|  | /* Native implementation of soft float functions. Only a single status | 
|  | context is supported */ | 
|  | #include "softfloat.h" | 
|  | #include <math.h> | 
|  | #if defined(CONFIG_SOLARIS) | 
|  | #include <fenv.h> | 
|  | #endif | 
|  |  | 
|  | void set_float_rounding_mode(int val STATUS_PARAM) | 
|  | { | 
|  | STATUS(float_rounding_mode) = val; | 
|  | #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) || \ | 
|  | (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10) | 
|  | fpsetround(val); | 
|  | #else | 
|  | fesetround(val); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef FLOATX80 | 
|  | void set_floatx80_rounding_precision(int val STATUS_PARAM) | 
|  | { | 
|  | STATUS(floatx80_rounding_precision) = val; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_BSD) || \ | 
|  | (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10) | 
|  | #define lrint(d)		((int32_t)rint(d)) | 
|  | #define llrint(d)		((int64_t)rint(d)) | 
|  | #define lrintf(f)		((int32_t)rint(f)) | 
|  | #define llrintf(f)		((int64_t)rint(f)) | 
|  | #define sqrtf(f)		((float)sqrt(f)) | 
|  | #define remainderf(fa, fb)	((float)remainder(fa, fb)) | 
|  | #define rintf(f)		((float)rint(f)) | 
|  | #if !defined(__sparc__) && \ | 
|  | (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10) | 
|  | extern long double rintl(long double); | 
|  | extern long double scalbnl(long double, int); | 
|  |  | 
|  | long long | 
|  | llrintl(long double x) { | 
|  | return ((long long) rintl(x)); | 
|  | } | 
|  |  | 
|  | long | 
|  | lrintl(long double x) { | 
|  | return ((long) rintl(x)); | 
|  | } | 
|  |  | 
|  | long double | 
|  | ldexpl(long double x, int n) { | 
|  | return (scalbnl(x, n)); | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #if defined(_ARCH_PPC) | 
|  |  | 
|  | /* correct (but slow) PowerPC rint() (glibc version is incorrect) */ | 
|  | static double qemu_rint(double x) | 
|  | { | 
|  | double y = 4503599627370496.0; | 
|  | if (fabs(x) >= y) | 
|  | return x; | 
|  | if (x < 0) | 
|  | y = -y; | 
|  | y = (x + y) - y; | 
|  | if (y == 0.0) | 
|  | y = copysign(y, x); | 
|  | return y; | 
|  | } | 
|  |  | 
|  | #define rint qemu_rint | 
|  | #endif | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE integer-to-floating-point conversion routines. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | float32 int32_to_float32(int v STATUS_PARAM) | 
|  | { | 
|  | return (float32)v; | 
|  | } | 
|  |  | 
|  | float32 uint32_to_float32(unsigned int v STATUS_PARAM) | 
|  | { | 
|  | return (float32)v; | 
|  | } | 
|  |  | 
|  | float64 int32_to_float64(int v STATUS_PARAM) | 
|  | { | 
|  | return (float64)v; | 
|  | } | 
|  |  | 
|  | float64 uint32_to_float64(unsigned int v STATUS_PARAM) | 
|  | { | 
|  | return (float64)v; | 
|  | } | 
|  |  | 
|  | #ifdef FLOATX80 | 
|  | floatx80 int32_to_floatx80(int v STATUS_PARAM) | 
|  | { | 
|  | return (floatx80)v; | 
|  | } | 
|  | #endif | 
|  | float32 int64_to_float32( int64_t v STATUS_PARAM) | 
|  | { | 
|  | return (float32)v; | 
|  | } | 
|  | float32 uint64_to_float32( uint64_t v STATUS_PARAM) | 
|  | { | 
|  | return (float32)v; | 
|  | } | 
|  | float64 int64_to_float64( int64_t v STATUS_PARAM) | 
|  | { | 
|  | return (float64)v; | 
|  | } | 
|  | float64 uint64_to_float64( uint64_t v STATUS_PARAM) | 
