|  | /* Decimal 64-bit format module for the decNumber C Library. | 
|  | Copyright (C) 2005, 2007 Free Software Foundation, Inc. | 
|  | Contributed by IBM Corporation.  Author Mike Cowlishaw. | 
|  |  | 
|  | This file is part of GCC. | 
|  |  | 
|  | GCC is free software; you can redistribute it and/or modify it under | 
|  | the terms of the GNU General Public License as published by the Free | 
|  | Software Foundation; either version 2, or (at your option) any later | 
|  | version. | 
|  |  | 
|  | In addition to the permissions in the GNU General Public License, | 
|  | the Free Software Foundation gives you unlimited permission to link | 
|  | the compiled version of this file into combinations with other | 
|  | programs, and to distribute those combinations without any | 
|  | restriction coming from the use of this file.  (The General Public | 
|  | License restrictions do apply in other respects; for example, they | 
|  | cover modification of the file, and distribution when not linked | 
|  | into a combine executable.) | 
|  |  | 
|  | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with GCC; see the file COPYING.  If not, write to the Free | 
|  | Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA | 
|  | 02110-1301, USA.  */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* Decimal 64-bit format module					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This module comprises the routines for decimal64 format numbers.   */ | 
|  | /* Conversions are supplied to and from decNumber and String.	      */ | 
|  | /*								      */ | 
|  | /* This is used when decNumber provides operations, either for all    */ | 
|  | /* operations or as a proxy between decNumber and decSingle.	      */ | 
|  | /*								      */ | 
|  | /* Error handling is the same as decNumber (qv.).		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | #include <string.h>	      /* [for memset/memcpy] */ | 
|  | #include <stdio.h>	      /* [for printf] */ | 
|  |  | 
|  | #include "libdecnumber/dconfig.h" | 
|  | #define	 DECNUMDIGITS 16      /* make decNumbers with space for 16 */ | 
|  | #include "libdecnumber/decNumber.h" | 
|  | #include "libdecnumber/decNumberLocal.h" | 
|  | #include "libdecnumber/dpd/decimal64.h" | 
|  |  | 
|  | /* Utility routines and tables [in decimal64.c]; externs for C++ */ | 
|  | extern const uInt COMBEXP[32], COMBMSD[32]; | 
|  | extern const uByte  BIN2CHAR[4001]; | 
|  |  | 
|  | extern void decDigitsFromDPD(decNumber *, const uInt *, Int); | 
|  | extern void decDigitsToDPD(const decNumber *, uInt *, Int); | 
|  |  | 
|  | #if DECTRACE || DECCHECK | 
|  | void decimal64Show(const decimal64 *);		  /* for debug */ | 
|  | extern void decNumberShow(const decNumber *);	  /* .. */ | 
|  | #endif | 
|  |  | 
|  | /* Useful macro */ | 
|  | /* Clear a structure (e.g., a decNumber) */ | 
|  | #define DEC_clear(d) memset(d, 0, sizeof(*d)) | 
|  |  | 
|  | /* define and include the tables to use for conversions */ | 
|  | #define DEC_BIN2CHAR 1 | 
|  | #define DEC_DPD2BIN  1 | 
|  | #define DEC_BIN2DPD  1		   /* used for all sizes */ | 
|  | #include "libdecnumber/decDPD.h" | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decimal64FromNumber -- convert decNumber to decimal64	      */ | 
|  | /*								      */ | 
|  | /*   ds is the target decimal64					      */ | 
|  | /*   dn is the source number (assumed valid)			      */ | 
|  | /*   set is the context, used only for reporting errors		      */ | 
|  | /*								      */ | 
|  | /* The set argument is used only for status reporting and for the     */ | 
|  | /* rounding mode (used if the coefficient is more than DECIMAL64_Pmax */ | 
|  | /* digits or an overflow is detected).	If the exponent is out of the */ | 
|  | /* valid range then Overflow or Underflow will be raised.	      */ | 
|  | /* After Underflow a subnormal result is possible.		      */ | 
|  | /*								      */ | 
|  | /* DEC_Clamped is set if the number has to be 'folded down' to fit,   */ | 
|  | /* by reducing its exponent and multiplying the coefficient by a      */ | 
|  | /* power of ten, or if the exponent on a zero had to be clamped.      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decimal64 * decimal64FromNumber(decimal64 *d64, const decNumber *dn, | 
|  | decContext *set) { | 
|  | uInt status=0;		   /* status accumulator */ | 
|  | Int ae;			   /* adjusted exponent */ | 
|  | decNumber  dw;		   /* work */ | 
|  | decContext dc;		   /* .. */ | 
|  | uInt *pu;			   /* .. */ | 
|  | uInt comb, exp;		   /* .. */ | 
