|  | /* | 
|  | * QEMU System Emulator | 
|  | * | 
|  | * Copyright (c) 2003-2008 Fabrice Bellard | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | /* Needed early for CONFIG_BSD etc. */ | 
|  | #include "config-host.h" | 
|  |  | 
|  | #include "monitor/monitor.h" | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "exec/gdbstub.h" | 
|  | #include "sysemu/dma.h" | 
|  | #include "sysemu/kvm.h" | 
|  | #include "qmp-commands.h" | 
|  |  | 
|  | #include "qemu/thread.h" | 
|  | #include "sysemu/cpus.h" | 
|  | #include "sysemu/qtest.h" | 
|  | #include "qemu/main-loop.h" | 
|  | #include "qemu/bitmap.h" | 
|  |  | 
|  | #ifndef _WIN32 | 
|  | #include "qemu/compatfd.h" | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_LINUX | 
|  |  | 
|  | #include <sys/prctl.h> | 
|  |  | 
|  | #ifndef PR_MCE_KILL | 
|  | #define PR_MCE_KILL 33 | 
|  | #endif | 
|  |  | 
|  | #ifndef PR_MCE_KILL_SET | 
|  | #define PR_MCE_KILL_SET 1 | 
|  | #endif | 
|  |  | 
|  | #ifndef PR_MCE_KILL_EARLY | 
|  | #define PR_MCE_KILL_EARLY 1 | 
|  | #endif | 
|  |  | 
|  | #endif /* CONFIG_LINUX */ | 
|  |  | 
|  | static CPUArchState *next_cpu; | 
|  |  | 
|  | static bool cpu_thread_is_idle(CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | if (cpu->stop || cpu->queued_work_first) { | 
|  | return false; | 
|  | } | 
|  | if (cpu->stopped || !runstate_is_running()) { | 
|  | return true; | 
|  | } | 
|  | if (!cpu->halted || qemu_cpu_has_work(cpu) || | 
|  | kvm_async_interrupts_enabled()) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool all_cpu_threads_idle(void) | 
|  | { | 
|  | CPUArchState *env; | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | if (!cpu_thread_is_idle(env)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /***********************************************************/ | 
|  | /* guest cycle counter */ | 
|  |  | 
|  | /* Conversion factor from emulated instructions to virtual clock ticks.  */ | 
|  | static int icount_time_shift; | 
|  | /* Arbitrarily pick 1MIPS as the minimum allowable speed.  */ | 
|  | #define MAX_ICOUNT_SHIFT 10 | 
|  | /* Compensate for varying guest execution speed.  */ | 
|  | static int64_t qemu_icount_bias; | 
|  | static QEMUTimer *icount_rt_timer; | 
|  | static QEMUTimer *icount_vm_timer; | 
|  | static QEMUTimer *icount_warp_timer; | 
|  | static int64_t vm_clock_warp_start; | 
|  | static int64_t qemu_icount; | 
|  |  | 
|  | typedef struct TimersState { | 
|  | int64_t cpu_ticks_prev; | 
|  | int64_t cpu_ticks_offset; | 
|  | int64_t cpu_clock_offset; | 
|  | int32_t cpu_ticks_enabled; | 
|  | int64_t dummy; | 
|  | } TimersState; | 
|  |  | 
|  | TimersState timers_state; | 
|  |  | 
|  | /* Return the virtual CPU time, based on the instruction counter.  */ | 
|  | int64_t cpu_get_icount(void) | 
|  | { | 
|  | int64_t icount; | 
|  | CPUArchState *env = cpu_single_env; | 
|  |  | 
|  | icount = qemu_icount; | 
|  | if (env) { | 
|  | if (!can_do_io(env)) { | 
|  | fprintf(stderr, "Bad clock read\n"); | 
|  | } | 
|  | icount -= (env->icount_decr.u16.low + env->icount_extra); | 
|  | } | 
|  | return qemu_icount_bias + (icount << icount_time_shift); | 
|  | } | 
|  |  | 
|  | /* return the host CPU cycle counter and handle stop/restart */ | 
|  | int64_t cpu_get_ticks(void) | 
|  | { | 
|  | if (use_icount) { | 
|  | return cpu_get_icount(); | 
|  | } | 
|  | if (!timers_state.cpu_ticks_enabled) { | 
|  | return timers_state.cpu_ticks_offset; | 
|  | } else { | 
|  | int64_t ticks; | 
|  | ticks = cpu_get_real_ticks(); | 
|  | if (timers_state.cpu_ticks_prev > ticks) { | 
|  | /* Note: non increasing ticks may happen if the host uses | 
|  | software suspend */ | 
|  | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | 
|  | } | 
|  | timers_state.cpu_ticks_prev = ticks; | 
|  | return ticks + timers_state.cpu_ticks_offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* return the host CPU monotonic timer and handle stop/restart */ | 
|  | int64_t cpu_get_clock(void) | 
|  | { | 
|  | int64_t ti; | 
|  | if (!timers_state.cpu_ticks_enabled) { | 
|  | return timers_state.cpu_clock_offset; | 
|  | } else { | 
|  | ti = get_clock(); | 
|  | return ti + timers_state.cpu_clock_offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* enable cpu_get_ticks() */ | 
|  | void cpu_enable_ticks(void) | 
|  | { | 
|  | if (!timers_state.cpu_ticks_enabled) { | 
|  | timers_state.cpu_ticks_offset -= cpu_get_real_ticks(); | 
|  | timers_state.cpu_clock_offset -= get_clock(); | 
|  | timers_state.cpu_ticks_enabled = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* disable cpu_get_ticks() : the clock is stopped. You must not call | 
