|  | /* | 
|  | * ARM NEON vector operations. | 
|  | * | 
|  | * Copyright (c) 2007, 2008 CodeSourcery. | 
|  | * Written by Paul Brook | 
|  | * | 
|  | * This code is licensed under the GNU GPL v2. | 
|  | */ | 
|  | #include <stdlib.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "cpu.h" | 
|  | #include "exec/exec-all.h" | 
|  | #include "exec/helper-proto.h" | 
|  |  | 
|  | #define SIGNBIT (uint32_t)0x80000000 | 
|  | #define SIGNBIT64 ((uint64_t)1 << 63) | 
|  |  | 
|  | #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q | 
|  |  | 
|  | #define NEON_TYPE1(name, type) \ | 
|  | typedef struct \ | 
|  | { \ | 
|  | type v1; \ | 
|  | } neon_##name; | 
|  | #ifdef HOST_WORDS_BIGENDIAN | 
|  | #define NEON_TYPE2(name, type) \ | 
|  | typedef struct \ | 
|  | { \ | 
|  | type v2; \ | 
|  | type v1; \ | 
|  | } neon_##name; | 
|  | #define NEON_TYPE4(name, type) \ | 
|  | typedef struct \ | 
|  | { \ | 
|  | type v4; \ | 
|  | type v3; \ | 
|  | type v2; \ | 
|  | type v1; \ | 
|  | } neon_##name; | 
|  | #else | 
|  | #define NEON_TYPE2(name, type) \ | 
|  | typedef struct \ | 
|  | { \ | 
|  | type v1; \ | 
|  | type v2; \ | 
|  | } neon_##name; | 
|  | #define NEON_TYPE4(name, type) \ | 
|  | typedef struct \ | 
|  | { \ | 
|  | type v1; \ | 
|  | type v2; \ | 
|  | type v3; \ | 
|  | type v4; \ | 
|  | } neon_##name; | 
|  | #endif | 
|  |  | 
|  | NEON_TYPE4(s8, int8_t) | 
|  | NEON_TYPE4(u8, uint8_t) | 
|  | NEON_TYPE2(s16, int16_t) | 
|  | NEON_TYPE2(u16, uint16_t) | 
|  | NEON_TYPE1(s32, int32_t) | 
|  | NEON_TYPE1(u32, uint32_t) | 
|  | #undef NEON_TYPE4 | 
|  | #undef NEON_TYPE2 | 
|  | #undef NEON_TYPE1 | 
|  |  | 
|  | /* Copy from a uint32_t to a vector structure type.  */ | 
|  | #define NEON_UNPACK(vtype, dest, val) do { \ | 
|  | union { \ | 
|  | vtype v; \ | 
|  | uint32_t i; \ | 
|  | } conv_u; \ | 
|  | conv_u.i = (val); \ | 
|  | dest = conv_u.v; \ | 
|  | } while(0) | 
|  |  | 
|  | /* Copy from a vector structure type to a uint32_t.  */ | 
|  | #define NEON_PACK(vtype, dest, val) do { \ | 
|  | union { \ | 
|  | vtype v; \ | 
|  | uint32_t i; \ | 
|  | } conv_u; \ | 
|  | conv_u.v = (val); \ | 
|  | dest = conv_u.i; \ | 
|  | } while(0) | 
|  |  | 
|  | #define NEON_DO1 \ | 
|  | NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); | 
|  | #define NEON_DO2 \ | 
|  | NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ | 
|  | NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); | 
|  | #define NEON_DO4 \ | 
|  | NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ | 
|  | NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \ | 
|  | NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \ | 
|  | NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4); | 
|  |  | 
|  | #define NEON_VOP_BODY(vtype, n) \ | 
|  | { \ | 
|  | uint32_t res; \ | 
|  | vtype vsrc1; \ | 
|  | vtype vsrc2; \ | 
|  | vtype vdest; \ | 
|  | NEON_UNPACK(vtype, vsrc1, arg1); \ | 
|  | NEON_UNPACK(vtype, vsrc2, arg2); \ | 
|  | NEON_DO##n; \ | 
|  | NEON_PACK(vtype, res, vdest); \ | 
|  | return res; \ | 
|  | } | 
|  |  | 
|  | #define NEON_VOP(name, vtype, n) \ | 
|  | uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \ | 
|  | NEON_VOP_BODY(vtype, n) | 
|  |  | 
|  | #define NEON_VOP_ENV(name, vtype, n) \ | 
|  | uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \ | 
|  | NEON_VOP_BODY(vtype, n) | 
|  |  | 
|  | /* Pairwise operations.  */ | 
|  | /* For 32-bit elements each segment only contains a single element, so | 
|  | the elementwise and pairwise operations are the same.  */ | 
|  | #define NEON_PDO2 \ | 
|  | NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ | 
|  | NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2); | 
|  | #define NEON_PDO4 \ | 
|  | NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ | 
|  | NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \ | 
|  | NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \ | 
|  | NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \ | 
|  |  | 
|  | #define NEON_POP(name, vtype, n) \ | 
|  | uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \ | 
|  | { \ | 
|  | uint32_t res; \ | 
|  | vtype vsrc1; \ | 
|  | vtype vsrc2; \ | 
|  | vtype vdest; \ | 
|  | NEON_UNPACK(vtype, vsrc1, arg1); \ | 
|  | NEON_UNPACK(vtype, vsrc2, arg2); \ | 
|  | NEON_PDO##n; \ | 
|  | NEON_PACK(vtype, res, vdest); \ | 
|  | return res; \ | 
|  | } | 
|  |  | 
|  | /* Unary operators.  */ | 
|  | #define NEON_VOP1(name, vtype, n) \ | 
|  | uint32_t HELPER(glue(neon_,name))(uint32_t arg) \ | 
|  | { \ | 
|  | vtype vsrc1; \ | 
|  | vtype vdest; \ | 
|  | NEON_UNPACK(vtype, vsrc1, arg); \ | 
|  | NEON_DO##n; \ | 
|  | NEON_PACK(vtype, arg, vdest); \ | 
|  | return arg; \ | 
|  | } | 
|  |  | 
|  |  | 
|  | #define NEON_USAT(dest, src1, src2, type) do { \ | 
|  | uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \ | 
|  | if (tmp != (type)tmp) { \ | 
|  | SET_QC(); \ | 
|  | dest = ~0; \ | 
|  | } else { \ | 
|  | dest = tmp; \ | 
|  | }} while(0) | 
|  | #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t) | 
|  | NEON_VOP_ENV(qadd_u8, neon_u8, 4) | 
|  | #undef NEON_FN | 
|  | #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t) | 
|  | NEON_VOP_ENV(qadd_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  | #undef NEON_USAT | 
|  |  | 
|  | uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t res = a + b; | 
|  | if (res < a) { | 
|  | SET_QC(); | 
|  | res = ~0; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2) | 
|  | { | 
|  | uint64_t res; | 
|  |  | 
|  | res = src1 + src2; | 
|  | if (res < src1) { | 
|  | SET_QC(); | 
|  | res = ~(uint64_t)0; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | #define NEON_SSAT(dest, src1, src2, type) do { \ | 
|  | int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \ | 
|  | if (tmp != (type)tmp) { \ | 
|  | SET_QC(); \ | 
|  | if (src2 > 0) { \ | 
|  | tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \ | 
|  | } else { \ | 
|  | tmp = 1 << (sizeof(type) * 8 - 1); \ | 
|  | } \ | 
|  | } \ | 
|  | dest = tmp; \ | 
|  | } while(0) | 
|  | #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t) | 
|  | NEON_VOP_ENV(qadd_s8, neon_s8, 4) | 
|  | #undef NEON_FN | 
|  | #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t) | 
|  | NEON_VOP_ENV(qadd_s16, neon_s16, 2) | 
|  | #undef NEON_FN | 
|  | #undef NEON_SSAT | 
|  |  | 
|  | uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t res = a + b; | 
|  | if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { | 
|  | SET_QC(); | 
|  | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2) | 
|  | { | 
|  | uint64_t res; | 
|  |  | 
|  | res = src1 + src2; | 
|  | if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) { | 
|  | SET_QC(); | 
|  | res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Unsigned saturating accumulate of signed value | 
|  | * | 
|  | * Op1/Rn is treated as signed | 
|  | * Op2/Rd is treated as unsigned | 
|  | * | 
|  | * Explicit casting is used to ensure the correct sign extension of | 
|  | * inputs. The result is treated as a unsigned value and saturated as such. | 
|  | * | 
|  | * We use a macro for the 8/16 bit cases which expects signed integers of va, | 
|  | * vb, and vr for interim calculation and an unsigned 32 bit result value r. | 
|  | */ | 
|  |  | 
|  | #define USATACC(bits, shift) \ | 
|  | do { \ | 
|  | va = sextract32(a, shift, bits);                                \ | 
|  | vb = extract32(b, shift, bits);                                 \ | 
|  | vr = va + vb;                                                   \ | 
|  | if (vr > UINT##bits##_MAX) {                                    \ | 
|  | SET_QC();                                                   \ | 
|  | vr = UINT##bits##_MAX;                                      \ | 
|  | } else if (vr < 0) {                                            \ | 
|  | SET_QC();                                                   \ | 
|  | vr = 0;                                                     \ | 
|  | }                                                               \ | 
|  | r = deposit32(r, shift, bits, vr);                              \ | 
