| /* |
| * Test Server |
| * |
| * Copyright IBM, Corp. 2011 |
| * |
| * Authors: |
| * Anthony Liguori <aliguori@us.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "qemu-common.h" |
| #include "cpu.h" |
| #include "sysemu/qtest.h" |
| #include "hw/qdev.h" |
| #include "sysemu/char.h" |
| #include "exec/ioport.h" |
| #include "exec/memory.h" |
| #include "hw/irq.h" |
| #include "sysemu/accel.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/cpus.h" |
| #include "qemu/config-file.h" |
| #include "qemu/option.h" |
| #include "qemu/error-report.h" |
| |
| #define MAX_IRQ 256 |
| |
| bool qtest_allowed; |
| |
| static DeviceState *irq_intercept_dev; |
| static FILE *qtest_log_fp; |
| static CharDriverState *qtest_chr; |
| static GString *inbuf; |
| static int irq_levels[MAX_IRQ]; |
| static qemu_timeval start_time; |
| static bool qtest_opened; |
| |
| #define FMT_timeval "%ld.%06ld" |
| |
| /** |
| * QTest Protocol |
| * |
| * Line based protocol, request/response based. Server can send async messages |
| * so clients should always handle many async messages before the response |
| * comes in. |
| * |
| * Valid requests |
| * |
| * Clock management: |
| * |
| * The qtest client is completely in charge of the QEMU_CLOCK_VIRTUAL. qtest commands |
| * let you adjust the value of the clock (monotonically). All the commands |
| * return the current value of the clock in nanoseconds. |
| * |
| * > clock_step |
| * < OK VALUE |
| * |
| * Advance the clock to the next deadline. Useful when waiting for |
| * asynchronous events. |
| * |
| * > clock_step NS |
| * < OK VALUE |
| * |
| * Advance the clock by NS nanoseconds. |
| * |
| * > clock_set NS |
| * < OK VALUE |
| * |
| * Advance the clock to NS nanoseconds (do nothing if it's already past). |
| * |
| * PIO and memory access: |
| * |
| * > outb ADDR VALUE |
| * < OK |
| * |
| * > outw ADDR VALUE |
| * < OK |
| * |
| * > outl ADDR VALUE |
| * < OK |
| * |
| * > inb ADDR |
| * < OK VALUE |
| * |
| * > inw ADDR |
| * < OK VALUE |
| * |
| * > inl ADDR |
| * < OK VALUE |
| * |
| * > writeb ADDR VALUE |
| * < OK |
| * |
| * > writew ADDR VALUE |
| * < OK |
| * |
| * > writel ADDR VALUE |
| * < OK |
| * |
| * > writeq ADDR VALUE |
| * < OK |
| * |
| * > readb ADDR |
| * < OK VALUE |
| * |
| * > readw ADDR |
| * < OK VALUE |
| * |
| * > readl ADDR |
| * < OK VALUE |
| * |
| * > readq ADDR |
| * < OK VALUE |
| * |
| * > read ADDR SIZE |
| * < OK DATA |
| * |
| * > write ADDR SIZE DATA |
| * < OK |
| * |
| * > b64read ADDR SIZE |
| * < OK B64_DATA |
| * |
| * > b64write ADDR SIZE B64_DATA |
| * < OK |
| * |
| * > memset ADDR SIZE VALUE |
| * < OK |
| * |
| * ADDR, SIZE, VALUE are all integers parsed with strtoul() with a base of 0. |
| * |
| * DATA is an arbitrarily long hex number prefixed with '0x'. If it's smaller |
| * than the expected size, the value will be zero filled at the end of the data |
| * sequence. |
| * |
| * B64_DATA is an arbitrarily long base64 encoded string. |
| * If the sizes do not match, the data will be truncated. |
| * |
| * IRQ management: |
| * |
| * > irq_intercept_in QOM-PATH |
| * < OK |
| * |
| * > irq_intercept_out QOM-PATH |
| * < OK |
| * |
| * Attach to the gpio-in (resp. gpio-out) pins exported by the device at |
| * QOM-PATH. When the pin is triggered, one of the following async messages |
| * will be printed to the qtest stream: |
