  | uint32_t cur_el, bool secure) | 
|  | { | 
|  | CPUARMState *env = cs->env_ptr; | 
|  | int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | 
|  | int scr; | 
|  | int hcr; | 
|  | int target_el; | 
|  | int is64 = arm_el_is_aa64(env, 3); | 
|  |  | 
|  | switch (excp_idx) { | 
|  | case EXCP_IRQ: | 
|  | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | 
|  | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | 
|  | break; | 
|  | case EXCP_FIQ: | 
|  | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | 
|  | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | 
|  | break; | 
|  | default: | 
|  | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | 
|  | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | 
|  | break; | 
|  | }; | 
|  |  | 
|  | /* If HCR.TGE is set then HCR is treated as being 1 */ | 
|  | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | 
|  |  | 
|  | /* Perform a table-lookup for the target EL given the current state */ | 
|  | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | 
|  |  | 
|  | assert(target_el > 0); | 
|  |  | 
|  | return target_el; | 
|  | } | 
|  |  | 
|  | static void v7m_push(CPUARMState *env, uint32_t val) | 
|  | { | 
|  | CPUState *cs = CPU(arm_env_get_cpu(env)); | 
|  |  | 
|  | env->regs[13] -= 4; | 
|  | stl_phys(cs->as, env->regs[13], val); | 
|  | } | 
|  |  | 
|  | static uint32_t v7m_pop(CPUARMState *env) | 
|  | { | 
|  | CPUState *cs = CPU(arm_env_get_cpu(env)); | 
|  | uint32_t val; | 
|  |  | 
|  | val = ldl_phys(cs->as, env->regs[13]); | 
|  | env->regs[13] += 4; | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Switch to V7M main or process stack pointer.  */ | 
|  | static void switch_v7m_sp(CPUARMState *env, int process) | 
|  | { | 
|  | uint32_t tmp; | 
|  | if (env->v7m.current_sp != process) { | 
|  | tmp = env->v7m.other_sp; | 
|  | env->v7m.other_sp = env->regs[13]; | 
|  | env->regs[13] = tmp; | 
|  | env->v7m.current_sp = process; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_v7m_exception_exit(CPUARMState *env) | 
|  | { | 
|  | uint32_t type; | 
|  | uint32_t xpsr; | 
|  |  | 
|  | type = env->regs[15]; | 
|  | if (env->v7m.exception != 0) | 
|  | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); | 
|  |  | 
|  | /* Switch to the target stack.  */ | 
|  | switch_v7m_sp(env, (type & 4) != 0); | 
|  | /* Pop registers.  */ | 
|  | env->regs[0] = v7m_pop(env); | 
|  | env->regs[1] = v7m_pop(env); | 
|  | env->regs[2] = v7m_pop(env); | 
|  | env->regs[3] = v7m_pop(env); | 
|  | env->regs[12] = v7m_pop(env); | 
|  | env->regs[14] = v7m_pop(env); | 
|  | env->regs[15] = v7m_pop(env); | 
|  | if (env->regs[15] & 1) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "M profile return from interrupt with misaligned " | 
|  | "PC is UNPREDICTABLE\n"); | 
|  | /* Actual hardware seems to ignore the lsbit, and there are several | 
|  | * RTOSes out there which incorrectly assume the r15 in the stack | 
|  | * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. | 
|  | */ | 
|  | env->regs[15] &= ~1U; | 
|  | } | 
|  | xpsr = v7m_pop(env); | 
|  | xpsr_write(env, xpsr, 0xfffffdff); | 
|  | /* Undo stack alignment.  */ | 
|  | if (xpsr & 0x200) | 
|  | env->regs[13] |= 4; | 
|  | /* ??? The exception return type specifies Thread/Handler mode.  However | 
|  | this is also implied by the xPSR value. Not sure what to do | 
|  | if there is a mismatch.  */ | 
|  | /* ??? Likewise for mismatches between the CONTROL register and the stack | 
|  | pointer.  */ | 
|  | } | 
|  |  | 
|  | void arm_v7m_cpu_do_interrupt(CPUState *cs) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  | uint32_t xpsr = xpsr_read(env); | 
|  | uint32_t lr; | 
|  | uint32_t addr; | 
|  |  | 
|  | arm_log_exception(cs->exception_index); | 
|  |  | 
|  | lr = 0xfffffff1; | 
|  | if (env->v7m.current_sp) | 
|  | lr |= 4; | 
|  | if (env->v7m.exception == 0) | 
|  | lr |= 8; | 
|  |  | 
|  | /* For exceptions we just mark as pending on the NVIC, and let that | 
|  | handle it.  */ | 
|  | /* TODO: Need to escalate if the current priority is higher than the | 
|  | one we're raising.  */ | 
|  | switch (cs->exception_index) { | 
|  | case EXCP_UDEF: | 
|  | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); | 
|  | return; | 
|  | case EXCP_SWI: | 
|  | /* The PC already points to the next instruction.  */ | 
|  | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); | 
|  | return; | 
|  | case EXCP_PREFETCH_ABORT: | 
|  | case EXCP_DATA_ABORT: | 
|  | /* TODO: if we implemented the MPU registers, this is where we | 
|  | * should set the MMFAR, etc from exception.fsr and exception.vaddress. | 
|  | */ | 
|  | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); | 
|  | return; | 
|  | case EXCP_BKPT: | 
|  | if (semihosting_enabled()) { | 
|  | int nr; | 
|  | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; | 
|  | if (nr == 0xab) { | 
|  | env->regs[15] += 2; | 
|  | qemu_log_mask(CPU_LOG_INT, | 
|  | "...handling as semihosting call 0x%x\n", | 
|  | env->regs[0]); | 
|  | env->regs[0] = do_arm_semihosting(env); | 
|  | return; | 
|  | } | 
|  | } | 
|  | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); | 
|  | return; | 
|  | case EXCP_IRQ: | 
|  | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); | 
|  | break; | 
|  | case EXCP_EXCEPTION_EXIT: | 
|  | do_v7m_exception_exit(env); | 
|  | return; | 
|  | default: | 
|  | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | 
|  | return; /* Never happens.  Keep compiler happy.  */ | 
|  | } | 
|  |  | 
|  | /* Align stack pointer.  */ | 
|  | /* ??? Should only do this if Configuration Control Register | 
|  | STACKALIGN bit is set.  */ | 
|  | if (env->regs[13] & 4) { | 
|  | env->regs[13] -= 4; | 
|  | xpsr |= 0x200; | 
|  | } | 
|  | /* Switch to the handler mode.  */ | 
|  | v7m_push(env, xpsr); | 
|  | v7m_push(env, env->regs[15]); | 
|  | v7m_push(env, env->regs[14]); | 
|  | v7m_push(env, env->regs[12]); | 
|  | v7m_push(env, env->regs[3]); | 
|  | v7m_push(env, env->regs[2]); | 
|  | v7m_push(env, env->regs[1]); | 
|  | v7m_push(env, env->regs[0]); | 
|  | switch_v7m_sp(env, 0); | 
|  | /* Clear IT bits */ | 
|  | env->condexec_bits = 0; | 
|  | env->regs[14] = lr; | 
|  | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); | 
|  | env->regs[15] = addr & 0xfffffffe; | 
|  | env->thumb = addr & 1; | 
|  | } | 
|  |  | 
|  | /* Function used to synchronize QEMU's AArch64 register set with AArch32 | 
|  | * register set.  This is necessary when switching between AArch32 and AArch64 | 
|  | * execution state. | 
|  | */ | 
|  | void aarch64_sync_32_to_64(CPUARMState *env) | 
|  | { | 
|  | int i; | 
|  | uint32_t mode = env->uncached_cpsr & CPSR_M; | 
|  |  | 
|  | /* We can blanket copy R[0:7] to X[0:7] */ | 
|  | for (i = 0; i < 8; i++) { | 
|  | env->xregs[i] = env->regs[i]; | 
|  | } | 
|  |  | 
|  | /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. | 
|  | * Otherwise, they come from the banked user regs. | 
|  | */ | 
|  | if (mode == ARM_CPU_MODE_FIQ) { | 
|  | for (i = 8; i < 13; i++) { | 
|  | env->xregs[i] = env->usr_regs[i - 8]; | 
|  | } | 
|  | } else { | 
|  | for (i = 8; i < 13; i++) { | 
|  | env->xregs[i] = env->regs[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Registers x13-x23 are the various mode SP and FP registers. Registers | 
|  | * r13 and r14 are only copied if we are in that mode, otherwise we copy | 
|  | * from the mode banked register. | 
|  | */ | 
|  | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | 
|  | env->xregs[13] = env->regs[13]; | 
|  | env->xregs[14] = env->regs[14]; | 
|  | } else { | 
|  | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | 
|  | /* HYP is an exception in that it is copied from r14 */ | 
|  | if (mode == ARM_CPU_MODE_HYP) { | 
|  | env->xregs[14] = env->regs[14]; | 
|  | } else { | 
|  | env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mode == ARM_CPU_MODE_HYP) { | 
|  | env->xregs[15] = env->regs[13]; | 
|  | } else { | 
|  | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | 
|  | } | 
|  |  | 
|  | if (mode == ARM_CPU_MODE_IRQ) { | 
|  | env->xregs[16] = env->regs[14]; | 
|  | env->xregs[17] = env->regs[13]; | 
|  | } else { | 
|  | env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; | 
|  | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | 
|  | } | 
|  |  | 
|  | if (mode == ARM_CPU_MODE_SVC) { | 
|  | env->xregs[18] = env->regs[14]; | 
|  | env->xregs[19] = env->regs[13]; | 
|  | } else { | 
|  | env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; | 
|  | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | 
|  | } | 
|  |  | 
|  | if (mode == ARM_CPU_MODE_ABT) { | 
|  | env->xregs[20] = env->regs[14]; | 
|  | env->xregs[21] = env->regs[13]; | 
|  | } else { | 
|  | env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; | 
|  | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | 
|  | } | 
|  |  | 
|  | if (mode == ARM_CPU_MODE_UND) { | 
|  | env->xregs[22] = env->regs[14]; | 
|  | env->xregs[23] = env->regs[13]; | 
|  | } else { | 
|  | env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; | 
|  | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | 
|  | } | 
|  |  | 
|  | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ | 
|  | * mode, then we can copy from r8-r14.  Otherwise, we copy from the | 
|  | * FIQ bank for r8-r14. | 
|  | */ | 
|  | if (mode == ARM_CPU_MODE_FIQ) { | 
|  | for (i = 24; i < 31; i++) { | 
|  | env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */ | 
|  | } | 
|  | } else { | 
|  | for (i = 24; i < 29; i++) { | 
|  | env->xregs[i] = env->fiq_regs[i - 24]; | 
|  | } | 
|  | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; | 
|  | env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; | 
|  | } | 
|  |  | 
|  | env->pc = env->regs[15]; | 
|  | } | 
|  |  | 
|  | /* Function used to synchronize QEMU's AArch32 register set with AArch64 | 
|  | * register set.  This is necessary when switching between AArch32 and AArch64 | 
|  | * execution state. | 
|  | */ | 
|  | void aarch64_sync_64_to_32(CPUARMState *env) | 
|  | { | 
|  | int i; | 
|  | uint32_t mode = env->uncached_cpsr & CPSR_M; | 
|  |  | 
|  | /* We can blanket copy X[0:7] to R[0:7] */ | 
|  | for (i = 0; i < 8; i++) { | 
|  | env->regs[i] = env->xregs[i]; | 
|  | } | 
|  |  | 
|  | /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. | 
|  | * Otherwise, we copy x8-x12 into the banked user regs. | 
|  | */ | 
|  | if (mode == ARM_CPU_MODE_FIQ) { | 
|  | for (i = 8; i < 13; i++) { | 
|  | env->usr_regs[i - 8] = env->xregs[i]; | 
|  | } | 
|  | } else { | 
|  | for (i = 8; i < 13; i++) { | 
|  | env->regs[i] = env->xregs[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Registers r13 & r14 depend on the current mode. | 
|  | * If we are in a given mode, we copy the corresponding x registers to r13 | 
|  | * and r14.  Otherwise, we copy the x register to the banked r13 and r14 | 
|  | * for the mode. | 
|  | */ | 
|  | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | 
|  | env->regs[13] = env->xregs[13]; | 
|  | env->regs[14] = env->xregs[14]; | 
|  | } else { | 
|  | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; | 
|  |  | 
|  | /* HYP is an exception in that it does not have its own banked r14 but | 
|  | * shares the USR r14 | 
|  | */ | 
|  | if (mode == ARM_CPU_MODE_HYP) { | 
|  | env->regs[14] = env->xregs[14]; | 
|  | } else { | 
|  | env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mode == ARM_CPU_MODE_HYP) { | 
|  | env->regs[13] = env->xregs[15]; | 
|  | } else { | 
|  | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; | 
|  | } | 
|  |  | 
|  | if (mode == ARM_CPU_MODE_IRQ) { | 
|  | env->regs[14] = env->xregs[16]; | 
|  | env->regs[13] = env->xregs[17]; | 
|  | } else { | 
|  | env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; | 
|  | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | 
|  | } | 
|  |  | 
|  | if (mode == ARM_CPU_MODE_SVC) { | 
|  | env->regs[14] = env->xregs[18]; | 
|  | env->regs[13] = env->xregs[19]; | 
|  | } else { | 
|  | env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; | 
|  | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | 
|  | } | 
|  |  | 
|  | if (mode == ARM_CPU_MODE_ABT) { | 
|  | env->regs[14] = env->xregs[20]; | 
|  | env->regs[13] = env->xregs[21]; | 
|  | } else { | 
|  | env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; | 
|  | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | 
|  | } | 
|  |  | 
|  | if (mode == ARM_CPU_MODE_UND) { | 
|  | env->regs[14] = env->xregs[22]; | 
|  | env->regs[13] = env->xregs[23]; | 
|  | } else { | 
|  | env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; | 
|  | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; | 
|  | } | 
|  |  | 
|  | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ | 
|  | * mode, then we can copy to r8-r14.  Otherwise, we copy to the | 
|  | * FIQ bank for r8-r14. | 