|  | } while (0) | 
|  |  | 
|  | uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | int16_t va, vb, vr; | 
|  | uint32_t r = 0; | 
|  |  | 
|  | USATACC(8, 0); | 
|  | USATACC(8, 8); | 
|  | USATACC(8, 16); | 
|  | USATACC(8, 24); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | int32_t va, vb, vr; | 
|  | uint64_t r = 0; | 
|  |  | 
|  | USATACC(16, 0); | 
|  | USATACC(16, 16); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | #undef USATACC | 
|  |  | 
|  | uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | int64_t va = (int32_t)a; | 
|  | int64_t vb = (uint32_t)b; | 
|  | int64_t vr = va + vb; | 
|  | if (vr > UINT32_MAX) { | 
|  | SET_QC(); | 
|  | vr = UINT32_MAX; | 
|  | } else if (vr < 0) { | 
|  | SET_QC(); | 
|  | vr = 0; | 
|  | } | 
|  | return vr; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | uint64_t res; | 
|  | res = a + b; | 
|  | /* We only need to look at the pattern of SIGN bits to detect | 
|  | * +ve/-ve saturation | 
|  | */ | 
|  | if (~a & b & ~res & SIGNBIT64) { | 
|  | SET_QC(); | 
|  | res = UINT64_MAX; | 
|  | } else if (a & ~b & res & SIGNBIT64) { | 
|  | SET_QC(); | 
|  | res = 0; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Signed saturating accumulate of unsigned value | 
|  | * | 
|  | * Op1/Rn is treated as unsigned | 
|  | * Op2/Rd is treated as signed | 
|  | * | 
|  | * The result is treated as a signed value and saturated as such | 
|  | * | 
|  | * We use a macro for the 8/16 bit cases which expects signed integers of va, | 
|  | * vb, and vr for interim calculation and an unsigned 32 bit result value r. | 
|  | */ | 
|  |  | 
|  | #define SSATACC(bits, shift) \ | 
|  | do { \ | 
|  | va = extract32(a, shift, bits);                                 \ | 
|  | vb = sextract32(b, shift, bits);                                \ | 
|  | vr = va + vb;                                                   \ | 
|  | if (vr > INT##bits##_MAX) {                                     \ | 
|  | SET_QC();                                                   \ | 
|  | vr = INT##bits##_MAX;                                       \ | 
|  | } else if (vr < INT##bits##_MIN) {                              \ | 
|  | SET_QC();                                                   \ | 
|  | vr = INT##bits##_MIN;                                       \ | 
|  | }                                                               \ | 
|  | r = deposit32(r, shift, bits, vr);                              \ | 
|  | } while (0) | 
|  |  | 
|  | uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | int16_t va, vb, vr; | 
|  | uint32_t r = 0; | 
|  |  | 
|  | SSATACC(8, 0); | 
|  | SSATACC(8, 8); | 
|  | SSATACC(8, 16); | 
|  | SSATACC(8, 24); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | int32_t va, vb, vr; | 
|  | uint32_t r = 0; | 
|  |  | 
|  | SSATACC(16, 0); | 
|  | SSATACC(16, 16); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | #undef SSATACC | 
|  |  | 
|  | uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | int64_t res; | 
|  | int64_t op1 = (uint32_t)a; | 
|  | int64_t op2 = (int32_t)b; | 
|  | res = op1 + op2; | 
|  | if (res > INT32_MAX) { | 
|  | SET_QC(); | 
|  | res = INT32_MAX; | 
|  | } else if (res < INT32_MIN) { | 
|  | SET_QC(); | 
|  | res = INT32_MIN; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | uint64_t res; | 
|  | res = a + b; | 
|  | /* We only need to look at the pattern of SIGN bits to detect an overflow */ | 
|  | if (((a & res) | 
|  | | (~b & res) | 
|  | | (a & ~b)) & SIGNBIT64) { | 
|  | SET_QC(); | 
|  | res = INT64_MAX; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | #define NEON_USAT(dest, src1, src2, type) do { \ | 
|  | uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \ | 
|  | if (tmp != (type)tmp) { \ | 
|  | SET_QC(); \ | 
|  | dest = 0; \ | 
|  | } else { \ | 
|  | dest = tmp; \ | 
|  | }} while(0) | 
|  | #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t) | 
|  | NEON_VOP_ENV(qsub_u8, neon_u8, 4) | 
|  | #undef NEON_FN | 
|  | #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t) | 
|  | NEON_VOP_ENV(qsub_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  | #undef NEON_USAT | 
|  |  | 
|  | uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t res = a - b; | 
|  | if (res > a) { | 
|  | SET_QC(); | 
|  | res = 0; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2) | 
|  | { | 
|  | uint64_t res; | 
|  |  | 
|  | if (src1 < src2) { | 
|  | SET_QC(); | 
|  | res = 0; | 
|  | } else { | 
|  | res = src1 - src2; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | #define NEON_SSAT(dest, src1, src2, type) do { \ | 
|  | int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \ | 
|  | if (tmp != (type)tmp) { \ | 
|  | SET_QC(); \ | 
|  | if (src2 < 0) { \ | 
|  | tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \ | 
|  | } else { \ | 
|  | tmp = 1 << (sizeof(type) * 8 - 1); \ | 
|  | } \ | 
|  | } \ | 
|  | dest = tmp; \ | 
|  | } while(0) | 
|  | #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t) | 
|  | NEON_VOP_ENV(qsub_s8, neon_s8, 4) | 
|  | #undef NEON_FN | 
|  | #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t) | 
|  | NEON_VOP_ENV(qsub_s16, neon_s16, 2) | 
|  | #undef NEON_FN | 
|  | #undef NEON_SSAT | 
|  |  | 
|  | uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t res = a - b; | 
|  | if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { | 
|  | SET_QC(); | 
|  | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2) | 
|  | { | 
|  | uint64_t res; | 
|  |  | 
|  | res = src1 - src2; | 
|  | if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) { | 
|  | SET_QC(); | 
|  | res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1 | 
|  | NEON_VOP(hadd_s8, neon_s8, 4) | 
|  | NEON_VOP(hadd_u8, neon_u8, 4) | 
|  | NEON_VOP(hadd_s16, neon_s16, 2) | 
|  | NEON_VOP(hadd_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2) | 
|  | { | 
|  | int32_t dest; | 
|  |  | 
|  | dest = (src1 >> 1) + (src2 >> 1); | 
|  | if (src1 & src2 & 1) | 
|  | dest++; | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2) | 
|  | { | 
|  | uint32_t dest; | 
|  |  | 
|  | dest = (src1 >> 1) + (src2 >> 1); | 
|  | if (src1 & src2 & 1) | 
|  | dest++; | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1 | 
|  | NEON_VOP(rhadd_s8, neon_s8, 4) | 
|  | NEON_VOP(rhadd_u8, neon_u8, 4) | 
|  | NEON_VOP(rhadd_s16, neon_s16, 2) | 
|  | NEON_VOP(rhadd_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2) | 
|  | { | 
|  | int32_t dest; | 
|  |  | 
|  | dest = (src1 >> 1) + (src2 >> 1); | 
|  | if ((src1 | src2) & 1) | 
|  | dest++; | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2) | 
|  | { | 
|  | uint32_t dest; | 
|  |  | 
|  | dest = (src1 >> 1) + (src2 >> 1); | 
|  | if ((src1 | src2) & 1) | 
|  | dest++; | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1 | 
|  | NEON_VOP(hsub_s8, neon_s8, 4) | 
|  | NEON_VOP(hsub_u8, neon_u8, 4) | 
|  | NEON_VOP(hsub_s16, neon_s16, 2) | 
|  | NEON_VOP(hsub_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2) | 
|  | { | 
|  | int32_t dest; | 
|  |  | 
|  | dest = (src1 >> 1) - (src2 >> 1); | 
|  | if ((~src1) & src2 & 1) | 
|  | dest--; | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2) | 
|  | { | 
|  | uint32_t dest; | 
|  |  | 
|  | dest = (src1 >> 1) - (src2 >> 1); | 
|  | if ((~src1) & src2 & 1) | 
|  | dest--; | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0 | 
|  | NEON_VOP(cgt_s8, neon_s8, 4) | 
|  | NEON_VOP(cgt_u8, neon_u8, 4) | 
|  | NEON_VOP(cgt_s16, neon_s16, 2) | 
|  | NEON_VOP(cgt_u16, neon_u16, 2) | 
|  | NEON_VOP(cgt_s32, neon_s32, 1) | 
|  | NEON_VOP(cgt_u32, neon_u32, 1) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0 | 
|  | NEON_VOP(cge_s8, neon_s8, 4) | 
|  | NEON_VOP(cge_u8, neon_u8, 4) | 
|  | NEON_VOP(cge_s16, neon_s16, 2) | 
|  | NEON_VOP(cge_u16, neon_u16, 2) | 
|  | NEON_VOP(cge_s32, neon_s32, 1) | 
|  | NEON_VOP(cge_u32, neon_u32, 1) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2 | 
|  | NEON_VOP(min_s8, neon_s8, 4) | 
|  | NEON_VOP(min_u8, neon_u8, 4) | 
|  | NEON_VOP(min_s16, neon_s16, 2) | 
|  | NEON_VOP(min_u16, neon_u16, 2) | 
|  | NEON_VOP(min_s32, neon_s32, 1) | 
