| /* | 
 |  * QEMU float support | 
 |  * | 
 |  * Derived from SoftFloat. | 
 |  */ | 
 |  | 
 | /*============================================================================ | 
 |  | 
 | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | 
 | Arithmetic Package, Release 2b. | 
 |  | 
 | Written by John R. Hauser.  This work was made possible in part by the | 
 | International Computer Science Institute, located at Suite 600, 1947 Center | 
 | Street, Berkeley, California 94704.  Funding was partially provided by the | 
 | National Science Foundation under grant MIP-9311980.  The original version | 
 | of this code was written as part of a project to build a fixed-point vector | 
 | processor in collaboration with the University of California at Berkeley, | 
 | overseen by Profs. Nelson Morgan and John Wawrzynek.  More information | 
 | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | 
 | arithmetic/SoftFloat.html'. | 
 |  | 
 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has | 
 | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | 
 | RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | 
 | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | 
 | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | 
 | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | 
 | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | 
 | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | 
 |  | 
 | Derivative works are acceptable, even for commercial purposes, so long as | 
 | (1) the source code for the derivative work includes prominent notice that | 
 | the work is derivative, and (2) the source code includes prominent notice with | 
 | these four paragraphs for those parts of this code that are retained. | 
 |  | 
 | =============================================================================*/ | 
 |  | 
 | #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
 | #define SNAN_BIT_IS_ONE		1 | 
 | #else | 
 | #define SNAN_BIT_IS_ONE		0 | 
 | #endif | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | The pattern for a default generated half-precision NaN. | 
 | *----------------------------------------------------------------------------*/ | 
 | #if defined(TARGET_ARM) | 
 | const float16 float16_default_nan = const_float16(0x7E00); | 
 | #elif SNAN_BIT_IS_ONE | 
 | const float16 float16_default_nan = const_float16(0x7DFF); | 
 | #else | 
 | const float16 float16_default_nan = const_float16(0xFE00); | 
 | #endif | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | The pattern for a default generated single-precision NaN. | 
 | *----------------------------------------------------------------------------*/ | 
 | #if defined(TARGET_SPARC) | 
 | const float32 float32_default_nan = const_float32(0x7FFFFFFF); | 
 | #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) | 
 | const float32 float32_default_nan = const_float32(0x7FC00000); | 
 | #elif SNAN_BIT_IS_ONE | 
 | const float32 float32_default_nan = const_float32(0x7FBFFFFF); | 
 | #else | 
 | const float32 float32_default_nan = const_float32(0xFFC00000); | 
 | #endif | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | The pattern for a default generated double-precision NaN. | 
 | *----------------------------------------------------------------------------*/ | 
 | #if defined(TARGET_SPARC) | 
 | const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF )); | 
 | #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) | 
 | const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 )); | 
 | #elif SNAN_BIT_IS_ONE | 
 | const float64 float64_default_nan = const_float64(LIT64( 0x7FF7FFFFFFFFFFFF )); | 
 | #else | 
 | const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 )); | 
 | #endif | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | The pattern for a default generated extended double-precision NaN. | 
 | *----------------------------------------------------------------------------*/ | 
 | #if SNAN_BIT_IS_ONE | 
 | #define floatx80_default_nan_high 0x7FFF | 
 | #define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF ) | 
 | #else | 
 | #define floatx80_default_nan_high 0xFFFF | 
 | #define floatx80_default_nan_low  LIT64( 0xC000000000000000 ) | 
 | #endif | 
 |  | 
 | const floatx80 floatx80_default_nan | 
 |     = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low); | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | The pattern for a default generated quadruple-precision NaN.  The `high' and | 
 | | `low' values hold the most- and least-significant bits, respectively. | 
 | *----------------------------------------------------------------------------*/ | 
 | #if SNAN_BIT_IS_ONE | 
 | #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF ) | 
 | #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF ) | 