|  | uInt targar[2]={0, 0};	   /* target 64-bit */ | 
|  | #define targhi targar[1]	   /* name the word with the sign */ | 
|  | #define targlo targar[0]	   /* and the other */ | 
|  |  | 
|  | /* If the number has too many digits, or the exponent could be */ | 
|  | /* out of range then reduce the number under the appropriate */ | 
|  | /* constraints.  This could push the number to Infinity or zero, */ | 
|  | /* so this check and rounding must be done before generating the */ | 
|  | /* decimal64] */ | 
|  | ae=dn->exponent+dn->digits-1;		     /* [0 if special] */ | 
|  | if (dn->digits>DECIMAL64_Pmax		     /* too many digits */ | 
|  | || ae>DECIMAL64_Emax			     /* likely overflow */ | 
|  | || ae<DECIMAL64_Emin) {		     /* likely underflow */ | 
|  | decContextDefault(&dc, DEC_INIT_DECIMAL64); /* [no traps] */ | 
|  | dc.round=set->round;		     /* use supplied rounding */ | 
|  | decNumberPlus(&dw, dn, &dc);	     /* (round and check) */ | 
|  | /* [this changes -0 to 0, so enforce the sign...] */ | 
|  | dw.bits|=dn->bits&DECNEG; | 
|  | status=dc.status;			     /* save status */ | 
|  | dn=&dw;				     /* use the work number */ | 
|  | } /* maybe out of range */ | 
|  |  | 
|  | if (dn->bits&DECSPECIAL) {			  /* a special value */ | 
|  | if (dn->bits&DECINF) targhi=DECIMAL_Inf<<24; | 
|  | else {					  /* sNaN or qNaN */ | 
|  | if ((*dn->lsu!=0 || dn->digits>1)		  /* non-zero coefficient */ | 
|  | && (dn->digits<DECIMAL64_Pmax)) {	  /* coefficient fits */ | 
|  | decDigitsToDPD(dn, targar, 0); | 
|  | } | 
|  | if (dn->bits&DECNAN) targhi|=DECIMAL_NaN<<24; | 
|  | else targhi|=DECIMAL_sNaN<<24; | 
|  | } /* a NaN */ | 
|  | } /* special */ | 
|  |  | 
|  | else { /* is finite */ | 
|  | if (decNumberIsZero(dn)) {		     /* is a zero */ | 
|  | /* set and clamp exponent */ | 
|  | if (dn->exponent<-DECIMAL64_Bias) { | 
|  | exp=0;				     /* low clamp */ | 
|  | status|=DEC_Clamped; | 
|  | } | 
|  | else { | 
|  | exp=dn->exponent+DECIMAL64_Bias;     /* bias exponent */ | 
|  | if (exp>DECIMAL64_Ehigh) {	     /* top clamp */ | 
|  | exp=DECIMAL64_Ehigh; | 
|  | status|=DEC_Clamped; | 
|  | } | 
|  | } | 
|  | comb=(exp>>5) & 0x18;		/* msd=0, exp top 2 bits .. */ | 
|  | } | 
|  | else {				/* non-zero finite number */ | 
|  | uInt msd;				/* work */ | 
|  | Int pad=0;			/* coefficient pad digits */ | 
|  |  | 
|  | /* the dn is known to fit, but it may need to be padded */ | 
|  | exp=(uInt)(dn->exponent+DECIMAL64_Bias);	  /* bias exponent */ | 
|  | if (exp>DECIMAL64_Ehigh) {		  /* fold-down case */ | 
|  | pad=exp-DECIMAL64_Ehigh; | 
|  | exp=DECIMAL64_Ehigh;			  /* [to maximum] */ | 
|  | status|=DEC_Clamped; | 
|  | } | 
|  |  | 
|  | /* fastpath common case */ | 
|  | if (DECDPUN==3 && pad==0) { | 
|  | uInt dpd[6]={0,0,0,0,0,0}; | 
|  | uInt i; | 
|  | Int d=dn->digits; | 
|  | for (i=0; d>0; i++, d-=3) dpd[i]=BIN2DPD[dn->lsu[i]]; | 
|  | targlo =dpd[0]; | 
|  | targlo|=dpd[1]<<10; | 
|  | targlo|=dpd[2]<<20; | 
|  | if (dn->digits>6) { | 
|  | targlo|=dpd[3]<<30; | 
|  | targhi =dpd[3]>>2; | 
|  | targhi|=dpd[4]<<8; | 
|  | } | 
|  | msd=dpd[5];		   /* [did not really need conversion] */ | 
|  | } | 
|  | else { /* general case */ | 
|  | decDigitsToDPD(dn, targar, pad); | 
|  | /* save and clear the top digit */ | 
|  | msd=targhi>>18; | 
|  | targhi&=0x0003ffff; | 
|  | } | 
|  |  | 
|  | /* create the combination field */ | 
|  | if (msd>=8) comb=0x18 | ((exp>>7) & 0x06) | (msd & 0x01); | 
|  | else comb=((exp>>5) & 0x18) | msd; | 
|  | } | 
|  | targhi|=comb<<26;		   /* add combination field .. */ | 
|  | targhi|=(exp&0xff)<<18;	   /* .. and exponent continuation */ | 
|  | } /* finite */ | 
|  |  | 
|  | if (dn->bits&DECNEG) targhi|=0x80000000; /* add sign bit */ | 
|  |  | 
|  | /* now write to storage; this is now always endian */ | 
|  | pu=(uInt *)d64->bytes;	   /* overlay */ | 
|  | if (DECLITEND) { | 
|  | pu[0]=targar[0];		   /* directly store the low int */ | 
|  | pu[1]=targar[1];		   /* then the high int */ | 
|  | } | 
|  | else { | 
|  | pu[0]=targar[1];		   /* directly store the high int */ | 
|  | pu[1]=targar[0];		   /* then the low int */ | 
|  | } | 
|  |  | 
|  | if (status!=0) decContextSetStatus(set, status); /* pass on status */ | 
|  | /* decimal64Show(d64); */ | 
|  | return d64; | 
|  | } /* decimal64FromNumber */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decimal64ToNumber -- convert decimal64 to decNumber		      */ | 
|  | /*   d64 is the source decimal64				      */ | 
|  | /*   dn is the target number, with appropriate space		      */ | 