|  | */ | 
|  | if (mode == ARM_CPU_MODE_FIQ) { | 
|  | for (i = 24; i < 31; i++) { | 
|  | env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */ | 
|  | } | 
|  | } else { | 
|  | for (i = 24; i < 29; i++) { | 
|  | env->fiq_regs[i - 24] = env->xregs[i]; | 
|  | } | 
|  | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | 
|  | env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; | 
|  | } | 
|  |  | 
|  | env->regs[15] = env->pc; | 
|  | } | 
|  |  | 
|  | /* Handle a CPU exception.  */ | 
|  | void arm_cpu_do_interrupt(CPUState *cs) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  | uint32_t addr; | 
|  | uint32_t mask; | 
|  | int new_mode; | 
|  | uint32_t offset; | 
|  | uint32_t moe; | 
|  |  | 
|  | assert(!IS_M(env)); | 
|  |  | 
|  | arm_log_exception(cs->exception_index); | 
|  |  | 
|  | if (arm_is_psci_call(cpu, cs->exception_index)) { | 
|  | arm_handle_psci_call(cpu); | 
|  | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ | 
|  | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | 
|  | case EC_BREAKPOINT: | 
|  | case EC_BREAKPOINT_SAME_EL: | 
|  | moe = 1; | 
|  | break; | 
|  | case EC_WATCHPOINT: | 
|  | case EC_WATCHPOINT_SAME_EL: | 
|  | moe = 10; | 
|  | break; | 
|  | case EC_AA32_BKPT: | 
|  | moe = 3; | 
|  | break; | 
|  | case EC_VECTORCATCH: | 
|  | moe = 5; | 
|  | break; | 
|  | default: | 
|  | moe = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (moe) { | 
|  | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | 
|  | } | 
|  |  | 
|  | /* TODO: Vectored interrupt controller.  */ | 
|  | switch (cs->exception_index) { | 
|  | case EXCP_UDEF: | 
|  | new_mode = ARM_CPU_MODE_UND; | 
|  | addr = 0x04; | 
|  | mask = CPSR_I; | 
|  | if (env->thumb) | 
|  | offset = 2; | 
|  | else | 
|  | offset = 4; | 
|  | break; | 
|  | case EXCP_SWI: | 
|  | if (semihosting_enabled()) { | 
|  | /* Check for semihosting interrupt.  */ | 
|  | if (env->thumb) { | 
|  | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) | 
|  | & 0xff; | 
|  | } else { | 
|  | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) | 
|  | & 0xffffff; | 
|  | } | 
|  | /* Only intercept calls from privileged modes, to provide some | 
|  | semblance of security.  */ | 
|  | if (((mask == 0x123456 && !env->thumb) | 
|  | || (mask == 0xab && env->thumb)) | 
|  | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | 
|  | qemu_log_mask(CPU_LOG_INT, | 
|  | "...handling as semihosting call 0x%x\n", | 
|  | env->regs[0]); | 
|  | env->regs[0] = do_arm_semihosting(env); | 
|  | return; | 
|  | } | 
|  | } | 
|  | new_mode = ARM_CPU_MODE_SVC; | 
|  | addr = 0x08; | 
|  | mask = CPSR_I; | 
|  | /* The PC already points to the next instruction.  */ | 
|  | offset = 0; | 
|  | break; | 
|  | case EXCP_BKPT: | 
|  | /* See if this is a semihosting syscall.  */ | 
|  | if (env->thumb && semihosting_enabled()) { | 
|  | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; | 
|  | if (mask == 0xab | 
|  | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | 
|  | env->regs[15] += 2; | 
|  | qemu_log_mask(CPU_LOG_INT, | 
|  | "...handling as semihosting call 0x%x\n", | 
|  | env->regs[0]); | 
|  | env->regs[0] = do_arm_semihosting(env); | 
|  | return; | 
|  | } | 
|  | } | 
|  | env->exception.fsr = 2; | 
|  | /* Fall through to prefetch abort.  */ | 
|  | case EXCP_PREFETCH_ABORT: | 
|  | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); | 
|  | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); | 
|  | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", | 
|  | env->exception.fsr, (uint32_t)env->exception.vaddress); | 
|  | new_mode = ARM_CPU_MODE_ABT; | 
|  | addr = 0x0c; | 
|  | mask = CPSR_A | CPSR_I; | 
|  | offset = 4; | 
|  | break; | 
|  | case EXCP_DATA_ABORT: | 
|  | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); | 
|  | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); | 
|  | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", | 
|  | env->exception.fsr, | 
|  | (uint32_t)env->exception.vaddress); | 
|  | new_mode = ARM_CPU_MODE_ABT; | 
|  | addr = 0x10; | 
|  | mask = CPSR_A | CPSR_I; | 
|  | offset = 8; | 
|  | break; | 
|  | case EXCP_IRQ: | 
|  | new_mode = ARM_CPU_MODE_IRQ; | 
|  | addr = 0x18; | 
|  | /* Disable IRQ and imprecise data aborts.  */ | 
|  | mask = CPSR_A | CPSR_I; | 
|  | offset = 4; | 
|  | if (env->cp15.scr_el3 & SCR_IRQ) { | 
|  | /* IRQ routed to monitor mode */ | 
|  | new_mode = ARM_CPU_MODE_MON; | 
|  | mask |= CPSR_F; | 
|  | } | 
|  | break; | 
|  | case EXCP_FIQ: | 
|  | new_mode = ARM_CPU_MODE_FIQ; | 
|  | addr = 0x1c; | 
|  | /* Disable FIQ, IRQ and imprecise data aborts.  */ | 
|  | mask = CPSR_A | CPSR_I | CPSR_F; | 
|  | if (env->cp15.scr_el3 & SCR_FIQ) { | 
|  | /* FIQ routed to monitor mode */ | 
|  | new_mode = ARM_CPU_MODE_MON; | 
|  | } | 
|  | offset = 4; | 
|  | break; | 
|  | case EXCP_SMC: | 
|  | new_mode = ARM_CPU_MODE_MON; | 
|  | addr = 0x08; | 
|  | mask = CPSR_A | CPSR_I | CPSR_F; | 
|  | offset = 0; | 
|  | break; | 
|  | default: | 
|  | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | 
|  | return; /* Never happens.  Keep compiler happy.  */ | 
|  | } | 
|  |  | 
|  | if (new_mode == ARM_CPU_MODE_MON) { | 
|  | addr += env->cp15.mvbar; | 
|  | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { | 
|  | /* High vectors. When enabled, base address cannot be remapped. */ | 
|  | addr += 0xffff0000; | 
|  | } else { | 
|  | /* ARM v7 architectures provide a vector base address register to remap | 
|  | * the interrupt vector table. | 
|  | * This register is only followed in non-monitor mode, and is banked. | 
|  | * Note: only bits 31:5 are valid. | 
|  | */ | 
|  | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); | 
|  | } | 
|  |  | 
|  | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | 
|  | env->cp15.scr_el3 &= ~SCR_NS; | 
|  | } | 
|  |  | 
|  | switch_mode (env, new_mode); | 
|  | /* For exceptions taken to AArch32 we must clear the SS bit in both | 
|  | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | 
|  | */ | 
|  | env->uncached_cpsr &= ~PSTATE_SS; | 
|  | env->spsr = cpsr_read(env); | 
|  | /* Clear IT bits.  */ | 
|  | env->condexec_bits = 0; | 
|  | /* Switch to the new mode, and to the correct instruction set.  */ | 
|  | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; | 
|  | env->daif |= mask; | 
|  | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares | 
|  | * and we should just guard the thumb mode on V4 */ | 
|  | if (arm_feature(env, ARM_FEATURE_V4T)) { | 
|  | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; | 
|  | } | 
|  | env->regs[14] = env->regs[15] + offset; | 
|  | env->regs[15] = addr; | 
|  | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Return the exception level which controls this address translation regime */ | 
|  | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) | 
|  | { | 
|  | switch (mmu_idx) { | 
|  | case ARMMMUIdx_S2NS: | 
|  | case ARMMMUIdx_S1E2: | 
|  | return 2; | 
|  | case ARMMMUIdx_S1E3: | 
|  | return 3; | 
|  | case ARMMMUIdx_S1SE0: | 
|  | return arm_el_is_aa64(env, 3) ? 1 : 3; | 
|  | case ARMMMUIdx_S1SE1: | 
|  | case ARMMMUIdx_S1NSE0: | 
|  | case ARMMMUIdx_S1NSE1: | 
|  | return 1; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return true if this address translation regime is secure */ | 
|  | static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) | 
|  | { | 
|  | switch (mmu_idx) { | 
|  | case ARMMMUIdx_S12NSE0: | 
|  | case ARMMMUIdx_S12NSE1: | 
|  | case ARMMMUIdx_S1NSE0: | 
|  | case ARMMMUIdx_S1NSE1: | 
|  | case ARMMMUIdx_S1E2: | 
|  | case ARMMMUIdx_S2NS: | 
|  | return false; | 
|  | case ARMMMUIdx_S1E3: | 
|  | case ARMMMUIdx_S1SE0: | 
|  | case ARMMMUIdx_S1SE1: | 
|  | return true; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return the SCTLR value which controls this address translation regime */ | 
|  | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) | 
|  | { | 
|  | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | 
|  | } | 
|  |  | 
|  | /* Return true if the specified stage of address translation is disabled */ | 
|  | static inline bool regime_translation_disabled(CPUARMState *env, | 
|  | ARMMMUIdx mmu_idx) | 
|  | { | 
|  | if (mmu_idx == ARMMMUIdx_S2NS) { | 
|  | return (env->cp15.hcr_el2 & HCR_VM) == 0; | 
|  | } | 
|  | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; | 
|  | } | 
|  |  | 
|  | /* Return the TCR controlling this translation regime */ | 
|  | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | 
|  | { | 
|  | if (mmu_idx == ARMMMUIdx_S2NS) { | 
|  | return &env->cp15.vtcr_el2; | 
|  | } | 
|  | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | 
|  | } | 
|  |  | 
|  | /* Return the TTBR associated with this translation regime */ | 
|  | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | 
|  | int ttbrn) | 
|  | { | 
|  | if (mmu_idx == ARMMMUIdx_S2NS) { | 
|  | return env->cp15.vttbr_el2; | 
|  | } | 
|  | if (ttbrn == 0) { | 
|  | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | 
|  | } else { | 
|  | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return true if the translation regime is using LPAE format page tables */ | 
|  | static inline bool regime_using_lpae_format(CPUARMState *env, | 
|  | ARMMMUIdx mmu_idx) | 
|  | { | 
|  | int el = regime_el(env, mmu_idx); | 
|  | if (el == 2 || arm_el_is_aa64(env, el)) { | 
|  | return true; | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_LPAE) | 
|  | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) | 
|  | { | 
|  | switch (mmu_idx) { | 
|  | case ARMMMUIdx_S1SE0: | 
|  | case ARMMMUIdx_S1NSE0: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | case ARMMMUIdx_S12NSE0: | 
|  | case ARMMMUIdx_S12NSE1: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Translate section/page access permissions to page | 
|  | * R/W protection flags | 
|  | * | 
|  | * @env:         CPUARMState | 
|  | * @mmu_idx:     MMU index indicating required translation regime | 
|  | * @ap:          The 3-bit access permissions (AP[2:0]) | 
|  | * @domain_prot: The 2-bit domain access permissions | 
|  | */ | 
|  | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | 
|  | int ap, int domain_prot) | 
|  | { | 
|  | bool is_user = regime_is_user(env, mmu_idx); | 
|  |  | 
|  | if (domain_prot == 3) { | 
|  | return PAGE_READ | PAGE_WRITE; | 
|  | } | 
|  |  | 
|  | switch (ap) { | 
|  | case 0: | 
|  | if (arm_feature(env, ARM_FEATURE_V7)) { | 
|  | return 0; | 
|  | } | 
|  | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { | 
|  | case SCTLR_S: | 
|  | return is_user ? 0 : PAGE_READ; | 
|  | case SCTLR_R: | 
|  | return PAGE_READ; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | case 1: | 
|  | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | 
|  | case 2: | 
|  | if (is_user) { | 
|  | return PAGE_READ; | 
|  | } else { | 
|  | return PAGE_READ | PAGE_WRITE; | 
|  | } | 
|  | case 3: | 
|  | return PAGE_READ | PAGE_WRITE; | 
|  | case 4: /* Reserved.  */ | 
|  | return 0; | 
|  | case 5: | 
|  | return is_user ? 0 : PAGE_READ; | 
|  | case 6: | 
|  | return PAGE_READ; | 
|  | case 7: | 
|  | if (!arm_feature(env, ARM_FEATURE_V6K)) { | 
|  | return 0; | 
|  | } | 
|  | return PAGE_READ; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Translate section/page access permissions to page | 
|  | * R/W protection flags. | 
|  | * | 
|  | * @ap:      The 2-bit simple AP (AP[2:1]) | 
|  | * @is_user: TRUE if accessing from PL0 | 
|  | */ | 
|  | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) | 
|  | { | 
|  | switch (ap) { | 
|  | case 0: | 
|  | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | 
|  | case 1: | 
|  | return PAGE_READ | PAGE_WRITE; | 
|  | case 2: | 
|  | return is_user ? 0 : PAGE_READ; | 
|  | case 3: | 
|  | return PAGE_READ; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | 
|  | { | 
|  | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | 
|  | } | 
|  |  | 
|  | /* Translate section/page access permissions to protection flags | 
|  | * | 
|  | * @env:     CPUARMState | 
|  | * @mmu_idx: MMU index indicating required translation regime | 
|  | * @is_aa64: TRUE if AArch64 | 
|  | * @ap:      The 2-bit simple AP (AP[2:1]) | 
|  | * @ns:      NS (non-secure) bit | 
|  | * @xn:      XN (execute-never) bit | 
|  | * @pxn:     PXN (privileged execute-never) bit | 
|  | */ | 
|  | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | 
|  | int ap, int ns, int xn, int pxn) | 
|  | { | 
|  | bool is_user = regime_is_user(env, mmu_idx); | 
|  | int prot_rw, user_rw; | 
|  | bool have_wxn; | 
|  | int wxn = 0; | 
|  |  | 
|  | assert(mmu_idx != ARMMMUIdx_S2NS); | 
|  |  | 
|  | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | 
|  | if (is_user) { | 
|  | prot_rw = user_rw; | 
|  | } else { | 
|  | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | 
|  | } | 
|  |  | 
|  | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | 
|  | return prot_rw; | 
