| /* |
| * QEMU model of Xilinx AXI-Ethernet. |
| * |
| * Copyright (c) 2011 Edgar E. Iglesias. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/sysbus.h" |
| #include "qapi/error.h" |
| #include "qemu/log.h" |
| #include "net/net.h" |
| #include "net/checksum.h" |
| |
| #include "hw/stream.h" |
| |
| #define DPHY(x) |
| |
| #define TYPE_XILINX_AXI_ENET "xlnx.axi-ethernet" |
| #define TYPE_XILINX_AXI_ENET_DATA_STREAM "xilinx-axienet-data-stream" |
| #define TYPE_XILINX_AXI_ENET_CONTROL_STREAM "xilinx-axienet-control-stream" |
| |
| #define XILINX_AXI_ENET(obj) \ |
| OBJECT_CHECK(XilinxAXIEnet, (obj), TYPE_XILINX_AXI_ENET) |
| |
| #define XILINX_AXI_ENET_DATA_STREAM(obj) \ |
| OBJECT_CHECK(XilinxAXIEnetStreamSlave, (obj),\ |
| TYPE_XILINX_AXI_ENET_DATA_STREAM) |
| |
| #define XILINX_AXI_ENET_CONTROL_STREAM(obj) \ |
| OBJECT_CHECK(XilinxAXIEnetStreamSlave, (obj),\ |
| TYPE_XILINX_AXI_ENET_CONTROL_STREAM) |
| |
| /* Advertisement control register. */ |
| #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */ |
| #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */ |
| #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */ |
| #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */ |
| |
| #define CONTROL_PAYLOAD_WORDS 5 |
| #define CONTROL_PAYLOAD_SIZE (CONTROL_PAYLOAD_WORDS * (sizeof(uint32_t))) |
| |
| struct PHY { |
| uint32_t regs[32]; |
| |
| int link; |
| |
| unsigned int (*read)(struct PHY *phy, unsigned int req); |
| void (*write)(struct PHY *phy, unsigned int req, |
| unsigned int data); |
| }; |
| |
| static unsigned int tdk_read(struct PHY *phy, unsigned int req) |
| { |
| int regnum; |
| unsigned r = 0; |
| |
| regnum = req & 0x1f; |
| |
| switch (regnum) { |
| case 1: |
| if (!phy->link) { |
| break; |
| } |
| /* MR1. */ |
| /* Speeds and modes. */ |
| r |= (1 << 13) | (1 << 14); |
| r |= (1 << 11) | (1 << 12); |
| r |= (1 << 5); /* Autoneg complete. */ |
| r |= (1 << 3); /* Autoneg able. */ |
| r |= (1 << 2); /* link. */ |
| r |= (1 << 1); /* link. */ |
| break; |
| case 5: |
| /* Link partner ability. |
| We are kind; always agree with whatever best mode |
| the guest advertises. */ |
| r = 1 << 14; /* Success. */ |
| /* Copy advertised modes. */ |
| r |= phy->regs[4] & (15 << 5); |
| /* Autoneg support. */ |
| r |= 1; |
| break; |
| case 17: |
| /* Marvell PHY on many xilinx boards. */ |
| r = 0x8000; /* 1000Mb */ |
| break; |
| case 18: |
| { |
| /* Diagnostics reg. */ |
| int duplex = 0; |
| int speed_100 = 0; |
| |
| if (!phy->link) { |
| break; |
| } |
| |
| /* Are we advertising 100 half or 100 duplex ? */ |
| speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF); |
| speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL); |
| |
| /* Are we advertising 10 duplex or 100 duplex ? */ |
| duplex = !!(phy->regs[4] & ADVERTISE_100FULL); |
| duplex |= !!(phy->regs[4] & ADVERTISE_10FULL); |
| r = (speed_100 << 10) | (duplex << 11); |
| } |
| break; |
| |
| default: |
| r = phy->regs[regnum]; |
| break; |
| } |
| DPHY(qemu_log("\n%s %x = reg[%d]\n", __func__, r, regnum)); |
| return r; |
| } |
| |
| static void |
| tdk_write(struct PHY *phy, unsigned int req, unsigned int data) |
| { |
| int regnum; |
| |
| regnum = req & 0x1f; |