|  | /* No error is possible.					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decimal64ToNumber(const decimal64 *d64, decNumber *dn) { | 
|  | uInt msd;			   /* coefficient MSD */ | 
|  | uInt exp;			   /* exponent top two bits */ | 
|  | uInt comb;			   /* combination field */ | 
|  | const uInt *pu;		   /* work */ | 
|  | Int  need;			   /* .. */ | 
|  | uInt sourar[2];		   /* source 64-bit */ | 
|  | #define sourhi sourar[1]	   /* name the word with the sign */ | 
|  | #define sourlo sourar[0]	   /* and the lower word */ | 
|  |  | 
|  | /* load source from storage; this is endian */ | 
|  | pu=(const uInt *)d64->bytes;	   /* overlay */ | 
|  | if (DECLITEND) { | 
|  | sourlo=pu[0];		   /* directly load the low int */ | 
|  | sourhi=pu[1];		   /* then the high int */ | 
|  | } | 
|  | else { | 
|  | sourhi=pu[0];		   /* directly load the high int */ | 
|  | sourlo=pu[1];		   /* then the low int */ | 
|  | } | 
|  |  | 
|  | comb=(sourhi>>26)&0x1f;	   /* combination field */ | 
|  |  | 
|  | decNumberZero(dn);		   /* clean number */ | 
|  | if (sourhi&0x80000000) dn->bits=DECNEG; /* set sign if negative */ | 
|  |  | 
|  | msd=COMBMSD[comb];		   /* decode the combination field */ | 
|  | exp=COMBEXP[comb];		   /* .. */ | 
|  |  | 
|  | if (exp==3) {			   /* is a special */ | 
|  | if (msd==0) { | 
|  | dn->bits|=DECINF; | 
|  | return dn;		   /* no coefficient needed */ | 
|  | } | 
|  | else if (sourhi&0x02000000) dn->bits|=DECSNAN; | 
|  | else dn->bits|=DECNAN; | 
|  | msd=0;			   /* no top digit */ | 
|  | } | 
|  | else {			   /* is a finite number */ | 
|  | dn->exponent=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias; /* unbiased */ | 
|  | } | 
|  |  | 
|  | /* get the coefficient */ | 
|  | sourhi&=0x0003ffff;		   /* clean coefficient continuation */ | 
|  | if (msd) {			   /* non-zero msd */ | 
|  | sourhi|=msd<<18;		   /* prefix to coefficient */ | 
|  | need=6;			   /* process 6 declets */ | 
|  | } | 
|  | else { /* msd=0 */ | 
|  | if (!sourhi) {		   /* top word 0 */ | 
|  | if (!sourlo) return dn;	   /* easy: coefficient is 0 */ | 
|  | need=3;			   /* process at least 3 declets */ | 
|  | if (sourlo&0xc0000000) need++; /* process 4 declets */ | 
|  | /* [could reduce some more, here] */ | 
|  | } | 
|  | else {			   /* some bits in top word, msd=0 */ | 
|  | need=4;			   /* process at least 4 declets */ | 
|  | if (sourhi&0x0003ff00) need++; /* top declet!=0, process 5 */ | 
|  | } | 
|  | } /*msd=0 */ | 
|  |  | 
|  | decDigitsFromDPD(dn, sourar, need);	/* process declets */ | 
|  | return dn; | 
|  | } /* decimal64ToNumber */ | 
|  |  | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* to-scientific-string -- conversion to numeric string		      */ | 
|  | /* to-engineering-string -- conversion to numeric string	      */ | 
|  | /*								      */ | 
|  | /*   decimal64ToString(d64, string);				      */ | 
|  | /*   decimal64ToEngString(d64, string);				      */ | 
|  | /*								      */ | 
|  | /*  d64 is the decimal64 format number to convert		      */ | 
|  | /*  string is the string where the result will be laid out	      */ | 
|  | /*								      */ | 
|  | /*  string must be at least 24 characters			      */ | 
|  | /*								      */ | 
|  | /*  No error is possible, and no status can be set.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | char * decimal64ToEngString(const decimal64 *d64, char *string){ | 
|  | decNumber dn;				/* work */ | 
|  | decimal64ToNumber(d64, &dn); | 
|  | decNumberToEngString(&dn, string); | 
|  | return string; | 
|  | } /* decimal64ToEngString */ | 
|  |  | 
|  | char * decimal64ToString(const decimal64 *d64, char *string){ | 
|  | uInt msd;			   /* coefficient MSD */ | 
|  | Int  exp;			   /* exponent top two bits or full */ | 
|  | uInt comb;			   /* combination field */ | 
|  | char *cstart;			   /* coefficient start */ | 
|  | char *c;			   /* output pointer in string */ | 
|  | const uInt *pu;		   /* work */ | 
|  | char *s, *t;			   /* .. (source, target) */ | 
|  | Int  dpd;			   /* .. */ | 
|  | Int  pre, e;			   /* .. */ | 
|  | const uByte *u;		   /* .. */ | 
|  |  | 
|  | uInt sourar[2];		   /* source 64-bit */ | 
|  | #define sourhi sourar[1]	   /* name the word with the sign */ | 
|  | #define sourlo sourar[0]	   /* and the lower word */ | 
|  |  | 
|  | /* load source from storage; this is endian */ | 
|  | pu=(const uInt *)d64->bytes;	   /* overlay */ | 
|  | if (DECLITEND) { | 
|  | sourlo=pu[0];		   /* directly load the low int */ | 
|  | sourhi=pu[1];		   /* then the high int */ | 