 | #else | 
 | #define float128_default_nan_high LIT64( 0xFFFF800000000000 ) | 
 | #define float128_default_nan_low  LIT64( 0x0000000000000000 ) | 
 | #endif | 
 |  | 
 | const float128 float128_default_nan | 
 |     = make_float128_init(float128_default_nan_high, float128_default_nan_low); | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Raises the exceptions specified by `flags'.  Floating-point traps can be | 
 | | defined here if desired.  It is currently not possible for such a trap | 
 | | to substitute a result value.  If traps are not implemented, this routine | 
 | | should be simply `float_exception_flags |= flags;'. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | void float_raise( int8 flags STATUS_PARAM ) | 
 | { | 
 |     STATUS(float_exception_flags) |= flags; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Internal canonical NaN format. | 
 | *----------------------------------------------------------------------------*/ | 
 | typedef struct { | 
 |     flag sign; | 
 |     uint64_t high, low; | 
 | } commonNaNT; | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns 1 if the half-precision floating-point value `a' is a quiet | 
 | | NaN; otherwise returns 0. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | int float16_is_quiet_nan(float16 a_) | 
 | { | 
 |     uint16_t a = float16_val(a_); | 
 | #if SNAN_BIT_IS_ONE | 
 |     return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); | 
 | #else | 
 |     return ((a & ~0x8000) >= 0x7c80); | 
 | #endif | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns 1 if the half-precision floating-point value `a' is a signaling | 
 | | NaN; otherwise returns 0. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | int float16_is_signaling_nan(float16 a_) | 
 | { | 
 |     uint16_t a = float16_val(a_); | 
 | #if SNAN_BIT_IS_ONE | 
 |     return ((a & ~0x8000) >= 0x7c80); | 
 | #else | 
 |     return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); | 
 | #endif | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns a quiet NaN if the half-precision floating point value `a' is a | 
 | | signaling NaN; otherwise returns `a'. | 
 | *----------------------------------------------------------------------------*/ | 
 | float16 float16_maybe_silence_nan(float16 a_) | 
 | { | 
 |     if (float16_is_signaling_nan(a_)) { | 
 | #if SNAN_BIT_IS_ONE | 
 | #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
 |         return float16_default_nan; | 
 | #  else | 
 | #    error Rules for silencing a signaling NaN are target-specific | 
 | #  endif | 
 | #else | 
 |         uint16_t a = float16_val(a_); | 
 |         a |= (1 << 9); | 
 |         return make_float16(a); | 
 | #endif | 
 |     } | 
 |     return a_; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns the result of converting the half-precision floating-point NaN | 
 | | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid | 
 | | exception is raised. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM ) | 
 | { | 
 |     commonNaNT z; | 
 |  | 
 |     if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR ); | 
 |     z.sign = float16_val(a) >> 15; | 
 |     z.low = 0; | 
 |     z.high = ((uint64_t) float16_val(a))<<54; | 
 |     return z; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns the result of converting the canonical NaN `a' to the half- | 
 | | precision floating-point format. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM) | 
 | { | 
 |     uint16_t mantissa = a.high>>54; | 
 |  | 
 |     if (STATUS(default_nan_mode)) { | 
 |         return float16_default_nan; | 
 |     } | 
 |  | 
 |     if (mantissa) { | 
 |         return make_float16(((((uint16_t) a.sign) << 15) | 
 |                              | (0x1F << 10) | mantissa)); | 
 |     } else { | 
 |         return float16_default_nan; | 
 |     } | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns 1 if the single-precision floating-point value `a' is a quiet | 
 | | NaN; otherwise returns 0. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | int float32_is_quiet_nan( float32 a_ ) | 
 | { | 
 |     uint32_t a = float32_val(a_); | 
 | #if SNAN_BIT_IS_ONE | 
 |     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); | 
 | #else | 
 |     return ( 0xFF800000 <= (uint32_t) ( a<<1 ) ); | 
 | #endif | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns 1 if the single-precision floating-point value `a' is a signaling | 
 | | NaN; otherwise returns 0. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | int float32_is_signaling_nan( float32 a_ ) | 
 | { | 
 |     uint32_t a = float32_val(a_); | 
 | #if SNAN_BIT_IS_ONE | 
 |     return ( 0xFF800000 <= (uint32_t) ( a<<1 ) ); | 
 | #else | 
 |     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); | 