| DPHY(qemu_log("%s reg[%d] = %x\n", __func__, regnum, data)); |
| switch (regnum) { |
| default: |
| phy->regs[regnum] = data; |
| break; |
| } |
| |
| /* Unconditionally clear regs[BMCR][BMCR_RESET] */ |
| phy->regs[0] &= ~0x8000; |
| } |
| |
| static void |
| tdk_init(struct PHY *phy) |
| { |
| phy->regs[0] = 0x3100; |
| /* PHY Id. */ |
| phy->regs[2] = 0x0300; |
| phy->regs[3] = 0xe400; |
| /* Autonegotiation advertisement reg. */ |
| phy->regs[4] = 0x01E1; |
| phy->link = 1; |
| |
| phy->read = tdk_read; |
| phy->write = tdk_write; |
| } |
| |
| struct MDIOBus { |
| /* bus. */ |
| int mdc; |
| int mdio; |
| |
| /* decoder. */ |
| enum { |
| PREAMBLE, |
| SOF, |
| OPC, |
| ADDR, |
| REQ, |
| TURNAROUND, |
| DATA |
| } state; |
| unsigned int drive; |
| |
| unsigned int cnt; |
| unsigned int addr; |
| unsigned int opc; |
| unsigned int req; |
| unsigned int data; |
| |
| struct PHY *devs[32]; |
| }; |
| |
| static void |
| mdio_attach(struct MDIOBus *bus, struct PHY *phy, unsigned int addr) |
| { |
| bus->devs[addr & 0x1f] = phy; |
| } |
| |
| #ifdef USE_THIS_DEAD_CODE |
| static void |
| mdio_detach(struct MDIOBus *bus, struct PHY *phy, unsigned int addr) |
| { |
| bus->devs[addr & 0x1f] = NULL; |
| } |
| #endif |
| |
| static uint16_t mdio_read_req(struct MDIOBus *bus, unsigned int addr, |
| unsigned int reg) |
| { |
| struct PHY *phy; |
| uint16_t data; |
| |
| phy = bus->devs[addr]; |
| if (phy && phy->read) { |
| data = phy->read(phy, reg); |
| } else { |
| data = 0xffff; |
| } |
| DPHY(qemu_log("%s addr=%d reg=%d data=%x\n", __func__, addr, reg, data)); |
| return data; |
| } |
| |
| static void mdio_write_req(struct MDIOBus *bus, unsigned int addr, |
| unsigned int reg, uint16_t data) |
| { |
| struct PHY *phy; |
| |
| DPHY(qemu_log("%s addr=%d reg=%d data=%x\n", __func__, addr, reg, data)); |
| phy = bus->devs[addr]; |
| if (phy && phy->write) { |
| phy->write(phy, reg, data); |
| } |
| } |
| |
| #define DENET(x) |
| |
| #define R_RAF (0x000 / 4) |
| enum { |
| RAF_MCAST_REJ = (1 << 1), |
| RAF_BCAST_REJ = (1 << 2), |
| RAF_EMCF_EN = (1 << 12), |
| RAF_NEWFUNC_EN = (1 << 11) |
| }; |
| |
| #define R_IS (0x00C / 4) |
| enum { |
| IS_HARD_ACCESS_COMPLETE = 1, |
| IS_AUTONEG = (1 << 1), |
| IS_RX_COMPLETE = (1 << 2), |
| IS_RX_REJECT = (1 << 3), |
| IS_TX_COMPLETE = (1 << 5), |
| IS_RX_DCM_LOCK = (1 << 6), |
| IS_MGM_RDY = (1 << 7), |
| IS_PHY_RST_DONE = (1 << 8), |
| }; |
| |
| #define R_IP (0x010 / 4) |
| #define R_IE (0x014 / 4) |
| #define R_UAWL (0x020 / 4) |
| #define R_UAWU (0x024 / 4) |
| #define R_PPST (0x030 / 4) |
| enum { |
| PPST_LINKSTATUS = (1 << 0), |
| PPST_PHY_LINKSTATUS = (1 << 7), |
| }; |
| |
| #define R_STATS_RX_BYTESL (0x200 / 4) |
| #define R_STATS_RX_BYTESH (0x204 / 4) |
| #define R_STATS_TX_BYTESL (0x208 / 4) |
| #define R_STATS_TX_BYTESH (0x20C / 4) |
| #define R_STATS_RXL (0x290 / 4) |
| #define R_STATS_RXH (0x294 / 4) |
| #define R_STATS_RX_BCASTL (0x2a0 / 4) |
| #define R_STATS_RX_BCASTH (0x2a4 / 4) |
| #define R_STATS_RX_MCASTL (0x2a8 / 4) |
| #define R_STATS_RX_MCASTH (0x2ac / 4) |
| |
| #define R_RCW0 (0x400 / 4) |
| #define R_RCW1 (0x404 / 4) |
| enum { |
| RCW1_VLAN = (1 << 27), |
| RCW1_RX = (1 << 28), |
| RCW1_FCS = (1 << 29), |