|  | NEON_VOP(min_u32, neon_u32, 1) | 
|  | NEON_POP(pmin_s8, neon_s8, 4) | 
|  | NEON_POP(pmin_u8, neon_u8, 4) | 
|  | NEON_POP(pmin_s16, neon_s16, 2) | 
|  | NEON_POP(pmin_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2 | 
|  | NEON_VOP(max_s8, neon_s8, 4) | 
|  | NEON_VOP(max_u8, neon_u8, 4) | 
|  | NEON_VOP(max_s16, neon_s16, 2) | 
|  | NEON_VOP(max_u16, neon_u16, 2) | 
|  | NEON_VOP(max_s32, neon_s32, 1) | 
|  | NEON_VOP(max_u32, neon_u32, 1) | 
|  | NEON_POP(pmax_s8, neon_s8, 4) | 
|  | NEON_POP(pmax_u8, neon_u8, 4) | 
|  | NEON_POP(pmax_s16, neon_s16, 2) | 
|  | NEON_POP(pmax_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) \ | 
|  | dest = (src1 > src2) ? (src1 - src2) : (src2 - src1) | 
|  | NEON_VOP(abd_s8, neon_s8, 4) | 
|  | NEON_VOP(abd_u8, neon_u8, 4) | 
|  | NEON_VOP(abd_s16, neon_s16, 2) | 
|  | NEON_VOP(abd_u16, neon_u16, 2) | 
|  | NEON_VOP(abd_s32, neon_s32, 1) | 
|  | NEON_VOP(abd_u32, neon_u32, 1) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) do { \ | 
|  | int8_t tmp; \ | 
|  | tmp = (int8_t)src2; \ | 
|  | if (tmp >= (ssize_t)sizeof(src1) * 8 || \ | 
|  | tmp <= -(ssize_t)sizeof(src1) * 8) { \ | 
|  | dest = 0; \ | 
|  | } else if (tmp < 0) { \ | 
|  | dest = src1 >> -tmp; \ | 
|  | } else { \ | 
|  | dest = src1 << tmp; \ | 
|  | }} while (0) | 
|  | NEON_VOP(shl_u8, neon_u8, 4) | 
|  | NEON_VOP(shl_u16, neon_u16, 2) | 
|  | NEON_VOP(shl_u32, neon_u32, 1) | 
|  | #undef NEON_FN | 
|  |  | 
|  | uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop) | 
|  | { | 
|  | int8_t shift = (int8_t)shiftop; | 
|  | if (shift >= 64 || shift <= -64) { | 
|  | val = 0; | 
|  | } else if (shift < 0) { | 
|  | val >>= -shift; | 
|  | } else { | 
|  | val <<= shift; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) do { \ | 
|  | int8_t tmp; \ | 
|  | tmp = (int8_t)src2; \ | 
|  | if (tmp >= (ssize_t)sizeof(src1) * 8) { \ | 
|  | dest = 0; \ | 
|  | } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ | 
|  | dest = src1 >> (sizeof(src1) * 8 - 1); \ | 
|  | } else if (tmp < 0) { \ | 
|  | dest = src1 >> -tmp; \ | 
|  | } else { \ | 
|  | dest = src1 << tmp; \ | 
|  | }} while (0) | 
|  | NEON_VOP(shl_s8, neon_s8, 4) | 
|  | NEON_VOP(shl_s16, neon_s16, 2) | 
|  | NEON_VOP(shl_s32, neon_s32, 1) | 
|  | #undef NEON_FN | 
|  |  | 
|  | uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop) | 
|  | { | 
|  | int8_t shift = (int8_t)shiftop; | 
|  | int64_t val = valop; | 
|  | if (shift >= 64) { | 
|  | val = 0; | 
|  | } else if (shift <= -64) { | 
|  | val >>= 63; | 
|  | } else if (shift < 0) { | 
|  | val >>= -shift; | 
|  | } else { | 
|  | val <<= shift; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) do { \ | 
|  | int8_t tmp; \ | 
|  | tmp = (int8_t)src2; \ | 
|  | if ((tmp >= (ssize_t)sizeof(src1) * 8) \ | 
|  | || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \ | 
|  | dest = 0; \ | 
|  | } else if (tmp < 0) { \ | 
|  | dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ | 
|  | } else { \ | 
|  | dest = src1 << tmp; \ | 
|  | }} while (0) | 
|  | NEON_VOP(rshl_s8, neon_s8, 4) | 
|  | NEON_VOP(rshl_s16, neon_s16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | /* The addition of the rounding constant may overflow, so we use an | 
|  | * intermediate 64 bit accumulator.  */ | 
|  | uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop) | 
|  | { | 
|  | int32_t dest; | 
|  | int32_t val = (int32_t)valop; | 
|  | int8_t shift = (int8_t)shiftop; | 
|  | if ((shift >= 32) || (shift <= -32)) { | 
|  | dest = 0; | 
|  | } else if (shift < 0) { | 
|  | int64_t big_dest = ((int64_t)val + (1 << (-1 - shift))); | 
|  | dest = big_dest >> -shift; | 
|  | } else { | 
|  | dest = val << shift; | 
|  | } | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* Handling addition overflow with 64 bit input values is more | 
|  | * tricky than with 32 bit values.  */ | 
|  | uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop) | 
|  | { | 
|  | int8_t shift = (int8_t)shiftop; | 
|  | int64_t val = valop; | 
|  | if ((shift >= 64) || (shift <= -64)) { | 
|  | val = 0; | 
|  | } else if (shift < 0) { | 
|  | val >>= (-shift - 1); | 
|  | if (val == INT64_MAX) { | 
|  | /* In this case, it means that the rounding constant is 1, | 
|  | * and the addition would overflow. Return the actual | 
|  | * result directly.  */ | 
|  | val = 0x4000000000000000LL; | 
|  | } else { | 
|  | val++; | 
|  | val >>= 1; | 
|  | } | 
|  | } else { | 
|  | val <<= shift; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) do { \ | 
|  | int8_t tmp; \ | 
|  | tmp = (int8_t)src2; \ | 
|  | if (tmp >= (ssize_t)sizeof(src1) * 8 || \ | 
|  | tmp < -(ssize_t)sizeof(src1) * 8) { \ | 
|  | dest = 0; \ | 
|  | } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \ | 
|  | dest = src1 >> (-tmp - 1); \ | 
|  | } else if (tmp < 0) { \ | 
|  | dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ | 
|  | } else { \ | 
|  | dest = src1 << tmp; \ | 
|  | }} while (0) | 
|  | NEON_VOP(rshl_u8, neon_u8, 4) | 
|  | NEON_VOP(rshl_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | /* The addition of the rounding constant may overflow, so we use an | 
|  | * intermediate 64 bit accumulator.  */ | 
|  | uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop) | 
|  | { | 
|  | uint32_t dest; | 
|  | int8_t shift = (int8_t)shiftop; | 
|  | if (shift >= 32 || shift < -32) { | 
|  | dest = 0; | 
|  | } else if (shift == -32) { | 
|  | dest = val >> 31; | 
|  | } else if (shift < 0) { | 
|  | uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift))); | 
|  | dest = big_dest >> -shift; | 
|  | } else { | 
|  | dest = val << shift; | 
|  | } | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* Handling addition overflow with 64 bit input values is more | 
|  | * tricky than with 32 bit values.  */ | 
|  | uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop) | 
|  | { | 
|  | int8_t shift = (uint8_t)shiftop; | 
|  | if (shift >= 64 || shift < -64) { | 
|  | val = 0; | 
|  | } else if (shift == -64) { | 
|  | /* Rounding a 1-bit result just preserves that bit.  */ | 
|  | val >>= 63; | 
|  | } else if (shift < 0) { | 
|  | val >>= (-shift - 1); | 
|  | if (val == UINT64_MAX) { | 
|  | /* In this case, it means that the rounding constant is 1, | 
|  | * and the addition would overflow. Return the actual | 
|  | * result directly.  */ | 
|  | val = 0x8000000000000000ULL; | 
|  | } else { | 
|  | val++; | 
|  | val >>= 1; | 
|  | } | 
|  | } else { | 
|  | val <<= shift; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) do { \ | 
|  | int8_t tmp; \ | 
|  | tmp = (int8_t)src2; \ | 
|  | if (tmp >= (ssize_t)sizeof(src1) * 8) { \ | 
|  | if (src1) { \ | 
|  | SET_QC(); \ | 
|  | dest = ~0; \ | 
|  | } else { \ | 
|  | dest = 0; \ | 
|  | } \ | 
|  | } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ | 
|  | dest = 0; \ | 
|  | } else if (tmp < 0) { \ | 
|  | dest = src1 >> -tmp; \ | 
|  | } else { \ | 
|  | dest = src1 << tmp; \ | 
|  | if ((dest >> tmp) != src1) { \ | 
|  | SET_QC(); \ | 
|  | dest = ~0; \ | 
|  | } \ | 
|  | }} while (0) | 
|  | NEON_VOP_ENV(qshl_u8, neon_u8, 4) | 
|  | NEON_VOP_ENV(qshl_u16, neon_u16, 2) | 
|  | NEON_VOP_ENV(qshl_u32, neon_u32, 1) | 
|  | #undef NEON_FN | 
|  |  | 
|  | uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop) | 
|  | { | 
|  | int8_t shift = (int8_t)shiftop; | 
|  | if (shift >= 64) { | 
|  | if (val) { | 
|  | val = ~(uint64_t)0; | 
|  | SET_QC(); | 
|  | } | 
|  | } else if (shift <= -64) { | 
|  | val = 0; | 
|  | } else if (shift < 0) { | 
|  | val >>= -shift; | 
|  | } else { | 
|  | uint64_t tmp = val; | 
|  | val <<= shift; | 
|  | if ((val >> shift) != tmp) { | 
|  | SET_QC(); | 
|  | val = ~(uint64_t)0; | 
|  | } | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) do { \ | 
|  | int8_t tmp; \ | 
|  | tmp = (int8_t)src2; \ | 
|  | if (tmp >= (ssize_t)sizeof(src1) * 8) { \ | 
|  | if (src1) { \ | 
|  | SET_QC(); \ | 
|  | dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ | 
|  | if (src1 > 0) { \ | 
|  | dest--; \ | 
|  | } \ | 
|  | } else { \ | 
|  | dest = src1; \ | 
|  | } \ | 