 | #endif | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns a quiet NaN if the single-precision floating point value `a' is a | 
 | | signaling NaN; otherwise returns `a'. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | float32 float32_maybe_silence_nan( float32 a_ ) | 
 | { | 
 |     if (float32_is_signaling_nan(a_)) { | 
 | #if SNAN_BIT_IS_ONE | 
 | #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
 |         return float32_default_nan; | 
 | #  else | 
 | #    error Rules for silencing a signaling NaN are target-specific | 
 | #  endif | 
 | #else | 
 |         uint32_t a = float32_val(a_); | 
 |         a |= (1 << 22); | 
 |         return make_float32(a); | 
 | #endif | 
 |     } | 
 |     return a_; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns the result of converting the single-precision floating-point NaN | 
 | | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid | 
 | | exception is raised. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM ) | 
 | { | 
 |     commonNaNT z; | 
 |  | 
 |     if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR ); | 
 |     z.sign = float32_val(a)>>31; | 
 |     z.low = 0; | 
 |     z.high = ( (uint64_t) float32_val(a) )<<41; | 
 |     return z; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns the result of converting the canonical NaN `a' to the single- | 
 | | precision floating-point format. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM) | 
 | { | 
 |     uint32_t mantissa = a.high>>41; | 
 |  | 
 |     if ( STATUS(default_nan_mode) ) { | 
 |         return float32_default_nan; | 
 |     } | 
 |  | 
 |     if ( mantissa ) | 
 |         return make_float32( | 
 |             ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) ); | 
 |     else | 
 |         return float32_default_nan; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Select which NaN to propagate for a two-input operation. | 
 | | IEEE754 doesn't specify all the details of this, so the | 
 | | algorithm is target-specific. | 
 | | The routine is passed various bits of information about the | 
 | | two NaNs and should return 0 to select NaN a and 1 for NaN b. | 
 | | Note that signalling NaNs are always squashed to quiet NaNs | 
 | | by the caller, by calling floatXX_maybe_silence_nan() before | 
 | | returning them. | 
 | | | 
 | | aIsLargerSignificand is only valid if both a and b are NaNs | 
 | | of some kind, and is true if a has the larger significand, | 
 | | or if both a and b have the same significand but a is | 
 | | positive but b is negative. It is only needed for the x87 | 
 | | tie-break rule. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | #if defined(TARGET_ARM) | 
 | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | 
 |                     flag aIsLargerSignificand) | 
 | { | 
 |     /* ARM mandated NaN propagation rules: take the first of: | 
 |      *  1. A if it is signaling | 
 |      *  2. B if it is signaling | 
 |      *  3. A (quiet) | 
 |      *  4. B (quiet) | 
 |      * A signaling NaN is always quietened before returning it. | 
 |      */ | 
 |     if (aIsSNaN) { | 
 |         return 0; | 
 |     } else if (bIsSNaN) { | 
 |         return 1; | 
 |     } else if (aIsQNaN) { | 
 |         return 0; | 
 |     } else { | 
 |         return 1; | 
 |     } | 
 | } | 
 | #elif defined(TARGET_MIPS) | 
 | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | 
 |                     flag aIsLargerSignificand) | 
 | { | 
 |     /* According to MIPS specifications, if one of the two operands is | 
 |      * a sNaN, a new qNaN has to be generated. This is done in | 
 |      * floatXX_maybe_silence_nan(). For qNaN inputs the specifications | 
 |      * says: "When possible, this QNaN result is one of the operand QNaN | 
 |      * values." In practice it seems that most implementations choose | 
 |      * the first operand if both operands are qNaN. In short this gives | 
 |      * the following rules: | 
 |      *  1. A if it is signaling | 
 |      *  2. B if it is signaling | 
 |      *  3. A (quiet) | 
 |      *  4. B (quiet) | 
 |      * A signaling NaN is always silenced before returning it. | 
 |      */ | 
 |     if (aIsSNaN) { | 
 |         return 0; | 
 |     } else if (bIsSNaN) { | 
 |         return 1; | 
 |     } else if (aIsQNaN) { | 
 |         return 0; | 
 |     } else { | 
 |         return 1; | 
 |     } | 
 | } | 
 | #elif defined(TARGET_PPC) | 
 | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | 
 |                    flag aIsLargerSignificand) | 
 | { | 
 |     /* PowerPC propagation rules: | 
 |      *  1. A if it sNaN or qNaN | 
 |      *  2. B if it sNaN or qNaN | 
 |      * A signaling NaN is always silenced before returning it. | 
 |      */ | 