| RCW1_JUM = (1 << 30), |
| RCW1_RST = (1 << 31), |
| }; |
| |
| #define R_TC (0x408 / 4) |
| enum { |
| TC_VLAN = (1 << 27), |
| TC_TX = (1 << 28), |
| TC_FCS = (1 << 29), |
| TC_JUM = (1 << 30), |
| TC_RST = (1 << 31), |
| }; |
| |
| #define R_EMMC (0x410 / 4) |
| enum { |
| EMMC_LINKSPEED_10MB = (0 << 30), |
| EMMC_LINKSPEED_100MB = (1 << 30), |
| EMMC_LINKSPEED_1000MB = (2 << 30), |
| }; |
| |
| #define R_PHYC (0x414 / 4) |
| |
| #define R_MC (0x500 / 4) |
| #define MC_EN (1 << 6) |
| |
| #define R_MCR (0x504 / 4) |
| #define R_MWD (0x508 / 4) |
| #define R_MRD (0x50c / 4) |
| #define R_MIS (0x600 / 4) |
| #define R_MIP (0x620 / 4) |
| #define R_MIE (0x640 / 4) |
| #define R_MIC (0x640 / 4) |
| |
| #define R_UAW0 (0x700 / 4) |
| #define R_UAW1 (0x704 / 4) |
| #define R_FMI (0x708 / 4) |
| #define R_AF0 (0x710 / 4) |
| #define R_AF1 (0x714 / 4) |
| #define R_MAX (0x34 / 4) |
| |
| /* Indirect registers. */ |
| struct TEMAC { |
| struct MDIOBus mdio_bus; |
| struct PHY phy; |
| |
| void *parent; |
| }; |
| |
| typedef struct XilinxAXIEnetStreamSlave XilinxAXIEnetStreamSlave; |
| typedef struct XilinxAXIEnet XilinxAXIEnet; |
| |
| struct XilinxAXIEnetStreamSlave { |
| Object parent; |
| |
| struct XilinxAXIEnet *enet; |
| } ; |
| |
| struct XilinxAXIEnet { |
| SysBusDevice busdev; |
| MemoryRegion iomem; |
| qemu_irq irq; |
| StreamSlave *tx_data_dev; |
| StreamSlave *tx_control_dev; |
| XilinxAXIEnetStreamSlave rx_data_dev; |
| XilinxAXIEnetStreamSlave rx_control_dev; |
| NICState *nic; |
| NICConf conf; |
| |
| |
| uint32_t c_rxmem; |
| uint32_t c_txmem; |
| uint32_t c_phyaddr; |
| |
| struct TEMAC TEMAC; |
| |
| /* MII regs. */ |
| union { |
| uint32_t regs[4]; |
| struct { |
| uint32_t mc; |
| uint32_t mcr; |
| uint32_t mwd; |
| uint32_t mrd; |
| }; |
| } mii; |
| |
| struct { |
| uint64_t rx_bytes; |
| uint64_t tx_bytes; |
| |
| uint64_t rx; |
| uint64_t rx_bcast; |
| uint64_t rx_mcast; |
| } stats; |
| |
| /* Receive configuration words. */ |
| uint32_t rcw[2]; |
| /* Transmit config. */ |
| uint32_t tc; |
| uint32_t emmc; |
| uint32_t phyc; |
| |
| /* Unicast Address Word. */ |
| uint32_t uaw[2]; |
| /* Unicast address filter used with extended mcast. */ |
| uint32_t ext_uaw[2]; |
| uint32_t fmi; |
| |
| uint32_t regs[R_MAX]; |
| |
| /* Multicast filter addrs. */ |
| uint32_t maddr[4][2]; |
| /* 32K x 1 lookup filter. */ |
| uint32_t ext_mtable[1024]; |
| |
| uint32_t hdr[CONTROL_PAYLOAD_WORDS]; |
| |
| uint8_t *rxmem; |
| uint32_t rxsize; |
| uint32_t rxpos; |
| |
| uint8_t rxapp[CONTROL_PAYLOAD_SIZE]; |
| uint32_t rxappsize; |
| |
| /* Whether axienet_eth_rx_notify should flush incoming queue. */ |
| bool need_flush; |
| }; |
| |
| static void axienet_rx_reset(XilinxAXIEnet *s) |
| { |
| s->rcw[1] = RCW1_JUM | RCW1_FCS | RCW1_RX | RCW1_VLAN; |
| } |
| |
| static void axienet_tx_reset(XilinxAXIEnet *s) |
| { |
| s->tc = TC_JUM | TC_TX | TC_VLAN; |
| } |
| |
| static inline int axienet_rx_resetting(XilinxAXIEnet *s) |
| { |
| return s->rcw[1] & RCW1_RST; |
| } |
| |
| static inline int axienet_rx_enabled(XilinxAXIEnet *s) |
| { |
| return s->rcw[1] & RCW1_RX; |
| } |
| |
| static inline int axienet_extmcf_enabled(XilinxAXIEnet *s) |
| { |