|  | cpu_get_ticks() after that.  */ | 
|  | void cpu_disable_ticks(void) | 
|  | { | 
|  | if (timers_state.cpu_ticks_enabled) { | 
|  | timers_state.cpu_ticks_offset = cpu_get_ticks(); | 
|  | timers_state.cpu_clock_offset = cpu_get_clock(); | 
|  | timers_state.cpu_ticks_enabled = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Correlation between real and virtual time is always going to be | 
|  | fairly approximate, so ignore small variation. | 
|  | When the guest is idle real and virtual time will be aligned in | 
|  | the IO wait loop.  */ | 
|  | #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10) | 
|  |  | 
|  | static void icount_adjust(void) | 
|  | { | 
|  | int64_t cur_time; | 
|  | int64_t cur_icount; | 
|  | int64_t delta; | 
|  | static int64_t last_delta; | 
|  | /* If the VM is not running, then do nothing.  */ | 
|  | if (!runstate_is_running()) { | 
|  | return; | 
|  | } | 
|  | cur_time = cpu_get_clock(); | 
|  | cur_icount = qemu_get_clock_ns(vm_clock); | 
|  | delta = cur_icount - cur_time; | 
|  | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */ | 
|  | if (delta > 0 | 
|  | && last_delta + ICOUNT_WOBBLE < delta * 2 | 
|  | && icount_time_shift > 0) { | 
|  | /* The guest is getting too far ahead.  Slow time down.  */ | 
|  | icount_time_shift--; | 
|  | } | 
|  | if (delta < 0 | 
|  | && last_delta - ICOUNT_WOBBLE > delta * 2 | 
|  | && icount_time_shift < MAX_ICOUNT_SHIFT) { | 
|  | /* The guest is getting too far behind.  Speed time up.  */ | 
|  | icount_time_shift++; | 
|  | } | 
|  | last_delta = delta; | 
|  | qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift); | 
|  | } | 
|  |  | 
|  | static void icount_adjust_rt(void *opaque) | 
|  | { | 
|  | qemu_mod_timer(icount_rt_timer, | 
|  | qemu_get_clock_ms(rt_clock) + 1000); | 
|  | icount_adjust(); | 
|  | } | 
|  |  | 
|  | static void icount_adjust_vm(void *opaque) | 
|  | { | 
|  | qemu_mod_timer(icount_vm_timer, | 
|  | qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10); | 
|  | icount_adjust(); | 
|  | } | 
|  |  | 
|  | static int64_t qemu_icount_round(int64_t count) | 
|  | { | 
|  | return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | 
|  | } | 
|  |  | 
|  | static void icount_warp_rt(void *opaque) | 
|  | { | 
|  | if (vm_clock_warp_start == -1) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (runstate_is_running()) { | 
|  | int64_t clock = qemu_get_clock_ns(rt_clock); | 
|  | int64_t warp_delta = clock - vm_clock_warp_start; | 
|  | if (use_icount == 1) { | 
|  | qemu_icount_bias += warp_delta; | 
|  | } else { | 
|  | /* | 
|  | * In adaptive mode, do not let the vm_clock run too | 
|  | * far ahead of real time. | 
|  | */ | 
|  | int64_t cur_time = cpu_get_clock(); | 
|  | int64_t cur_icount = qemu_get_clock_ns(vm_clock); | 
|  | int64_t delta = cur_time - cur_icount; | 
|  | qemu_icount_bias += MIN(warp_delta, delta); | 
|  | } | 
|  | if (qemu_clock_expired(vm_clock)) { | 
|  | qemu_notify_event(); | 
|  | } | 
|  | } | 
|  | vm_clock_warp_start = -1; | 
|  | } | 
|  |  | 
|  | void qtest_clock_warp(int64_t dest) | 
|  | { | 
|  | int64_t clock = qemu_get_clock_ns(vm_clock); | 
|  | assert(qtest_enabled()); | 
|  | while (clock < dest) { | 
|  | int64_t deadline = qemu_clock_deadline(vm_clock); | 
|  | int64_t warp = MIN(dest - clock, deadline); | 
|  | qemu_icount_bias += warp; | 
|  | qemu_run_timers(vm_clock); | 
|  | clock = qemu_get_clock_ns(vm_clock); | 
|  | } | 
|  | qemu_notify_event(); | 
|  | } | 
|  |  | 
|  | void qemu_clock_warp(QEMUClock *clock) | 
|  | { | 
|  | int64_t deadline; | 
|  |  | 
|  | /* | 
|  | * There are too many global variables to make the "warp" behavior | 
|  | * applicable to other clocks.  But a clock argument removes the | 
|  | * need for if statements all over the place. | 
|  | */ | 
|  | if (clock != vm_clock || !use_icount) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the CPUs have been sleeping, advance the vm_clock timer now.  This | 
|  | * ensures that the deadline for the timer is computed correctly below. | 
|  | * This also makes sure that the insn counter is synchronized before the | 
|  | * CPU starts running, in case the CPU is woken by an event other than | 
|  | * the earliest vm_clock timer. | 
|  | */ | 
|  | icount_warp_rt(NULL); | 
|  | if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) { | 
|  | qemu_del_timer(icount_warp_timer); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (qtest_enabled()) { | 
|  | /* When testing, qtest commands advance icount.  */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | vm_clock_warp_start = qemu_get_clock_ns(rt_clock); | 