|  | } | 
|  | else { | 
|  | sourhi=pu[0];		   /* directly load the high int */ | 
|  | sourlo=pu[1];		   /* then the low int */ | 
|  | } | 
|  |  | 
|  | c=string;			   /* where result will go */ | 
|  | if (((Int)sourhi)<0) *c++='-';   /* handle sign */ | 
|  |  | 
|  | comb=(sourhi>>26)&0x1f;	   /* combination field */ | 
|  | msd=COMBMSD[comb];		   /* decode the combination field */ | 
|  | exp=COMBEXP[comb];		   /* .. */ | 
|  |  | 
|  | if (exp==3) { | 
|  | if (msd==0) {		   /* infinity */ | 
|  | strcpy(c,	  "Inf"); | 
|  | strcpy(c+3, "inity"); | 
|  | return string;		   /* easy */ | 
|  | } | 
|  | if (sourhi&0x02000000) *c++='s'; /* sNaN */ | 
|  | strcpy(c, "NaN");		   /* complete word */ | 
|  | c+=3;			   /* step past */ | 
|  | if (sourlo==0 && (sourhi&0x0003ffff)==0) return string; /* zero payload */ | 
|  | /* otherwise drop through to add integer; set correct exp */ | 
|  | exp=0; msd=0;		   /* setup for following code */ | 
|  | } | 
|  | else exp=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias; | 
|  |  | 
|  | /* convert 16 digits of significand to characters */ | 
|  | cstart=c;			   /* save start of coefficient */ | 
|  | if (msd) *c++='0'+(char)msd;	   /* non-zero most significant digit */ | 
|  |  | 
|  | /* Now decode the declets.  After extracting each one, it is */ | 
|  | /* decoded to binary and then to a 4-char sequence by table lookup; */ | 
|  | /* the 4-chars are a 1-char length (significant digits, except 000 */ | 
|  | /* has length 0).  This allows us to left-align the first declet */ | 
|  | /* with non-zero content, then remaining ones are full 3-char */ | 
|  | /* length.  We use fixed-length memcpys because variable-length */ | 
|  | /* causes a subroutine call in GCC.  (These are length 4 for speed */ | 
|  | /* and are safe because the array has an extra terminator byte.) */ | 
|  | #define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4];			  \ | 
|  | if (c!=cstart) {memcpy(c, u+1, 4); c+=3;}	  \ | 
|  | else if (*u)  {memcpy(c, u+4-*u, 4); c+=*u;} | 
|  |  | 
|  | dpd=(sourhi>>8)&0x3ff;		     /* declet 1 */ | 
|  | dpd2char; | 
|  | dpd=((sourhi&0xff)<<2) | (sourlo>>30);     /* declet 2 */ | 
|  | dpd2char; | 
|  | dpd=(sourlo>>20)&0x3ff;		     /* declet 3 */ | 
|  | dpd2char; | 
|  | dpd=(sourlo>>10)&0x3ff;		     /* declet 4 */ | 
|  | dpd2char; | 
|  | dpd=(sourlo)&0x3ff;			     /* declet 5 */ | 
|  | dpd2char; | 
|  |  | 
|  | if (c==cstart) *c++='0';	   /* all zeros -- make 0 */ | 
|  |  | 
|  | if (exp==0) {			   /* integer or NaN case -- easy */ | 
|  | *c='\0';			   /* terminate */ | 
|  | return string; | 
|  | } | 
|  |  | 
|  | /* non-0 exponent */ | 
|  | e=0;				   /* assume no E */ | 
|  | pre=c-cstart+exp; | 
|  | /* [here, pre-exp is the digits count (==1 for zero)] */ | 
|  | if (exp>0 || pre<-5) {	   /* need exponential form */ | 
|  | e=pre-1;			   /* calculate E value */ | 
|  | pre=1;			   /* assume one digit before '.' */ | 
|  | } /* exponential form */ | 
|  |  | 
|  | /* modify the coefficient, adding 0s, '.', and E+nn as needed */ | 
|  | s=c-1;			   /* source (LSD) */ | 
|  | if (pre>0) {			   /* ddd.ddd (plain), perhaps with E */ | 
|  | char *dotat=cstart+pre; | 
|  | if (dotat<c) {		   /* if embedded dot needed... */ | 
|  | t=c;				/* target */ | 
|  | for (; s>=dotat; s--, t--) *t=*s; /* open the gap; leave t at gap */ | 
|  | *t='.';				/* insert the dot */ | 
|  | c++;				/* length increased by one */ | 
|  | } | 
|  |  | 
|  | /* finally add the E-part, if needed; it will never be 0, and has */ | 
|  | /* a maximum length of 3 digits */ | 
|  | if (e!=0) { | 
|  | *c++='E';			   /* starts with E */ | 
|  | *c++='+';			   /* assume positive */ | 
|  | if (e<0) { | 
|  | *(c-1)='-';		   /* oops, need '-' */ | 
|  | e=-e;			   /* uInt, please */ | 
|  | } | 
|  | u=&BIN2CHAR[e*4];		   /* -> length byte */ | 
|  | memcpy(c, u+4-*u, 4);	   /* copy fixed 4 characters [is safe] */ | 
|  | c+=*u;			   /* bump pointer appropriately */ | 
|  | } | 
|  | *c='\0';			   /* add terminator */ | 
|  | /*printf("res %s\n", string); */ | 
|  | return string; | 
|  | } /* pre>0 */ | 
|  |  | 
|  | /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */ | 
|  | t=c+1-pre; | 
|  | *(t+1)='\0';				/* can add terminator now */ | 
|  | for (; s>=cstart; s--, t--) *t=*s;	/* shift whole coefficient right */ | 
|  | c=cstart; | 
|  | *c++='0';				/* always starts with 0. */ | 
|  | *c++='.'; | 
|  | for (; pre<0; pre++) *c++='0';	/* add any 0's after '.' */ | 
|  | /*printf("res %s\n", string); */ | 