| return !!(s->regs[R_RAF] & RAF_EMCF_EN); |
| } |
| |
| static inline int axienet_newfunc_enabled(XilinxAXIEnet *s) |
| { |
| return !!(s->regs[R_RAF] & RAF_NEWFUNC_EN); |
| } |
| |
| static void xilinx_axienet_reset(DeviceState *d) |
| { |
| XilinxAXIEnet *s = XILINX_AXI_ENET(d); |
| |
| axienet_rx_reset(s); |
| axienet_tx_reset(s); |
| |
| s->regs[R_PPST] = PPST_LINKSTATUS | PPST_PHY_LINKSTATUS; |
| s->regs[R_IS] = IS_AUTONEG | IS_RX_DCM_LOCK | IS_MGM_RDY | IS_PHY_RST_DONE; |
| |
| s->emmc = EMMC_LINKSPEED_100MB; |
| } |
| |
| static void enet_update_irq(XilinxAXIEnet *s) |
| { |
| s->regs[R_IP] = s->regs[R_IS] & s->regs[R_IE]; |
| qemu_set_irq(s->irq, !!s->regs[R_IP]); |
| } |
| |
| static uint64_t enet_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| XilinxAXIEnet *s = opaque; |
| uint32_t r = 0; |
| addr >>= 2; |
| |
| switch (addr) { |
| case R_RCW0: |
| case R_RCW1: |
| r = s->rcw[addr & 1]; |
| break; |
| |
| case R_TC: |
| r = s->tc; |
| break; |
| |
| case R_EMMC: |
| r = s->emmc; |
| break; |
| |
| case R_PHYC: |
| r = s->phyc; |
| break; |
| |
| case R_MCR: |
| r = s->mii.regs[addr & 3] | (1 << 7); /* Always ready. */ |
| break; |
| |
| case R_STATS_RX_BYTESL: |
| case R_STATS_RX_BYTESH: |
| r = s->stats.rx_bytes >> (32 * (addr & 1)); |
| break; |
| |
| case R_STATS_TX_BYTESL: |
| case R_STATS_TX_BYTESH: |
| r = s->stats.tx_bytes >> (32 * (addr & 1)); |
| break; |
| |
| case R_STATS_RXL: |
| case R_STATS_RXH: |
| r = s->stats.rx >> (32 * (addr & 1)); |
| break; |
| case R_STATS_RX_BCASTL: |
| case R_STATS_RX_BCASTH: |
| r = s->stats.rx_bcast >> (32 * (addr & 1)); |
| break; |
| case R_STATS_RX_MCASTL: |
| case R_STATS_RX_MCASTH: |
| r = s->stats.rx_mcast >> (32 * (addr & 1)); |
| break; |
| |
| case R_MC: |
| case R_MWD: |
| case R_MRD: |
| r = s->mii.regs[addr & 3]; |
| break; |
| |
| case R_UAW0: |
| case R_UAW1: |
| r = s->uaw[addr & 1]; |
| break; |
| |
| case R_UAWU: |
| case R_UAWL: |
| r = s->ext_uaw[addr & 1]; |
| break; |
| |
| case R_FMI: |
| r = s->fmi; |
| break; |
| |
| case R_AF0: |
| case R_AF1: |
| r = s->maddr[s->fmi & 3][addr & 1]; |
| break; |
| |
| case 0x8000 ... 0x83ff: |
| r = s->ext_mtable[addr - 0x8000]; |
| break; |
| |
| default: |
| if (addr < ARRAY_SIZE(s->regs)) { |
| r = s->regs[addr]; |
| } |
| DENET(qemu_log("%s addr=" TARGET_FMT_plx " v=%x\n", |
| __func__, addr * 4, r)); |
| break; |
| } |
| return r; |
| } |
| |
| static void enet_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| XilinxAXIEnet *s = opaque; |
| struct TEMAC *t = &s->TEMAC; |
| |
| addr >>= 2; |
| switch (addr) { |
| case R_RCW0: |
| case R_RCW1: |
| s->rcw[addr & 1] = value; |
| if ((addr & 1) && value & RCW1_RST) { |
| axienet_rx_reset(s); |
| } else { |
| qemu_flush_queued_packets(qemu_get_queue(s->nic)); |
| } |
| break; |
| |
| case R_TC: |
| s->tc = value; |
| if (value & TC_RST) { |
| axienet_tx_reset(s); |
| } |
| break; |
| |
| case R_EMMC: |
| s->emmc = value; |
| break; |
| |
| case R_PHYC: |
| s->phyc = value; |
| break; |
| |
| case R_MC: |
| value &= ((1 << 7) - 1); |
| |
| /* Enable the MII. */ |
| if (value & MC_EN) { |
| unsigned int miiclkdiv = value & ((1 << 6) - 1); |
| if (!miiclkdiv) { |
| qemu_log("AXIENET: MDIO enabled but MDIOCLK is zero!\n"); |