|  | } | 
|  |  | 
|  | /* TODO have_wxn should be replaced with | 
|  | *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | 
|  | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | 
|  | * compatible processors have EL2, which is required for [U]WXN. | 
|  | */ | 
|  | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | 
|  |  | 
|  | if (have_wxn) { | 
|  | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | 
|  | } | 
|  |  | 
|  | if (is_aa64) { | 
|  | switch (regime_el(env, mmu_idx)) { | 
|  | case 1: | 
|  | if (!is_user) { | 
|  | xn = pxn || (user_rw & PAGE_WRITE); | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | case 3: | 
|  | break; | 
|  | } | 
|  | } else if (arm_feature(env, ARM_FEATURE_V7)) { | 
|  | switch (regime_el(env, mmu_idx)) { | 
|  | case 1: | 
|  | case 3: | 
|  | if (is_user) { | 
|  | xn = xn || !(user_rw & PAGE_READ); | 
|  | } else { | 
|  | int uwxn = 0; | 
|  | if (have_wxn) { | 
|  | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | 
|  | } | 
|  | xn = xn || !(prot_rw & PAGE_READ) || pxn || | 
|  | (uwxn && (user_rw & PAGE_WRITE)); | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | xn = wxn = 0; | 
|  | } | 
|  |  | 
|  | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | 
|  | return prot_rw; | 
|  | } | 
|  | return prot_rw | PAGE_EXEC; | 
|  | } | 
|  |  | 
|  | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, | 
|  | uint32_t *table, uint32_t address) | 
|  | { | 
|  | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ | 
|  | TCR *tcr = regime_tcr(env, mmu_idx); | 
|  |  | 
|  | if (address & tcr->mask) { | 
|  | if (tcr->raw_tcr & TTBCR_PD1) { | 
|  | /* Translation table walk disabled for TTBR1 */ | 
|  | return false; | 
|  | } | 
|  | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; | 
|  | } else { | 
|  | if (tcr->raw_tcr & TTBCR_PD0) { | 
|  | /* Translation table walk disabled for TTBR0 */ | 
|  | return false; | 
|  | } | 
|  | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; | 
|  | } | 
|  | *table |= (address >> 18) & 0x3ffc; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* All loads done in the course of a page table walk go through here. | 
|  | * TODO: rather than ignoring errors from physical memory reads (which | 
|  | * are external aborts in ARM terminology) we should propagate this | 
|  | * error out so that we can turn it into a Data Abort if this walk | 
|  | * was being done for a CPU load/store or an address translation instruction | 
|  | * (but not if it was for a debug access). | 
|  | */ | 
|  | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure) | 
|  | { | 
|  | MemTxAttrs attrs = {}; | 
|  |  | 
|  | attrs.secure = is_secure; | 
|  | return address_space_ldl(cs->as, addr, attrs, NULL); | 
|  | } | 
|  |  | 
|  | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure) | 
|  | { | 
|  | MemTxAttrs attrs = {}; | 
|  |  | 
|  | attrs.secure = is_secure; | 
|  | return address_space_ldq(cs->as, addr, attrs, NULL); | 
|  | } | 
|  |  | 
|  | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, | 
|  | int access_type, ARMMMUIdx mmu_idx, | 
|  | hwaddr *phys_ptr, int *prot, | 
|  | target_ulong *page_size, uint32_t *fsr) | 
|  | { | 
|  | CPUState *cs = CPU(arm_env_get_cpu(env)); | 
|  | int code; | 
|  | uint32_t table; | 
|  | uint32_t desc; | 
|  | int type; | 
|  | int ap; | 
|  | int domain = 0; | 
|  | int domain_prot; | 
|  | hwaddr phys_addr; | 
|  | uint32_t dacr; | 
|  |  | 
|  | /* Pagetable walk.  */ | 
|  | /* Lookup l1 descriptor.  */ | 
|  | if (!get_level1_table_address(env, mmu_idx, &table, address)) { | 
|  | /* Section translation fault if page walk is disabled by PD0 or PD1 */ | 
|  | code = 5; | 
|  | goto do_fault; | 
|  | } | 
|  | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); | 
|  | type = (desc & 3); | 
|  | domain = (desc >> 5) & 0x0f; | 
|  | if (regime_el(env, mmu_idx) == 1) { | 
|  | dacr = env->cp15.dacr_ns; | 
|  | } else { | 
|  | dacr = env->cp15.dacr_s; | 
|  | } | 
|  | domain_prot = (dacr >> (domain * 2)) & 3; | 
|  | if (type == 0) { | 
|  | /* Section translation fault.  */ | 
|  | code = 5; | 
|  | goto do_fault; | 
|  | } | 
|  | if (domain_prot == 0 || domain_prot == 2) { | 
|  | if (type == 2) | 
|  | code = 9; /* Section domain fault.  */ | 
|  | else | 
|  | code = 11; /* Page domain fault.  */ | 
|  | goto do_fault; | 
|  | } | 
|  | if (type == 2) { | 
|  | /* 1Mb section.  */ | 
|  | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | 
|  | ap = (desc >> 10) & 3; | 
|  | code = 13; | 
|  | *page_size = 1024 * 1024; | 
|  | } else { | 
|  | /* Lookup l2 entry.  */ | 
|  | if (type == 1) { | 
|  | /* Coarse pagetable.  */ | 
|  | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | 
|  | } else { | 
|  | /* Fine pagetable.  */ | 
|  | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | 
|  | } | 
|  | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); | 
|  | switch (desc & 3) { | 
|  | case 0: /* Page translation fault.  */ | 
|  | code = 7; | 
|  | goto do_fault; | 
|  | case 1: /* 64k page.  */ | 
|  | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | 
|  | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | 
|  | *page_size = 0x10000; | 
|  | break; | 
|  | case 2: /* 4k page.  */ | 
|  | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | 
|  | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; | 
|  | *page_size = 0x1000; | 
|  | break; | 
|  | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ | 
|  | if (type == 1) { | 
|  | /* ARMv6/XScale extended small page format */ | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE) | 
|  | || arm_feature(env, ARM_FEATURE_V6)) { | 
|  | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | 
|  | *page_size = 0x1000; | 
|  | } else { | 
|  | /* UNPREDICTABLE in ARMv5; we choose to take a | 
|  | * page translation fault. | 
|  | */ | 
|  | code = 7; | 
|  | goto do_fault; | 
|  | } | 
|  | } else { | 
|  | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | 
|  | *page_size = 0x400; | 
|  | } | 
|  | ap = (desc >> 4) & 3; | 
|  | break; | 
|  | default: | 
|  | /* Never happens, but compiler isn't smart enough to tell.  */ | 
|  | abort(); | 
|  | } | 
|  | code = 15; | 
|  | } | 
|  | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | 
|  | *prot |= *prot ? PAGE_EXEC : 0; | 
|  | if (!(*prot & (1 << access_type))) { | 
|  | /* Access permission fault.  */ | 
|  | goto do_fault; | 
|  | } | 
|  | *phys_ptr = phys_addr; | 
|  | return false; | 
|  | do_fault: | 
|  | *fsr = code | (domain << 4); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, | 
|  | int access_type, ARMMMUIdx mmu_idx, | 
|  | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | 
|  | target_ulong *page_size, uint32_t *fsr) | 
|  | { | 
|  | CPUState *cs = CPU(arm_env_get_cpu(env)); | 
|  | int code; | 
|  | uint32_t table; | 
|  | uint32_t desc; | 
|  | uint32_t xn; | 
|  | uint32_t pxn = 0; | 
|  | int type; | 
|  | int ap; | 
|  | int domain = 0; | 
|  | int domain_prot; | 
|  | hwaddr phys_addr; | 
|  | uint32_t dacr; | 
|  | bool ns; | 
|  |  | 
|  | /* Pagetable walk.  */ | 
|  | /* Lookup l1 descriptor.  */ | 
|  | if (!get_level1_table_address(env, mmu_idx, &table, address)) { | 
|  | /* Section translation fault if page walk is disabled by PD0 or PD1 */ | 
|  | code = 5; | 
|  | goto do_fault; | 
|  | } | 
|  | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); | 
|  | type = (desc & 3); | 
|  | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { | 
|  | /* Section translation fault, or attempt to use the encoding | 
|  | * which is Reserved on implementations without PXN. | 
|  | */ | 
|  | code = 5; | 
|  | goto do_fault; | 
|  | } | 
|  | if ((type == 1) || !(desc & (1 << 18))) { | 
|  | /* Page or Section.  */ | 
|  | domain = (desc >> 5) & 0x0f; | 
|  | } | 
|  | if (regime_el(env, mmu_idx) == 1) { | 
|  | dacr = env->cp15.dacr_ns; | 
|  | } else { | 
|  | dacr = env->cp15.dacr_s; | 
|  | } | 
|  | domain_prot = (dacr >> (domain * 2)) & 3; | 
|  | if (domain_prot == 0 || domain_prot == 2) { | 
|  | if (type != 1) { | 
|  | code = 9; /* Section domain fault.  */ | 
|  | } else { | 
|  | code = 11; /* Page domain fault.  */ | 
|  | } | 
|  | goto do_fault; | 
|  | } | 
|  | if (type != 1) { | 
|  | if (desc & (1 << 18)) { | 
|  | /* Supersection.  */ | 
|  | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | 
|  | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; | 
|  | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | 
|  | *page_size = 0x1000000; | 
|  | } else { | 
|  | /* Section.  */ | 
|  | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | 
|  | *page_size = 0x100000; | 
|  | } | 
|  | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); | 
|  | xn = desc & (1 << 4); | 
|  | pxn = desc & 1; | 
|  | code = 13; | 
|  | ns = extract32(desc, 19, 1); | 
|  | } else { | 
|  | if (arm_feature(env, ARM_FEATURE_PXN)) { | 
|  | pxn = (desc >> 2) & 1; | 
|  | } | 
|  | ns = extract32(desc, 3, 1); | 
|  | /* Lookup l2 entry.  */ | 
|  | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | 
|  | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); | 
|  | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); | 
|  | switch (desc & 3) { | 
|  | case 0: /* Page translation fault.  */ | 
|  | code = 7; | 
|  | goto do_fault; | 
|  | case 1: /* 64k page.  */ | 
|  | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | 
|  | xn = desc & (1 << 15); | 
|  | *page_size = 0x10000; | 
|  | break; | 
|  | case 2: case 3: /* 4k page.  */ | 
|  | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | 
|  | xn = desc & 1; | 
|  | *page_size = 0x1000; | 
|  | break; | 
|  | default: | 
|  | /* Never happens, but compiler isn't smart enough to tell.  */ | 
|  | abort(); | 
|  | } | 
|  | code = 15; | 
|  | } | 
|  | if (domain_prot == 3) { | 
|  | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | 
|  | } else { | 
|  | if (pxn && !regime_is_user(env, mmu_idx)) { | 
|  | xn = 1; | 
|  | } | 
|  | if (xn && access_type == 2) | 
|  | goto do_fault; | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_V6K) && | 
|  | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | 
|  | /* The simplified model uses AP[0] as an access control bit.  */ | 
|  | if ((ap & 1) == 0) { | 
|  | /* Access flag fault.  */ | 
|  | code = (code == 15) ? 6 : 3; | 
|  | goto do_fault; | 
|  | } | 
|  | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | 
|  | } else { | 
|  | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | 
|  | } | 
|  | if (*prot && !xn) { | 
|  | *prot |= PAGE_EXEC; | 
|  | } | 
|  | if (!(*prot & (1 << access_type))) { | 
|  | /* Access permission fault.  */ | 
|  | goto do_fault; | 
|  | } | 
|  | } | 
|  | if (ns) { | 
|  | /* The NS bit will (as required by the architecture) have no effect if | 
|  | * the CPU doesn't support TZ or this is a non-secure translation | 
|  | * regime, because the attribute will already be non-secure. | 
|  | */ | 
|  | attrs->secure = false; | 
|  | } | 
|  | *phys_ptr = phys_addr; | 
|  | return false; | 
|  | do_fault: | 
|  | *fsr = code | (domain << 4); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Fault type for long-descriptor MMU fault reporting; this corresponds | 
|  | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | 
|  | */ | 
|  | typedef enum { | 
|  | translation_fault = 1, | 
|  | access_fault = 2, | 
|  | permission_fault = 3, | 
|  | } MMUFaultType; | 
|  |  | 
|  | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, | 
|  | int access_type, ARMMMUIdx mmu_idx, | 
|  | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, | 
|  | target_ulong *page_size_ptr, uint32_t *fsr) | 
|  | { | 
|  | CPUState *cs = CPU(arm_env_get_cpu(env)); | 
|  | /* Read an LPAE long-descriptor translation table. */ | 
|  | MMUFaultType fault_type = translation_fault; | 
|  | uint32_t level = 1; | 
|  | uint32_t epd = 0; | 
|  | int32_t tsz; | 
|  | uint32_t tg; | 
|  | uint64_t ttbr; | 
|  | int ttbr_select; | 
|  | hwaddr descaddr, descmask; | 
|  | uint32_t tableattrs; | 
|  | target_ulong page_size; | 
|  | uint32_t attrs; | 
|  | int32_t granule_sz = 9; | 
|  | int32_t va_size = 32; | 
|  | int32_t tbi = 0; | 
|  | TCR *tcr = regime_tcr(env, mmu_idx); | 
|  | int ap, ns, xn, pxn; | 
|  | uint32_t el = regime_el(env, mmu_idx); | 
|  | bool ttbr1_valid = true; | 
|  |  | 
|  | /* TODO: | 
|  | * This code does not handle the different format TCR for VTCR_EL2. | 
|  | * This code also does not support shareability levels. | 
|  | * Attribute and permission bit handling should also be checked when adding | 
|  | * support for those page table walks. | 
|  | */ | 
|  | if (arm_el_is_aa64(env, el)) { | 
|  | va_size = 64; | 
|  | if (el > 1) { | 
|  | if (mmu_idx != ARMMMUIdx_S2NS) { | 
|  | tbi = extract64(tcr->raw_tcr, 20, 1); | 
|  | } | 
|  | } else { | 
|  | if (extract64(address, 55, 1)) { | 
|  | tbi = extract64(tcr->raw_tcr, 38, 1); | 