|  | } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ | 
|  | dest = src1 >> 31; \ | 
|  | } else if (tmp < 0) { \ | 
|  | dest = src1 >> -tmp; \ | 
|  | } else { \ | 
|  | dest = src1 << tmp; \ | 
|  | if ((dest >> tmp) != src1) { \ | 
|  | SET_QC(); \ | 
|  | dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ | 
|  | if (src1 > 0) { \ | 
|  | dest--; \ | 
|  | } \ | 
|  | } \ | 
|  | }} while (0) | 
|  | NEON_VOP_ENV(qshl_s8, neon_s8, 4) | 
|  | NEON_VOP_ENV(qshl_s16, neon_s16, 2) | 
|  | NEON_VOP_ENV(qshl_s32, neon_s32, 1) | 
|  | #undef NEON_FN | 
|  |  | 
|  | uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) | 
|  | { | 
|  | int8_t shift = (uint8_t)shiftop; | 
|  | int64_t val = valop; | 
|  | if (shift >= 64) { | 
|  | if (val) { | 
|  | SET_QC(); | 
|  | val = (val >> 63) ^ ~SIGNBIT64; | 
|  | } | 
|  | } else if (shift <= -64) { | 
|  | val >>= 63; | 
|  | } else if (shift < 0) { | 
|  | val >>= -shift; | 
|  | } else { | 
|  | int64_t tmp = val; | 
|  | val <<= shift; | 
|  | if ((val >> shift) != tmp) { | 
|  | SET_QC(); | 
|  | val = (tmp >> 63) ^ ~SIGNBIT64; | 
|  | } | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) do { \ | 
|  | if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \ | 
|  | SET_QC(); \ | 
|  | dest = 0; \ | 
|  | } else { \ | 
|  | int8_t tmp; \ | 
|  | tmp = (int8_t)src2; \ | 
|  | if (tmp >= (ssize_t)sizeof(src1) * 8) { \ | 
|  | if (src1) { \ | 
|  | SET_QC(); \ | 
|  | dest = ~0; \ | 
|  | } else { \ | 
|  | dest = 0; \ | 
|  | } \ | 
|  | } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ | 
|  | dest = 0; \ | 
|  | } else if (tmp < 0) { \ | 
|  | dest = src1 >> -tmp; \ | 
|  | } else { \ | 
|  | dest = src1 << tmp; \ | 
|  | if ((dest >> tmp) != src1) { \ | 
|  | SET_QC(); \ | 
|  | dest = ~0; \ | 
|  | } \ | 
|  | } \ | 
|  | }} while (0) | 
|  | NEON_VOP_ENV(qshlu_s8, neon_u8, 4) | 
|  | NEON_VOP_ENV(qshlu_s16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop) | 
|  | { | 
|  | if ((int32_t)valop < 0) { | 
|  | SET_QC(); | 
|  | return 0; | 
|  | } | 
|  | return helper_neon_qshl_u32(env, valop, shiftop); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) | 
|  | { | 
|  | if ((int64_t)valop < 0) { | 
|  | SET_QC(); | 
|  | return 0; | 
|  | } | 
|  | return helper_neon_qshl_u64(env, valop, shiftop); | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) do { \ | 
|  | int8_t tmp; \ | 
|  | tmp = (int8_t)src2; \ | 
|  | if (tmp >= (ssize_t)sizeof(src1) * 8) { \ | 
|  | if (src1) { \ | 
|  | SET_QC(); \ | 
|  | dest = ~0; \ | 
|  | } else { \ | 
|  | dest = 0; \ | 
|  | } \ | 
|  | } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \ | 
|  | dest = 0; \ | 
|  | } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \ | 
|  | dest = src1 >> (sizeof(src1) * 8 - 1); \ | 
|  | } else if (tmp < 0) { \ | 
|  | dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ | 
|  | } else { \ | 
|  | dest = src1 << tmp; \ | 
|  | if ((dest >> tmp) != src1) { \ | 
|  | SET_QC(); \ | 
|  | dest = ~0; \ | 
|  | } \ | 
|  | }} while (0) | 
|  | NEON_VOP_ENV(qrshl_u8, neon_u8, 4) | 
|  | NEON_VOP_ENV(qrshl_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | /* The addition of the rounding constant may overflow, so we use an | 
|  | * intermediate 64 bit accumulator.  */ | 
|  | uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop) | 
|  | { | 
|  | uint32_t dest; | 
|  | int8_t shift = (int8_t)shiftop; | 
|  | if (shift >= 32) { | 
|  | if (val) { | 
|  | SET_QC(); | 
|  | dest = ~0; | 
|  | } else { | 
|  | dest = 0; | 
|  | } | 
|  | } else if (shift < -32) { | 
|  | dest = 0; | 
|  | } else if (shift == -32) { | 
|  | dest = val >> 31; | 
|  | } else if (shift < 0) { | 
|  | uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift))); | 
|  | dest = big_dest >> -shift; | 
|  | } else { | 
|  | dest = val << shift; | 
|  | if ((dest >> shift) != val) { | 
|  | SET_QC(); | 
|  | dest = ~0; | 
|  | } | 
|  | } | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* Handling addition overflow with 64 bit input values is more | 
|  | * tricky than with 32 bit values.  */ | 
|  | uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop) | 
|  | { | 
|  | int8_t shift = (int8_t)shiftop; | 
|  | if (shift >= 64) { | 
|  | if (val) { | 
|  | SET_QC(); | 
|  | val = ~0; | 
|  | } | 
|  | } else if (shift < -64) { | 
|  | val = 0; | 
|  | } else if (shift == -64) { | 
|  | val >>= 63; | 
|  | } else if (shift < 0) { | 
|  | val >>= (-shift - 1); | 
|  | if (val == UINT64_MAX) { | 
|  | /* In this case, it means that the rounding constant is 1, | 
|  | * and the addition would overflow. Return the actual | 
|  | * result directly.  */ | 
|  | val = 0x8000000000000000ULL; | 
|  | } else { | 
|  | val++; | 
|  | val >>= 1; | 
|  | } | 
|  | } else { \ | 
|  | uint64_t tmp = val; | 
|  | val <<= shift; | 
|  | if ((val >> shift) != tmp) { | 
|  | SET_QC(); | 
|  | val = ~0; | 
|  | } | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) do { \ | 
|  | int8_t tmp; \ | 
|  | tmp = (int8_t)src2; \ | 
|  | if (tmp >= (ssize_t)sizeof(src1) * 8) { \ | 
|  | if (src1) { \ | 
|  | SET_QC(); \ | 
|  | dest = (1 << (sizeof(src1) * 8 - 1)); \ | 
|  | if (src1 > 0) { \ | 
|  | dest--; \ | 
|  | } \ | 
|  | } else { \ | 
|  | dest = 0; \ | 
|  | } \ | 
|  | } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ | 
|  | dest = 0; \ | 
|  | } else if (tmp < 0) { \ | 
|  | dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ | 
|  | } else { \ | 
|  | dest = src1 << tmp; \ | 
|  | if ((dest >> tmp) != src1) { \ | 
|  | SET_QC(); \ | 
|  | dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ | 
|  | if (src1 > 0) { \ | 
|  | dest--; \ | 
|  | } \ | 
|  | } \ | 
|  | }} while (0) | 
|  | NEON_VOP_ENV(qrshl_s8, neon_s8, 4) | 
|  | NEON_VOP_ENV(qrshl_s16, neon_s16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | /* The addition of the rounding constant may overflow, so we use an | 
|  | * intermediate 64 bit accumulator.  */ | 
|  | uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop) | 
|  | { | 
|  | int32_t dest; | 
|  | int32_t val = (int32_t)valop; | 
|  | int8_t shift = (int8_t)shiftop; | 
|  | if (shift >= 32) { | 
|  | if (val) { | 
|  | SET_QC(); | 
|  | dest = (val >> 31) ^ ~SIGNBIT; | 
|  | } else { | 
|  | dest = 0; | 
|  | } | 
|  | } else if (shift <= -32) { | 
|  | dest = 0; | 
|  | } else if (shift < 0) { | 
|  | int64_t big_dest = ((int64_t)val + (1 << (-1 - shift))); | 
|  | dest = big_dest >> -shift; | 
|  | } else { | 
|  | dest = val << shift; | 
|  | if ((dest >> shift) != val) { | 
|  | SET_QC(); | 
|  | dest = (val >> 31) ^ ~SIGNBIT; | 
|  | } | 
|  | } | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* Handling addition overflow with 64 bit input values is more | 
|  | * tricky than with 32 bit values.  */ | 
|  | uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) | 
|  | { | 
|  | int8_t shift = (uint8_t)shiftop; | 
|  | int64_t val = valop; | 
|  |  | 
|  | if (shift >= 64) { | 
|  | if (val) { | 
|  | SET_QC(); | 
|  | val = (val >> 63) ^ ~SIGNBIT64; | 
|  | } | 
|  | } else if (shift <= -64) { | 
|  | val = 0; | 
|  | } else if (shift < 0) { | 
|  | val >>= (-shift - 1); | 
|  | if (val == INT64_MAX) { | 
|  | /* In this case, it means that the rounding constant is 1, | 
|  | * and the addition would overflow. Return the actual | 
|  | * result directly.  */ | 
|  | val = 0x4000000000000000ULL; | 
|  | } else { | 
|  | val++; | 
|  | val >>= 1; | 
|  | } | 
|  | } else { | 
|  | int64_t tmp = val; | 
|  | val <<= shift; | 
|  | if ((val >> shift) != tmp) { | 
|  | SET_QC(); | 
|  | val = (tmp >> 63) ^ ~SIGNBIT64; | 
|  | } | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t mask; | 
|  | mask = (a ^ b) & 0x80808080u; | 
|  | a &= ~0x80808080u; | 
|  | b &= ~0x80808080u; | 
|  | return (a + b) ^ mask; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t mask; | 
|  | mask = (a ^ b) & 0x80008000u; | 
|  | a &= ~0x80008000u; | 
|  | b &= ~0x80008000u; | 
|  | return (a + b) ^ mask; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = src1 + src2 | 
|  | NEON_POP(padd_u8, neon_u8, 4) | 
|  | NEON_POP(padd_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = src1 - src2 | 