|  | return string; | 
|  | } /* decimal64ToString */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* to-number -- conversion from numeric string			      */ | 
|  | /*								      */ | 
|  | /*   decimal64FromString(result, string, set);			      */ | 
|  | /*								      */ | 
|  | /*  result  is the decimal64 format number which gets the result of   */ | 
|  | /*	    the conversion					      */ | 
|  | /*  *string is the character string which should contain a valid      */ | 
|  | /*	    number (which may be a special value)		      */ | 
|  | /*  set	    is the context					      */ | 
|  | /*								      */ | 
|  | /* The context is supplied to this routine is used for error handling */ | 
|  | /* (setting of status and traps) and for the rounding mode, only.     */ | 
|  | /* If an error occurs, the result will be a valid decimal64 NaN.      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decimal64 * decimal64FromString(decimal64 *result, const char *string, | 
|  | decContext *set) { | 
|  | decContext dc;			     /* work */ | 
|  | decNumber dn;				     /* .. */ | 
|  |  | 
|  | decContextDefault(&dc, DEC_INIT_DECIMAL64); /* no traps, please */ | 
|  | dc.round=set->round;			      /* use supplied rounding */ | 
|  |  | 
|  | decNumberFromString(&dn, string, &dc);     /* will round if needed */ | 
|  |  | 
|  | decimal64FromNumber(result, &dn, &dc); | 
|  | if (dc.status!=0) {			     /* something happened */ | 
|  | decContextSetStatus(set, dc.status);     /* .. pass it on */ | 
|  | } | 
|  | return result; | 
|  | } /* decimal64FromString */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decimal64IsCanonical -- test whether encoding is canonical	      */ | 
|  | /*   d64 is the source decimal64				      */ | 
|  | /*   returns 1 if the encoding of d64 is canonical, 0 otherwise	      */ | 
|  | /* No error is possible.					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | uint32_t decimal64IsCanonical(const decimal64 *d64) { | 
|  | decNumber dn;				/* work */ | 
|  | decimal64 canon;			/* .. */ | 
|  | decContext dc;			/* .. */ | 
|  | decContextDefault(&dc, DEC_INIT_DECIMAL64); | 
|  | decimal64ToNumber(d64, &dn); | 
|  | decimal64FromNumber(&canon, &dn, &dc);/* canon will now be canonical */ | 
|  | return memcmp(d64, &canon, DECIMAL64_Bytes)==0; | 
|  | } /* decimal64IsCanonical */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decimal64Canonical -- copy an encoding, ensuring it is canonical   */ | 
|  | /*   d64 is the source decimal64				      */ | 
|  | /*   result is the target (may be the same decimal64)		      */ | 
|  | /*   returns result						      */ | 
|  | /* No error is possible.					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decimal64 * decimal64Canonical(decimal64 *result, const decimal64 *d64) { | 
|  | decNumber dn;				/* work */ | 
|  | decContext dc;			/* .. */ | 
|  | decContextDefault(&dc, DEC_INIT_DECIMAL64); | 
|  | decimal64ToNumber(d64, &dn); | 
|  | decimal64FromNumber(result, &dn, &dc);/* result will now be canonical */ | 
|  | return result; | 
|  | } /* decimal64Canonical */ | 
|  |  | 
|  | #if DECTRACE || DECCHECK | 
|  | /* Macros for accessing decimal64 fields.  These assume the | 
|  | argument is a reference (pointer) to the decimal64 structure, | 
|  | and the decimal64 is in network byte order (big-endian) */ | 
|  | /* Get sign */ | 
|  | #define decimal64Sign(d)       ((unsigned)(d)->bytes[0]>>7) | 
|  |  | 
|  | /* Get combination field */ | 
|  | #define decimal64Comb(d)       (((d)->bytes[0] & 0x7c)>>2) | 
|  |  | 
|  | /* Get exponent continuation [does not remove bias] */ | 
|  | #define decimal64ExpCon(d)     ((((d)->bytes[0] & 0x03)<<6)	      \ | 
|  | | ((unsigned)(d)->bytes[1]>>2)) | 
|  |  | 
|  | /* Set sign [this assumes sign previously 0] */ | 
|  | #define decimal64SetSign(d, b) {				      \ | 
|  | (d)->bytes[0]|=((unsigned)(b)<<7);} | 
|  |  | 
|  | /* Set exponent continuation [does not apply bias] */ | 
|  | /* This assumes range has been checked and exponent previously 0; */ | 
|  | /* type of exponent must be unsigned */ | 
|  | #define decimal64SetExpCon(d, e) {				      \ | 
|  | (d)->bytes[0]|=(uint8_t)((e)>>6);				      \ | 
|  | (d)->bytes[1]|=(uint8_t)(((e)&0x3F)<<2);} | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decimal64Show -- display a decimal64 in hexadecimal [debug aid]    */ | 
|  | /*   d64 -- the number to show					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* Also shows sign/cob/expconfields extracted */ | 
|  | void decimal64Show(const decimal64 *d64) { | 