 |     if (aIsSNaN || aIsQNaN) { | 
 |         return 0; | 
 |     } else { | 
 |         return 1; | 
 |     } | 
 | } | 
 | #else | 
 | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | 
 |                     flag aIsLargerSignificand) | 
 | { | 
 |     /* This implements x87 NaN propagation rules: | 
 |      * SNaN + QNaN => return the QNaN | 
 |      * two SNaNs => return the one with the larger significand, silenced | 
 |      * two QNaNs => return the one with the larger significand | 
 |      * SNaN and a non-NaN => return the SNaN, silenced | 
 |      * QNaN and a non-NaN => return the QNaN | 
 |      * | 
 |      * If we get down to comparing significands and they are the same, | 
 |      * return the NaN with the positive sign bit (if any). | 
 |      */ | 
 |     if (aIsSNaN) { | 
 |         if (bIsSNaN) { | 
 |             return aIsLargerSignificand ? 0 : 1; | 
 |         } | 
 |         return bIsQNaN ? 1 : 0; | 
 |     } | 
 |     else if (aIsQNaN) { | 
 |         if (bIsSNaN || !bIsQNaN) | 
 |             return 0; | 
 |         else { | 
 |             return aIsLargerSignificand ? 0 : 1; | 
 |         } | 
 |     } else { | 
 |         return 1; | 
 |     } | 
 | } | 
 | #endif | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Select which NaN to propagate for a three-input operation. | 
 | | For the moment we assume that no CPU needs the 'larger significand' | 
 | | information. | 
 | | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN | 
 | *----------------------------------------------------------------------------*/ | 
 | #if defined(TARGET_ARM) | 
 | static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | 
 |                          flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM) | 
 | { | 
 |     /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns | 
 |      * the default NaN | 
 |      */ | 
 |     if (infzero && cIsQNaN) { | 
 |         float_raise(float_flag_invalid STATUS_VAR); | 
 |         return 3; | 
 |     } | 
 |  | 
 |     /* This looks different from the ARM ARM pseudocode, because the ARM ARM | 
 |      * puts the operands to a fused mac operation (a*b)+c in the order c,a,b. | 
 |      */ | 
 |     if (cIsSNaN) { | 
 |         return 2; | 
 |     } else if (aIsSNaN) { | 
 |         return 0; | 
 |     } else if (bIsSNaN) { | 
 |         return 1; | 
 |     } else if (cIsQNaN) { | 
 |         return 2; | 
 |     } else if (aIsQNaN) { | 
 |         return 0; | 
 |     } else { | 
 |         return 1; | 
 |     } | 
 | } | 
 | #elif defined(TARGET_PPC) | 
 | static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | 
 |                          flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM) | 
 | { | 
 |     /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer | 
 |      * to return an input NaN if we have one (ie c) rather than generating | 
 |      * a default NaN | 
 |      */ | 
 |     if (infzero) { | 
 |         float_raise(float_flag_invalid STATUS_VAR); | 
 |         return 2; | 
 |     } | 
 |  | 
 |     /* If fRA is a NaN return it; otherwise if fRB is a NaN return it; | 
 |      * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB | 
 |      */ | 
 |     if (aIsSNaN || aIsQNaN) { | 
 |         return 0; | 
 |     } else if (cIsSNaN || cIsQNaN) { | 
 |         return 2; | 
 |     } else { | 
 |         return 1; | 
 |     } | 
 | } | 
 | #else | 
 | /* A default implementation: prefer a to b to c. | 
 |  * This is unlikely to actually match any real implementation. | 
 |  */ | 
 | static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | 
 |                          flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM) | 
 | { | 
 |     if (aIsSNaN || aIsQNaN) { | 
 |         return 0; | 
 |     } else if (bIsSNaN || bIsQNaN) { | 
 |         return 1; | 
 |     } else { | 
 |         return 2; | 
 |     } | 
 | } | 
 | #endif | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Takes two single-precision floating-point values `a' and `b', one of which | 
 | | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a | 
 | | signaling NaN, the invalid exception is raised. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM) | 
 | { | 
 |     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; | 
 |     flag aIsLargerSignificand; | 
 |     uint32_t av, bv; | 
 |  | 
 |     aIsQuietNaN = float32_is_quiet_nan( a ); | 
 |     aIsSignalingNaN = float32_is_signaling_nan( a ); | 
 |     bIsQuietNaN = float32_is_quiet_nan( b ); | 
 |     bIsSignalingNaN = float32_is_signaling_nan( b ); | 
 |     av = float32_val(a); | 
 |     bv = float32_val(b); | 
 |  | 
 |     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | 
 |  | 
 |     if ( STATUS(default_nan_mode) ) | 
 |         return float32_default_nan; | 