|  | NEON_VOP(sub_u8, neon_u8, 4) | 
|  | NEON_VOP(sub_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = src1 * src2 | 
|  | NEON_VOP(mul_u8, neon_u8, 4) | 
|  | NEON_VOP(mul_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | /* Polynomial multiplication is like integer multiplication except the | 
|  | partial products are XORed, not added.  */ | 
|  | uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2) | 
|  | { | 
|  | uint32_t mask; | 
|  | uint32_t result; | 
|  | result = 0; | 
|  | while (op1) { | 
|  | mask = 0; | 
|  | if (op1 & 1) | 
|  | mask |= 0xff; | 
|  | if (op1 & (1 << 8)) | 
|  | mask |= (0xff << 8); | 
|  | if (op1 & (1 << 16)) | 
|  | mask |= (0xff << 16); | 
|  | if (op1 & (1 << 24)) | 
|  | mask |= (0xff << 24); | 
|  | result ^= op2 & mask; | 
|  | op1 = (op1 >> 1) & 0x7f7f7f7f; | 
|  | op2 = (op2 << 1) & 0xfefefefe; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2) | 
|  | { | 
|  | uint64_t result = 0; | 
|  | uint64_t mask; | 
|  | uint64_t op2ex = op2; | 
|  | op2ex = (op2ex & 0xff) | | 
|  | ((op2ex & 0xff00) << 8) | | 
|  | ((op2ex & 0xff0000) << 16) | | 
|  | ((op2ex & 0xff000000) << 24); | 
|  | while (op1) { | 
|  | mask = 0; | 
|  | if (op1 & 1) { | 
|  | mask |= 0xffff; | 
|  | } | 
|  | if (op1 & (1 << 8)) { | 
|  | mask |= (0xffffU << 16); | 
|  | } | 
|  | if (op1 & (1 << 16)) { | 
|  | mask |= (0xffffULL << 32); | 
|  | } | 
|  | if (op1 & (1 << 24)) { | 
|  | mask |= (0xffffULL << 48); | 
|  | } | 
|  | result ^= op2ex & mask; | 
|  | op1 = (op1 >> 1) & 0x7f7f7f7f; | 
|  | op2ex <<= 1; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0 | 
|  | NEON_VOP(tst_u8, neon_u8, 4) | 
|  | NEON_VOP(tst_u16, neon_u16, 2) | 
|  | NEON_VOP(tst_u32, neon_u32, 1) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0 | 
|  | NEON_VOP(ceq_u8, neon_u8, 4) | 
|  | NEON_VOP(ceq_u16, neon_u16, 2) | 
|  | NEON_VOP(ceq_u32, neon_u32, 1) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src | 
|  | NEON_VOP1(abs_s8, neon_s8, 4) | 
|  | NEON_VOP1(abs_s16, neon_s16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | /* Count Leading Sign/Zero Bits.  */ | 
|  | static inline int do_clz8(uint8_t x) | 
|  | { | 
|  | int n; | 
|  | for (n = 8; x; n--) | 
|  | x >>= 1; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static inline int do_clz16(uint16_t x) | 
|  | { | 
|  | int n; | 
|  | for (n = 16; x; n--) | 
|  | x >>= 1; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | #define NEON_FN(dest, src, dummy) dest = do_clz8(src) | 
|  | NEON_VOP1(clz_u8, neon_u8, 4) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src, dummy) dest = do_clz16(src) | 
|  | NEON_VOP1(clz_u16, neon_u16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1 | 
|  | NEON_VOP1(cls_s8, neon_s8, 4) | 
|  | #undef NEON_FN | 
|  |  | 
|  | #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1 | 
|  | NEON_VOP1(cls_s16, neon_s16, 2) | 
|  | #undef NEON_FN | 
|  |  | 
|  | uint32_t HELPER(neon_cls_s32)(uint32_t x) | 
|  | { | 
|  | int count; | 
|  | if ((int32_t)x < 0) | 
|  | x = ~x; | 
|  | for (count = 32; x; count--) | 
|  | x = x >> 1; | 
|  | return count - 1; | 
|  | } | 
|  |  | 
|  | /* Bit count.  */ | 
|  | uint32_t HELPER(neon_cnt_u8)(uint32_t x) | 
|  | { | 
|  | x = (x & 0x55555555) + ((x >>  1) & 0x55555555); | 
|  | x = (x & 0x33333333) + ((x >>  2) & 0x33333333); | 
|  | x = (x & 0x0f0f0f0f) + ((x >>  4) & 0x0f0f0f0f); | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /* Reverse bits in each 8 bit word */ | 
|  | uint32_t HELPER(neon_rbit_u8)(uint32_t x) | 
|  | { | 
|  | x =  ((x & 0xf0f0f0f0) >> 4) | 
|  | | ((x & 0x0f0f0f0f) << 4); | 
|  | x =  ((x & 0x88888888) >> 3) | 
|  | | ((x & 0x44444444) >> 1) | 
|  | | ((x & 0x22222222) << 1) | 
|  | | ((x & 0x11111111) << 3); | 
|  | return x; | 
|  | } | 
|  |  | 
|  | #define NEON_QDMULH16(dest, src1, src2, round) do { \ | 
|  | uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \ | 
|  | if ((tmp ^ (tmp << 1)) & SIGNBIT) { \ | 
|  | SET_QC(); \ | 
|  | tmp = (tmp >> 31) ^ ~SIGNBIT; \ | 
|  | } else { \ | 
|  | tmp <<= 1; \ | 
|  | } \ | 
|  | if (round) { \ | 
|  | int32_t old = tmp; \ | 
|  | tmp += 1 << 15; \ | 
|  | if ((int32_t)tmp < old) { \ | 
|  | SET_QC(); \ | 
|  | tmp = SIGNBIT - 1; \ | 
|  | } \ | 
|  | } \ | 
|  | dest = tmp >> 16; \ | 
|  | } while(0) | 
|  | #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0) | 
|  | NEON_VOP_ENV(qdmulh_s16, neon_s16, 2) | 
|  | #undef NEON_FN | 
|  | #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1) | 
|  | NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2) | 
|  | #undef NEON_FN | 
|  | #undef NEON_QDMULH16 | 
|  |  | 
|  | #define NEON_QDMULH32(dest, src1, src2, round) do { \ | 
|  | uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \ | 
|  | if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \ | 
|  | SET_QC(); \ | 
|  | tmp = (tmp >> 63) ^ ~SIGNBIT64; \ | 
|  | } else { \ | 
|  | tmp <<= 1; \ | 
|  | } \ | 
|  | if (round) { \ | 
|  | int64_t old = tmp; \ | 
|  | tmp += (int64_t)1 << 31; \ | 
|  | if ((int64_t)tmp < old) { \ | 
|  | SET_QC(); \ | 
|  | tmp = SIGNBIT64 - 1; \ | 
|  | } \ | 
|  | } \ | 
|  | dest = tmp >> 32; \ | 
|  | } while(0) | 
|  | #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0) | 
|  | NEON_VOP_ENV(qdmulh_s32, neon_s32, 1) | 
|  | #undef NEON_FN | 
|  | #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1) | 
|  | NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1) | 
|  | #undef NEON_FN | 
|  | #undef NEON_QDMULH32 | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_u8)(uint64_t x) | 
|  | { | 
|  | return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u) | 
|  | | ((x >> 24) & 0xff000000u); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_u16)(uint64_t x) | 
|  | { | 
|  | return (x & 0xffffu) | ((x >> 16) & 0xffff0000u); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_high_u8)(uint64_t x) | 
|  | { | 
|  | return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) | 
|  | | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_high_u16)(uint64_t x) | 
|  | { | 
|  | return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x) | 
|  | { | 
|  | x &= 0xff80ff80ff80ff80ull; | 
|  | x += 0x0080008000800080ull; | 
|  | return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) | 
|  | | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x) | 
|  | { | 
|  | x &= 0xffff8000ffff8000ull; | 
|  | x += 0x0000800000008000ull; | 
|  | return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x) | 
|  | { | 
|  | uint16_t s; | 
|  | uint8_t d; | 
|  | uint32_t res = 0; | 
|  | #define SAT8(n) \ | 
|  | s = x >> n; \ | 
|  | if (s & 0x8000) { \ | 
|  | SET_QC(); \ | 
|  | } else { \ | 
|  | if (s > 0xff) { \ | 
|  | d = 0xff; \ | 
|  | SET_QC(); \ | 
|  | } else  { \ | 
|  | d = s; \ | 
|  | } \ | 
|  | res |= (uint32_t)d << (n / 2); \ | 
|  | } | 
|  |  | 
|  | SAT8(0); | 
|  | SAT8(16); | 
|  | SAT8(32); | 
|  | SAT8(48); | 
|  | #undef SAT8 | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x) | 
|  | { | 
|  | uint16_t s; | 
|  | uint8_t d; | 
|  | uint32_t res = 0; | 
|  | #define SAT8(n) \ | 
|  | s = x >> n; \ | 
|  | if (s > 0xff) { \ | 
|  | d = 0xff; \ | 
|  | SET_QC(); \ | 
|  | } else  { \ | 
|  | d = s; \ | 
|  | } \ | 
|  | res |= (uint32_t)d << (n / 2); | 
|  |  | 
|  | SAT8(0); | 
|  | SAT8(16); | 
|  | SAT8(32); | 
|  | SAT8(48); | 
|  | #undef SAT8 | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x) | 
|  | { | 
|  | int16_t s; | 
|  | uint8_t d; | 
|  | uint32_t res = 0; | 
|  | #define SAT8(n) \ | 
|  | s = x >> n; \ | 
|  | if (s != (int8_t)s) { \ | 
|  | d = (s >> 15) ^ 0x7f; \ | 
|  | SET_QC(); \ | 
|  | } else  { \ | 
|  | d = s; \ | 
|  | } \ | 
|  | res |= (uint32_t)d << (n / 2); | 
|  |  | 
|  | SAT8(0); | 
|  | SAT8(16); | 
|  | SAT8(32); | 
|  | SAT8(48); | 
|  | #undef SAT8 | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x) | 
|  | { | 
|  | uint32_t high; | 
|  | uint32_t low; | 
|  | low = x; | 
|  | if (low & 0x80000000) { | 
|  | low = 0; | 
|  | SET_QC(); | 
|  | } else if (low > 0xffff) { | 
|  | low = 0xffff; | 
|  | SET_QC(); | 