|  | deadline = qemu_clock_deadline(vm_clock); | 
|  | if (deadline > 0) { | 
|  | /* | 
|  | * Ensure the vm_clock proceeds even when the virtual CPU goes to | 
|  | * sleep.  Otherwise, the CPU might be waiting for a future timer | 
|  | * interrupt to wake it up, but the interrupt never comes because | 
|  | * the vCPU isn't running any insns and thus doesn't advance the | 
|  | * vm_clock. | 
|  | * | 
|  | * An extreme solution for this problem would be to never let VCPUs | 
|  | * sleep in icount mode if there is a pending vm_clock timer; rather | 
|  | * time could just advance to the next vm_clock event.  Instead, we | 
|  | * do stop VCPUs and only advance vm_clock after some "real" time, | 
|  | * (related to the time left until the next event) has passed.  This | 
|  | * rt_clock timer will do this.  This avoids that the warps are too | 
|  | * visible externally---for example, you will not be sending network | 
|  | * packets continuously instead of every 100ms. | 
|  | */ | 
|  | qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline); | 
|  | } else { | 
|  | qemu_notify_event(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_timers = { | 
|  | .name = "timer", | 
|  | .version_id = 2, | 
|  | .minimum_version_id = 1, | 
|  | .minimum_version_id_old = 1, | 
|  | .fields      = (VMStateField[]) { | 
|  | VMSTATE_INT64(cpu_ticks_offset, TimersState), | 
|  | VMSTATE_INT64(dummy, TimersState), | 
|  | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | void configure_icount(const char *option) | 
|  | { | 
|  | vmstate_register(NULL, 0, &vmstate_timers, &timers_state); | 
|  | if (!option) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL); | 
|  | if (strcmp(option, "auto") != 0) { | 
|  | icount_time_shift = strtol(option, NULL, 0); | 
|  | use_icount = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | use_icount = 2; | 
|  |  | 
|  | /* 125MIPS seems a reasonable initial guess at the guest speed. | 
|  | It will be corrected fairly quickly anyway.  */ | 
|  | icount_time_shift = 3; | 
|  |  | 
|  | /* Have both realtime and virtual time triggers for speed adjustment. | 
|  | The realtime trigger catches emulated time passing too slowly, | 
|  | the virtual time trigger catches emulated time passing too fast. | 
|  | Realtime triggers occur even when idle, so use them less frequently | 
|  | than VM triggers.  */ | 
|  | icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL); | 
|  | qemu_mod_timer(icount_rt_timer, | 
|  | qemu_get_clock_ms(rt_clock) + 1000); | 
|  | icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL); | 
|  | qemu_mod_timer(icount_vm_timer, | 
|  | qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10); | 
|  | } | 
|  |  | 
|  | /***********************************************************/ | 
|  | void hw_error(const char *fmt, ...) | 
|  | { | 
|  | va_list ap; | 
|  | CPUArchState *env; | 
|  | CPUState *cpu; | 
|  |  | 
|  | va_start(ap, fmt); | 
|  | fprintf(stderr, "qemu: hardware error: "); | 
|  | vfprintf(stderr, fmt, ap); | 
|  | fprintf(stderr, "\n"); | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | cpu = ENV_GET_CPU(env); | 
|  | fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); | 
|  | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU); | 
|  | } | 
|  | va_end(ap); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | void cpu_synchronize_all_states(void) | 
|  | { | 
|  | CPUArchState *cpu; | 
|  |  | 
|  | for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { | 
|  | cpu_synchronize_state(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_synchronize_all_post_reset(void) | 
|  | { | 
|  | CPUArchState *cpu; | 
|  |  | 
|  | for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { | 
|  | cpu_synchronize_post_reset(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_synchronize_all_post_init(void) | 
|  | { | 
|  | CPUArchState *cpu; | 
|  |  | 
|  | for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { | 
|  | cpu_synchronize_post_init(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool cpu_is_stopped(CPUState *cpu) | 
|  | { | 
|  | return !runstate_is_running() || cpu->stopped; | 
|  | } | 
|  |  | 
|  | static void do_vm_stop(RunState state) | 
|  | { | 
|  | if (runstate_is_running()) { | 
|  | cpu_disable_ticks(); | 
|  | pause_all_vcpus(); | 
|  | runstate_set(state); | 
|  | vm_state_notify(0, state); | 
|  | bdrv_drain_all(); | 
|  | bdrv_flush_all(); | 
|  | monitor_protocol_event(QEVENT_STOP, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool cpu_can_run(CPUState *cpu) | 