|  | } else { | 
|  | tbi = extract64(tcr->raw_tcr, 37, 1); | 
|  | } | 
|  | } | 
|  | tbi *= 8; | 
|  |  | 
|  | /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it | 
|  | * invalid. | 
|  | */ | 
|  | if (el > 1) { | 
|  | ttbr1_valid = false; | 
|  | } | 
|  | } else { | 
|  | /* There is no TTBR1 for EL2 */ | 
|  | if (el == 2) { | 
|  | ttbr1_valid = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Determine whether this address is in the region controlled by | 
|  | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | 
|  | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | 
|  | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | 
|  | */ | 
|  | uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6); | 
|  | if (va_size == 64) { | 
|  | t0sz = MIN(t0sz, 39); | 
|  | t0sz = MAX(t0sz, 16); | 
|  | } | 
|  | uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6); | 
|  | if (va_size == 64) { | 
|  | t1sz = MIN(t1sz, 39); | 
|  | t1sz = MAX(t1sz, 16); | 
|  | } | 
|  | if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { | 
|  | /* there is a ttbr0 region and we are in it (high bits all zero) */ | 
|  | ttbr_select = 0; | 
|  | } else if (ttbr1_valid && t1sz && | 
|  | !extract64(~address, va_size - t1sz, t1sz - tbi)) { | 
|  | /* there is a ttbr1 region and we are in it (high bits all one) */ | 
|  | ttbr_select = 1; | 
|  | } else if (!t0sz) { | 
|  | /* ttbr0 region is "everything not in the ttbr1 region" */ | 
|  | ttbr_select = 0; | 
|  | } else if (!t1sz && ttbr1_valid) { | 
|  | /* ttbr1 region is "everything not in the ttbr0 region" */ | 
|  | ttbr_select = 1; | 
|  | } else { | 
|  | /* in the gap between the two regions, this is a Translation fault */ | 
|  | fault_type = translation_fault; | 
|  | goto do_fault; | 
|  | } | 
|  |  | 
|  | /* Note that QEMU ignores shareability and cacheability attributes, | 
|  | * so we don't need to do anything with the SH, ORGN, IRGN fields | 
|  | * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the | 
|  | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | 
|  | * implement any ASID-like capability so we can ignore it (instead | 
|  | * we will always flush the TLB any time the ASID is changed). | 
|  | */ | 
|  | if (ttbr_select == 0) { | 
|  | ttbr = regime_ttbr(env, mmu_idx, 0); | 
|  | if (el < 2) { | 
|  | epd = extract32(tcr->raw_tcr, 7, 1); | 
|  | } | 
|  | tsz = t0sz; | 
|  |  | 
|  | tg = extract32(tcr->raw_tcr, 14, 2); | 
|  | if (tg == 1) { /* 64KB pages */ | 
|  | granule_sz = 13; | 
|  | } | 
|  | if (tg == 2) { /* 16KB pages */ | 
|  | granule_sz = 11; | 
|  | } | 
|  | } else { | 
|  | /* We should only be here if TTBR1 is valid */ | 
|  | assert(ttbr1_valid); | 
|  |  | 
|  | ttbr = regime_ttbr(env, mmu_idx, 1); | 
|  | epd = extract32(tcr->raw_tcr, 23, 1); | 
|  | tsz = t1sz; | 
|  |  | 
|  | tg = extract32(tcr->raw_tcr, 30, 2); | 
|  | if (tg == 3)  { /* 64KB pages */ | 
|  | granule_sz = 13; | 
|  | } | 
|  | if (tg == 1) { /* 16KB pages */ | 
|  | granule_sz = 11; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Here we should have set up all the parameters for the translation: | 
|  | * va_size, ttbr, epd, tsz, granule_sz, tbi | 
|  | */ | 
|  |  | 
|  | if (epd) { | 
|  | /* Translation table walk disabled => Translation fault on TLB miss | 
|  | * Note: This is always 0 on 64-bit EL2 and EL3. | 
|  | */ | 
|  | goto do_fault; | 
|  | } | 
|  |  | 
|  | /* The starting level depends on the virtual address size (which can be | 
|  | * up to 48 bits) and the translation granule size. It indicates the number | 
|  | * of strides (granule_sz bits at a time) needed to consume the bits | 
|  | * of the input address. In the pseudocode this is: | 
|  | *  level = 4 - RoundUp((inputsize - grainsize) / stride) | 
|  | * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is | 
|  | * our 'granule_sz + 3' and 'stride' is our 'granule_sz'. | 
|  | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | 
|  | *     = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz | 
|  | *     = 4 - (va_size - tsz - 4) / granule_sz; | 
|  | */ | 
|  | level = 4 - (va_size - tsz - 4) / granule_sz; | 
|  |  | 
|  | /* Clear the vaddr bits which aren't part of the within-region address, | 
|  | * so that we don't have to special case things when calculating the | 
|  | * first descriptor address. | 
|  | */ | 
|  | if (tsz) { | 
|  | address &= (1ULL << (va_size - tsz)) - 1; | 
|  | } | 
|  |  | 
|  | descmask = (1ULL << (granule_sz + 3)) - 1; | 
|  |  | 
|  | /* Now we can extract the actual base address from the TTBR */ | 
|  | descaddr = extract64(ttbr, 0, 48); | 
|  | descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1); | 
|  |  | 
|  | /* Secure accesses start with the page table in secure memory and | 
|  | * can be downgraded to non-secure at any step. Non-secure accesses | 
|  | * remain non-secure. We implement this by just ORing in the NSTable/NS | 
|  | * bits at each step. | 
|  | */ | 
|  | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | 
|  | for (;;) { | 
|  | uint64_t descriptor; | 
|  | bool nstable; | 
|  |  | 
|  | descaddr |= (address >> (granule_sz * (4 - level))) & descmask; | 
|  | descaddr &= ~7ULL; | 
|  | nstable = extract32(tableattrs, 4, 1); | 
|  | descriptor = arm_ldq_ptw(cs, descaddr, !nstable); | 
|  | if (!(descriptor & 1) || | 
|  | (!(descriptor & 2) && (level == 3))) { | 
|  | /* Invalid, or the Reserved level 3 encoding */ | 
|  | goto do_fault; | 
|  | } | 
|  | descaddr = descriptor & 0xfffffff000ULL; | 
|  |  | 
|  | if ((descriptor & 2) && (level < 3)) { | 
|  | /* Table entry. The top five bits are attributes which  may | 
|  | * propagate down through lower levels of the table (and | 
|  | * which are all arranged so that 0 means "no effect", so | 
|  | * we can gather them up by ORing in the bits at each level). | 
|  | */ | 
|  | tableattrs |= extract64(descriptor, 59, 5); | 
|  | level++; | 
|  | continue; | 
|  | } | 
|  | /* Block entry at level 1 or 2, or page entry at level 3. | 
|  | * These are basically the same thing, although the number | 
|  | * of bits we pull in from the vaddr varies. | 
|  | */ | 
|  | page_size = (1ULL << ((granule_sz * (4 - level)) + 3)); | 
|  | descaddr |= (address & (page_size - 1)); | 
|  | /* Extract attributes from the descriptor and merge with table attrs */ | 
|  | attrs = extract64(descriptor, 2, 10) | 
|  | | (extract64(descriptor, 52, 12) << 10); | 
|  | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ | 
|  | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | 
|  | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | 
|  | * means "force PL1 access only", which means forcing AP[1] to 0. | 
|  | */ | 
|  | if (extract32(tableattrs, 2, 1)) { | 
|  | attrs &= ~(1 << 4); | 
|  | } | 
|  | attrs |= nstable << 3; /* NS */ | 
|  | break; | 
|  | } | 
|  | /* Here descaddr is the final physical address, and attributes | 
|  | * are all in attrs. | 
|  | */ | 
|  | fault_type = access_fault; | 
|  | if ((attrs & (1 << 8)) == 0) { | 
|  | /* Access flag */ | 
|  | goto do_fault; | 
|  | } | 
|  |  | 
|  | ap = extract32(attrs, 4, 2); | 
|  | ns = extract32(attrs, 3, 1); | 
|  | xn = extract32(attrs, 12, 1); | 
|  | pxn = extract32(attrs, 11, 1); | 
|  |  | 
|  | *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn); | 
|  |  | 
|  | fault_type = permission_fault; | 
|  | if (!(*prot & (1 << access_type))) { | 
|  | goto do_fault; | 
|  | } | 
|  |  | 
|  | if (ns) { | 
|  | /* The NS bit will (as required by the architecture) have no effect if | 
|  | * the CPU doesn't support TZ or this is a non-secure translation | 
|  | * regime, because the attribute will already be non-secure. | 
|  | */ | 
|  | txattrs->secure = false; | 
|  | } | 
|  | *phys_ptr = descaddr; | 
|  | *page_size_ptr = page_size; | 
|  | return false; | 
|  |  | 
|  | do_fault: | 
|  | /* Long-descriptor format IFSR/DFSR value */ | 
|  | *fsr = (1 << 9) | (fault_type << 2) | level; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, | 
|  | ARMMMUIdx mmu_idx, | 
|  | int32_t address, int *prot) | 
|  | { | 
|  | *prot = PAGE_READ | PAGE_WRITE; | 
|  | switch (address) { | 
|  | case 0xF0000000 ... 0xFFFFFFFF: | 
|  | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ | 
|  | *prot |= PAGE_EXEC; | 
|  | } | 
|  | break; | 
|  | case 0x00000000 ... 0x7FFFFFFF: | 
|  | *prot |= PAGE_EXEC; | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, | 
|  | int access_type, ARMMMUIdx mmu_idx, | 
|  | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | int n; | 
|  | bool is_user = regime_is_user(env, mmu_idx); | 
|  |  | 
|  | *phys_ptr = address; | 
|  | *prot = 0; | 
|  |  | 
|  | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | 
|  | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | 
|  | } else { /* MPU enabled */ | 
|  | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | 
|  | /* region search */ | 
|  | uint32_t base = env->pmsav7.drbar[n]; | 
|  | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | 
|  | uint32_t rmask; | 
|  | bool srdis = false; | 
|  |  | 
|  | if (!(env->pmsav7.drsr[n] & 0x1)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!rsize) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); | 
|  | continue; | 
|  | } | 
|  | rsize++; | 
|  | rmask = (1ull << rsize) - 1; | 
|  |  | 
|  | if (base & rmask) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " | 
|  | "to DRSR region size, mask = %" PRIx32, | 
|  | base, rmask); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (address < base || address > base + rmask) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Region matched */ | 
|  |  | 
|  | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | 
|  | int i, snd; | 
|  | uint32_t srdis_mask; | 
|  |  | 
|  | rsize -= 3; /* sub region size (power of 2) */ | 
|  | snd = ((address - base) >> rsize) & 0x7; | 
|  | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | 
|  |  | 
|  | srdis_mask = srdis ? 0x3 : 0x0; | 
|  | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | 
|  | /* This will check in groups of 2, 4 and then 8, whether | 
|  | * the subregion bits are consistent. rsize is incremented | 
|  | * back up to give the region size, considering consistent | 
|  | * adjacent subregions as one region. Stop testing if rsize | 
|  | * is already big enough for an entire QEMU page. | 
|  | */ | 
|  | int snd_rounded = snd & ~(i - 1); | 
|  | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | 
|  | snd_rounded + 8, i); | 
|  | if (srdis_mask ^ srdis_multi) { | 
|  | break; | 
|  | } | 
|  | srdis_mask = (srdis_mask << i) | srdis_mask; | 
|  | rsize++; | 
|  | } | 
|  | } | 
|  | if (rsize < TARGET_PAGE_BITS) { | 
|  | qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" | 
|  | "alignment of %" PRIu32 " bits. Minimum is %d\n", | 
|  | rsize, TARGET_PAGE_BITS); | 
|  | continue; | 
|  | } | 
|  | if (srdis) { | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (n == -1) { /* no hits */ | 
|  | if (cpu->pmsav7_dregion && | 
|  | (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { | 
|  | /* background fault */ | 
|  | *fsr = 0; | 
|  | return true; | 
|  | } | 
|  | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | 
|  | } else { /* a MPU hit! */ | 
|  | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | 
|  |  | 
|  | if (is_user) { /* User mode AP bit decoding */ | 
|  | switch (ap) { | 
|  | case 0: | 
|  | case 1: | 
|  | case 5: | 
|  | break; /* no access */ | 
|  | case 3: | 
|  | *prot |= PAGE_WRITE; | 
|  | /* fall through */ | 
|  | case 2: | 
|  | case 6: | 
|  | *prot |= PAGE_READ | PAGE_EXEC; | 
|  | break; | 
|  | default: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "Bad value for AP bits in DRACR %" | 
|  | PRIx32 "\n", ap); | 
|  | } | 
|  | } else { /* Priv. mode AP bits decoding */ | 
|  | switch (ap) { | 
|  | case 0: | 
|  | break; /* no access */ | 
|  | case 1: | 
|  | case 2: | 
|  | case 3: | 
|  | *prot |= PAGE_WRITE; | 
|  | /* fall through */ | 
|  | case 5: | 
|  | case 6: | 
|  | *prot |= PAGE_READ | PAGE_EXEC; | 
|  | break; | 
|  | default: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "Bad value for AP bits in DRACR %" | 
|  | PRIx32 "\n", ap); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* execute never */ | 
|  | if (env->pmsav7.dracr[n] & (1 << 12)) { | 
|  | *prot &= ~PAGE_EXEC; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | *fsr = 0x00d; /* Permission fault */ | 
|  | return !(*prot & (1 << access_type)); | 
|  | } | 
|  |  | 
|  | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, | 
|  | int access_type, ARMMMUIdx mmu_idx, | 
|  | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | 
|  | { | 
|  | int n; | 
|  | uint32_t mask; | 
|  | uint32_t base; | 
|  | bool is_user = regime_is_user(env, mmu_idx); | 
|  |  | 
|  | *phys_ptr = address; | 
|  | for (n = 7; n >= 0; n--) { | 
|  | base = env->cp15.c6_region[n]; | 
|  | if ((base & 1) == 0) { | 