| } |
| } |
| s->mii.mc = value; |
| break; |
| |
| case R_MCR: { |
| unsigned int phyaddr = (value >> 24) & 0x1f; |
| unsigned int regaddr = (value >> 16) & 0x1f; |
| unsigned int op = (value >> 14) & 3; |
| unsigned int initiate = (value >> 11) & 1; |
| |
| if (initiate) { |
| if (op == 1) { |
| mdio_write_req(&t->mdio_bus, phyaddr, regaddr, s->mii.mwd); |
| } else if (op == 2) { |
| s->mii.mrd = mdio_read_req(&t->mdio_bus, phyaddr, regaddr); |
| } else { |
| qemu_log("AXIENET: invalid MDIOBus OP=%d\n", op); |
| } |
| } |
| s->mii.mcr = value; |
| break; |
| } |
| |
| case R_MWD: |
| case R_MRD: |
| s->mii.regs[addr & 3] = value; |
| break; |
| |
| |
| case R_UAW0: |
| case R_UAW1: |
| s->uaw[addr & 1] = value; |
| break; |
| |
| case R_UAWL: |
| case R_UAWU: |
| s->ext_uaw[addr & 1] = value; |
| break; |
| |
| case R_FMI: |
| s->fmi = value; |
| break; |
| |
| case R_AF0: |
| case R_AF1: |
| s->maddr[s->fmi & 3][addr & 1] = value; |
| break; |
| |
| case R_IS: |
| s->regs[addr] &= ~value; |
| break; |
| |
| case 0x8000 ... 0x83ff: |
| s->ext_mtable[addr - 0x8000] = value; |
| break; |
| |
| default: |
| DENET(qemu_log("%s addr=" TARGET_FMT_plx " v=%x\n", |
| __func__, addr * 4, (unsigned)value)); |
| if (addr < ARRAY_SIZE(s->regs)) { |
| s->regs[addr] = value; |
| } |
| break; |
| } |
| enet_update_irq(s); |
| } |
| |
| static const MemoryRegionOps enet_ops = { |
| .read = enet_read, |
| .write = enet_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static int eth_can_rx(XilinxAXIEnet *s) |
| { |
| /* RX enabled? */ |
| return !s->rxsize && !axienet_rx_resetting(s) && axienet_rx_enabled(s); |
| } |
| |
| static int enet_match_addr(const uint8_t *buf, uint32_t f0, uint32_t f1) |
| { |
| int match = 1; |
| |
| if (memcmp(buf, &f0, 4)) { |
| match = 0; |
| } |
| |
| if (buf[4] != (f1 & 0xff) || buf[5] != ((f1 >> 8) & 0xff)) { |
| match = 0; |
| } |
| |
| return match; |
| } |
| |
| static void axienet_eth_rx_notify(void *opaque) |
| { |
| XilinxAXIEnet *s = XILINX_AXI_ENET(opaque); |
| |
| while (s->rxappsize && stream_can_push(s->tx_control_dev, |
| axienet_eth_rx_notify, s)) { |
| size_t ret = stream_push(s->tx_control_dev, |
| (void *)s->rxapp + CONTROL_PAYLOAD_SIZE |
| - s->rxappsize, s->rxappsize); |
| s->rxappsize -= ret; |
| } |
| |
| while (s->rxsize && stream_can_push(s->tx_data_dev, |
| axienet_eth_rx_notify, s)) { |
| size_t ret = stream_push(s->tx_data_dev, (void *)s->rxmem + s->rxpos, |
| s->rxsize); |
| s->rxsize -= ret; |
| s->rxpos += ret; |
| if (!s->rxsize) { |
| s->regs[R_IS] |= IS_RX_COMPLETE; |
| if (s->need_flush) { |
| s->need_flush = false; |
| qemu_flush_queued_packets(qemu_get_queue(s->nic)); |
| } |
| } |
| } |
| enet_update_irq(s); |
| } |
| |
| static ssize_t eth_rx(NetClientState *nc, const uint8_t *buf, size_t size) |
| { |
| XilinxAXIEnet *s = qemu_get_nic_opaque(nc); |
| static const unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff}; |
| static const unsigned char sa_ipmcast[3] = {0x01, 0x00, 0x52}; |
| uint32_t app[CONTROL_PAYLOAD_WORDS] = {0}; |
| int promisc = s->fmi & (1 << 31); |
| int unicast, broadcast, multicast, ip_multicast = 0; |
| uint32_t csum32; |
| uint16_t csum16; |
| int i; |
| |