|  | { | 
|  | if (cpu->stop) { | 
|  | return false; | 
|  | } | 
|  | if (cpu->stopped || !runstate_is_running()) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void cpu_handle_guest_debug(CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | gdb_set_stop_cpu(env); | 
|  | qemu_system_debug_request(); | 
|  | cpu->stopped = true; | 
|  | } | 
|  |  | 
|  | static void cpu_signal(int sig) | 
|  | { | 
|  | if (cpu_single_env) { | 
|  | cpu_exit(cpu_single_env); | 
|  | } | 
|  | exit_request = 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_LINUX | 
|  | static void sigbus_reraise(void) | 
|  | { | 
|  | sigset_t set; | 
|  | struct sigaction action; | 
|  |  | 
|  | memset(&action, 0, sizeof(action)); | 
|  | action.sa_handler = SIG_DFL; | 
|  | if (!sigaction(SIGBUS, &action, NULL)) { | 
|  | raise(SIGBUS); | 
|  | sigemptyset(&set); | 
|  | sigaddset(&set, SIGBUS); | 
|  | sigprocmask(SIG_UNBLOCK, &set, NULL); | 
|  | } | 
|  | perror("Failed to re-raise SIGBUS!\n"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo, | 
|  | void *ctx) | 
|  | { | 
|  | if (kvm_on_sigbus(siginfo->ssi_code, | 
|  | (void *)(intptr_t)siginfo->ssi_addr)) { | 
|  | sigbus_reraise(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qemu_init_sigbus(void) | 
|  | { | 
|  | struct sigaction action; | 
|  |  | 
|  | memset(&action, 0, sizeof(action)); | 
|  | action.sa_flags = SA_SIGINFO; | 
|  | action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler; | 
|  | sigaction(SIGBUS, &action, NULL); | 
|  |  | 
|  | prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); | 
|  | } | 
|  |  | 
|  | static void qemu_kvm_eat_signals(CPUState *cpu) | 
|  | { | 
|  | struct timespec ts = { 0, 0 }; | 
|  | siginfo_t siginfo; | 
|  | sigset_t waitset; | 
|  | sigset_t chkset; | 
|  | int r; | 
|  |  | 
|  | sigemptyset(&waitset); | 
|  | sigaddset(&waitset, SIG_IPI); | 
|  | sigaddset(&waitset, SIGBUS); | 
|  |  | 
|  | do { | 
|  | r = sigtimedwait(&waitset, &siginfo, &ts); | 
|  | if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { | 
|  | perror("sigtimedwait"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | switch (r) { | 
|  | case SIGBUS: | 
|  | if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) { | 
|  | sigbus_reraise(); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | r = sigpending(&chkset); | 
|  | if (r == -1) { | 
|  | perror("sigpending"); | 
|  | exit(1); | 
|  | } | 
|  | } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS)); | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_LINUX */ | 
|  |  | 
|  | static void qemu_init_sigbus(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void qemu_kvm_eat_signals(CPUState *cpu) | 
|  | { | 
|  | } | 
|  | #endif /* !CONFIG_LINUX */ | 
|  |  | 
|  | #ifndef _WIN32 | 
|  | static void dummy_signal(int sig) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void qemu_kvm_init_cpu_signals(CPUArchState *env) | 
|  | { | 
|  | int r; | 
|  | sigset_t set; | 
|  | struct sigaction sigact; | 
|  |  | 
|  | memset(&sigact, 0, sizeof(sigact)); | 
|  | sigact.sa_handler = dummy_signal; | 
|  | sigaction(SIG_IPI, &sigact, NULL); | 
|  |  | 
|  | pthread_sigmask(SIG_BLOCK, NULL, &set); | 
|  | sigdelset(&set, SIG_IPI); | 
|  | sigdelset(&set, SIGBUS); | 
|  | r = kvm_set_signal_mask(env, &set); | 
|  | if (r) { | 
|  | fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qemu_tcg_init_cpu_signals(void) | 
|  | { | 
|  | sigset_t set; | 
|  | struct sigaction sigact; | 
|  |  | 
|  | memset(&sigact, 0, sizeof(sigact)); | 
|  | sigact.sa_handler = cpu_signal; | 
|  | sigaction(SIG_IPI, &sigact, NULL); | 
|  |  | 
|  | sigemptyset(&set); | 
|  | sigaddset(&set, SIG_IPI); | 
|  | pthread_sigmask(SIG_UNBLOCK, &set, NULL); | 
|  | } | 
|  |  | 
|  | #else /* _WIN32 */ | 
|  | static void qemu_kvm_init_cpu_signals(CPUArchState *env) | 
|  | { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static void qemu_tcg_init_cpu_signals(void) | 
|  | { | 
|  | } | 
|  | #endif /* _WIN32 */ | 
|  |  | 
|  | static QemuMutex qemu_global_mutex; | 
|  | static QemuCond qemu_io_proceeded_cond; | 
|  | static bool iothread_requesting_mutex; | 
|  |  | 
|  | static QemuThread io_thread; | 
|  |  | 
|  | static QemuThread *tcg_cpu_thread; | 
|  | static QemuCond *tcg_halt_cond; | 
|  |  | 
|  | /* cpu creation */ | 
|  | static QemuCond qemu_cpu_cond; | 
|  | /* system init */ | 
|  | static QemuCond qemu_pause_cond; | 
|  | static QemuCond qemu_work_cond; | 
|  |  | 
|  | void qemu_init_cpu_loop(void) | 
|  | { | 
|  | qemu_init_sigbus(); | 
|  | qemu_cond_init(&qemu_cpu_cond); | 