|  | continue; | 
|  | } | 
|  | mask = 1 << ((base >> 1) & 0x1f); | 
|  | /* Keep this shift separate from the above to avoid an | 
|  | (undefined) << 32.  */ | 
|  | mask = (mask << 1) - 1; | 
|  | if (((base ^ address) & ~mask) == 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (n < 0) { | 
|  | *fsr = 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (access_type == 2) { | 
|  | mask = env->cp15.pmsav5_insn_ap; | 
|  | } else { | 
|  | mask = env->cp15.pmsav5_data_ap; | 
|  | } | 
|  | mask = (mask >> (n * 4)) & 0xf; | 
|  | switch (mask) { | 
|  | case 0: | 
|  | *fsr = 1; | 
|  | return true; | 
|  | case 1: | 
|  | if (is_user) { | 
|  | *fsr = 1; | 
|  | return true; | 
|  | } | 
|  | *prot = PAGE_READ | PAGE_WRITE; | 
|  | break; | 
|  | case 2: | 
|  | *prot = PAGE_READ; | 
|  | if (!is_user) { | 
|  | *prot |= PAGE_WRITE; | 
|  | } | 
|  | break; | 
|  | case 3: | 
|  | *prot = PAGE_READ | PAGE_WRITE; | 
|  | break; | 
|  | case 5: | 
|  | if (is_user) { | 
|  | *fsr = 1; | 
|  | return true; | 
|  | } | 
|  | *prot = PAGE_READ; | 
|  | break; | 
|  | case 6: | 
|  | *prot = PAGE_READ; | 
|  | break; | 
|  | default: | 
|  | /* Bad permission.  */ | 
|  | *fsr = 1; | 
|  | return true; | 
|  | } | 
|  | *prot |= PAGE_EXEC; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* get_phys_addr - get the physical address for this virtual address | 
|  | * | 
|  | * Find the physical address corresponding to the given virtual address, | 
|  | * by doing a translation table walk on MMU based systems or using the | 
|  | * MPU state on MPU based systems. | 
|  | * | 
|  | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, | 
|  | * prot and page_size may not be filled in, and the populated fsr value provides | 
|  | * information on why the translation aborted, in the format of a | 
|  | * DFSR/IFSR fault register, with the following caveats: | 
|  | *  * we honour the short vs long DFSR format differences. | 
|  | *  * the WnR bit is never set (the caller must do this). | 
|  | *  * for PSMAv5 based systems we don't bother to return a full FSR format | 
|  | *    value. | 
|  | * | 
|  | * @env: CPUARMState | 
|  | * @address: virtual address to get physical address for | 
|  | * @access_type: 0 for read, 1 for write, 2 for execute | 
|  | * @mmu_idx: MMU index indicating required translation regime | 
|  | * @phys_ptr: set to the physical address corresponding to the virtual address | 
|  | * @attrs: set to the memory transaction attributes to use | 
|  | * @prot: set to the permissions for the page containing phys_ptr | 
|  | * @page_size: set to the size of the page containing phys_ptr | 
|  | * @fsr: set to the DFSR/IFSR value on failure | 
|  | */ | 
|  | static inline bool get_phys_addr(CPUARMState *env, target_ulong address, | 
|  | int access_type, ARMMMUIdx mmu_idx, | 
|  | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | 
|  | target_ulong *page_size, uint32_t *fsr) | 
|  | { | 
|  | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { | 
|  | /* TODO: when we support EL2 we should here call ourselves recursively | 
|  | * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw | 
|  | * functions will also need changing to perform ARMMMUIdx_S2NS loads | 
|  | * rather than direct physical memory loads when appropriate. | 
|  | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. | 
|  | */ | 
|  | assert(!arm_feature(env, ARM_FEATURE_EL2)); | 
|  | mmu_idx += ARMMMUIdx_S1NSE0; | 
|  | } | 
|  |  | 
|  | /* The page table entries may downgrade secure to non-secure, but | 
|  | * cannot upgrade an non-secure translation regime's attributes | 
|  | * to secure. | 
|  | */ | 
|  | attrs->secure = regime_is_secure(env, mmu_idx); | 
|  | attrs->user = regime_is_user(env, mmu_idx); | 
|  |  | 
|  | /* Fast Context Switch Extension. This doesn't exist at all in v8. | 
|  | * In v7 and earlier it affects all stage 1 translations. | 
|  | */ | 
|  | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS | 
|  | && !arm_feature(env, ARM_FEATURE_V8)) { | 
|  | if (regime_el(env, mmu_idx) == 3) { | 
|  | address += env->cp15.fcseidr_s; | 
|  | } else { | 
|  | address += env->cp15.fcseidr_ns; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* pmsav7 has special handling for when MPU is disabled so call it before | 
|  | * the common MMU/MPU disabled check below. | 
|  | */ | 
|  | if (arm_feature(env, ARM_FEATURE_MPU) && | 
|  | arm_feature(env, ARM_FEATURE_V7)) { | 
|  | *page_size = TARGET_PAGE_SIZE; | 
|  | return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | 
|  | phys_ptr, prot, fsr); | 
|  | } | 
|  |  | 
|  | if (regime_translation_disabled(env, mmu_idx)) { | 
|  | /* MMU/MPU disabled.  */ | 
|  | *phys_ptr = address; | 
|  | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | 
|  | *page_size = TARGET_PAGE_SIZE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_MPU)) { | 
|  | /* Pre-v7 MPU */ | 
|  | *page_size = TARGET_PAGE_SIZE; | 
|  | return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, | 
|  | phys_ptr, prot, fsr); | 
|  | } | 
|  |  | 
|  | if (regime_using_lpae_format(env, mmu_idx)) { | 
|  | return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, | 
|  | attrs, prot, page_size, fsr); | 
|  | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { | 
|  | return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, | 
|  | attrs, prot, page_size, fsr); | 
|  | } else { | 
|  | return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, | 
|  | prot, page_size, fsr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Walk the page table and (if the mapping exists) add the page | 
|  | * to the TLB. Return false on success, or true on failure. Populate | 
|  | * fsr with ARM DFSR/IFSR fault register format value on failure. | 
|  | */ | 
|  | bool arm_tlb_fill(CPUState *cs, vaddr address, | 
|  | int access_type, int mmu_idx, uint32_t *fsr) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  | hwaddr phys_addr; | 
|  | target_ulong page_size; | 
|  | int prot; | 
|  | int ret; | 
|  | MemTxAttrs attrs = {}; | 
|  |  | 
|  | ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, | 
|  | &attrs, &prot, &page_size, fsr); | 
|  | if (!ret) { | 
|  | /* Map a single [sub]page.  */ | 
|  | phys_addr &= TARGET_PAGE_MASK; | 
|  | address &= TARGET_PAGE_MASK; | 
|  | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, | 
|  | prot, mmu_idx, page_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  | hwaddr phys_addr; | 
|  | target_ulong page_size; | 
|  | int prot; | 
|  | bool ret; | 
|  | uint32_t fsr; | 
|  | MemTxAttrs attrs = {}; | 
|  |  | 
|  | ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr, | 
|  | &attrs, &prot, &page_size, &fsr); | 
|  |  | 
|  | if (ret) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return phys_addr; | 
|  | } | 
|  |  | 
|  | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) | 
|  | { | 
|  | if ((env->uncached_cpsr & CPSR_M) == mode) { | 
|  | env->regs[13] = val; | 
|  | } else { | 
|  | env->banked_r13[bank_number(mode)] = val; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) | 
|  | { | 
|  | if ((env->uncached_cpsr & CPSR_M) == mode) { | 
|  | return env->regs[13]; | 
|  | } else { | 
|  | return env->banked_r13[bank_number(mode)]; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | switch (reg) { | 
|  | case 0: /* APSR */ | 
|  | return xpsr_read(env) & 0xf8000000; | 
|  | case 1: /* IAPSR */ | 
|  | return xpsr_read(env) & 0xf80001ff; | 
|  | case 2: /* EAPSR */ | 
|  | return xpsr_read(env) & 0xff00fc00; | 
|  | case 3: /* xPSR */ | 
|  | return xpsr_read(env) & 0xff00fdff; | 
|  | case 5: /* IPSR */ | 
|  | return xpsr_read(env) & 0x000001ff; | 
|  | case 6: /* EPSR */ | 
|  | return xpsr_read(env) & 0x0700fc00; | 
|  | case 7: /* IEPSR */ | 
|  | return xpsr_read(env) & 0x0700edff; | 
|  | case 8: /* MSP */ | 
|  | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | 
|  | case 9: /* PSP */ | 
|  | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | 
|  | case 16: /* PRIMASK */ | 
|  | return (env->daif & PSTATE_I) != 0; | 
|  | case 17: /* BASEPRI */ | 
|  | case 18: /* BASEPRI_MAX */ | 
|  | return env->v7m.basepri; | 
|  | case 19: /* FAULTMASK */ | 
|  | return (env->daif & PSTATE_F) != 0; | 
|  | case 20: /* CONTROL */ | 
|  | return env->v7m.control; | 
|  | default: | 
|  | /* ??? For debugging only.  */ | 
|  | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | switch (reg) { | 
|  | case 0: /* APSR */ | 
|  | xpsr_write(env, val, 0xf8000000); | 
|  | break; | 
|  | case 1: /* IAPSR */ | 
|  | xpsr_write(env, val, 0xf8000000); | 
|  | break; | 
|  | case 2: /* EAPSR */ | 
|  | xpsr_write(env, val, 0xfe00fc00); | 
|  | break; | 
|  | case 3: /* xPSR */ | 
|  | xpsr_write(env, val, 0xfe00fc00); | 
|  | break; | 
|  | case 5: /* IPSR */ | 
|  | /* IPSR bits are readonly.  */ | 
|  | break; | 
|  | case 6: /* EPSR */ | 
|  | xpsr_write(env, val, 0x0600fc00); | 
|  | break; | 
|  | case 7: /* IEPSR */ | 
|  | xpsr_write(env, val, 0x0600fc00); | 
|  | break; | 
|  | case 8: /* MSP */ | 
|  | if (env->v7m.current_sp) | 
|  | env->v7m.other_sp = val; | 
|  | else | 
|  | env->regs[13] = val; | 
|  | break; | 
|  | case 9: /* PSP */ | 
|  | if (env->v7m.current_sp) | 
|  | env->regs[13] = val; | 
|  | else | 
|  | env->v7m.other_sp = val; | 
|  | break; | 
|  | case 16: /* PRIMASK */ | 
|  | if (val & 1) { | 
|  | env->daif |= PSTATE_I; | 
|  | } else { | 
|  | env->daif &= ~PSTATE_I; | 
|  | } | 
|  | break; | 
|  | case 17: /* BASEPRI */ | 
|  | env->v7m.basepri = val & 0xff; | 
|  | break; | 
|  | case 18: /* BASEPRI_MAX */ | 
|  | val &= 0xff; | 
|  | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | 
|  | env->v7m.basepri = val; | 
|  | break; | 
|  | case 19: /* FAULTMASK */ | 
|  | if (val & 1) { | 
|  | env->daif |= PSTATE_F; | 
|  | } else { | 
|  | env->daif &= ~PSTATE_F; | 
|  | } | 
|  | break; | 
|  | case 20: /* CONTROL */ | 
|  | env->v7m.control = val & 3; | 
|  | switch_v7m_sp(env, (val & 2) != 0); | 
|  | break; | 
|  | default: | 
|  | /* ??? For debugging only.  */ | 
|  | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) | 
|  | { | 
|  | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | 
|  | * Note that we do not implement the (architecturally mandated) | 
|  | * alignment fault for attempts to use this on Device memory | 
|  | * (which matches the usual QEMU behaviour of not implementing either | 
|  | * alignment faults or any memory attribute handling). | 
|  | */ | 
|  |  | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | uint64_t blocklen = 4 << cpu->dcz_blocksize; | 
|  | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | { | 
|  | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | 
|  | * the block size so we might have to do more than one TLB lookup. | 
|  | * We know that in fact for any v8 CPU the page size is at least 4K | 
|  | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | 
|  | * 1K as an artefact of legacy v5 subpage support being present in the | 
|  | * same QEMU executable. | 
|  | */ | 
|  | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | 
|  | void *hostaddr[maxidx]; | 
|  | int try, i; | 
|  | unsigned mmu_idx = cpu_mmu_index(env, false); | 
|  | TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); | 
|  |  | 
|  | for (try = 0; try < 2; try++) { | 
|  |  | 
|  | for (i = 0; i < maxidx; i++) { | 
|  | hostaddr[i] = tlb_vaddr_to_host(env, | 
|  | vaddr + TARGET_PAGE_SIZE * i, | 
|  | 1, mmu_idx); | 
|  | if (!hostaddr[i]) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == maxidx) { | 
|  | /* If it's all in the TLB it's fair game for just writing to; | 
|  | * we know we don't need to update dirty status, etc. | 
|  | */ | 
|  | for (i = 0; i < maxidx - 1; i++) { | 
|  | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | 
|  | } | 
|  | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | 
|  | return; | 
|  | } | 
|  | /* OK, try a store and see if we can populate the tlb. This | 
|  | * might cause an exception if the memory isn't writable, | 
|  | * in which case we will longjmp out of here. We must for | 
|  | * this purpose use the actual register value passed to us | 
|  | * so that we get the fault address right. | 
|  | */ | 
|  | helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA()); | 
|  | /* Now we can populate the other TLB entries, if any */ | 
|  | for (i = 0; i < maxidx; i++) { | 
|  | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | 
|  | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | 
|  | helper_ret_stb_mmu(env, va, 0, oi, GETRA()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Slow path (probably attempt to do this to an I/O device or | 
|  | * similar, or clearing of a block of code we have translations | 
|  | * cached for). Just do a series of byte writes as the architecture | 
|  | * demands. It's not worth trying to use a cpu_physical_memory_map(), | 