|  | char buf[DECIMAL64_Bytes*2+1]; | 
|  | Int i, j=0; | 
|  |  | 
|  | if (DECLITEND) { | 
|  | for (i=0; i<DECIMAL64_Bytes; i++, j+=2) { | 
|  | sprintf(&buf[j], "%02x", d64->bytes[7-i]); | 
|  | } | 
|  | printf(" D64> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf, | 
|  | d64->bytes[7]>>7, (d64->bytes[7]>>2)&0x1f, | 
|  | ((d64->bytes[7]&0x3)<<6)| (d64->bytes[6]>>2)); | 
|  | } | 
|  | else { /* big-endian */ | 
|  | for (i=0; i<DECIMAL64_Bytes; i++, j+=2) { | 
|  | sprintf(&buf[j], "%02x", d64->bytes[i]); | 
|  | } | 
|  | printf(" D64> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf, | 
|  | decimal64Sign(d64), decimal64Comb(d64), decimal64ExpCon(d64)); | 
|  | } | 
|  | } /* decimal64Show */ | 
|  | #endif | 
|  |  | 
|  | /* ================================================================== */ | 
|  | /* Shared utility routines and tables				      */ | 
|  | /* ================================================================== */ | 
|  | /* define and include the conversion tables to use for shared code */ | 
|  | #if DECDPUN==3 | 
|  | #define DEC_DPD2BIN 1 | 
|  | #else | 
|  | #define DEC_DPD2BCD 1 | 
|  | #endif | 
|  | #include "libdecnumber/decDPD.h" | 
|  |  | 
|  | /* The maximum number of decNumberUnits needed for a working copy of */ | 
|  | /* the units array is the ceiling of digits/DECDPUN, where digits is */ | 
|  | /* the maximum number of digits in any of the formats for which this */ | 
|  | /* is used.  decimal128.h must not be included in this module, so, as */ | 
|  | /* a very special case, that number is defined as a literal here. */ | 
|  | #define DECMAX754   34 | 
|  | #define DECMAXUNITS ((DECMAX754+DECDPUN-1)/DECDPUN) | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* Combination field lookup tables (uInts to save measurable work)    */ | 
|  | /*								      */ | 
|  | /*	COMBEXP - 2-bit most-significant-bits of exponent	      */ | 
|  | /*		  [11 if an Infinity or NaN]			      */ | 
|  | /*	COMBMSD - 4-bit most-significant-digit			      */ | 
|  | /*		  [0=Infinity, 1=NaN if COMBEXP=11]		      */ | 
|  | /*								      */ | 
|  | /* Both are indexed by the 5-bit combination field (0-31)	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | const uInt COMBEXP[32]={0, 0, 0, 0, 0, 0, 0, 0, | 
|  | 1, 1, 1, 1, 1, 1, 1, 1, | 
|  | 2, 2, 2, 2, 2, 2, 2, 2, | 
|  | 0, 0, 1, 1, 2, 2, 3, 3}; | 
|  | const uInt COMBMSD[32]={0, 1, 2, 3, 4, 5, 6, 7, | 
|  | 0, 1, 2, 3, 4, 5, 6, 7, | 
|  | 0, 1, 2, 3, 4, 5, 6, 7, | 
|  | 8, 9, 8, 9, 8, 9, 0, 1}; | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decDigitsToDPD -- pack coefficient into DPD form		      */ | 
|  | /*								      */ | 
|  | /*   dn	  is the source number (assumed valid, max DECMAX754 digits)  */ | 
|  | /*   targ is 1, 2, or 4-element uInt array, which the caller must     */ | 
|  | /*	  have cleared to zeros					      */ | 
|  | /*   shift is the number of 0 digits to add on the right (normally 0) */ | 
|  | /*								      */ | 
|  | /* The coefficient must be known small enough to fit.  The full	      */ | 
|  | /* coefficient is copied, including the leading 'odd' digit.  This    */ | 
|  | /* digit is retrieved and packed into the combination field by the    */ | 
|  | /* caller.							      */ | 
|  | /*								      */ | 
|  | /* The target uInts are altered only as necessary to receive the      */ | 
|  | /* digits of the decNumber.  When more than one uInt is needed, they  */ | 
|  | /* are filled from left to right (that is, the uInt at offset 0 will  */ | 
|  | /* end up with the least-significant digits).			      */ | 
|  | /*								      */ | 
|  | /* shift is used for 'fold-down' padding.			      */ | 
|  | /*								      */ | 
|  | /* No error is possible.					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | #if DECDPUN<=4 | 
|  | /* Constant multipliers for divide-by-power-of five using reciprocal */ | 
|  | /* multiply, after removing powers of 2 by shifting, and final shift */ | 
|  | /* of 17 [we only need up to **4] */ | 
|  | static const uInt multies[]={131073, 26215, 5243, 1049, 210}; | 
|  | /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */ | 
|  | #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17) | 
|  | #endif | 
|  | void decDigitsToDPD(const decNumber *dn, uInt *targ, Int shift) { | 
|  | Int  cut;		      /* work */ | 
|  | Int  n;		      /* output bunch counter */ | 
|  | Int  digits=dn->digits;     /* digit countdown */ | 
|  | uInt dpd;		      /* densely packed decimal value */ | 
|  | uInt bin;		      /* binary value 0-999 */ | 