 |  | 
 |     if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) { | 
 |         aIsLargerSignificand = 0; | 
 |     } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) { | 
 |         aIsLargerSignificand = 1; | 
 |     } else { | 
 |         aIsLargerSignificand = (av < bv) ? 1 : 0; | 
 |     } | 
 |  | 
 |     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | 
 |                 aIsLargerSignificand)) { | 
 |         return float32_maybe_silence_nan(b); | 
 |     } else { | 
 |         return float32_maybe_silence_nan(a); | 
 |     } | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Takes three single-precision floating-point values `a', `b' and `c', one of | 
 | | which is a NaN, and returns the appropriate NaN result.  If any of  `a', | 
 | | `b' or `c' is a signaling NaN, the invalid exception is raised. | 
 | | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case | 
 | | obviously c is a NaN, and whether to propagate c or some other NaN is | 
 | | implementation defined). | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static float32 propagateFloat32MulAddNaN(float32 a, float32 b, | 
 |                                          float32 c, flag infzero STATUS_PARAM) | 
 | { | 
 |     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | 
 |         cIsQuietNaN, cIsSignalingNaN; | 
 |     int which; | 
 |  | 
 |     aIsQuietNaN = float32_is_quiet_nan(a); | 
 |     aIsSignalingNaN = float32_is_signaling_nan(a); | 
 |     bIsQuietNaN = float32_is_quiet_nan(b); | 
 |     bIsSignalingNaN = float32_is_signaling_nan(b); | 
 |     cIsQuietNaN = float32_is_quiet_nan(c); | 
 |     cIsSignalingNaN = float32_is_signaling_nan(c); | 
 |  | 
 |     if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) { | 
 |         float_raise(float_flag_invalid STATUS_VAR); | 
 |     } | 
 |  | 
 |     which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN, | 
 |                           bIsQuietNaN, bIsSignalingNaN, | 
 |                           cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR); | 
 |  | 
 |     if (STATUS(default_nan_mode)) { | 
 |         /* Note that this check is after pickNaNMulAdd so that function | 
 |          * has an opportunity to set the Invalid flag. | 
 |          */ | 
 |         return float32_default_nan; | 
 |     } | 
 |  | 
 |     switch (which) { | 
 |     case 0: | 
 |         return float32_maybe_silence_nan(a); | 
 |     case 1: | 
 |         return float32_maybe_silence_nan(b); | 
 |     case 2: | 
 |         return float32_maybe_silence_nan(c); | 
 |     case 3: | 
 |     default: | 
 |         return float32_default_nan; | 
 |     } | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns 1 if the double-precision floating-point value `a' is a quiet | 
 | | NaN; otherwise returns 0. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | int float64_is_quiet_nan( float64 a_ ) | 
 | { | 
 |     uint64_t a = float64_val(a_); | 
 | #if SNAN_BIT_IS_ONE | 
 |     return | 
 |            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | 
 |         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | 
 | #else | 
 |     return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) ); | 
 | #endif | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns 1 if the double-precision floating-point value `a' is a signaling | 
 | | NaN; otherwise returns 0. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | int float64_is_signaling_nan( float64 a_ ) | 
 | { | 
 |     uint64_t a = float64_val(a_); | 
 | #if SNAN_BIT_IS_ONE | 
 |     return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) ); | 
 | #else | 
 |     return | 
 |            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | 
 |         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | 
 | #endif | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns a quiet NaN if the double-precision floating point value `a' is a | 
 | | signaling NaN; otherwise returns `a'. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | float64 float64_maybe_silence_nan( float64 a_ ) | 
 | { | 
 |     if (float64_is_signaling_nan(a_)) { | 
 | #if SNAN_BIT_IS_ONE | 
 | #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
 |         return float64_default_nan; | 
 | #  else | 
 | #    error Rules for silencing a signaling NaN are target-specific | 
 | #  endif | 
 | #else | 
 |         uint64_t a = float64_val(a_); | 
 |         a |= LIT64( 0x0008000000000000 ); | 
 |         return make_float64(a); | 
 | #endif | 
 |     } | 
 |     return a_; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns the result of converting the double-precision floating-point NaN | 
 | | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid | 
 | | exception is raised. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM) | 