|  | qemu_cond_init(&qemu_pause_cond); | 
|  | qemu_cond_init(&qemu_work_cond); | 
|  | qemu_cond_init(&qemu_io_proceeded_cond); | 
|  | qemu_mutex_init(&qemu_global_mutex); | 
|  |  | 
|  | qemu_thread_get_self(&io_thread); | 
|  | } | 
|  |  | 
|  | void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data) | 
|  | { | 
|  | struct qemu_work_item wi; | 
|  |  | 
|  | if (qemu_cpu_is_self(cpu)) { | 
|  | func(data); | 
|  | return; | 
|  | } | 
|  |  | 
|  | wi.func = func; | 
|  | wi.data = data; | 
|  | if (cpu->queued_work_first == NULL) { | 
|  | cpu->queued_work_first = &wi; | 
|  | } else { | 
|  | cpu->queued_work_last->next = &wi; | 
|  | } | 
|  | cpu->queued_work_last = &wi; | 
|  | wi.next = NULL; | 
|  | wi.done = false; | 
|  |  | 
|  | qemu_cpu_kick(cpu); | 
|  | while (!wi.done) { | 
|  | CPUArchState *self_env = cpu_single_env; | 
|  |  | 
|  | qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex); | 
|  | cpu_single_env = self_env; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void flush_queued_work(CPUState *cpu) | 
|  | { | 
|  | struct qemu_work_item *wi; | 
|  |  | 
|  | if (cpu->queued_work_first == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | while ((wi = cpu->queued_work_first)) { | 
|  | cpu->queued_work_first = wi->next; | 
|  | wi->func(wi->data); | 
|  | wi->done = true; | 
|  | } | 
|  | cpu->queued_work_last = NULL; | 
|  | qemu_cond_broadcast(&qemu_work_cond); | 
|  | } | 
|  |  | 
|  | static void qemu_wait_io_event_common(CPUState *cpu) | 
|  | { | 
|  | if (cpu->stop) { | 
|  | cpu->stop = false; | 
|  | cpu->stopped = true; | 
|  | qemu_cond_signal(&qemu_pause_cond); | 
|  | } | 
|  | flush_queued_work(cpu); | 
|  | cpu->thread_kicked = false; | 
|  | } | 
|  |  | 
|  | static void qemu_tcg_wait_io_event(void) | 
|  | { | 
|  | CPUArchState *env; | 
|  |  | 
|  | while (all_cpu_threads_idle()) { | 
|  | /* Start accounting real time to the virtual clock if the CPUs | 
|  | are idle.  */ | 
|  | qemu_clock_warp(vm_clock); | 
|  | qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex); | 
|  | } | 
|  |  | 
|  | while (iothread_requesting_mutex) { | 
|  | qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex); | 
|  | } | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | qemu_wait_io_event_common(ENV_GET_CPU(env)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qemu_kvm_wait_io_event(CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | while (cpu_thread_is_idle(env)) { | 
|  | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | 
|  | } | 
|  |  | 
|  | qemu_kvm_eat_signals(cpu); | 
|  | qemu_wait_io_event_common(cpu); | 
|  | } | 
|  |  | 
|  | static void *qemu_kvm_cpu_thread_fn(void *arg) | 
|  | { | 
|  | CPUArchState *env = arg; | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  | int r; | 
|  |  | 
|  | qemu_mutex_lock(&qemu_global_mutex); | 
|  | qemu_thread_get_self(cpu->thread); | 
|  | cpu->thread_id = qemu_get_thread_id(); | 
|  | cpu_single_env = env; | 
|  |  | 
|  | r = kvm_init_vcpu(cpu); | 
|  | if (r < 0) { | 
|  | fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r)); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | qemu_kvm_init_cpu_signals(env); | 
|  |  | 
|  | /* signal CPU creation */ | 
|  | cpu->created = true; | 
|  | qemu_cond_signal(&qemu_cpu_cond); | 
|  |  | 
|  | while (1) { | 
|  | if (cpu_can_run(cpu)) { | 
|  | r = kvm_cpu_exec(env); | 
|  | if (r == EXCP_DEBUG) { | 
|  | cpu_handle_guest_debug(env); | 
|  | } | 
|  | } | 
|  | qemu_kvm_wait_io_event(env); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *qemu_dummy_cpu_thread_fn(void *arg) | 
|  | { | 
|  | #ifdef _WIN32 | 
|  | fprintf(stderr, "qtest is not supported under Windows\n"); | 
|  | exit(1); | 
|  | #else | 
|  | CPUArchState *env = arg; | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  | sigset_t waitset; | 
|  | int r; | 
|  |  | 
|  | qemu_mutex_lock_iothread(); | 
|  | qemu_thread_get_self(cpu->thread); | 
|  | cpu->thread_id = qemu_get_thread_id(); | 
|  |  | 
|  | sigemptyset(&waitset); | 
|  | sigaddset(&waitset, SIG_IPI); | 
|  |  | 
|  | /* signal CPU creation */ | 
|  | cpu->created = true; | 
|  | qemu_cond_signal(&qemu_cpu_cond); | 
|  |  | 
|  | cpu_single_env = env; | 
|  | while (1) { | 
|  | cpu_single_env = NULL; | 
|  | qemu_mutex_unlock_iothread(); | 
|  | do { | 
|  | int sig; | 
|  | r = sigwait(&waitset, &sig); | 
|  | } while (r == -1 && (errno == EAGAIN || errno == EINTR)); | 
|  | if (r == -1) { | 
|  | perror("sigwait"); | 
|  | exit(1); | 
|  | } | 
|  | qemu_mutex_lock_iothread(); | 
|  | cpu_single_env = env; | 