|  | * memset(), unmap() sequence here because: | 
|  | *  + we'd need to account for the blocksize being larger than a page | 
|  | *  + the direct-RAM access case is almost always going to be dealt | 
|  | *    with in the fastpath code above, so there's no speed benefit | 
|  | *  + we would have to deal with the map returning NULL because the | 
|  | *    bounce buffer was in use | 
|  | */ | 
|  | for (i = 0; i < blocklen; i++) { | 
|  | helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA()); | 
|  | } | 
|  | } | 
|  | #else | 
|  | memset(g2h(vaddr), 0, blocklen); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Note that signed overflow is undefined in C.  The following routines are | 
|  | careful to use unsigned types where modulo arithmetic is required. | 
|  | Failure to do so _will_ break on newer gcc.  */ | 
|  |  | 
|  | /* Signed saturating arithmetic.  */ | 
|  |  | 
|  | /* Perform 16-bit signed saturating addition.  */ | 
|  | static inline uint16_t add16_sat(uint16_t a, uint16_t b) | 
|  | { | 
|  | uint16_t res; | 
|  |  | 
|  | res = a + b; | 
|  | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | 
|  | if (a & 0x8000) | 
|  | res = 0x8000; | 
|  | else | 
|  | res = 0x7fff; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Perform 8-bit signed saturating addition.  */ | 
|  | static inline uint8_t add8_sat(uint8_t a, uint8_t b) | 
|  | { | 
|  | uint8_t res; | 
|  |  | 
|  | res = a + b; | 
|  | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | 
|  | if (a & 0x80) | 
|  | res = 0x80; | 
|  | else | 
|  | res = 0x7f; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Perform 16-bit signed saturating subtraction.  */ | 
|  | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) | 
|  | { | 
|  | uint16_t res; | 
|  |  | 
|  | res = a - b; | 
|  | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | 
|  | if (a & 0x8000) | 
|  | res = 0x8000; | 
|  | else | 
|  | res = 0x7fff; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Perform 8-bit signed saturating subtraction.  */ | 
|  | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) | 
|  | { | 
|  | uint8_t res; | 
|  |  | 
|  | res = a - b; | 
|  | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | 
|  | if (a & 0x80) | 
|  | res = 0x80; | 
|  | else | 
|  | res = 0x7f; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | 
|  | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | 
|  | #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8); | 
|  | #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8); | 
|  | #define PFX q | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | /* Unsigned saturating arithmetic.  */ | 
|  | static inline uint16_t add16_usat(uint16_t a, uint16_t b) | 
|  | { | 
|  | uint16_t res; | 
|  | res = a + b; | 
|  | if (res < a) | 
|  | res = 0xffff; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) | 
|  | { | 
|  | if (a > b) | 
|  | return a - b; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | 
|  | { | 
|  | uint8_t res; | 
|  | res = a + b; | 
|  | if (res < a) | 
|  | res = 0xff; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | 
|  | { | 
|  | if (a > b) | 
|  | return a - b; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | 
|  | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | 
|  | #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8); | 
|  | #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8); | 
|  | #define PFX uq | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | /* Signed modulo arithmetic.  */ | 
|  | #define SARITH16(a, b, n, op) do { \ | 
|  | int32_t sum; \ | 
|  | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ | 
|  | RESULT(sum, n, 16); \ | 
|  | if (sum >= 0) \ | 
|  | ge |= 3 << (n * 2); \ | 
|  | } while(0) | 
|  |  | 
|  | #define SARITH8(a, b, n, op) do { \ | 
|  | int32_t sum; \ | 
|  | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ | 
|  | RESULT(sum, n, 8); \ | 
|  | if (sum >= 0) \ | 
|  | ge |= 1 << n; \ | 
|  | } while(0) | 
|  |  | 
|  |  | 
|  | #define ADD16(a, b, n) SARITH16(a, b, n, +) | 
|  | #define SUB16(a, b, n) SARITH16(a, b, n, -) | 
|  | #define ADD8(a, b, n)  SARITH8(a, b, n, +) | 
|  | #define SUB8(a, b, n)  SARITH8(a, b, n, -) | 
|  | #define PFX s | 
|  | #define ARITH_GE | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | /* Unsigned modulo arithmetic.  */ | 
|  | #define ADD16(a, b, n) do { \ | 
|  | uint32_t sum; \ | 
|  | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | 
|  | RESULT(sum, n, 16); \ | 
|  | if ((sum >> 16) == 1) \ | 
|  | ge |= 3 << (n * 2); \ | 
|  | } while(0) | 
|  |  | 
|  | #define ADD8(a, b, n) do { \ | 
|  | uint32_t sum; \ | 
|  | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | 
|  | RESULT(sum, n, 8); \ | 
|  | if ((sum >> 8) == 1) \ | 
|  | ge |= 1 << n; \ | 
|  | } while(0) | 
|  |  | 
|  | #define SUB16(a, b, n) do { \ | 
|  | uint32_t sum; \ | 
|  | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | 
|  | RESULT(sum, n, 16); \ | 
|  | if ((sum >> 16) == 0) \ | 
|  | ge |= 3 << (n * 2); \ | 
|  | } while(0) | 
|  |  | 
|  | #define SUB8(a, b, n) do { \ | 
|  | uint32_t sum; \ | 
|  | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | 
|  | RESULT(sum, n, 8); \ | 
|  | if ((sum >> 8) == 0) \ | 
|  | ge |= 1 << n; \ | 
|  | } while(0) | 
|  |  | 
|  | #define PFX u | 
|  | #define ARITH_GE | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | /* Halved signed arithmetic.  */ | 
|  | #define ADD16(a, b, n) \ | 
|  | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | 
|  | #define SUB16(a, b, n) \ | 
|  | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | 
|  | #define ADD8(a, b, n) \ | 
|  | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | 
|  | #define SUB8(a, b, n) \ | 
|  | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | 
|  | #define PFX sh | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | /* Halved unsigned arithmetic.  */ | 
|  | #define ADD16(a, b, n) \ | 
|  | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | 
|  | #define SUB16(a, b, n) \ | 
|  | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | 
|  | #define ADD8(a, b, n) \ | 
|  | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | 
|  | #define SUB8(a, b, n) \ | 
|  | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | 
|  | #define PFX uh | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | static inline uint8_t do_usad(uint8_t a, uint8_t b) | 
|  | { | 
|  | if (a > b) | 
|  | return a - b; | 
|  | else | 
|  | return b - a; | 
|  | } | 
|  |  | 
|  | /* Unsigned sum of absolute byte differences.  */ | 
|  | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t sum; | 
|  | sum = do_usad(a, b); | 
|  | sum += do_usad(a >> 8, b >> 8); | 
|  | sum += do_usad(a >> 16, b >>16); | 
|  | sum += do_usad(a >> 24, b >> 24); | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /* For ARMv6 SEL instruction.  */ | 
|  | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t mask; | 
|  |  | 
|  | mask = 0; | 
|  | if (flags & 1) | 
|  | mask |= 0xff; | 
|  | if (flags & 2) | 
|  | mask |= 0xff00; | 
|  | if (flags & 4) | 
|  | mask |= 0xff0000; | 
|  | if (flags & 8) | 
|  | mask |= 0xff000000; | 
|  | return (a & mask) | (b & ~mask); | 
|  | } | 
|  |  | 
|  | /* VFP support.  We follow the convention used for VFP instructions: | 
|  | Single precision routines have a "s" suffix, double precision a | 
|  | "d" suffix.  */ | 
|  |  | 
|  | /* Convert host exception flags to vfp form.  */ | 
|  | static inline int vfp_exceptbits_from_host(int host_bits) | 
|  | { | 
|  | int target_bits = 0; | 
|  |  | 
|  | if (host_bits & float_flag_invalid) | 
|  | target_bits |= 1; | 
|  | if (host_bits & float_flag_divbyzero) | 
|  | target_bits |= 2; | 
|  | if (host_bits & float_flag_overflow) | 
|  | target_bits |= 4; | 
|  | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) | 
|  | target_bits |= 8; | 
|  | if (host_bits & float_flag_inexact) | 
|  | target_bits |= 0x10; | 
|  | if (host_bits & float_flag_input_denormal) | 
|  | target_bits |= 0x80; | 
|  | return target_bits; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) | 
|  | { | 
|  | int i; | 
|  | uint32_t fpscr; | 
|  |  | 
|  | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | 
|  | | (env->vfp.vec_len << 16) | 
|  | | (env->vfp.vec_stride << 20); | 
|  | i = get_float_exception_flags(&env->vfp.fp_status); | 
|  | i |= get_float_exception_flags(&env->vfp.standard_fp_status); | 
|  | fpscr |= vfp_exceptbits_from_host(i); | 
|  | return fpscr; | 
|  | } | 
|  |  | 
|  | uint32_t vfp_get_fpscr(CPUARMState *env) | 
|  | { | 
|  | return HELPER(vfp_get_fpscr)(env); | 
|  | } | 
|  |  | 
|  | /* Convert vfp exception flags to target form.  */ | 
|  | static inline int vfp_exceptbits_to_host(int target_bits) | 
|  | { | 
|  | int host_bits = 0; | 
|  |  | 
|  | if (target_bits & 1) | 
|  | host_bits |= float_flag_invalid; | 
|  | if (target_bits & 2) | 
|  | host_bits |= float_flag_divbyzero; | 
|  | if (target_bits & 4) | 
|  | host_bits |= float_flag_overflow; | 
|  | if (target_bits & 8) | 
|  | host_bits |= float_flag_underflow; | 
|  | if (target_bits & 0x10) | 
|  | host_bits |= float_flag_inexact; | 
|  | if (target_bits & 0x80) | 
|  | host_bits |= float_flag_input_denormal; | 
|  | return host_bits; | 
|  | } | 
|  |  | 
|  | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) | 
|  | { | 
|  | int i; | 
|  | uint32_t changed; | 
|  |  | 
|  | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | 
|  | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | 
|  | env->vfp.vec_len = (val >> 16) & 7; | 
|  | env->vfp.vec_stride = (val >> 20) & 3; | 
|  |  | 
|  | changed ^= val; | 
|  | if (changed & (3 << 22)) { | 
|  | i = (val >> 22) & 3; | 
|  | switch (i) { | 
|  | case FPROUNDING_TIEEVEN: | 
|  | i = float_round_nearest_even; | 
|  | break; | 
|  | case FPROUNDING_POSINF: | 
|  | i = float_round_up; | 
|  | break; | 
|  | case FPROUNDING_NEGINF: | 
|  | i = float_round_down; | 
|  | break; | 
|  | case FPROUNDING_ZERO: | 
|  | i = float_round_to_zero; | 
|  | break; | 
|  | } | 
|  | set_float_rounding_mode(i, &env->vfp.fp_status); | 
|  | } | 
|  | if (changed & (1 << 24)) { | 
|  | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); | 
|  | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); | 
|  | } | 
|  | if (changed & (1 << 25)) | 
|  | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | 
|  |  | 
|  | i = vfp_exceptbits_to_host(val); | 
|  | set_float_exception_flags(i, &env->vfp.fp_status); | 
|  | set_float_exception_flags(0, &env->vfp.standard_fp_status); | 
|  | } | 
|  |  | 
|  | void vfp_set_fpscr(CPUARMState *env, uint32_t val) | 
|  | { | 
|  | HELPER(vfp_set_fpscr)(env, val); | 
|  | } | 
|  |  | 
|  | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) | 
|  |  | 
|  | #define VFP_BINOP(name) \ | 
|  | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ | 
|  | { \ | 
|  | float_status *fpst = fpstp; \ | 
|  | return float32_ ## name(a, b, fpst); \ | 
|  | } \ | 
|  | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ | 
|  | { \ | 
|  | float_status *fpst = fpstp; \ | 
|  | return float64_ ## name(a, b, fpst); \ | 
|  | } | 
|  | VFP_BINOP(add) | 
|  | VFP_BINOP(sub) | 
|  | VFP_BINOP(mul) | 
|  | VFP_BINOP(div) | 
|  | VFP_BINOP(min) | 
|  | VFP_BINOP(max) | 
|  | VFP_BINOP(minnum) | 
|  | VFP_BINOP(maxnum) | 
|  | #undef VFP_BINOP | 
|  |  | 
|  | float32 VFP_HELPER(neg, s)(float32 a) | 
|  | { | 
|  | return float32_chs(a); | 
|  | } | 
|  |  | 
|  | float64 VFP_HELPER(neg, d)(float64 a) | 
|  | { | 
|  | return float64_chs(a); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(abs, s)(float32 a) | 
|  | { | 
|  | return float32_abs(a); | 
|  | } | 
|  |  | 
|  | float64 VFP_HELPER(abs, d)(float64 a) | 
|  | { | 
|  | return float64_abs(a); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) | 
|  | { | 
|  | return float32_sqrt(a, &env->vfp.fp_status); | 
|  | } | 
|  |  | 
|  | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) | 
|  | { | 
|  | return float64_sqrt(a, &env->vfp.fp_status); | 
|  | } | 
|  |  | 
|  | /* XXX: check quiet/signaling case */ | 
|  | #define DO_VFP_cmp(p, type) \ | 
|  | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \ | 
|  | { \ | 
|  | uint32_t flags; \ | 
|  | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | 
|  | case 0: flags = 0x6; break; \ | 
|  | case -1: flags = 0x8; break; \ | 
|  | case 1: flags = 0x2; break; \ | 
|  | default: case 2: flags = 0x3; break; \ | 
|  | } \ | 
|  | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | 
|  | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | 
|  | } \ | 
|  | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ | 
|  | { \ | 
|  | uint32_t flags; \ | 
|  | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | 
|  | case 0: flags = 0x6; break; \ | 
|  | case -1: flags = 0x8; break; \ | 
|  | case 1: flags = 0x2; break; \ | 
|  | default: case 2: flags = 0x3; break; \ | 