| * |
| * IRQ raise NUM |
| * IRQ lower NUM |
| * |
| * where NUM is an IRQ number. For the PC, interrupts can be intercepted |
| * simply with "irq_intercept_in ioapic" (note that IRQ0 comes out with |
| * NUM=0 even though it is remapped to GSI 2). |
| */ |
| |
| static int hex2nib(char ch) |
| { |
| if (ch >= '0' && ch <= '9') { |
| return ch - '0'; |
| } else if (ch >= 'a' && ch <= 'f') { |
| return 10 + (ch - 'a'); |
| } else if (ch >= 'A' && ch <= 'F') { |
| return 10 + (ch - 'A'); |
| } else { |
| return -1; |
| } |
| } |
| |
| static void qtest_get_time(qemu_timeval *tv) |
| { |
| qemu_gettimeofday(tv); |
| tv->tv_sec -= start_time.tv_sec; |
| tv->tv_usec -= start_time.tv_usec; |
| if (tv->tv_usec < 0) { |
| tv->tv_usec += 1000000; |
| tv->tv_sec -= 1; |
| } |
| } |
| |
| static void qtest_send_prefix(CharDriverState *chr) |
| { |
| qemu_timeval tv; |
| |
| if (!qtest_log_fp || !qtest_opened) { |
| return; |
| } |
| |
| qtest_get_time(&tv); |
| fprintf(qtest_log_fp, "[S +" FMT_timeval "] ", |
| (long) tv.tv_sec, (long) tv.tv_usec); |
| } |
| |
| static void GCC_FMT_ATTR(1, 2) qtest_log_send(const char *fmt, ...) |
| { |
| va_list ap; |
| |
| if (!qtest_log_fp || !qtest_opened) { |
| return; |
| } |
| |
| qtest_send_prefix(NULL); |
| |
| va_start(ap, fmt); |
| vfprintf(qtest_log_fp, fmt, ap); |
| va_end(ap); |
| } |
| |
| static void do_qtest_send(CharDriverState *chr, const char *str, size_t len) |
| { |
| qemu_chr_fe_write_all(chr, (uint8_t *)str, len); |
| if (qtest_log_fp && qtest_opened) { |
| fprintf(qtest_log_fp, "%s", str); |
| } |
| } |
| |
| static void qtest_send(CharDriverState *chr, const char *str) |
| { |
| do_qtest_send(chr, str, strlen(str)); |
| } |
| |
| static void GCC_FMT_ATTR(2, 3) qtest_sendf(CharDriverState *chr, |
| const char *fmt, ...) |
| { |
| va_list ap; |
| gchar *buffer; |
| |
| va_start(ap, fmt); |
| buffer = g_strdup_vprintf(fmt, ap); |
| qtest_send(chr, buffer); |
| va_end(ap); |
| } |
| |
| static void qtest_irq_handler(void *opaque, int n, int level) |
| { |
| qemu_irq old_irq = *(qemu_irq *)opaque; |
| qemu_set_irq(old_irq, level); |
| |
| if (irq_levels[n] != level) { |
| CharDriverState *chr = qtest_chr; |
| irq_levels[n] = level; |
| qtest_send_prefix(chr); |
| qtest_sendf(chr, "IRQ %s %d\n", |
| level ? "raise" : "lower", n); |
| } |
| } |
| |
| static void qtest_process_command(CharDriverState *chr, gchar **words) |
| { |
| const gchar *command; |
| |
| g_assert(words); |
| |
| command = words[0]; |
| |
| if (qtest_log_fp) { |
| qemu_timeval tv; |
| int i; |
| |
| qtest_get_time(&tv); |
| fprintf(qtest_log_fp, "[R +" FMT_timeval "]", |
| (long) tv.tv_sec, (long) tv.tv_usec); |
| for (i = 0; words[i]; i++) { |
| fprintf(qtest_log_fp, " %s", words[i]); |
| } |
| fprintf(qtest_log_fp, "\n"); |
| } |
| |
| g_assert(command); |
| if (strcmp(words[0], "irq_intercept_out") == 0 |
| || strcmp(words[0], "irq_intercept_in") == 0) { |
| DeviceState *dev; |
| NamedGPIOList *ngl; |
| |
| g_assert(words[1]); |
| dev = DEVICE(object_resolve_path(words[1], NULL)); |
| if (!dev) { |
| qtest_send_prefix(chr); |
| qtest_send(chr, "FAIL Unknown device\n"); |
| return; |
| } |
| |
| if (irq_intercept_dev) { |
| qtest_send_prefix(chr); |
| if (irq_intercept_dev != dev) { |
| qtest_send(chr, "FAIL IRQ intercept already enabled\n"); |
| } else { |
| qtest_send(chr, "OK\n"); |
| } |