|  | qemu_wait_io_event_common(cpu); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void tcg_exec_all(void); | 
|  |  | 
|  | static void *qemu_tcg_cpu_thread_fn(void *arg) | 
|  | { | 
|  | CPUState *cpu = arg; | 
|  | CPUArchState *env; | 
|  |  | 
|  | qemu_tcg_init_cpu_signals(); | 
|  | qemu_thread_get_self(cpu->thread); | 
|  |  | 
|  | /* signal CPU creation */ | 
|  | qemu_mutex_lock(&qemu_global_mutex); | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | cpu = ENV_GET_CPU(env); | 
|  | cpu->thread_id = qemu_get_thread_id(); | 
|  | cpu->created = true; | 
|  | } | 
|  | qemu_cond_signal(&qemu_cpu_cond); | 
|  |  | 
|  | /* wait for initial kick-off after machine start */ | 
|  | while (ENV_GET_CPU(first_cpu)->stopped) { | 
|  | qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex); | 
|  |  | 
|  | /* process any pending work */ | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | qemu_wait_io_event_common(ENV_GET_CPU(env)); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | tcg_exec_all(); | 
|  | if (use_icount && qemu_clock_deadline(vm_clock) <= 0) { | 
|  | qemu_notify_event(); | 
|  | } | 
|  | qemu_tcg_wait_io_event(); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void qemu_cpu_kick_thread(CPUState *cpu) | 
|  | { | 
|  | #ifndef _WIN32 | 
|  | int err; | 
|  |  | 
|  | err = pthread_kill(cpu->thread->thread, SIG_IPI); | 
|  | if (err) { | 
|  | fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); | 
|  | exit(1); | 
|  | } | 
|  | #else /* _WIN32 */ | 
|  | if (!qemu_cpu_is_self(cpu)) { | 
|  | SuspendThread(cpu->hThread); | 
|  | cpu_signal(0); | 
|  | ResumeThread(cpu->hThread); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void qemu_cpu_kick(CPUState *cpu) | 
|  | { | 
|  | qemu_cond_broadcast(cpu->halt_cond); | 
|  | if (!tcg_enabled() && !cpu->thread_kicked) { | 
|  | qemu_cpu_kick_thread(cpu); | 
|  | cpu->thread_kicked = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void qemu_cpu_kick_self(void) | 
|  | { | 
|  | #ifndef _WIN32 | 
|  | assert(cpu_single_env); | 
|  | CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env); | 
|  |  | 
|  | if (!cpu_single_cpu->thread_kicked) { | 
|  | qemu_cpu_kick_thread(cpu_single_cpu); | 
|  | cpu_single_cpu->thread_kicked = true; | 
|  | } | 
|  | #else | 
|  | abort(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool qemu_cpu_is_self(CPUState *cpu) | 
|  | { | 
|  | return qemu_thread_is_self(cpu->thread); | 
|  | } | 
|  |  | 
|  | static bool qemu_in_vcpu_thread(void) | 
|  | { | 
|  | return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env)); | 
|  | } | 
|  |  | 
|  | void qemu_mutex_lock_iothread(void) | 
|  | { | 
|  | if (!tcg_enabled()) { | 
|  | qemu_mutex_lock(&qemu_global_mutex); | 
|  | } else { | 
|  | iothread_requesting_mutex = true; | 
|  | if (qemu_mutex_trylock(&qemu_global_mutex)) { | 
|  | qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu)); | 
|  | qemu_mutex_lock(&qemu_global_mutex); | 
|  | } | 
|  | iothread_requesting_mutex = false; | 
|  | qemu_cond_broadcast(&qemu_io_proceeded_cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void qemu_mutex_unlock_iothread(void) | 
|  | { | 
|  | qemu_mutex_unlock(&qemu_global_mutex); | 
|  | } | 
|  |  | 
|  | static int all_vcpus_paused(void) | 
|  | { | 
|  | CPUArchState *penv = first_cpu; | 
|  |  | 
|  | while (penv) { | 
|  | CPUState *pcpu = ENV_GET_CPU(penv); | 
|  | if (!pcpu->stopped) { | 
|  | return 0; | 
|  | } | 
|  | penv = penv->next_cpu; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void pause_all_vcpus(void) | 
|  | { | 
|  | CPUArchState *penv = first_cpu; | 
|  |  | 
|  | qemu_clock_enable(vm_clock, false); | 
|  | while (penv) { | 
|  | CPUState *pcpu = ENV_GET_CPU(penv); | 
|  | pcpu->stop = true; | 
|  | qemu_cpu_kick(pcpu); | 
|  | penv = penv->next_cpu; | 
|  | } | 
|  |  | 
|  | if (qemu_in_vcpu_thread()) { | 
|  | cpu_stop_current(); | 
|  | if (!kvm_enabled()) { | 
|  | while (penv) { | 
|  | CPUState *pcpu = ENV_GET_CPU(penv); | 
|  | pcpu->stop = 0; | 
|  | pcpu->stopped = true; | 
|  | penv = penv->next_cpu; | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (!all_vcpus_paused()) { | 
|  | qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); | 
|  | penv = first_cpu; | 
|  | while (penv) { | 
|  | qemu_cpu_kick(ENV_GET_CPU(penv)); | 
|  | penv = penv->next_cpu; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void resume_all_vcpus(void) | 
|  | { | 
|  | CPUArchState *penv = first_cpu; | 
|  |  | 
|  | qemu_clock_enable(vm_clock, true); | 
|  | while (penv) { | 
|  | CPUState *pcpu = ENV_GET_CPU(penv); | 
|  | pcpu->stop = false; | 