 | { | 
 |     commonNaNT z; | 
 |  | 
 |     if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | 
 |     z.sign = float64_val(a)>>63; | 
 |     z.low = 0; | 
 |     z.high = float64_val(a)<<12; | 
 |     return z; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns the result of converting the canonical NaN `a' to the double- | 
 | | precision floating-point format. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM) | 
 | { | 
 |     uint64_t mantissa = a.high>>12; | 
 |  | 
 |     if ( STATUS(default_nan_mode) ) { | 
 |         return float64_default_nan; | 
 |     } | 
 |  | 
 |     if ( mantissa ) | 
 |         return make_float64( | 
 |               ( ( (uint64_t) a.sign )<<63 ) | 
 |             | LIT64( 0x7FF0000000000000 ) | 
 |             | ( a.high>>12 )); | 
 |     else | 
 |         return float64_default_nan; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Takes two double-precision floating-point values `a' and `b', one of which | 
 | | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a | 
 | | signaling NaN, the invalid exception is raised. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM) | 
 | { | 
 |     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; | 
 |     flag aIsLargerSignificand; | 
 |     uint64_t av, bv; | 
 |  | 
 |     aIsQuietNaN = float64_is_quiet_nan( a ); | 
 |     aIsSignalingNaN = float64_is_signaling_nan( a ); | 
 |     bIsQuietNaN = float64_is_quiet_nan( b ); | 
 |     bIsSignalingNaN = float64_is_signaling_nan( b ); | 
 |     av = float64_val(a); | 
 |     bv = float64_val(b); | 
 |  | 
 |     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | 
 |  | 
 |     if ( STATUS(default_nan_mode) ) | 
 |         return float64_default_nan; | 
 |  | 
 |     if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) { | 
 |         aIsLargerSignificand = 0; | 
 |     } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) { | 
 |         aIsLargerSignificand = 1; | 
 |     } else { | 
 |         aIsLargerSignificand = (av < bv) ? 1 : 0; | 
 |     } | 
 |  | 
 |     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | 
 |                 aIsLargerSignificand)) { | 
 |         return float64_maybe_silence_nan(b); | 
 |     } else { | 
 |         return float64_maybe_silence_nan(a); | 
 |     } | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Takes three double-precision floating-point values `a', `b' and `c', one of | 
 | | which is a NaN, and returns the appropriate NaN result.  If any of  `a', | 
 | | `b' or `c' is a signaling NaN, the invalid exception is raised. | 
 | | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case | 
 | | obviously c is a NaN, and whether to propagate c or some other NaN is | 
 | | implementation defined). | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static float64 propagateFloat64MulAddNaN(float64 a, float64 b, | 
 |                                          float64 c, flag infzero STATUS_PARAM) | 
 | { | 
 |     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | 
 |         cIsQuietNaN, cIsSignalingNaN; | 
 |     int which; | 
 |  | 
 |     aIsQuietNaN = float64_is_quiet_nan(a); | 
 |     aIsSignalingNaN = float64_is_signaling_nan(a); | 
 |     bIsQuietNaN = float64_is_quiet_nan(b); | 
 |     bIsSignalingNaN = float64_is_signaling_nan(b); | 
 |     cIsQuietNaN = float64_is_quiet_nan(c); | 
 |     cIsSignalingNaN = float64_is_signaling_nan(c); | 
 |  | 
 |     if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) { | 
 |         float_raise(float_flag_invalid STATUS_VAR); | 
 |     } | 
 |  | 
 |     which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN, | 
 |                           bIsQuietNaN, bIsSignalingNaN, | 
 |                           cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR); | 
 |  | 
 |     if (STATUS(default_nan_mode)) { | 
 |         /* Note that this check is after pickNaNMulAdd so that function | 
 |          * has an opportunity to set the Invalid flag. | 
 |          */ | 
 |         return float64_default_nan; | 
 |     } | 
 |  | 
 |     switch (which) { | 
 |     case 0: | 
 |         return float64_maybe_silence_nan(a); | 
 |     case 1: | 
 |         return float64_maybe_silence_nan(b); | 
 |     case 2: | 
 |         return float64_maybe_silence_nan(c); | 
 |     case 3: | 
 |     default: | 
 |         return float64_default_nan; | 
 |     } | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns 1 if the extended double-precision floating-point value `a' is a | 
 | | quiet NaN; otherwise returns 0. This slightly differs from the same | 
 | | function for other types as floatx80 has an explicit bit. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | int floatx80_is_quiet_nan( floatx80 a ) | 