| DENET(qemu_log("%s: %zd bytes\n", __func__, size)); |
| |
| if (!eth_can_rx(s)) { |
| s->need_flush = true; |
| return 0; |
| } |
| |
| unicast = ~buf[0] & 0x1; |
| broadcast = memcmp(buf, sa_bcast, 6) == 0; |
| multicast = !unicast && !broadcast; |
| if (multicast && (memcmp(sa_ipmcast, buf, sizeof sa_ipmcast) == 0)) { |
| ip_multicast = 1; |
| } |
| |
| /* Jumbo or vlan sizes ? */ |
| if (!(s->rcw[1] & RCW1_JUM)) { |
| if (size > 1518 && size <= 1522 && !(s->rcw[1] & RCW1_VLAN)) { |
| return size; |
| } |
| } |
| |
| /* Basic Address filters. If you want to use the extended filters |
| you'll generally have to place the ethernet mac into promiscuous mode |
| to avoid the basic filtering from dropping most frames. */ |
| if (!promisc) { |
| if (unicast) { |
| if (!enet_match_addr(buf, s->uaw[0], s->uaw[1])) { |
| return size; |
| } |
| } else { |
| if (broadcast) { |
| /* Broadcast. */ |
| if (s->regs[R_RAF] & RAF_BCAST_REJ) { |
| return size; |
| } |
| } else { |
| int drop = 1; |
| |
| /* Multicast. */ |
| if (s->regs[R_RAF] & RAF_MCAST_REJ) { |
| return size; |
| } |
| |
| for (i = 0; i < 4; i++) { |
| if (enet_match_addr(buf, s->maddr[i][0], s->maddr[i][1])) { |
| drop = 0; |
| break; |
| } |
| } |
| |
| if (drop) { |
| return size; |
| } |
| } |
| } |
| } |
| |
| /* Extended mcast filtering enabled? */ |
| if (axienet_newfunc_enabled(s) && axienet_extmcf_enabled(s)) { |
| if (unicast) { |
| if (!enet_match_addr(buf, s->ext_uaw[0], s->ext_uaw[1])) { |
| return size; |
| } |
| } else { |
| if (broadcast) { |
| /* Broadcast. ??? */ |
| if (s->regs[R_RAF] & RAF_BCAST_REJ) { |
| return size; |
| } |
| } else { |
| int idx, bit; |
| |
| /* Multicast. */ |
| if (!memcmp(buf, sa_ipmcast, 3)) { |
| return size; |
| } |
| |
| idx = (buf[4] & 0x7f) << 8; |
| idx |= buf[5]; |
| |
| bit = 1 << (idx & 0x1f); |
| idx >>= 5; |
| |
| if (!(s->ext_mtable[idx] & bit)) { |
| return size; |
| } |
| } |
| } |
| } |
| |
| if (size < 12) { |
| s->regs[R_IS] |= IS_RX_REJECT; |
| enet_update_irq(s); |
| return -1; |
| } |
| |
| if (size > (s->c_rxmem - 4)) { |
| size = s->c_rxmem - 4; |
| } |
| |
| memcpy(s->rxmem, buf, size); |
| memset(s->rxmem + size, 0, 4); /* Clear the FCS. */ |
| |
| if (s->rcw[1] & RCW1_FCS) { |
| size += 4; /* fcs is inband. */ |
| } |
| |
| app[0] = 5 << 28; |
| csum32 = net_checksum_add(size - 14, (uint8_t *)s->rxmem + 14); |
| /* Fold it once. */ |
| csum32 = (csum32 & 0xffff) + (csum32 >> 16); |
| /* And twice to get rid of possible carries. */ |
| csum16 = (csum32 & 0xffff) + (csum32 >> 16); |
| app[3] = csum16; |
| app[4] = size & 0xffff; |
| |
| s->stats.rx_bytes += size; |
| s->stats.rx++; |
| if (multicast) { |
| s->stats.rx_mcast++; |
| app[2] |= 1 | (ip_multicast << 1); |
| } else if (broadcast) { |
| s->stats.rx_bcast++; |
| app[2] |= 1 << 3; |
| } |
| |
| /* Good frame. */ |
| app[2] |= 1 << 6; |
| |
| s->rxsize = size; |
| s->rxpos = 0; |
| for (i = 0; i < ARRAY_SIZE(app); ++i) { |
| app[i] = cpu_to_le32(app[i]); |
| } |
| s->rxappsize = CONTROL_PAYLOAD_SIZE; |
| memcpy(s->rxapp, app, s->rxappsize); |
| axienet_eth_rx_notify(s); |
| |
| enet_update_irq(s); |
| return size; |
| } |
| |
| static size_t |