|  | } | 
|  | high = x >> 32; | 
|  | if (high & 0x80000000) { | 
|  | high = 0; | 
|  | SET_QC(); | 
|  | } else if (high > 0xffff) { | 
|  | high = 0xffff; | 
|  | SET_QC(); | 
|  | } | 
|  | return low | (high << 16); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x) | 
|  | { | 
|  | uint32_t high; | 
|  | uint32_t low; | 
|  | low = x; | 
|  | if (low > 0xffff) { | 
|  | low = 0xffff; | 
|  | SET_QC(); | 
|  | } | 
|  | high = x >> 32; | 
|  | if (high > 0xffff) { | 
|  | high = 0xffff; | 
|  | SET_QC(); | 
|  | } | 
|  | return low | (high << 16); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x) | 
|  | { | 
|  | int32_t low; | 
|  | int32_t high; | 
|  | low = x; | 
|  | if (low != (int16_t)low) { | 
|  | low = (low >> 31) ^ 0x7fff; | 
|  | SET_QC(); | 
|  | } | 
|  | high = x >> 32; | 
|  | if (high != (int16_t)high) { | 
|  | high = (high >> 31) ^ 0x7fff; | 
|  | SET_QC(); | 
|  | } | 
|  | return (uint16_t)low | (high << 16); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x) | 
|  | { | 
|  | if (x & 0x8000000000000000ull) { | 
|  | SET_QC(); | 
|  | return 0; | 
|  | } | 
|  | if (x > 0xffffffffu) { | 
|  | SET_QC(); | 
|  | return 0xffffffffu; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x) | 
|  | { | 
|  | if (x > 0xffffffffu) { | 
|  | SET_QC(); | 
|  | return 0xffffffffu; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x) | 
|  | { | 
|  | if ((int64_t)x != (int32_t)x) { | 
|  | SET_QC(); | 
|  | return ((int64_t)x >> 63) ^ 0x7fffffff; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_widen_u8)(uint32_t x) | 
|  | { | 
|  | uint64_t tmp; | 
|  | uint64_t ret; | 
|  | ret = (uint8_t)x; | 
|  | tmp = (uint8_t)(x >> 8); | 
|  | ret |= tmp << 16; | 
|  | tmp = (uint8_t)(x >> 16); | 
|  | ret |= tmp << 32; | 
|  | tmp = (uint8_t)(x >> 24); | 
|  | ret |= tmp << 48; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_widen_s8)(uint32_t x) | 
|  | { | 
|  | uint64_t tmp; | 
|  | uint64_t ret; | 
|  | ret = (uint16_t)(int8_t)x; | 
|  | tmp = (uint16_t)(int8_t)(x >> 8); | 
|  | ret |= tmp << 16; | 
|  | tmp = (uint16_t)(int8_t)(x >> 16); | 
|  | ret |= tmp << 32; | 
|  | tmp = (uint16_t)(int8_t)(x >> 24); | 
|  | ret |= tmp << 48; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_widen_u16)(uint32_t x) | 
|  | { | 
|  | uint64_t high = (uint16_t)(x >> 16); | 
|  | return ((uint16_t)x) | (high << 32); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_widen_s16)(uint32_t x) | 
|  | { | 
|  | uint64_t high = (int16_t)(x >> 16); | 
|  | return ((uint32_t)(int16_t)x) | (high << 32); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b) | 
|  | { | 
|  | uint64_t mask; | 
|  | mask = (a ^ b) & 0x8000800080008000ull; | 
|  | a &= ~0x8000800080008000ull; | 
|  | b &= ~0x8000800080008000ull; | 
|  | return (a + b) ^ mask; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b) | 
|  | { | 
|  | uint64_t mask; | 
|  | mask = (a ^ b) & 0x8000000080000000ull; | 
|  | a &= ~0x8000000080000000ull; | 
|  | b &= ~0x8000000080000000ull; | 
|  | return (a + b) ^ mask; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b) | 
|  | { | 
|  | uint64_t tmp; | 
|  | uint64_t tmp2; | 
|  |  | 
|  | tmp = a & 0x0000ffff0000ffffull; | 
|  | tmp += (a >> 16) & 0x0000ffff0000ffffull; | 
|  | tmp2 = b & 0xffff0000ffff0000ull; | 
|  | tmp2 += (b << 16) & 0xffff0000ffff0000ull; | 
|  | return    ( tmp         & 0xffff) | 
|  | | ((tmp  >> 16) & 0xffff0000ull) | 
|  | | ((tmp2 << 16) & 0xffff00000000ull) | 
|  | | ( tmp2        & 0xffff000000000000ull); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b) | 
|  | { | 
|  | uint32_t low = a + (a >> 32); | 
|  | uint32_t high = b + (b >> 32); | 
|  | return low + ((uint64_t)high << 32); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b) | 
|  | { | 
|  | uint64_t mask; | 
|  | mask = (a ^ ~b) & 0x8000800080008000ull; | 
|  | a |= 0x8000800080008000ull; | 
|  | b &= ~0x8000800080008000ull; | 
|  | return (a - b) ^ mask; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b) | 
|  | { | 
|  | uint64_t mask; | 
|  | mask = (a ^ ~b) & 0x8000000080000000ull; | 
|  | a |= 0x8000000080000000ull; | 
|  | b &= ~0x8000000080000000ull; | 
|  | return (a - b) ^ mask; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | uint32_t x, y; | 
|  | uint32_t low, high; | 
|  |  | 
|  | x = a; | 
|  | y = b; | 
|  | low = x + y; | 
|  | if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { | 
|  | SET_QC(); | 
|  | low = ((int32_t)x >> 31) ^ ~SIGNBIT; | 
|  | } | 
|  | x = a >> 32; | 
|  | y = b >> 32; | 
|  | high = x + y; | 
|  | if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { | 
|  | SET_QC(); | 
|  | high = ((int32_t)x >> 31) ^ ~SIGNBIT; | 
|  | } | 
|  | return low | ((uint64_t)high << 32); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | uint64_t result; | 
|  |  | 
|  | result = a + b; | 
|  | if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) { | 
|  | SET_QC(); | 
|  | result = ((int64_t)a >> 63) ^ ~SIGNBIT64; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* We have to do the arithmetic in a larger type than | 
|  | * the input type, because for example with a signed 32 bit | 
|  | * op the absolute difference can overflow a signed 32 bit value. | 
|  | */ | 
|  | #define DO_ABD(dest, x, y, intype, arithtype) do {            \ | 
|  | arithtype tmp_x = (intype)(x);                            \ | 
|  | arithtype tmp_y = (intype)(y);                            \ | 
|  | dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \ | 
|  | } while(0) | 
|  |  | 
|  | uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint64_t tmp; | 
|  | uint64_t result; | 
|  | DO_ABD(result, a, b, uint8_t, uint32_t); | 
|  | DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t); | 
|  | result |= tmp << 16; | 
|  | DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t); | 
|  | result |= tmp << 32; | 
|  | DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t); | 
|  | result |= tmp << 48; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint64_t tmp; | 
|  | uint64_t result; | 
|  | DO_ABD(result, a, b, int8_t, int32_t); | 
|  | DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t); | 
|  | result |= tmp << 16; | 
|  | DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t); | 
|  | result |= tmp << 32; | 
|  | DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t); | 
|  | result |= tmp << 48; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint64_t tmp; | 
|  | uint64_t result; | 
|  | DO_ABD(result, a, b, uint16_t, uint32_t); | 
|  | DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t); | 
|  | return result | (tmp << 32); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint64_t tmp; | 
|  | uint64_t result; | 
|  | DO_ABD(result, a, b, int16_t, int32_t); | 
|  | DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t); | 
|  | return result | (tmp << 32); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint64_t result; | 
|  | DO_ABD(result, a, b, uint32_t, uint64_t); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint64_t result; | 
|  | DO_ABD(result, a, b, int32_t, int64_t); | 
|  | return result; | 
|  | } | 
|  | #undef DO_ABD | 
|  |  | 
|  | /* Widening multiply. Named type is the source type.  */ | 
|  | #define DO_MULL(dest, x, y, type1, type2) do { \ | 
|  | type1 tmp_x = x; \ | 
|  | type1 tmp_y = y; \ | 
|  | dest = (type2)((type2)tmp_x * (type2)tmp_y); \ | 
|  | } while(0) | 
|  |  | 
|  | uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint64_t tmp; | 
|  | uint64_t result; | 
|  |  | 
|  | DO_MULL(result, a, b, uint8_t, uint16_t); | 
|  | DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t); | 
|  | result |= tmp << 16; | 
|  | DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t); | 
|  | result |= tmp << 32; | 
|  | DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t); | 
|  | result |= tmp << 48; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint64_t tmp; | 
|  | uint64_t result; | 
|  |  | 
|  | DO_MULL(result, a, b, int8_t, uint16_t); | 
|  | DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t); | 
|  | result |= tmp << 16; | 
|  | DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t); | 