|  | uInt *uout=targ;	      /* -> current output uInt */ | 
|  | uInt	uoff=0;		      /* -> current output offset [from right] */ | 
|  | const Unit *inu=dn->lsu;    /* -> current input unit */ | 
|  | Unit	uar[DECMAXUNITS];     /* working copy of units, iff shifted */ | 
|  | #if DECDPUN!=3	      /* not fast path */ | 
|  | Unit in;		      /* current unit */ | 
|  | #endif | 
|  |  | 
|  | if (shift!=0) {	      /* shift towards most significant required */ | 
|  | /* shift the units array to the left by pad digits and copy */ | 
|  | /* [this code is a special case of decShiftToMost, which could */ | 
|  | /* be used instead if exposed and the array were copied first] */ | 
|  | const Unit *source;			/* .. */ | 
|  | Unit  *target, *first;		/* .. */ | 
|  | uInt  next=0;			/* work */ | 
|  |  | 
|  | source=dn->lsu+D2U(digits)-1;	/* where msu comes from */ | 
|  | target=uar+D2U(digits)-1+D2U(shift);/* where upper part of first cut goes */ | 
|  | cut=DECDPUN-MSUDIGITS(shift);	/* where to slice */ | 
|  | if (cut==0) {			/* unit-boundary case */ | 
|  | for (; source>=dn->lsu; source--, target--) *target=*source; | 
|  | } | 
|  | else { | 
|  | first=uar+D2U(digits+shift)-1;	/* where msu will end up */ | 
|  | for (; source>=dn->lsu; source--, target--) { | 
|  | /* split the source Unit and accumulate remainder for next */ | 
|  | #if DECDPUN<=4 | 
|  | uInt quot=QUOT10(*source, cut); | 
|  | uInt rem=*source-quot*DECPOWERS[cut]; | 
|  | next+=quot; | 
|  | #else | 
|  | uInt rem=*source%DECPOWERS[cut]; | 
|  | next+=*source/DECPOWERS[cut]; | 
|  | #endif | 
|  | if (target<=first) *target=(Unit)next; /* write to target iff valid */ | 
|  | next=rem*DECPOWERS[DECDPUN-cut];       /* save remainder for next Unit */ | 
|  | } | 
|  | } /* shift-move */ | 
|  | /* propagate remainder to one below and clear the rest */ | 
|  | for (; target>=uar; target--) { | 
|  | *target=(Unit)next; | 
|  | next=0; | 
|  | } | 
|  | digits+=shift;		   /* add count (shift) of zeros added */ | 
|  | inu=uar;			   /* use units in working array */ | 
|  | } | 
|  |  | 
|  | /* now densely pack the coefficient into DPD declets */ | 
|  |  | 
|  | #if DECDPUN!=3		   /* not fast path */ | 
|  | in=*inu;			   /* current unit */ | 
|  | cut=0;			   /* at lowest digit */ | 
|  | bin=0;			   /* [keep compiler quiet] */ | 
|  | #endif | 
|  |  | 
|  | for(n=0; digits>0; n++) {	   /* each output bunch */ | 
|  | #if DECDPUN==3		   /* fast path, 3-at-a-time */ | 
|  | bin=*inu;			   /* 3 digits ready for convert */ | 
|  | digits-=3;		   /* [may go negative] */ | 
|  | inu++;			   /* may need another */ | 
|  |  | 
|  | #else			   /* must collect digit-by-digit */ | 
|  | Unit dig;			   /* current digit */ | 
|  | Int j;			   /* digit-in-declet count */ | 
|  | for (j=0; j<3; j++) { | 
|  | #if DECDPUN<=4 | 
|  | Unit temp=(Unit)((uInt)(in*6554)>>16); | 
|  | dig=(Unit)(in-X10(temp)); | 
|  | in=temp; | 
|  | #else | 
|  | dig=in%10; | 
|  | in=in/10; | 
|  | #endif | 
|  | if (j==0) bin=dig; | 
|  | else if (j==1)	 bin+=X10(dig); | 
|  | else /* j==2 */ bin+=X100(dig); | 
|  | digits--; | 
|  | if (digits==0) break;	   /* [also protects *inu below] */ | 
|  | cut++; | 
|  | if (cut==DECDPUN) {inu++; in=*inu; cut=0;} | 
|  | } | 
|  | #endif | 
|  | /* here there are 3 digits in bin, or have used all input digits */ | 
|  |  | 
|  | dpd=BIN2DPD[bin]; | 
|  |  | 
|  | /* write declet to uInt array */ | 
|  | *uout|=dpd<<uoff; | 
|  | uoff+=10; | 
|  | if (uoff<32) continue;	   /* no uInt boundary cross */ | 
|  | uout++; | 
|  | uoff-=32; | 
|  | *uout|=dpd>>(10-uoff);	   /* collect top bits */ | 
|  | } /* n declets */ | 
|  | return; | 
|  | } /* decDigitsToDPD */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decDigitsFromDPD -- unpack a format's coefficient		      */ | 
|  | /*								      */ | 
|  | /*   dn is the target number, with 7, 16, or 34-digit space.	      */ | 
|  | /*   sour is a 1, 2, or 4-element uInt array containing only declets  */ | 
|  | /*   declets is the number of (right-aligned) declets in sour to      */ | 
|  | /*     be processed.  This may be 1 more than the obvious number in   */ | 
|  | /*     a format, as any top digit is prefixed to the coefficient      */ | 
|  | /*     continuation field.  It also may be as small as 1, as the      */ | 
|  | /*     caller may pre-process leading zero declets.		      */ | 
|  | /*								      */ | 
|  | /* When doing the 'extra declet' case care is taken to avoid writing  */ | 
|  | /* extra digits when there are leading zeros, as these could overflow */ | 