 | { | 
 | #if SNAN_BIT_IS_ONE | 
 |     uint64_t aLow; | 
 |  | 
 |     aLow = a.low & ~ LIT64( 0x4000000000000000 ); | 
 |     return | 
 |            ( ( a.high & 0x7FFF ) == 0x7FFF ) | 
 |         && (uint64_t) ( aLow<<1 ) | 
 |         && ( a.low == aLow ); | 
 | #else | 
 |     return ( ( a.high & 0x7FFF ) == 0x7FFF ) | 
 |         && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 ))); | 
 | #endif | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns 1 if the extended double-precision floating-point value `a' is a | 
 | | signaling NaN; otherwise returns 0. This slightly differs from the same | 
 | | function for other types as floatx80 has an explicit bit. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | int floatx80_is_signaling_nan( floatx80 a ) | 
 | { | 
 | #if SNAN_BIT_IS_ONE | 
 |     return ( ( a.high & 0x7FFF ) == 0x7FFF ) | 
 |         && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 ))); | 
 | #else | 
 |     uint64_t aLow; | 
 |  | 
 |     aLow = a.low & ~ LIT64( 0x4000000000000000 ); | 
 |     return | 
 |            ( ( a.high & 0x7FFF ) == 0x7FFF ) | 
 |         && (uint64_t) ( aLow<<1 ) | 
 |         && ( a.low == aLow ); | 
 | #endif | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns a quiet NaN if the extended double-precision floating point value | 
 | | `a' is a signaling NaN; otherwise returns `a'. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | floatx80 floatx80_maybe_silence_nan( floatx80 a ) | 
 | { | 
 |     if (floatx80_is_signaling_nan(a)) { | 
 | #if SNAN_BIT_IS_ONE | 
 | #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
 |         a.low = floatx80_default_nan_low; | 
 |         a.high = floatx80_default_nan_high; | 
 | #  else | 
 | #    error Rules for silencing a signaling NaN are target-specific | 
 | #  endif | 
 | #else | 
 |         a.low |= LIT64( 0xC000000000000000 ); | 
 |         return a; | 
 | #endif | 
 |     } | 
 |     return a; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns the result of converting the extended double-precision floating- | 
 | | point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the | 
 | | invalid exception is raised. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM) | 
 | { | 
 |     commonNaNT z; | 
 |  | 
 |     if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | 
 |     if ( a.low >> 63 ) { | 
 |         z.sign = a.high >> 15; | 
 |         z.low = 0; | 
 |         z.high = a.low << 1; | 
 |     } else { | 
 |         z.sign = floatx80_default_nan_high >> 15; | 
 |         z.low = 0; | 
 |         z.high = floatx80_default_nan_low << 1; | 
 |     } | 
 |     return z; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns the result of converting the canonical NaN `a' to the extended | 
 | | double-precision floating-point format. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM) | 
 | { | 
 |     floatx80 z; | 
 |  | 
 |     if ( STATUS(default_nan_mode) ) { | 
 |         z.low = floatx80_default_nan_low; | 
 |         z.high = floatx80_default_nan_high; | 
 |         return z; | 
 |     } | 
 |  | 
 |     if (a.high >> 1) { | 
 |         z.low = LIT64( 0x8000000000000000 ) | a.high >> 1; | 
 |         z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF; | 
 |     } else { | 
 |         z.low = floatx80_default_nan_low; | 
 |         z.high = floatx80_default_nan_high; | 
 |     } | 
 |  | 
 |     return z; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Takes two extended double-precision floating-point values `a' and `b', one | 
 | | of which is a NaN, and returns the appropriate NaN result.  If either `a' or | 
 | | `b' is a signaling NaN, the invalid exception is raised. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM) | 
 | { | 
 |     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; | 
 |     flag aIsLargerSignificand; | 
 |  | 
 |     aIsQuietNaN = floatx80_is_quiet_nan( a ); | 
 |     aIsSignalingNaN = floatx80_is_signaling_nan( a ); | 
 |     bIsQuietNaN = floatx80_is_quiet_nan( b ); | 
 |     bIsSignalingNaN = floatx80_is_signaling_nan( b ); | 
 |  | 
 |     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | 
 |  | 
 |     if ( STATUS(default_nan_mode) ) { | 
 |         a.low = floatx80_default_nan_low; | 
 |         a.high = floatx80_default_nan_high; | 
 |         return a; | 
 |     } | 
 |  | 
 |     if (a.low < b.low) { | 
 |         aIsLargerSignificand = 0; | 
 |     } else if (b.low < a.low) { | 
 |         aIsLargerSignificand = 1; | 
 |     } else { | 
 |         aIsLargerSignificand = (a.high < b.high) ? 1 : 0; | 
 |     } | 
 |  | 
 |     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | 
 |                 aIsLargerSignificand)) { | 
 |         return floatx80_maybe_silence_nan(b); | 
 |     } else { | 