|  | { | 
|  | return (float64)v; | 
|  | } | 
|  | #ifdef FLOATX80 | 
|  | floatx80 int64_to_floatx80( int64_t v STATUS_PARAM) | 
|  | { | 
|  | return (floatx80)v; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* XXX: this code implements the x86 behaviour, not the IEEE one.  */ | 
|  | #if HOST_LONG_BITS == 32 | 
|  | static inline int long_to_int32(long a) | 
|  | { | 
|  | return a; | 
|  | } | 
|  | #else | 
|  | static inline int long_to_int32(long a) | 
|  | { | 
|  | if (a != (int32_t)a) | 
|  | a = 0x80000000; | 
|  | return a; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE single-precision conversion routines. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | int float32_to_int32( float32 a STATUS_PARAM) | 
|  | { | 
|  | return long_to_int32(lrintf(a)); | 
|  | } | 
|  | int float32_to_int32_round_to_zero( float32 a STATUS_PARAM) | 
|  | { | 
|  | return (int)a; | 
|  | } | 
|  | int64_t float32_to_int64( float32 a STATUS_PARAM) | 
|  | { | 
|  | return llrintf(a); | 
|  | } | 
|  |  | 
|  | int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM) | 
|  | { | 
|  | return (int64_t)a; | 
|  | } | 
|  |  | 
|  | float64 float32_to_float64( float32 a STATUS_PARAM) | 
|  | { | 
|  | return a; | 
|  | } | 
|  | #ifdef FLOATX80 | 
|  | floatx80 float32_to_floatx80( float32 a STATUS_PARAM) | 
|  | { | 
|  | return a; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | unsigned int float32_to_uint32( float32 a STATUS_PARAM) | 
|  | { | 
|  | int64_t v; | 
|  | unsigned int res; | 
|  |  | 
|  | v = llrintf(a); | 
|  | if (v < 0) { | 
|  | res = 0; | 
|  | } else if (v > 0xffffffff) { | 
|  | res = 0xffffffff; | 
|  | } else { | 
|  | res = v; | 
|  | } | 
|  | return res; | 
|  | } | 
|  | unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM) | 
|  | { | 
|  | int64_t v; | 
|  | unsigned int res; | 
|  |  | 
|  | v = (int64_t)a; | 
|  | if (v < 0) { | 
|  | res = 0; | 
|  | } else if (v > 0xffffffff) { | 
|  | res = 0xffffffff; | 
|  | } else { | 
|  | res = v; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE single-precision operations. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | float32 float32_round_to_int( float32 a STATUS_PARAM) | 
|  | { | 
|  | return rintf(a); | 
|  | } | 
|  |  | 
|  | float32 float32_rem( float32 a, float32 b STATUS_PARAM) | 
|  | { | 
|  | return remainderf(a, b); | 
|  | } | 
|  |  | 
|  | float32 float32_sqrt( float32 a STATUS_PARAM) | 
|  | { | 
|  | return sqrtf(a); | 
|  | } | 
|  | int float32_compare( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | if (a < b) { | 
|  | return float_relation_less; | 
|  | } else if (a == b) { | 
|  | return float_relation_equal; | 
|  | } else if (a > b) { | 
|  | return float_relation_greater; | 
|  | } else { | 
|  | return float_relation_unordered; | 
|  | } | 
|  | } | 
|  | int float32_compare_quiet( float32 a, float32 b STATUS_PARAM ) | 
|  | { | 
|  | if (isless(a, b)) { | 
|  | return float_relation_less; | 
|  | } else if (a == b) { | 
|  | return float_relation_equal; | 
|  | } else if (isgreater(a, b)) { | 
|  | return float_relation_greater; | 
|  | } else { | 
|  | return float_relation_unordered; | 
|  | } | 
|  | } | 
|  | int float32_is_signaling_nan( float32 a1) | 
|  | { | 
|  | float32u u; | 
|  | uint32_t a; | 
|  | u.f = a1; | 
|  | a = u.i; | 