|  | } \ | 
|  | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | 
|  | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | 
|  | } | 
|  | DO_VFP_cmp(s, float32) | 
|  | DO_VFP_cmp(d, float64) | 
|  | #undef DO_VFP_cmp | 
|  |  | 
|  | /* Integer to float and float to integer conversions */ | 
|  |  | 
|  | #define CONV_ITOF(name, fsz, sign) \ | 
|  | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | 
|  | { \ | 
|  | float_status *fpst = fpstp; \ | 
|  | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ | 
|  | } | 
|  |  | 
|  | #define CONV_FTOI(name, fsz, sign, round) \ | 
|  | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | 
|  | { \ | 
|  | float_status *fpst = fpstp; \ | 
|  | if (float##fsz##_is_any_nan(x)) { \ | 
|  | float_raise(float_flag_invalid, fpst); \ | 
|  | return 0; \ | 
|  | } \ | 
|  | return float##fsz##_to_##sign##int32##round(x, fpst); \ | 
|  | } | 
|  |  | 
|  | #define FLOAT_CONVS(name, p, fsz, sign) \ | 
|  | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | 
|  | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | 
|  | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | 
|  |  | 
|  | FLOAT_CONVS(si, s, 32, ) | 
|  | FLOAT_CONVS(si, d, 64, ) | 
|  | FLOAT_CONVS(ui, s, 32, u) | 
|  | FLOAT_CONVS(ui, d, 64, u) | 
|  |  | 
|  | #undef CONV_ITOF | 
|  | #undef CONV_FTOI | 
|  | #undef FLOAT_CONVS | 
|  |  | 
|  | /* floating point conversion */ | 
|  | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) | 
|  | { | 
|  | float64 r = float32_to_float64(x, &env->vfp.fp_status); | 
|  | /* ARM requires that S<->D conversion of any kind of NaN generates | 
|  | * a quiet NaN by forcing the most significant frac bit to 1. | 
|  | */ | 
|  | return float64_maybe_silence_nan(r); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) | 
|  | { | 
|  | float32 r =  float64_to_float32(x, &env->vfp.fp_status); | 
|  | /* ARM requires that S<->D conversion of any kind of NaN generates | 
|  | * a quiet NaN by forcing the most significant frac bit to 1. | 
|  | */ | 
|  | return float32_maybe_silence_nan(r); | 
|  | } | 
|  |  | 
|  | /* VFP3 fixed point conversion.  */ | 
|  | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | 
|  | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \ | 
|  | void *fpstp) \ | 
|  | { \ | 
|  | float_status *fpst = fpstp; \ | 
|  | float##fsz tmp; \ | 
|  | tmp = itype##_to_##float##fsz(x, fpst); \ | 
|  | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ | 
|  | } | 
|  |  | 
|  | /* Notice that we want only input-denormal exception flags from the | 
|  | * scalbn operation: the other possible flags (overflow+inexact if | 
|  | * we overflow to infinity, output-denormal) aren't correct for the | 
|  | * complete scale-and-convert operation. | 
|  | */ | 
|  | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ | 
|  | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | 
|  | uint32_t shift, \ | 
|  | void *fpstp) \ | 
|  | { \ | 
|  | float_status *fpst = fpstp; \ | 
|  | int old_exc_flags = get_float_exception_flags(fpst); \ | 
|  | float##fsz tmp; \ | 
|  | if (float##fsz##_is_any_nan(x)) { \ | 
|  | float_raise(float_flag_invalid, fpst); \ | 
|  | return 0; \ | 
|  | } \ | 
|  | tmp = float##fsz##_scalbn(x, shift, fpst); \ | 
|  | old_exc_flags |= get_float_exception_flags(fpst) \ | 
|  | & float_flag_input_denormal; \ | 
|  | set_float_exception_flags(old_exc_flags, fpst); \ | 
|  | return float##fsz##_to_##itype##round(tmp, fpst); \ | 
|  | } | 
|  |  | 
|  | #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \ | 
|  | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \ | 
|  | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ | 
|  | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | 
|  |  | 
|  | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \ | 
|  | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \ | 
|  | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | 
|  |  | 
|  | VFP_CONV_FIX(sh, d, 64, 64, int16) | 
|  | VFP_CONV_FIX(sl, d, 64, 64, int32) | 
|  | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) | 
|  | VFP_CONV_FIX(uh, d, 64, 64, uint16) | 
|  | VFP_CONV_FIX(ul, d, 64, 64, uint32) | 
|  | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) | 
|  | VFP_CONV_FIX(sh, s, 32, 32, int16) | 
|  | VFP_CONV_FIX(sl, s, 32, 32, int32) | 
|  | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) | 
|  | VFP_CONV_FIX(uh, s, 32, 32, uint16) | 
|  | VFP_CONV_FIX(ul, s, 32, 32, uint32) | 
|  | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) | 
|  | #undef VFP_CONV_FIX | 
|  | #undef VFP_CONV_FIX_FLOAT | 
|  | #undef VFP_CONV_FLOAT_FIX_ROUND | 
|  |  | 
|  | /* Set the current fp rounding mode and return the old one. | 
|  | * The argument is a softfloat float_round_ value. | 
|  | */ | 
|  | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | 
|  | { | 
|  | float_status *fp_status = &env->vfp.fp_status; | 
|  |  | 
|  | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | 
|  | set_float_rounding_mode(rmode, fp_status); | 
|  |  | 
|  | return prev_rmode; | 
|  | } | 
|  |  | 
|  | /* Set the current fp rounding mode in the standard fp status and return | 
|  | * the old one. This is for NEON instructions that need to change the | 
|  | * rounding mode but wish to use the standard FPSCR values for everything | 
|  | * else. Always set the rounding mode back to the correct value after | 
|  | * modifying it. | 
|  | * The argument is a softfloat float_round_ value. | 
|  | */ | 
|  | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | 
|  | { | 
|  | float_status *fp_status = &env->vfp.standard_fp_status; | 
|  |  | 
|  | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | 
|  | set_float_rounding_mode(rmode, fp_status); | 
|  |  | 
|  | return prev_rmode; | 
|  | } | 
|  |  | 
|  | /* Half precision conversions.  */ | 
|  | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) | 
|  | { | 
|  | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | 
|  | float32 r = float16_to_float32(make_float16(a), ieee, s); | 
|  | if (ieee) { | 
|  | return float32_maybe_silence_nan(r); | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) | 
|  | { | 
|  | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | 
|  | float16 r = float32_to_float16(a, ieee, s); | 
|  | if (ieee) { | 
|  | r = float16_maybe_silence_nan(r); | 
|  | } | 
|  | return float16_val(r); | 
|  | } | 
|  |  | 
|  | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) | 
|  | { | 
|  | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) | 
|  | { | 
|  | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | 
|  | } | 
|  |  | 
|  | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) | 
|  | { | 
|  | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) | 
|  | { | 
|  | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | 
|  | } | 
|  |  | 
|  | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) | 
|  | { | 
|  | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | 
|  | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | 
|  | if (ieee) { | 
|  | return float64_maybe_silence_nan(r); | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | 
|  | { | 
|  | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | 
|  | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | 
|  | if (ieee) { | 
|  | r = float16_maybe_silence_nan(r); | 
|  | } | 
|  | return float16_val(r); | 
|  | } | 
|  |  | 
|  | #define float32_two make_float32(0x40000000) | 
|  | #define float32_three make_float32(0x40400000) | 
|  | #define float32_one_point_five make_float32(0x3fc00000) | 
|  |  | 
|  | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) | 
|  | { | 
|  | float_status *s = &env->vfp.standard_fp_status; | 
|  | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | 
|  | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | 
|  | if (!(float32_is_zero(a) || float32_is_zero(b))) { | 
|  | float_raise(float_flag_input_denormal, s); | 
|  | } | 
|  | return float32_two; | 
|  | } | 
|  | return float32_sub(float32_two, float32_mul(a, b, s), s); | 
|  | } | 
|  |  | 
|  | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) | 
|  | { | 
|  | float_status *s = &env->vfp.standard_fp_status; | 
|  | float32 product; | 
|  | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | 
|  | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | 
|  | if (!(float32_is_zero(a) || float32_is_zero(b))) { | 
|  | float_raise(float_flag_input_denormal, s); | 
|  | } | 
|  | return float32_one_point_five; | 
|  | } | 
|  | product = float32_mul(a, b, s); | 
|  | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | 
|  | } | 
|  |  | 
|  | /* NEON helpers.  */ | 
|  |  | 
|  | /* Constants 256 and 512 are used in some helpers; we avoid relying on | 
|  | * int->float conversions at run-time.  */ | 
|  | #define float64_256 make_float64(0x4070000000000000LL) | 
|  | #define float64_512 make_float64(0x4080000000000000LL) | 
|  | #define float32_maxnorm make_float32(0x7f7fffff) | 
|  | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | 
|  |  | 
|  | /* Reciprocal functions | 
|  | * | 
|  | * The algorithm that must be used to calculate the estimate | 
|  | * is specified by the ARM ARM, see FPRecipEstimate() | 
|  | */ | 
|  |  | 
|  | static float64 recip_estimate(float64 a, float_status *real_fp_status) | 
|  | { | 
|  | /* These calculations mustn't set any fp exception flags, | 
|  | * so we use a local copy of the fp_status. | 
|  | */ | 
|  | float_status dummy_status = *real_fp_status; | 
|  | float_status *s = &dummy_status; | 
|  | /* q = (int)(a * 512.0) */ | 
|  | float64 q = float64_mul(float64_512, a, s); | 
|  | int64_t q_int = float64_to_int64_round_to_zero(q, s); | 
|  |  | 
|  | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | 
|  | q = int64_to_float64(q_int, s); | 
|  | q = float64_add(q, float64_half, s); | 
|  | q = float64_div(q, float64_512, s); | 
|  | q = float64_div(float64_one, q, s); | 
|  |  | 
|  | /* s = (int)(256.0 * r + 0.5) */ | 
|  | q = float64_mul(q, float64_256, s); | 
|  | q = float64_add(q, float64_half, s); | 
|  | q_int = float64_to_int64_round_to_zero(q, s); | 
|  |  | 
|  | /* return (double)s / 256.0 */ | 
|  | return float64_div(int64_to_float64(q_int, s), float64_256, s); | 
|  | } | 
|  |  | 
|  | /* Common wrapper to call recip_estimate */ | 
|  | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | 
|  | { | 
|  | uint64_t val64 = float64_val(num); | 
|  | uint64_t frac = extract64(val64, 0, 52); | 
|  | int64_t exp = extract64(val64, 52, 11); | 
|  | uint64_t sbit; | 
|  | float64 scaled, estimate; | 
|  |  | 
|  | /* Generate the scaled number for the estimate function */ | 
|  | if (exp == 0) { | 
|  | if (extract64(frac, 51, 1) == 0) { | 
|  | exp = -1; | 
|  | frac = extract64(frac, 0, 50) << 2; | 
|  | } else { | 
|  | frac = extract64(frac, 0, 51) << 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ | 
|  | scaled = make_float64((0x3feULL << 52) | 
|  | | extract64(frac, 44, 8) << 44); | 
|  |  | 
|  | estimate = recip_estimate(scaled, fpst); | 
|  |  | 
|  | /* Build new result */ | 
|  | val64 = float64_val(estimate); | 
|  | sbit = 0x8000000000000000ULL & val64; | 
|  | exp = off - exp; | 
|  | frac = extract64(val64, 0, 52); | 
|  |  | 
|  | if (exp == 0) { | 
|  | frac = 1ULL << 51 | extract64(frac, 1, 51); | 
|  | } else if (exp == -1) { | 
|  | frac = 1ULL << 50 | extract64(frac, 2, 50); | 
|  | exp = 0; | 
|  | } | 
|  |  | 
|  | return make_float64(sbit | (exp << 52) | frac); | 
|  | } | 
|  |  | 
|  | static bool round_to_inf(float_status *fpst, bool sign_bit) | 
|  | { | 
|  | switch (fpst->float_rounding_mode) { | 
|  | case float_round_nearest_even: /* Round to Nearest */ | 
|  | return true; | 
|  | case float_round_up: /* Round to +Inf */ | 
|  | return !sign_bit; | 
|  | case float_round_down: /* Round to -Inf */ | 
|  | return sign_bit; | 
|  | case float_round_to_zero: /* Round to Zero */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | float32 f32 = float32_squash_input_denormal(input, fpst); | 
|  | uint32_t f32_val = float32_val(f32); | 
|  | uint32_t f32_sbit = 0x80000000ULL & f32_val; | 
|  | int32_t f32_exp = extract32(f32_val, 23, 8); | 
|  | uint32_t f32_frac = extract32(f32_val, 0, 23); | 
|  | float64 f64, r64; | 
|  | uint64_t r64_val; | 
|  | int64_t r64_exp; | 
|  | uint64_t r64_frac; | 
|  |  | 
|  | if (float32_is_any_nan(f32)) { | 
|  | float32 nan = f32; | 
|  | if (float32_is_signaling_nan(f32)) { | 
|  | float_raise(float_flag_invalid, fpst); | 
|  | nan = float32_maybe_silence_nan(f32); | 
|  | } | 
|  | if (fpst->default_nan_mode) { | 
|  | nan =  float32_default_nan; | 
|  | } | 
|  | return nan; | 
|  | } else if (float32_is_infinity(f32)) { | 
|  | return float32_set_sign(float32_zero, float32_is_neg(f32)); | 
|  | } else if (float32_is_zero(f32)) { | 
|  | float_raise(float_flag_divbyzero, fpst); | 
|  | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | 