 |         return floatx80_maybe_silence_nan(a); | 
 |     } | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns 1 if the quadruple-precision floating-point value `a' is a quiet | 
 | | NaN; otherwise returns 0. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | int float128_is_quiet_nan( float128 a ) | 
 | { | 
 | #if SNAN_BIT_IS_ONE | 
 |     return | 
 |            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) | 
 |         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); | 
 | #else | 
 |     return | 
 |            ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) ) | 
 |         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); | 
 | #endif | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns 1 if the quadruple-precision floating-point value `a' is a | 
 | | signaling NaN; otherwise returns 0. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | int float128_is_signaling_nan( float128 a ) | 
 | { | 
 | #if SNAN_BIT_IS_ONE | 
 |     return | 
 |            ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) ) | 
 |         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); | 
 | #else | 
 |     return | 
 |            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) | 
 |         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); | 
 | #endif | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns a quiet NaN if the quadruple-precision floating point value `a' is | 
 | | a signaling NaN; otherwise returns `a'. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | float128 float128_maybe_silence_nan( float128 a ) | 
 | { | 
 |     if (float128_is_signaling_nan(a)) { | 
 | #if SNAN_BIT_IS_ONE | 
 | #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
 |         a.low = float128_default_nan_low; | 
 |         a.high = float128_default_nan_high; | 
 | #  else | 
 | #    error Rules for silencing a signaling NaN are target-specific | 
 | #  endif | 
 | #else | 
 |         a.high |= LIT64( 0x0000800000000000 ); | 
 |         return a; | 
 | #endif | 
 |     } | 
 |     return a; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns the result of converting the quadruple-precision floating-point NaN | 
 | | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid | 
 | | exception is raised. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM) | 
 | { | 
 |     commonNaNT z; | 
 |  | 
 |     if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | 
 |     z.sign = a.high>>63; | 
 |     shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); | 
 |     return z; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Returns the result of converting the canonical NaN `a' to the quadruple- | 
 | | precision floating-point format. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM) | 
 | { | 
 |     float128 z; | 
 |  | 
 |     if ( STATUS(default_nan_mode) ) { | 
 |         z.low = float128_default_nan_low; | 
 |         z.high = float128_default_nan_high; | 
 |         return z; | 
 |     } | 
 |  | 
 |     shift128Right( a.high, a.low, 16, &z.high, &z.low ); | 
 |     z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 ); | 
 |     return z; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 | | Takes two quadruple-precision floating-point values `a' and `b', one of | 
 | | which is a NaN, and returns the appropriate NaN result.  If either `a' or | 
 | | `b' is a signaling NaN, the invalid exception is raised. | 
 | *----------------------------------------------------------------------------*/ | 
 |  | 
 | static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM) | 
 | { | 
 |     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; | 
 |     flag aIsLargerSignificand; | 
 |  | 
 |     aIsQuietNaN = float128_is_quiet_nan( a ); | 
 |     aIsSignalingNaN = float128_is_signaling_nan( a ); | 
 |     bIsQuietNaN = float128_is_quiet_nan( b ); | 
 |     bIsSignalingNaN = float128_is_signaling_nan( b ); | 
 |  | 
 |     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | 
 |  | 
 |     if ( STATUS(default_nan_mode) ) { | 
 |         a.low = float128_default_nan_low; | 
 |         a.high = float128_default_nan_high; | 
 |         return a; | 
 |     } | 
 |  | 
 |     if (lt128(a.high<<1, a.low, b.high<<1, b.low)) { | 
 |         aIsLargerSignificand = 0; | 
 |     } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) { | 
 |         aIsLargerSignificand = 1; | 
 |     } else { | 
 |         aIsLargerSignificand = (a.high < b.high) ? 1 : 0; | 
 |     } | 
 |  | 
 |     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | 
 |                 aIsLargerSignificand)) { | 
 |         return float128_maybe_silence_nan(b); | 
 |     } else { | 
 |         return float128_maybe_silence_nan(a); | 
 |     } | 
 | } | 
 |  |