| xilinx_axienet_control_stream_push(StreamSlave *obj, uint8_t *buf, size_t len) |
| { |
| int i; |
| XilinxAXIEnetStreamSlave *cs = XILINX_AXI_ENET_CONTROL_STREAM(obj); |
| XilinxAXIEnet *s = cs->enet; |
| |
| if (len != CONTROL_PAYLOAD_SIZE) { |
| hw_error("AXI Enet requires %d byte control stream payload\n", |
| (int)CONTROL_PAYLOAD_SIZE); |
| } |
| |
| memcpy(s->hdr, buf, len); |
| |
| for (i = 0; i < ARRAY_SIZE(s->hdr); ++i) { |
| s->hdr[i] = le32_to_cpu(s->hdr[i]); |
| } |
| return len; |
| } |
| |
| static size_t |
| xilinx_axienet_data_stream_push(StreamSlave *obj, uint8_t *buf, size_t size) |
| { |
| XilinxAXIEnetStreamSlave *ds = XILINX_AXI_ENET_DATA_STREAM(obj); |
| XilinxAXIEnet *s = ds->enet; |
| |
| /* TX enable ? */ |
| if (!(s->tc & TC_TX)) { |
| return size; |
| } |
| |
| /* Jumbo or vlan sizes ? */ |
| if (!(s->tc & TC_JUM)) { |
| if (size > 1518 && size <= 1522 && !(s->tc & TC_VLAN)) { |
| return size; |
| } |
| } |
| |
| if (s->hdr[0] & 1) { |
| unsigned int start_off = s->hdr[1] >> 16; |
| unsigned int write_off = s->hdr[1] & 0xffff; |
| uint32_t tmp_csum; |
| uint16_t csum; |
| |
| tmp_csum = net_checksum_add(size - start_off, |
| (uint8_t *)buf + start_off); |
| /* Accumulate the seed. */ |
| tmp_csum += s->hdr[2] & 0xffff; |
| |
| /* Fold the 32bit partial checksum. */ |
| csum = net_checksum_finish(tmp_csum); |
| |
| /* Writeback. */ |
| buf[write_off] = csum >> 8; |
| buf[write_off + 1] = csum & 0xff; |
| } |
| |
| qemu_send_packet(qemu_get_queue(s->nic), buf, size); |
| |
| s->stats.tx_bytes += size; |
| s->regs[R_IS] |= IS_TX_COMPLETE; |
| enet_update_irq(s); |
| |
| return size; |
| } |
| |
| static NetClientInfo net_xilinx_enet_info = { |
| .type = NET_CLIENT_DRIVER_NIC, |
| .size = sizeof(NICState), |
| .receive = eth_rx, |
| }; |
| |
| static void xilinx_enet_realize(DeviceState *dev, Error **errp) |
| { |
| XilinxAXIEnet *s = XILINX_AXI_ENET(dev); |
| XilinxAXIEnetStreamSlave *ds = XILINX_AXI_ENET_DATA_STREAM(&s->rx_data_dev); |
| XilinxAXIEnetStreamSlave *cs = XILINX_AXI_ENET_CONTROL_STREAM( |
| &s->rx_control_dev); |
| Error *local_err = NULL; |
| |
| object_property_add_link(OBJECT(ds), "enet", "xlnx.axi-ethernet", |
| (Object **) &ds->enet, |
| object_property_allow_set_link, |
| OBJ_PROP_LINK_UNREF_ON_RELEASE, |
| &local_err); |
| object_property_add_link(OBJECT(cs), "enet", "xlnx.axi-ethernet", |
| (Object **) &cs->enet, |
| object_property_allow_set_link, |
| OBJ_PROP_LINK_UNREF_ON_RELEASE, |
| &local_err); |
| if (local_err) { |
| goto xilinx_enet_realize_fail; |
| } |
| object_property_set_link(OBJECT(ds), OBJECT(s), "enet", &local_err); |
| object_property_set_link(OBJECT(cs), OBJECT(s), "enet", &local_err); |
| if (local_err) { |
| goto xilinx_enet_realize_fail; |
| } |
| |
| qemu_macaddr_default_if_unset(&s->conf.macaddr); |
| s->nic = qemu_new_nic(&net_xilinx_enet_info, &s->conf, |
| object_get_typename(OBJECT(dev)), dev->id, s); |
| qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); |
| |
| tdk_init(&s->TEMAC.phy); |
| mdio_attach(&s->TEMAC.mdio_bus, &s->TEMAC.phy, s->c_phyaddr); |
| |
| s->TEMAC.parent = s; |
| |
| s->rxmem = g_malloc(s->c_rxmem); |
| return; |
| |
| xilinx_enet_realize_fail: |
| if (!*errp) { |
| *errp = local_err; |
| } |
| } |
| |