| return; |
| } |
| |
| QLIST_FOREACH(ngl, &dev->gpios, node) { |
| /* We don't support intercept of named GPIOs yet */ |
| if (ngl->name) { |
| continue; |
| } |
| if (words[0][14] == 'o') { |
| int i; |
| for (i = 0; i < ngl->num_out; ++i) { |
| qemu_irq *disconnected = g_new0(qemu_irq, 1); |
| qemu_irq icpt = qemu_allocate_irq(qtest_irq_handler, |
| disconnected, i); |
| |
| *disconnected = qdev_intercept_gpio_out(dev, icpt, |
| ngl->name, i); |
| } |
| } else { |
| qemu_irq_intercept_in(ngl->in, qtest_irq_handler, |
| ngl->num_in); |
| } |
| } |
| irq_intercept_dev = dev; |
| qtest_send_prefix(chr); |
| qtest_send(chr, "OK\n"); |
| |
| } else if (strcmp(words[0], "outb") == 0 || |
| strcmp(words[0], "outw") == 0 || |
| strcmp(words[0], "outl") == 0) { |
| uint16_t addr; |
| uint32_t value; |
| |
| g_assert(words[1] && words[2]); |
| addr = strtoul(words[1], NULL, 0); |
| value = strtoul(words[2], NULL, 0); |
| |
| if (words[0][3] == 'b') { |
| cpu_outb(addr, value); |
| } else if (words[0][3] == 'w') { |
| cpu_outw(addr, value); |
| } else if (words[0][3] == 'l') { |
| cpu_outl(addr, value); |
| } |
| qtest_send_prefix(chr); |
| qtest_send(chr, "OK\n"); |
| } else if (strcmp(words[0], "inb") == 0 || |
| strcmp(words[0], "inw") == 0 || |
| strcmp(words[0], "inl") == 0) { |
| uint16_t addr; |
| uint32_t value = -1U; |
| |
| g_assert(words[1]); |
| addr = strtoul(words[1], NULL, 0); |
| |
| if (words[0][2] == 'b') { |
| value = cpu_inb(addr); |
| } else if (words[0][2] == 'w') { |
| value = cpu_inw(addr); |
| } else if (words[0][2] == 'l') { |
| value = cpu_inl(addr); |
| } |
| qtest_send_prefix(chr); |
| qtest_sendf(chr, "OK 0x%04x\n", value); |
| } else if (strcmp(words[0], "writeb") == 0 || |
| strcmp(words[0], "writew") == 0 || |
| strcmp(words[0], "writel") == 0 || |
| strcmp(words[0], "writeq") == 0) { |
| uint64_t addr; |
| uint64_t value; |
| |
| g_assert(words[1] && words[2]); |
| addr = strtoull(words[1], NULL, 0); |
| value = strtoull(words[2], NULL, 0); |
| |
| if (words[0][5] == 'b') { |
| uint8_t data = value; |
| cpu_physical_memory_write(addr, &data, 1); |
| } else if (words[0][5] == 'w') { |
| uint16_t data = value; |
| tswap16s(&data); |
| cpu_physical_memory_write(addr, &data, 2); |
| } else if (words[0][5] == 'l') { |
| uint32_t data = value; |
| tswap32s(&data); |
| cpu_physical_memory_write(addr, &data, 4); |
| } else if (words[0][5] == 'q') { |
| uint64_t data = value; |
| tswap64s(&data); |
| cpu_physical_memory_write(addr, &data, 8); |
| } |
| qtest_send_prefix(chr); |
| qtest_send(chr, "OK\n"); |
| } else if (strcmp(words[0], "readb") == 0 || |
| strcmp(words[0], "readw") == 0 || |
| strcmp(words[0], "readl") == 0 || |
| strcmp(words[0], "readq") == 0) { |
| uint64_t addr; |
| uint64_t value = UINT64_C(-1); |
| |
| g_assert(words[1]); |
| addr = strtoull(words[1], NULL, 0); |
| |
| if (words[0][4] == 'b') { |
| uint8_t data; |
| cpu_physical_memory_read(addr, &data, 1); |
| value = data; |
| } else if (words[0][4] == 'w') { |
| uint16_t data; |
| cpu_physical_memory_read(addr, &data, 2); |
| value = tswap16(data); |
| } else if (words[0][4] == 'l') { |
| uint32_t data; |
| cpu_physical_memory_read(addr, &data, 4); |
| value = tswap32(data); |
| } else if (words[0][4] == 'q') { |
| cpu_physical_memory_read(addr, &value, 8); |
| tswap64s(&value); |
| } |
| qtest_send_prefix(chr); |