|  | result |= tmp << 32; | 
|  | DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t); | 
|  | result |= tmp << 48; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint64_t tmp; | 
|  | uint64_t result; | 
|  |  | 
|  | DO_MULL(result, a, b, uint16_t, uint32_t); | 
|  | DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t); | 
|  | return result | (tmp << 32); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint64_t tmp; | 
|  | uint64_t result; | 
|  |  | 
|  | DO_MULL(result, a, b, int16_t, uint32_t); | 
|  | DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t); | 
|  | return result | (tmp << 32); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_negl_u16)(uint64_t x) | 
|  | { | 
|  | uint16_t tmp; | 
|  | uint64_t result; | 
|  | result = (uint16_t)-x; | 
|  | tmp = -(x >> 16); | 
|  | result |= (uint64_t)tmp << 16; | 
|  | tmp = -(x >> 32); | 
|  | result |= (uint64_t)tmp << 32; | 
|  | tmp = -(x >> 48); | 
|  | result |= (uint64_t)tmp << 48; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_negl_u32)(uint64_t x) | 
|  | { | 
|  | uint32_t low = -x; | 
|  | uint32_t high = -(x >> 32); | 
|  | return low | ((uint64_t)high << 32); | 
|  | } | 
|  |  | 
|  | /* Saturating sign manipulation.  */ | 
|  | /* ??? Make these use NEON_VOP1 */ | 
|  | #define DO_QABS8(x) do { \ | 
|  | if (x == (int8_t)0x80) { \ | 
|  | x = 0x7f; \ | 
|  | SET_QC(); \ | 
|  | } else if (x < 0) { \ | 
|  | x = -x; \ | 
|  | }} while (0) | 
|  | uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x) | 
|  | { | 
|  | neon_s8 vec; | 
|  | NEON_UNPACK(neon_s8, vec, x); | 
|  | DO_QABS8(vec.v1); | 
|  | DO_QABS8(vec.v2); | 
|  | DO_QABS8(vec.v3); | 
|  | DO_QABS8(vec.v4); | 
|  | NEON_PACK(neon_s8, x, vec); | 
|  | return x; | 
|  | } | 
|  | #undef DO_QABS8 | 
|  |  | 
|  | #define DO_QNEG8(x) do { \ | 
|  | if (x == (int8_t)0x80) { \ | 
|  | x = 0x7f; \ | 
|  | SET_QC(); \ | 
|  | } else { \ | 
|  | x = -x; \ | 
|  | }} while (0) | 
|  | uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x) | 
|  | { | 
|  | neon_s8 vec; | 
|  | NEON_UNPACK(neon_s8, vec, x); | 
|  | DO_QNEG8(vec.v1); | 
|  | DO_QNEG8(vec.v2); | 
|  | DO_QNEG8(vec.v3); | 
|  | DO_QNEG8(vec.v4); | 
|  | NEON_PACK(neon_s8, x, vec); | 
|  | return x; | 
|  | } | 
|  | #undef DO_QNEG8 | 
|  |  | 
|  | #define DO_QABS16(x) do { \ | 
|  | if (x == (int16_t)0x8000) { \ | 
|  | x = 0x7fff; \ | 
|  | SET_QC(); \ | 
|  | } else if (x < 0) { \ | 
|  | x = -x; \ | 
|  | }} while (0) | 
|  | uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x) | 
|  | { | 
|  | neon_s16 vec; | 
|  | NEON_UNPACK(neon_s16, vec, x); | 
|  | DO_QABS16(vec.v1); | 
|  | DO_QABS16(vec.v2); | 
|  | NEON_PACK(neon_s16, x, vec); | 
|  | return x; | 
|  | } | 
|  | #undef DO_QABS16 | 
|  |  | 
|  | #define DO_QNEG16(x) do { \ | 
|  | if (x == (int16_t)0x8000) { \ | 
|  | x = 0x7fff; \ | 
|  | SET_QC(); \ | 
|  | } else { \ | 
|  | x = -x; \ | 
|  | }} while (0) | 
|  | uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x) | 
|  | { | 
|  | neon_s16 vec; | 
|  | NEON_UNPACK(neon_s16, vec, x); | 
|  | DO_QNEG16(vec.v1); | 
|  | DO_QNEG16(vec.v2); | 
|  | NEON_PACK(neon_s16, x, vec); | 
|  | return x; | 
|  | } | 
|  | #undef DO_QNEG16 | 
|  |  | 
|  | uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x) | 
|  | { | 
|  | if (x == SIGNBIT) { | 
|  | SET_QC(); | 
|  | x = ~SIGNBIT; | 
|  | } else if ((int32_t)x < 0) { | 
|  | x = -x; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x) | 
|  | { | 
|  | if (x == SIGNBIT) { | 
|  | SET_QC(); | 
|  | x = ~SIGNBIT; | 
|  | } else { | 
|  | x = -x; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x) | 
|  | { | 
|  | if (x == SIGNBIT64) { | 
|  | SET_QC(); | 
|  | x = ~SIGNBIT64; | 
|  | } else if ((int64_t)x < 0) { | 
|  | x = -x; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x) | 
|  | { | 
|  | if (x == SIGNBIT64) { | 
|  | SET_QC(); | 
|  | x = ~SIGNBIT64; | 
|  | } else { | 
|  | x = -x; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /* NEON Float helpers.  */ | 
|  | uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | float32 f0 = make_float32(a); | 
|  | float32 f1 = make_float32(b); | 
|  | return float32_val(float32_abs(float32_sub(f0, f1, fpst))); | 
|  | } | 
|  |  | 
|  | /* Floating point comparisons produce an integer result. | 
|  | * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do. | 
|  | * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires. | 
|  | */ | 
|  | uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | return -float32_eq_quiet(make_float32(a), make_float32(b), fpst); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | return -float32_le(make_float32(b), make_float32(a), fpst); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | return -float32_lt(make_float32(b), make_float32(a), fpst); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | float32 f0 = float32_abs(make_float32(a)); | 
|  | float32 f1 = float32_abs(make_float32(b)); | 
|  | return -float32_le(f1, f0, fpst); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | float32 f0 = float32_abs(make_float32(a)); | 
|  | float32 f1 = float32_abs(make_float32(b)); | 
|  | return -float32_lt(f1, f0, fpst); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | float64 f0 = float64_abs(make_float64(a)); | 
|  | float64 f1 = float64_abs(make_float64(b)); | 
|  | return -float64_le(f1, f0, fpst); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | float64 f0 = float64_abs(make_float64(a)); | 
|  | float64 f1 = float64_abs(make_float64(b)); | 
|  | return -float64_lt(f1, f0, fpst); | 
|  | } | 
|  |  | 
|  | #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1)) | 
|  |  | 
|  | void HELPER(neon_qunzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) | 
|  | { | 
|  | uint64_t zm0 = float64_val(env->vfp.regs[rm]); | 
|  | uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); | 
|  | uint64_t zd0 = float64_val(env->vfp.regs[rd]); | 
|  | uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); | 
|  | uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8) | 
|  | | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24) | 
|  | | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40) | 
|  | | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56); | 
|  | uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8) | 
|  | | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24) | 
|  | | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40) | 
|  | | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56); | 
|  | uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8) | 
|  | | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24) | 
|  | | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40) | 
|  | | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56); | 
|  | uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8) | 
|  | | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24) | 
|  | | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40) | 
|  | | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56); | 
|  | env->vfp.regs[rm] = make_float64(m0); | 
|  | env->vfp.regs[rm + 1] = make_float64(m1); | 
|  | env->vfp.regs[rd] = make_float64(d0); | 
|  | env->vfp.regs[rd + 1] = make_float64(d1); | 
|  | } | 
|  |  | 
|  | void HELPER(neon_qunzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) | 
|  | { | 
|  | uint64_t zm0 = float64_val(env->vfp.regs[rm]); | 
|  | uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); | 
|  | uint64_t zd0 = float64_val(env->vfp.regs[rd]); | 
|  | uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); | 
|  | uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16) | 
|  | | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48); | 
|  | uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16) | 
|  | | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48); | 
|  | uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16) | 
|  | | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48); | 
|  | uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16) | 
|  | | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48); | 