|  | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | 
|  | /* Abs(value) < 2.0^-128 */ | 
|  | float_raise(float_flag_overflow | float_flag_inexact, fpst); | 
|  | if (round_to_inf(fpst, f32_sbit)) { | 
|  | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | 
|  | } else { | 
|  | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | 
|  | } | 
|  | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | 
|  | float_raise(float_flag_underflow, fpst); | 
|  | return float32_set_sign(float32_zero, float32_is_neg(f32)); | 
|  | } | 
|  |  | 
|  |  | 
|  | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); | 
|  | r64 = call_recip_estimate(f64, 253, fpst); | 
|  | r64_val = float64_val(r64); | 
|  | r64_exp = extract64(r64_val, 52, 11); | 
|  | r64_frac = extract64(r64_val, 0, 52); | 
|  |  | 
|  | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | 
|  | return make_float32(f32_sbit | | 
|  | (r64_exp & 0xff) << 23 | | 
|  | extract64(r64_frac, 29, 24)); | 
|  | } | 
|  |  | 
|  | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | float64 f64 = float64_squash_input_denormal(input, fpst); | 
|  | uint64_t f64_val = float64_val(f64); | 
|  | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | 
|  | int64_t f64_exp = extract64(f64_val, 52, 11); | 
|  | float64 r64; | 
|  | uint64_t r64_val; | 
|  | int64_t r64_exp; | 
|  | uint64_t r64_frac; | 
|  |  | 
|  | /* Deal with any special cases */ | 
|  | if (float64_is_any_nan(f64)) { | 
|  | float64 nan = f64; | 
|  | if (float64_is_signaling_nan(f64)) { | 
|  | float_raise(float_flag_invalid, fpst); | 
|  | nan = float64_maybe_silence_nan(f64); | 
|  | } | 
|  | if (fpst->default_nan_mode) { | 
|  | nan =  float64_default_nan; | 
|  | } | 
|  | return nan; | 
|  | } else if (float64_is_infinity(f64)) { | 
|  | return float64_set_sign(float64_zero, float64_is_neg(f64)); | 
|  | } else if (float64_is_zero(f64)) { | 
|  | float_raise(float_flag_divbyzero, fpst); | 
|  | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | 
|  | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | 
|  | /* Abs(value) < 2.0^-1024 */ | 
|  | float_raise(float_flag_overflow | float_flag_inexact, fpst); | 
|  | if (round_to_inf(fpst, f64_sbit)) { | 
|  | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | 
|  | } else { | 
|  | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | 
|  | } | 
|  | } else if (f64_exp >= 2045 && fpst->flush_to_zero) { | 
|  | float_raise(float_flag_underflow, fpst); | 
|  | return float64_set_sign(float64_zero, float64_is_neg(f64)); | 
|  | } | 
|  |  | 
|  | r64 = call_recip_estimate(f64, 2045, fpst); | 
|  | r64_val = float64_val(r64); | 
|  | r64_exp = extract64(r64_val, 52, 11); | 
|  | r64_frac = extract64(r64_val, 0, 52); | 
|  |  | 
|  | /* result = sign : result_exp<10:0> : fraction<51:0> */ | 
|  | return make_float64(f64_sbit | | 
|  | ((r64_exp & 0x7ff) << 52) | | 
|  | r64_frac); | 
|  | } | 
|  |  | 
|  | /* The algorithm that must be used to calculate the estimate | 
|  | * is specified by the ARM ARM. | 
|  | */ | 
|  | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) | 
|  | { | 
|  | /* These calculations mustn't set any fp exception flags, | 
|  | * so we use a local copy of the fp_status. | 
|  | */ | 
|  | float_status dummy_status = *real_fp_status; | 
|  | float_status *s = &dummy_status; | 
|  | float64 q; | 
|  | int64_t q_int; | 
|  |  | 
|  | if (float64_lt(a, float64_half, s)) { | 
|  | /* range 0.25 <= a < 0.5 */ | 
|  |  | 
|  | /* a in units of 1/512 rounded down */ | 
|  | /* q0 = (int)(a * 512.0);  */ | 
|  | q = float64_mul(float64_512, a, s); | 
|  | q_int = float64_to_int64_round_to_zero(q, s); | 
|  |  | 
|  | /* reciprocal root r */ | 
|  | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */ | 
|  | q = int64_to_float64(q_int, s); | 
|  | q = float64_add(q, float64_half, s); | 
|  | q = float64_div(q, float64_512, s); | 
|  | q = float64_sqrt(q, s); | 
|  | q = float64_div(float64_one, q, s); | 
|  | } else { | 
|  | /* range 0.5 <= a < 1.0 */ | 
|  |  | 
|  | /* a in units of 1/256 rounded down */ | 
|  | /* q1 = (int)(a * 256.0); */ | 
|  | q = float64_mul(float64_256, a, s); | 
|  | int64_t q_int = float64_to_int64_round_to_zero(q, s); | 
|  |  | 
|  | /* reciprocal root r */ | 
|  | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | 
|  | q = int64_to_float64(q_int, s); | 
|  | q = float64_add(q, float64_half, s); | 
|  | q = float64_div(q, float64_256, s); | 
|  | q = float64_sqrt(q, s); | 
|  | q = float64_div(float64_one, q, s); | 
|  | } | 
|  | /* r in units of 1/256 rounded to nearest */ | 
|  | /* s = (int)(256.0 * r + 0.5); */ | 
|  |  | 
|  | q = float64_mul(q, float64_256,s ); | 
|  | q = float64_add(q, float64_half, s); | 
|  | q_int = float64_to_int64_round_to_zero(q, s); | 
|  |  | 
|  | /* return (double)s / 256.0;*/ | 
|  | return float64_div(int64_to_float64(q_int, s), float64_256, s); | 
|  | } | 
|  |  | 
|  | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) | 
|  | { | 
|  | float_status *s = fpstp; | 
|  | float32 f32 = float32_squash_input_denormal(input, s); | 
|  | uint32_t val = float32_val(f32); | 
|  | uint32_t f32_sbit = 0x80000000 & val; | 
|  | int32_t f32_exp = extract32(val, 23, 8); | 
|  | uint32_t f32_frac = extract32(val, 0, 23); | 
|  | uint64_t f64_frac; | 
|  | uint64_t val64; | 
|  | int result_exp; | 
|  | float64 f64; | 
|  |  | 
|  | if (float32_is_any_nan(f32)) { | 
|  | float32 nan = f32; | 
|  | if (float32_is_signaling_nan(f32)) { | 
|  | float_raise(float_flag_invalid, s); | 
|  | nan = float32_maybe_silence_nan(f32); | 
|  | } | 
|  | if (s->default_nan_mode) { | 
|  | nan =  float32_default_nan; | 
|  | } | 
|  | return nan; | 
|  | } else if (float32_is_zero(f32)) { | 
|  | float_raise(float_flag_divbyzero, s); | 
|  | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | 
|  | } else if (float32_is_neg(f32)) { | 
|  | float_raise(float_flag_invalid, s); | 
|  | return float32_default_nan; | 
|  | } else if (float32_is_infinity(f32)) { | 
|  | return float32_zero; | 
|  | } | 
|  |  | 
|  | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | 
|  | * preserving the parity of the exponent.  */ | 
|  |  | 
|  | f64_frac = ((uint64_t) f32_frac) << 29; | 
|  | if (f32_exp == 0) { | 
|  | while (extract64(f64_frac, 51, 1) == 0) { | 
|  | f64_frac = f64_frac << 1; | 
|  | f32_exp = f32_exp-1; | 
|  | } | 
|  | f64_frac = extract64(f64_frac, 0, 51) << 1; | 
|  | } | 
|  |  | 
|  | if (extract64(f32_exp, 0, 1) == 0) { | 
|  | f64 = make_float64(((uint64_t) f32_sbit) << 32 | 
|  | | (0x3feULL << 52) | 
|  | | f64_frac); | 
|  | } else { | 
|  | f64 = make_float64(((uint64_t) f32_sbit) << 32 | 
|  | | (0x3fdULL << 52) | 
|  | | f64_frac); | 
|  | } | 
|  |  | 
|  | result_exp = (380 - f32_exp) / 2; | 
|  |  | 
|  | f64 = recip_sqrt_estimate(f64, s); | 
|  |  | 
|  | val64 = float64_val(f64); | 
|  |  | 
|  | val = ((result_exp & 0xff) << 23) | 
|  | | ((val64 >> 29)  & 0x7fffff); | 
|  | return make_float32(val); | 
|  | } | 
|  |  | 
|  | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) | 
|  | { | 
|  | float_status *s = fpstp; | 
|  | float64 f64 = float64_squash_input_denormal(input, s); | 
|  | uint64_t val = float64_val(f64); | 
|  | uint64_t f64_sbit = 0x8000000000000000ULL & val; | 
|  | int64_t f64_exp = extract64(val, 52, 11); | 
|  | uint64_t f64_frac = extract64(val, 0, 52); | 
|  | int64_t result_exp; | 
|  | uint64_t result_frac; | 
|  |  | 
|  | if (float64_is_any_nan(f64)) { | 
|  | float64 nan = f64; | 
|  | if (float64_is_signaling_nan(f64)) { | 
|  | float_raise(float_flag_invalid, s); | 
|  | nan = float64_maybe_silence_nan(f64); | 
|  | } | 
|  | if (s->default_nan_mode) { | 
|  | nan =  float64_default_nan; | 
|  | } | 
|  | return nan; | 
|  | } else if (float64_is_zero(f64)) { | 
|  | float_raise(float_flag_divbyzero, s); | 
|  | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | 
|  | } else if (float64_is_neg(f64)) { | 
|  | float_raise(float_flag_invalid, s); | 
|  | return float64_default_nan; | 
|  | } else if (float64_is_infinity(f64)) { | 
|  | return float64_zero; | 
|  | } | 
|  |  | 
|  | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | 
|  | * preserving the parity of the exponent.  */ | 
|  |  | 
|  | if (f64_exp == 0) { | 
|  | while (extract64(f64_frac, 51, 1) == 0) { | 
|  | f64_frac = f64_frac << 1; | 
|  | f64_exp = f64_exp - 1; | 
|  | } | 
|  | f64_frac = extract64(f64_frac, 0, 51) << 1; | 
|  | } | 
|  |  | 
|  | if (extract64(f64_exp, 0, 1) == 0) { | 
|  | f64 = make_float64(f64_sbit | 
|  | | (0x3feULL << 52) | 
|  | | f64_frac); | 
|  | } else { | 
|  | f64 = make_float64(f64_sbit | 
|  | | (0x3fdULL << 52) | 
|  | | f64_frac); | 
|  | } | 
|  |  | 
|  | result_exp = (3068 - f64_exp) / 2; | 
|  |  | 
|  | f64 = recip_sqrt_estimate(f64, s); | 
|  |  | 
|  | result_frac = extract64(float64_val(f64), 0, 52); | 
|  |  | 
|  | return make_float64(f64_sbit | | 
|  | ((result_exp & 0x7ff) << 52) | | 
|  | result_frac); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) | 
|  | { | 
|  | float_status *s = fpstp; | 
|  | float64 f64; | 
|  |  | 
|  | if ((a & 0x80000000) == 0) { | 
|  | return 0xffffffff; | 
|  | } | 
|  |  | 
|  | f64 = make_float64((0x3feULL << 52) | 
|  | | ((int64_t)(a & 0x7fffffff) << 21)); | 
|  |  | 
|  | f64 = recip_estimate(f64, s); | 
|  |  | 
|  | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | float64 f64; | 
|  |  | 
|  | if ((a & 0xc0000000) == 0) { | 
|  | return 0xffffffff; | 
|  | } | 
|  |  | 
|  | if (a & 0x80000000) { | 
|  | f64 = make_float64((0x3feULL << 52) | 
|  | | ((uint64_t)(a & 0x7fffffff) << 21)); | 
|  | } else { /* bits 31-30 == '01' */ | 
|  | f64 = make_float64((0x3fdULL << 52) | 
|  | | ((uint64_t)(a & 0x3fffffff) << 22)); | 
|  | } | 
|  |  | 
|  | f64 = recip_sqrt_estimate(f64, fpst); | 
|  |  | 
|  | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | 
|  | } | 
|  |  | 
|  | /* VFPv4 fused multiply-accumulate */ | 
|  | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | return float32_muladd(a, b, c, 0, fpst); | 
|  | } | 
|  |  | 
|  | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | return float64_muladd(a, b, c, 0, fpst); | 
|  | } | 
|  |  | 
|  | /* ARMv8 round to integral */ | 
|  | float32 HELPER(rints_exact)(float32 x, void *fp_status) | 
|  | { | 
|  | return float32_round_to_int(x, fp_status); | 
|  | } | 
|  |  | 
|  | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | 
|  | { | 
|  | return float64_round_to_int(x, fp_status); | 
|  | } | 
|  |  | 
|  | float32 HELPER(rints)(float32 x, void *fp_status) | 
|  | { | 
|  | int old_flags = get_float_exception_flags(fp_status), new_flags; | 
|  | float32 ret; | 
|  |  | 
|  | ret = float32_round_to_int(x, fp_status); | 
|  |  | 
|  | /* Suppress any inexact exceptions the conversion produced */ | 
|  | if (!(old_flags & float_flag_inexact)) { | 
|  | new_flags = get_float_exception_flags(fp_status); | 
|  | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | float64 HELPER(rintd)(float64 x, void *fp_status) | 
|  | { | 
|  | int old_flags = get_float_exception_flags(fp_status), new_flags; | 
|  | float64 ret; | 
|  |  | 
|  | ret = float64_round_to_int(x, fp_status); | 
|  |  | 
|  | new_flags = get_float_exception_flags(fp_status); | 
|  |  | 
|  | /* Suppress any inexact exceptions the conversion produced */ | 
|  | if (!(old_flags & float_flag_inexact)) { | 
|  | new_flags = get_float_exception_flags(fp_status); | 
|  | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Convert ARM rounding mode to softfloat */ | 
|  | int arm_rmode_to_sf(int rmode) | 
|  | { | 
|  | switch (rmode) { | 
|  | case FPROUNDING_TIEAWAY: | 
|  | rmode = float_round_ties_away; | 
|  | break; | 
|  | case FPROUNDING_ODD: | 
|  | /* FIXME: add support for TIEAWAY and ODD */ | 
|  | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | 
|  | rmode); | 
|  | case FPROUNDING_TIEEVEN: | 
|  | default: | 
|  | rmode = float_round_nearest_even; | 
|  | break; | 
|  | case FPROUNDING_POSINF: | 
|  | rmode = float_round_up; | 
|  | break; | 
|  | case FPROUNDING_NEGINF: | 
|  | rmode = float_round_down; | 
|  | break; | 
|  | case FPROUNDING_ZERO: | 
|  | rmode = float_round_to_zero; | 
|  | break; | 
|  | } | 
|  | return rmode; | 
|  | } | 
|  |  | 
|  | /* CRC helpers. | 
|  | * The upper bytes of val (above the number specified by 'bytes') must have | 
|  | * been zeroed out by the caller. | 
|  | */ | 
|  | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) | 
|  | { | 
|  | uint8_t buf[4]; | 
|  |  | 
|  | stl_le_p(buf, val); | 
|  |  | 
|  | /* zlib crc32 converts the accumulator and output to one's complement.  */ | 
|  | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | 
|  | { | 
|  | uint8_t buf[4]; | 
|  |  | 
|  | stl_le_p(buf, val); | 
|  |  | 
|  | /* Linux crc32c converts the output to one's complement.  */ | 
|  | return crc32c(acc, buf, bytes) ^ 0xffffffff; | 
|  | } |