| static void xilinx_enet_init(Object *obj) |
| { |
| XilinxAXIEnet *s = XILINX_AXI_ENET(obj); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(obj); |
| |
| object_property_add_link(obj, "axistream-connected", TYPE_STREAM_SLAVE, |
| (Object **) &s->tx_data_dev, |
| qdev_prop_allow_set_link_before_realize, |
| OBJ_PROP_LINK_UNREF_ON_RELEASE, |
| &error_abort); |
| object_property_add_link(obj, "axistream-control-connected", |
| TYPE_STREAM_SLAVE, |
| (Object **) &s->tx_control_dev, |
| qdev_prop_allow_set_link_before_realize, |
| OBJ_PROP_LINK_UNREF_ON_RELEASE, |
| &error_abort); |
| |
| object_initialize(&s->rx_data_dev, sizeof(s->rx_data_dev), |
| TYPE_XILINX_AXI_ENET_DATA_STREAM); |
| object_initialize(&s->rx_control_dev, sizeof(s->rx_control_dev), |
| TYPE_XILINX_AXI_ENET_CONTROL_STREAM); |
| object_property_add_child(OBJECT(s), "axistream-connected-target", |
| (Object *)&s->rx_data_dev, &error_abort); |
| object_property_add_child(OBJECT(s), "axistream-control-connected-target", |
| (Object *)&s->rx_control_dev, &error_abort); |
| |
| sysbus_init_irq(sbd, &s->irq); |
| |
| memory_region_init_io(&s->iomem, OBJECT(s), &enet_ops, s, "enet", 0x40000); |
| sysbus_init_mmio(sbd, &s->iomem); |
| } |
| |
| static Property xilinx_enet_properties[] = { |
| DEFINE_PROP_UINT32("phyaddr", XilinxAXIEnet, c_phyaddr, 7), |
| DEFINE_PROP_UINT32("rxmem", XilinxAXIEnet, c_rxmem, 0x1000), |
| DEFINE_PROP_UINT32("txmem", XilinxAXIEnet, c_txmem, 0x1000), |
| DEFINE_NIC_PROPERTIES(XilinxAXIEnet, conf), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void xilinx_enet_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = xilinx_enet_realize; |
| dc->props = xilinx_enet_properties; |
| dc->reset = xilinx_axienet_reset; |
| } |
| |
| static void xilinx_enet_stream_class_init(ObjectClass *klass, void *data) |
| { |
| StreamSlaveClass *ssc = STREAM_SLAVE_CLASS(klass); |
| |
| ssc->push = data; |
| } |
| |
| static const TypeInfo xilinx_enet_info = { |
| .name = TYPE_XILINX_AXI_ENET, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(XilinxAXIEnet), |
| .class_init = xilinx_enet_class_init, |
| .instance_init = xilinx_enet_init, |
| }; |
| |
| static const TypeInfo xilinx_enet_data_stream_info = { |
| .name = TYPE_XILINX_AXI_ENET_DATA_STREAM, |
| .parent = TYPE_OBJECT, |
| .instance_size = sizeof(struct XilinxAXIEnetStreamSlave), |
| .class_init = xilinx_enet_stream_class_init, |
| .class_data = xilinx_axienet_data_stream_push, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_STREAM_SLAVE }, |
| { } |
| } |
| }; |
| |
| static const TypeInfo xilinx_enet_control_stream_info = { |
| .name = TYPE_XILINX_AXI_ENET_CONTROL_STREAM, |
| .parent = TYPE_OBJECT, |
| .instance_size = sizeof(struct XilinxAXIEnetStreamSlave), |
| .class_init = xilinx_enet_stream_class_init, |
| .class_data = xilinx_axienet_control_stream_push, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_STREAM_SLAVE }, |
| { } |
| } |
| }; |
| |
| static void xilinx_enet_register_types(void) |
| { |
| type_register_static(&xilinx_enet_info); |
| type_register_static(&xilinx_enet_data_stream_info); |
| type_register_static(&xilinx_enet_control_stream_info); |
| } |
| |
| type_init(xilinx_enet_register_types) |