|  | /* the units array when DECDPUN is not 3.			      */ | 
|  | /*								      */ | 
|  | /* The target uInts are used only as necessary to process declets     */ | 
|  | /* declets into the decNumber.	When more than one uInt is needed,    */ | 
|  | /* they are used from left to right (that is, the uInt at offset 0    */ | 
|  | /* provides the least-significant digits).			      */ | 
|  | /*								      */ | 
|  | /* dn->digits is set, but not the sign or exponent.		      */ | 
|  | /* No error is possible [the redundant 888 codes are allowed].	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | void decDigitsFromDPD(decNumber *dn, const uInt *sour, Int declets) { | 
|  |  | 
|  | uInt	dpd;			   /* collector for 10 bits */ | 
|  | Int	n;			   /* counter */ | 
|  | Unit	*uout=dn->lsu;		   /* -> current output unit */ | 
|  | Unit	*last=uout;		   /* will be unit containing msd */ | 
|  | const uInt *uin=sour;		   /* -> current input uInt */ | 
|  | uInt	uoff=0;			   /* -> current input offset [from right] */ | 
|  |  | 
|  | #if DECDPUN!=3 | 
|  | uInt	bcd;			   /* BCD result */ | 
|  | uInt	nibble;			   /* work */ | 
|  | Unit	out=0;			   /* accumulator */ | 
|  | Int	cut=0;			   /* power of ten in current unit */ | 
|  | #endif | 
|  | #if DECDPUN>4 | 
|  | uInt const *pow;		   /* work */ | 
|  | #endif | 
|  |  | 
|  | /* Expand the densely-packed integer, right to left */ | 
|  | for (n=declets-1; n>=0; n--) {   /* count down declets of 10 bits */ | 
|  | dpd=*uin>>uoff; | 
|  | uoff+=10; | 
|  | if (uoff>32) {		   /* crossed uInt boundary */ | 
|  | uin++; | 
|  | uoff-=32; | 
|  | dpd|=*uin<<(10-uoff);	   /* get waiting bits */ | 
|  | } | 
|  | dpd&=0x3ff;			   /* clear uninteresting bits */ | 
|  |  | 
|  | #if DECDPUN==3 | 
|  | if (dpd==0) *uout=0; | 
|  | else { | 
|  | *uout=DPD2BIN[dpd];	   /* convert 10 bits to binary 0-999 */ | 
|  | last=uout;		   /* record most significant unit */ | 
|  | } | 
|  | uout++; | 
|  | } /* n */ | 
|  |  | 
|  | #else /* DECDPUN!=3 */ | 
|  | if (dpd==0) {		   /* fastpath [e.g., leading zeros] */ | 
|  | /* write out three 0 digits (nibbles); out may have digit(s) */ | 
|  | cut++; | 
|  | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} | 
|  | if (n==0) break;		   /* [as below, works even if MSD=0] */ | 
|  | cut++; | 
|  | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} | 
|  | cut++; | 
|  | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bcd=DPD2BCD[dpd];		   /* convert 10 bits to 12 bits BCD */ | 
|  |  | 
|  | /* now accumulate the 3 BCD nibbles into units */ | 
|  | nibble=bcd & 0x00f; | 
|  | if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]); | 
|  | cut++; | 
|  | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} | 
|  | bcd>>=4; | 
|  |  | 
|  | /* if this is the last declet and the remaining nibbles in bcd */ | 
|  | /* are 00 then process no more nibbles, because this could be */ | 
|  | /* the 'odd' MSD declet and writing any more Units would then */ | 
|  | /* overflow the unit array */ | 
|  | if (n==0 && !bcd) break; | 
|  |  | 
|  | nibble=bcd & 0x00f; | 
|  | if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]); | 
|  | cut++; | 
|  | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} | 
|  | bcd>>=4; | 
|  |  | 
|  | nibble=bcd & 0x00f; | 
|  | if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]); | 
|  | cut++; | 
|  | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} | 
|  | } /* n */ | 
|  | if (cut!=0) {				/* some more left over */ | 
|  | *uout=out;				/* write out final unit */ | 
|  | if (out) last=uout;			/* and note if non-zero */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* here, last points to the most significant unit with digits; */ | 
|  | /* inspect it to get the final digits count -- this is essentially */ | 
|  | /* the same code as decGetDigits in decNumber.c */ | 
|  | dn->digits=(last-dn->lsu)*DECDPUN+1;	/* floor of digits, plus */ | 
|  | /* must be at least 1 digit */ | 
|  | #if DECDPUN>1 | 
|  | if (*last<10) return;			/* common odd digit or 0 */ | 
|  | dn->digits++;				/* must be 2 at least */ | 
|  | #if DECDPUN>2 | 
|  | if (*last<100) return;		/* 10-99 */ | 
|  | dn->digits++;				/* must be 3 at least */ | 
|  | #if DECDPUN>3 | 
|  | if (*last<1000) return;		/* 100-999 */ | 
|  | dn->digits++;				/* must be 4 at least */ | 
|  | #if DECDPUN>4 | 
|  | for (pow=&DECPOWERS[4]; *last>=*pow; pow++) dn->digits++; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | return; | 
|  | } /*decDigitsFromDPD */ |