|  | return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); | 
|  | } | 
|  |  | 
|  | int float32_is_quiet_nan( float32 a1 ) | 
|  | { | 
|  | float32u u; | 
|  | uint64_t a; | 
|  | u.f = a1; | 
|  | a = u.i; | 
|  | return ( 0xFF800000 < ( a<<1 ) ); | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE double-precision conversion routines. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | int float64_to_int32( float64 a STATUS_PARAM) | 
|  | { | 
|  | return long_to_int32(lrint(a)); | 
|  | } | 
|  | int float64_to_int32_round_to_zero( float64 a STATUS_PARAM) | 
|  | { | 
|  | return (int)a; | 
|  | } | 
|  | int64_t float64_to_int64( float64 a STATUS_PARAM) | 
|  | { | 
|  | return llrint(a); | 
|  | } | 
|  | int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM) | 
|  | { | 
|  | return (int64_t)a; | 
|  | } | 
|  | float32 float64_to_float32( float64 a STATUS_PARAM) | 
|  | { | 
|  | return a; | 
|  | } | 
|  | #ifdef FLOATX80 | 
|  | floatx80 float64_to_floatx80( float64 a STATUS_PARAM) | 
|  | { | 
|  | return a; | 
|  | } | 
|  | #endif | 
|  | #ifdef FLOAT128 | 
|  | float128 float64_to_float128( float64 a STATUS_PARAM) | 
|  | { | 
|  | return a; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | unsigned int float64_to_uint32( float64 a STATUS_PARAM) | 
|  | { | 
|  | int64_t v; | 
|  | unsigned int res; | 
|  |  | 
|  | v = llrint(a); | 
|  | if (v < 0) { | 
|  | res = 0; | 
|  | } else if (v > 0xffffffff) { | 
|  | res = 0xffffffff; | 
|  | } else { | 
|  | res = v; | 
|  | } | 
|  | return res; | 
|  | } | 
|  | unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM) | 
|  | { | 
|  | int64_t v; | 
|  | unsigned int res; | 
|  |  | 
|  | v = (int64_t)a; | 
|  | if (v < 0) { | 
|  | res = 0; | 
|  | } else if (v > 0xffffffff) { | 
|  | res = 0xffffffff; | 
|  | } else { | 
|  | res = v; | 
|  | } | 
|  | return res; | 
|  | } | 
|  | uint64_t float64_to_uint64 (float64 a STATUS_PARAM) | 
|  | { | 
|  | int64_t v; | 
|  |  | 
|  | v = llrint(a + (float64)INT64_MIN); | 
|  |  | 
|  | return v - INT64_MIN; | 
|  | } | 
|  | uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM) | 
|  | { | 
|  | int64_t v; | 
|  |  | 
|  | v = (int64_t)(a + (float64)INT64_MIN); | 
|  |  | 
|  | return v - INT64_MIN; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE double-precision operations. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #if defined(__sun__) && \ | 
|  | (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10) | 
|  | static inline float64 trunc(float64 x) | 
|  | { | 
|  | return x < 0 ? -floor(-x) : floor(x); | 
|  | } | 
|  | #endif | 
|  | float64 float64_trunc_to_int( float64 a STATUS_PARAM ) | 
|  | { | 
|  | return trunc(a); | 
|  | } | 
|  |  | 
|  | float64 float64_round_to_int( float64 a STATUS_PARAM ) | 
|  | { | 
|  | return rint(a); | 
|  | } | 
|  |  | 
|  | float64 float64_rem( float64 a, float64 b STATUS_PARAM) | 
|  | { | 
|  | return remainder(a, b); | 
|  | } | 
|  |  | 
|  | float64 float64_sqrt( float64 a STATUS_PARAM) | 
|  | { | 
|  | return sqrt(a); | 
|  | } | 
|  | int float64_compare( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | if (a < b) { | 
|  | return float_relation_less; | 
|  | } else if (a == b) { | 
|  | return float_relation_equal; | 
|  | } else if (a > b) { | 
|  | return float_relation_greater; | 