|  | pcpu->stopped = false; | 
|  | qemu_cpu_kick(pcpu); | 
|  | penv = penv->next_cpu; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qemu_tcg_init_vcpu(CPUState *cpu) | 
|  | { | 
|  | /* share a single thread for all cpus with TCG */ | 
|  | if (!tcg_cpu_thread) { | 
|  | cpu->thread = g_malloc0(sizeof(QemuThread)); | 
|  | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | 
|  | qemu_cond_init(cpu->halt_cond); | 
|  | tcg_halt_cond = cpu->halt_cond; | 
|  | qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, cpu, | 
|  | QEMU_THREAD_JOINABLE); | 
|  | #ifdef _WIN32 | 
|  | cpu->hThread = qemu_thread_get_handle(cpu->thread); | 
|  | #endif | 
|  | while (!cpu->created) { | 
|  | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | 
|  | } | 
|  | tcg_cpu_thread = cpu->thread; | 
|  | } else { | 
|  | cpu->thread = tcg_cpu_thread; | 
|  | cpu->halt_cond = tcg_halt_cond; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qemu_kvm_start_vcpu(CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | cpu->thread = g_malloc0(sizeof(QemuThread)); | 
|  | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | 
|  | qemu_cond_init(cpu->halt_cond); | 
|  | qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env, | 
|  | QEMU_THREAD_JOINABLE); | 
|  | while (!cpu->created) { | 
|  | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qemu_dummy_start_vcpu(CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | cpu->thread = g_malloc0(sizeof(QemuThread)); | 
|  | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | 
|  | qemu_cond_init(cpu->halt_cond); | 
|  | qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env, | 
|  | QEMU_THREAD_JOINABLE); | 
|  | while (!cpu->created) { | 
|  | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | void qemu_init_vcpu(void *_env) | 
|  | { | 
|  | CPUArchState *env = _env; | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | cpu->nr_cores = smp_cores; | 
|  | cpu->nr_threads = smp_threads; | 
|  | cpu->stopped = true; | 
|  | if (kvm_enabled()) { | 
|  | qemu_kvm_start_vcpu(env); | 
|  | } else if (tcg_enabled()) { | 
|  | qemu_tcg_init_vcpu(cpu); | 
|  | } else { | 
|  | qemu_dummy_start_vcpu(env); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_stop_current(void) | 
|  | { | 
|  | if (cpu_single_env) { | 
|  | CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env); | 
|  | cpu_single_cpu->stop = false; | 
|  | cpu_single_cpu->stopped = true; | 
|  | cpu_exit(cpu_single_env); | 
|  | qemu_cond_signal(&qemu_pause_cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void vm_stop(RunState state) | 
|  | { | 
|  | if (qemu_in_vcpu_thread()) { | 
|  | qemu_system_vmstop_request(state); | 
|  | /* | 
|  | * FIXME: should not return to device code in case | 
|  | * vm_stop() has been requested. | 
|  | */ | 
|  | cpu_stop_current(); | 
|  | return; | 
|  | } | 
|  | do_vm_stop(state); | 
|  | } | 
|  |  | 
|  | /* does a state transition even if the VM is already stopped, | 
|  | current state is forgotten forever */ | 
|  | void vm_stop_force_state(RunState state) | 
|  | { | 
|  | if (runstate_is_running()) { | 
|  | vm_stop(state); | 
|  | } else { | 
|  | runstate_set(state); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int tcg_cpu_exec(CPUArchState *env) | 
|  | { | 
|  | int ret; | 
|  | #ifdef CONFIG_PROFILER | 
|  | int64_t ti; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PROFILER | 
|  | ti = profile_getclock(); | 
|  | #endif | 
|  | if (use_icount) { | 
|  | int64_t count; | 
|  | int decr; | 
|  | qemu_icount -= (env->icount_decr.u16.low + env->icount_extra); | 
|  | env->icount_decr.u16.low = 0; | 
|  | env->icount_extra = 0; | 
|  | count = qemu_icount_round(qemu_clock_deadline(vm_clock)); | 
|  | qemu_icount += count; | 
|  | decr = (count > 0xffff) ? 0xffff : count; | 
|  | count -= decr; | 
|  | env->icount_decr.u16.low = decr; | 
|  | env->icount_extra = count; | 
|  | } | 
|  | ret = cpu_exec(env); | 
|  | #ifdef CONFIG_PROFILER | 
|  | qemu_time += profile_getclock() - ti; | 
|  | #endif | 
|  | if (use_icount) { | 
|  | /* Fold pending instructions back into the | 
|  | instruction counter, and clear the interrupt flag.  */ | 
|  | qemu_icount -= (env->icount_decr.u16.low | 
|  | + env->icount_extra); | 
|  | env->icount_decr.u32 = 0; | 
|  | env->icount_extra = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void tcg_exec_all(void) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | /* Account partial waits to the vm_clock.  */ | 
|  | qemu_clock_warp(vm_clock); | 
|  |  | 
|  | if (next_cpu == NULL) { | 
|  | next_cpu = first_cpu; | 
|  | } | 