|  | env->vfp.regs[rm] = make_float64(m0); | 
|  | env->vfp.regs[rm + 1] = make_float64(m1); | 
|  | env->vfp.regs[rd] = make_float64(d0); | 
|  | env->vfp.regs[rd + 1] = make_float64(d1); | 
|  | } | 
|  |  | 
|  | void HELPER(neon_qunzip32)(CPUARMState *env, uint32_t rd, uint32_t rm) | 
|  | { | 
|  | uint64_t zm0 = float64_val(env->vfp.regs[rm]); | 
|  | uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); | 
|  | uint64_t zd0 = float64_val(env->vfp.regs[rd]); | 
|  | uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); | 
|  | uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32); | 
|  | uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32); | 
|  | uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32); | 
|  | uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32); | 
|  | env->vfp.regs[rm] = make_float64(m0); | 
|  | env->vfp.regs[rm + 1] = make_float64(m1); | 
|  | env->vfp.regs[rd] = make_float64(d0); | 
|  | env->vfp.regs[rd + 1] = make_float64(d1); | 
|  | } | 
|  |  | 
|  | void HELPER(neon_unzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) | 
|  | { | 
|  | uint64_t zm = float64_val(env->vfp.regs[rm]); | 
|  | uint64_t zd = float64_val(env->vfp.regs[rd]); | 
|  | uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8) | 
|  | | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24) | 
|  | | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40) | 
|  | | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56); | 
|  | uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8) | 
|  | | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24) | 
|  | | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40) | 
|  | | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56); | 
|  | env->vfp.regs[rm] = make_float64(m0); | 
|  | env->vfp.regs[rd] = make_float64(d0); | 
|  | } | 
|  |  | 
|  | void HELPER(neon_unzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) | 
|  | { | 
|  | uint64_t zm = float64_val(env->vfp.regs[rm]); | 
|  | uint64_t zd = float64_val(env->vfp.regs[rd]); | 
|  | uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16) | 
|  | | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48); | 
|  | uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16) | 
|  | | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48); | 
|  | env->vfp.regs[rm] = make_float64(m0); | 
|  | env->vfp.regs[rd] = make_float64(d0); | 
|  | } | 
|  |  | 
|  | void HELPER(neon_qzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) | 
|  | { | 
|  | uint64_t zm0 = float64_val(env->vfp.regs[rm]); | 
|  | uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); | 
|  | uint64_t zd0 = float64_val(env->vfp.regs[rd]); | 
|  | uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); | 
|  | uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8) | 
|  | | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24) | 
|  | | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40) | 
|  | | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56); | 
|  | uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8) | 
|  | | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24) | 
|  | | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40) | 
|  | | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56); | 
|  | uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8) | 
|  | | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24) | 
|  | | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40) | 
|  | | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56); | 
|  | uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8) | 
|  | | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24) | 
|  | | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40) | 
|  | | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56); | 
|  | env->vfp.regs[rm] = make_float64(m0); | 
|  | env->vfp.regs[rm + 1] = make_float64(m1); | 
|  | env->vfp.regs[rd] = make_float64(d0); | 
|  | env->vfp.regs[rd + 1] = make_float64(d1); | 
|  | } | 
|  |  | 
|  | void HELPER(neon_qzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) | 
|  | { | 
|  | uint64_t zm0 = float64_val(env->vfp.regs[rm]); | 
|  | uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); | 
|  | uint64_t zd0 = float64_val(env->vfp.regs[rd]); | 
|  | uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); | 
|  | uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16) | 
|  | | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48); | 
|  | uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16) | 
|  | | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48); | 
|  | uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16) | 
|  | | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48); | 
|  | uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16) | 
|  | | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48); | 
|  | env->vfp.regs[rm] = make_float64(m0); | 
|  | env->vfp.regs[rm + 1] = make_float64(m1); | 
|  | env->vfp.regs[rd] = make_float64(d0); | 
|  | env->vfp.regs[rd + 1] = make_float64(d1); | 
|  | } | 
|  |  | 
|  | void HELPER(neon_qzip32)(CPUARMState *env, uint32_t rd, uint32_t rm) | 
|  | { | 
|  | uint64_t zm0 = float64_val(env->vfp.regs[rm]); | 
|  | uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); | 
|  | uint64_t zd0 = float64_val(env->vfp.regs[rd]); | 
|  | uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); | 
|  | uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32); | 
|  | uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32); | 
|  | uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32); | 
|  | uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32); | 
|  | env->vfp.regs[rm] = make_float64(m0); | 
|  | env->vfp.regs[rm + 1] = make_float64(m1); | 
|  | env->vfp.regs[rd] = make_float64(d0); | 
|  | env->vfp.regs[rd + 1] = make_float64(d1); | 
|  | } | 
|  |  | 
|  | void HELPER(neon_zip8)(CPUARMState *env, uint32_t rd, uint32_t rm) | 
|  | { | 
|  | uint64_t zm = float64_val(env->vfp.regs[rm]); | 
|  | uint64_t zd = float64_val(env->vfp.regs[rd]); | 
|  | uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8) | 
|  | | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24) | 
|  | | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40) | 
|  | | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56); | 
|  | uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8) | 
|  | | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24) | 
|  | | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40) | 
|  | | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56); | 
|  | env->vfp.regs[rm] = make_float64(m0); | 
|  | env->vfp.regs[rd] = make_float64(d0); | 
|  | } | 
|  |  | 
|  | void HELPER(neon_zip16)(CPUARMState *env, uint32_t rd, uint32_t rm) | 
|  | { | 
|  | uint64_t zm = float64_val(env->vfp.regs[rm]); | 
|  | uint64_t zd = float64_val(env->vfp.regs[rd]); | 
|  | uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16) | 
|  | | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48); | 
|  | uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16) | 
|  | | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48); | 
|  | env->vfp.regs[rm] = make_float64(m0); | 
|  | env->vfp.regs[rd] = make_float64(d0); | 
|  | } | 
|  |  | 
|  | /* Helper function for 64 bit polynomial multiply case: | 
|  | * perform PolynomialMult(op1, op2) and return either the top or | 
|  | * bottom half of the 128 bit result. | 
|  | */ | 
|  | uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2) | 
|  | { | 
|  | int bitnum; | 
|  | uint64_t res = 0; | 
|  |  | 
|  | for (bitnum = 0; bitnum < 64; bitnum++) { | 
|  | if (op1 & (1ULL << bitnum)) { | 
|  | res ^= op2 << bitnum; | 
|  | } | 
|  | } | 
|  | return res; | 
|  | } | 
|  | uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2) | 
|  | { | 
|  | int bitnum; | 
|  | uint64_t res = 0; | 
|  |  | 
|  | /* bit 0 of op1 can't influence the high 64 bits at all */ | 
|  | for (bitnum = 1; bitnum < 64; bitnum++) { | 
|  | if (op1 & (1ULL << bitnum)) { | 
|  | res ^= op2 >> (64 - bitnum); | 
|  | } | 
|  | } | 
|  | return res; | 
|  | } |