| qtest_sendf(chr, "OK 0x%016" PRIx64 "\n", value); |
| } else if (strcmp(words[0], "read") == 0) { |
| uint64_t addr, len, i; |
| uint8_t *data; |
| char *enc; |
| |
| g_assert(words[1] && words[2]); |
| addr = strtoull(words[1], NULL, 0); |
| len = strtoull(words[2], NULL, 0); |
| |
| data = g_malloc(len); |
| cpu_physical_memory_read(addr, data, len); |
| |
| enc = g_malloc(2 * len + 1); |
| for (i = 0; i < len; i++) { |
| sprintf(&enc[i * 2], "%02x", data[i]); |
| } |
| |
| qtest_send_prefix(chr); |
| qtest_sendf(chr, "OK 0x%s\n", enc); |
| |
| g_free(data); |
| g_free(enc); |
| } else if (strcmp(words[0], "b64read") == 0) { |
| uint64_t addr, len; |
| uint8_t *data; |
| gchar *b64_data; |
| |
| g_assert(words[1] && words[2]); |
| addr = strtoull(words[1], NULL, 0); |
| len = strtoull(words[2], NULL, 0); |
| |
| data = g_malloc(len); |
| cpu_physical_memory_read(addr, data, len); |
| b64_data = g_base64_encode(data, len); |
| qtest_send_prefix(chr); |
| qtest_sendf(chr, "OK %s\n", b64_data); |
| |
| g_free(data); |
| g_free(b64_data); |
| } else if (strcmp(words[0], "write") == 0) { |
| uint64_t addr, len, i; |
| uint8_t *data; |
| size_t data_len; |
| |
| g_assert(words[1] && words[2] && words[3]); |
| addr = strtoull(words[1], NULL, 0); |
| len = strtoull(words[2], NULL, 0); |
| |
| data_len = strlen(words[3]); |
| if (data_len < 3) { |
| qtest_send(chr, "ERR invalid argument size\n"); |
| return; |
| } |
| |
| data = g_malloc(len); |
| for (i = 0; i < len; i++) { |
| if ((i * 2 + 4) <= data_len) { |
| data[i] = hex2nib(words[3][i * 2 + 2]) << 4; |
| data[i] |= hex2nib(words[3][i * 2 + 3]); |
| } else { |
| data[i] = 0; |
| } |
| } |
| cpu_physical_memory_write(addr, data, len); |
| g_free(data); |
| |
| qtest_send_prefix(chr); |
| qtest_send(chr, "OK\n"); |
| } else if (strcmp(words[0], "memset") == 0) { |
| uint64_t addr, len; |
| uint8_t *data; |
| uint8_t pattern; |
| |
| g_assert(words[1] && words[2] && words[3]); |
| addr = strtoull(words[1], NULL, 0); |
| len = strtoull(words[2], NULL, 0); |
| pattern = strtoull(words[3], NULL, 0); |
| |
| data = g_malloc(len); |
| memset(data, pattern, len); |
| cpu_physical_memory_write(addr, data, len); |
| g_free(data); |
| |
| qtest_send_prefix(chr); |
| qtest_send(chr, "OK\n"); |
| } else if (strcmp(words[0], "b64write") == 0) { |
| uint64_t addr, len; |
| uint8_t *data; |
| size_t data_len; |
| gsize out_len; |
| |
| g_assert(words[1] && words[2] && words[3]); |
| addr = strtoull(words[1], NULL, 0); |
| len = strtoull(words[2], NULL, 0); |
| |
| data_len = strlen(words[3]); |
| if (data_len < 3) { |
| qtest_send(chr, "ERR invalid argument size\n"); |
| return; |
| } |
| |
| data = g_base64_decode_inplace(words[3], &out_len); |
| if (out_len != len) { |
| qtest_log_send("b64write: data length mismatch (told %"PRIu64", " |
| "found %zu)\n", |
| len, out_len); |
| out_len = MIN(out_len, len); |
| } |
| |
| cpu_physical_memory_write(addr, data, out_len); |
| |
| qtest_send_prefix(chr); |
| qtest_send(chr, "OK\n"); |
| } else if (qtest_enabled() && strcmp(words[0], "clock_step") == 0) { |
| int64_t ns; |
| |
| if (words[1]) { |
| ns = strtoll(words[1], NULL, 0); |
| } else { |
| ns = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); |
| } |
| qtest_clock_warp(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns); |
| qtest_send_prefix(chr); |