|  | } else { | 
|  | return float_relation_unordered; | 
|  | } | 
|  | } | 
|  | int float64_compare_quiet( float64 a, float64 b STATUS_PARAM ) | 
|  | { | 
|  | if (isless(a, b)) { | 
|  | return float_relation_less; | 
|  | } else if (a == b) { | 
|  | return float_relation_equal; | 
|  | } else if (isgreater(a, b)) { | 
|  | return float_relation_greater; | 
|  | } else { | 
|  | return float_relation_unordered; | 
|  | } | 
|  | } | 
|  | int float64_is_signaling_nan( float64 a1) | 
|  | { | 
|  | float64u u; | 
|  | uint64_t a; | 
|  | u.f = a1; | 
|  | a = u.i; | 
|  | return | 
|  | ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | 
|  | && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | int float64_is_quiet_nan( float64 a1 ) | 
|  | { | 
|  | float64u u; | 
|  | uint64_t a; | 
|  | u.f = a1; | 
|  | a = u.i; | 
|  |  | 
|  | return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | #ifdef FLOATX80 | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE extended double-precision conversion routines. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | int floatx80_to_int32( floatx80 a STATUS_PARAM) | 
|  | { | 
|  | return long_to_int32(lrintl(a)); | 
|  | } | 
|  | int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM) | 
|  | { | 
|  | return (int)a; | 
|  | } | 
|  | int64_t floatx80_to_int64( floatx80 a STATUS_PARAM) | 
|  | { | 
|  | return llrintl(a); | 
|  | } | 
|  | int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM) | 
|  | { | 
|  | return (int64_t)a; | 
|  | } | 
|  | float32 floatx80_to_float32( floatx80 a STATUS_PARAM) | 
|  | { | 
|  | return a; | 
|  | } | 
|  | float64 floatx80_to_float64( floatx80 a STATUS_PARAM) | 
|  | { | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE extended double-precision operations. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM) | 
|  | { | 
|  | return rintl(a); | 
|  | } | 
|  | floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM) | 
|  | { | 
|  | return remainderl(a, b); | 
|  | } | 
|  | floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM) | 
|  | { | 
|  | return sqrtl(a); | 
|  | } | 
|  | int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | if (a < b) { | 
|  | return float_relation_less; | 
|  | } else if (a == b) { | 
|  | return float_relation_equal; | 
|  | } else if (a > b) { | 
|  | return float_relation_greater; | 
|  | } else { | 
|  | return float_relation_unordered; | 
|  | } | 
|  | } | 
|  | int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | 
|  | { | 
|  | if (isless(a, b)) { | 
|  | return float_relation_less; | 
|  | } else if (a == b) { | 
|  | return float_relation_equal; | 
|  | } else if (isgreater(a, b)) { | 
|  | return float_relation_greater; | 
|  | } else { | 
|  | return float_relation_unordered; | 
|  | } | 
|  | } | 
|  | int floatx80_is_signaling_nan( floatx80 a1) | 
|  | { | 
|  | floatx80u u; | 
|  | uint64_t aLow; | 
|  | u.f = a1; | 
|  |  | 
|  | aLow = u.i.low & ~ LIT64( 0x4000000000000000 ); | 
|  | return | 
|  | ( ( u.i.high & 0x7FFF ) == 0x7FFF ) | 
|  | && (bits64) ( aLow<<1 ) | 
|  | && ( u.i.low == aLow ); | 
|  | } | 
|  |  | 
|  | int floatx80_is_quiet_nan( floatx80 a1 ) | 
|  | { | 
|  | floatx80u u; | 
|  | u.f = a1; | 
|  | return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 ); | 
|  | } | 
|  |  | 
|  | #endif |