|  | for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) { | 
|  | CPUArchState *env = next_cpu; | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | qemu_clock_enable(vm_clock, | 
|  | (env->singlestep_enabled & SSTEP_NOTIMER) == 0); | 
|  |  | 
|  | if (cpu_can_run(cpu)) { | 
|  | r = tcg_cpu_exec(env); | 
|  | if (r == EXCP_DEBUG) { | 
|  | cpu_handle_guest_debug(env); | 
|  | break; | 
|  | } | 
|  | } else if (cpu->stop || cpu->stopped) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | exit_request = 0; | 
|  | } | 
|  |  | 
|  | void set_numa_modes(void) | 
|  | { | 
|  | CPUArchState *env; | 
|  | CPUState *cpu; | 
|  | int i; | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | cpu = ENV_GET_CPU(env); | 
|  | for (i = 0; i < nb_numa_nodes; i++) { | 
|  | if (test_bit(cpu->cpu_index, node_cpumask[i])) { | 
|  | cpu->numa_node = i; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) | 
|  | { | 
|  | /* XXX: implement xxx_cpu_list for targets that still miss it */ | 
|  | #if defined(cpu_list) | 
|  | cpu_list(f, cpu_fprintf); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | CpuInfoList *qmp_query_cpus(Error **errp) | 
|  | { | 
|  | CpuInfoList *head = NULL, *cur_item = NULL; | 
|  | CPUArchState *env; | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  | CpuInfoList *info; | 
|  |  | 
|  | cpu_synchronize_state(env); | 
|  |  | 
|  | info = g_malloc0(sizeof(*info)); | 
|  | info->value = g_malloc0(sizeof(*info->value)); | 
|  | info->value->CPU = cpu->cpu_index; | 
|  | info->value->current = (env == first_cpu); | 
|  | info->value->halted = cpu->halted; | 
|  | info->value->thread_id = cpu->thread_id; | 
|  | #if defined(TARGET_I386) | 
|  | info->value->has_pc = true; | 
|  | info->value->pc = env->eip + env->segs[R_CS].base; | 
|  | #elif defined(TARGET_PPC) | 
|  | info->value->has_nip = true; | 
|  | info->value->nip = env->nip; | 
|  | #elif defined(TARGET_SPARC) | 
|  | info->value->has_pc = true; | 
|  | info->value->pc = env->pc; | 
|  | info->value->has_npc = true; | 
|  | info->value->npc = env->npc; | 
|  | #elif defined(TARGET_MIPS) | 
|  | info->value->has_PC = true; | 
|  | info->value->PC = env->active_tc.PC; | 
|  | #endif | 
|  |  | 
|  | /* XXX: waiting for the qapi to support GSList */ | 
|  | if (!cur_item) { | 
|  | head = cur_item = info; | 
|  | } else { | 
|  | cur_item->next = info; | 
|  | cur_item = info; | 
|  | } | 
|  | } | 
|  |  | 
|  | return head; | 
|  | } | 
|  |  | 
|  | void qmp_memsave(int64_t addr, int64_t size, const char *filename, | 
|  | bool has_cpu, int64_t cpu_index, Error **errp) | 
|  | { | 
|  | FILE *f; | 
|  | uint32_t l; | 
|  | CPUArchState *env; | 
|  | CPUState *cpu; | 
|  | uint8_t buf[1024]; | 
|  |  | 
|  | if (!has_cpu) { | 
|  | cpu_index = 0; | 
|  | } | 
|  |  | 
|  | cpu = qemu_get_cpu(cpu_index); | 
|  | if (cpu == NULL) { | 
|  | error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", | 
|  | "a CPU number"); | 
|  | return; | 
|  | } | 
|  | env = cpu->env_ptr; | 
|  |  | 
|  | f = fopen(filename, "wb"); | 
|  | if (!f) { | 
|  | error_set(errp, QERR_OPEN_FILE_FAILED, filename); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (size != 0) { | 
|  | l = sizeof(buf); | 
|  | if (l > size) | 
|  | l = size; | 
|  | cpu_memory_rw_debug(env, addr, buf, l, 0); | 
|  | if (fwrite(buf, 1, l, f) != l) { | 
|  | error_set(errp, QERR_IO_ERROR); | 
|  | goto exit; | 
|  | } | 
|  | addr += l; | 
|  | size -= l; | 
|  | } | 
|  |  | 
|  | exit: | 
|  | fclose(f); | 
|  | } | 
|  |  | 
|  | void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, | 
|  | Error **errp) | 
|  | { | 
|  | FILE *f; | 
|  | uint32_t l; | 
|  | uint8_t buf[1024]; | 
|  |  | 
|  | f = fopen(filename, "wb"); | 
|  | if (!f) { | 
|  | error_set(errp, QERR_OPEN_FILE_FAILED, filename); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (size != 0) { | 
|  | l = sizeof(buf); | 
|  | if (l > size) | 
|  | l = size; | 
|  | cpu_physical_memory_rw(addr, buf, l, 0); | 
|  | if (fwrite(buf, 1, l, f) != l) { | 
|  | error_set(errp, QERR_IO_ERROR); | 
|  | goto exit; | 
|  | } | 
|  | addr += l; | 
|  | size -= l; | 
|  | } | 
|  |  | 
|  | exit: | 
|  | fclose(f); | 
|  | } | 
|  |  | 
|  | void qmp_inject_nmi(Error **errp) | 
|  | { | 
|  | #if defined(TARGET_I386) | 
|  | CPUArchState *env; | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | if (!env->apic_state) { | 
|  | cpu_interrupt(CPU(x86_env_get_cpu(env)), CPU_INTERRUPT_NMI); | 
|  | } else { | 
|  | apic_deliver_nmi(env->apic_state); | 
|  | } | 
|  | } | 
|  | #else | 
|  | error_set(errp, QERR_UNSUPPORTED); | 
|  | #endif | 
|  | } |