| qtest_sendf(chr, "OK %"PRIi64"\n", |
| (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); |
| } else if (qtest_enabled() && strcmp(words[0], "clock_set") == 0) { |
| int64_t ns; |
| |
| g_assert(words[1]); |
| ns = strtoll(words[1], NULL, 0); |
| qtest_clock_warp(ns); |
| qtest_send_prefix(chr); |
| qtest_sendf(chr, "OK %"PRIi64"\n", |
| (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); |
| } else { |
| qtest_send_prefix(chr); |
| qtest_sendf(chr, "FAIL Unknown command '%s'\n", words[0]); |
| } |
| } |
| |
| static void qtest_process_inbuf(CharDriverState *chr, GString *inbuf) |
| { |
| char *end; |
| |
| while ((end = strchr(inbuf->str, '\n')) != NULL) { |
| size_t offset; |
| GString *cmd; |
| gchar **words; |
| |
| offset = end - inbuf->str; |
| |
| cmd = g_string_new_len(inbuf->str, offset); |
| g_string_erase(inbuf, 0, offset + 1); |
| |
| words = g_strsplit(cmd->str, " ", 0); |
| qtest_process_command(chr, words); |
| g_strfreev(words); |
| |
| g_string_free(cmd, TRUE); |
| } |
| } |
| |
| static void qtest_read(void *opaque, const uint8_t *buf, int size) |
| { |
| CharDriverState *chr = opaque; |
| |
| g_string_append_len(inbuf, (const gchar *)buf, size); |
| qtest_process_inbuf(chr, inbuf); |
| } |
| |
| static int qtest_can_read(void *opaque) |
| { |
| return 1024; |
| } |
| |
| static void qtest_event(void *opaque, int event) |
| { |
| int i; |
| |
| switch (event) { |
| case CHR_EVENT_OPENED: |
| /* |
| * We used to call qemu_system_reset() here, hoping we could |
| * use the same process for multiple tests that way. Never |
| * used. Injects an extra reset even when it's not used, and |
| * that can mess up tests, e.g. -boot once. |
| */ |
| for (i = 0; i < ARRAY_SIZE(irq_levels); i++) { |
| irq_levels[i] = 0; |
| } |
| qemu_gettimeofday(&start_time); |
| qtest_opened = true; |
| if (qtest_log_fp) { |
| fprintf(qtest_log_fp, "[I " FMT_timeval "] OPENED\n", |
| (long) start_time.tv_sec, (long) start_time.tv_usec); |
| } |
| break; |
| case CHR_EVENT_CLOSED: |
| qtest_opened = false; |
| if (qtest_log_fp) { |
| qemu_timeval tv; |
| qtest_get_time(&tv); |
| fprintf(qtest_log_fp, "[I +" FMT_timeval "] CLOSED\n", |
| (long) tv.tv_sec, (long) tv.tv_usec); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static int qtest_init_accel(MachineState *ms) |
| { |
| QemuOpts *opts = qemu_opts_create(qemu_find_opts("icount"), NULL, 0, |
| &error_abort); |
| qemu_opt_set(opts, "shift", "0", &error_abort); |
| configure_icount(opts, &error_abort); |
| qemu_opts_del(opts); |
| return 0; |
| } |
| |
| void qtest_init(const char *qtest_chrdev, const char *qtest_log, Error **errp) |
| { |
| CharDriverState *chr; |
| |
| chr = qemu_chr_new("qtest", qtest_chrdev, NULL); |
| |
| if (chr == NULL) { |
| error_setg(errp, "Failed to initialize device for qtest: \"%s\"", |
| qtest_chrdev); |
| return; |
| } |
| |
| if (qtest_log) { |
| if (strcmp(qtest_log, "none") != 0) { |
| qtest_log_fp = fopen(qtest_log, "w+"); |
| } |
| } else { |
| qtest_log_fp = stderr; |
| } |
| |
| qemu_chr_add_handlers(chr, qtest_can_read, qtest_read, qtest_event, chr); |
| qemu_chr_fe_set_echo(chr, true); |
| |
| inbuf = g_string_new(""); |
| qtest_chr = chr; |
| } |
| |
| bool qtest_driver(void) |
| { |
| return qtest_chr; |
| } |
| |
| static void qtest_accel_class_init(ObjectClass *oc, void *data) |
| { |
| AccelClass *ac = ACCEL_CLASS(oc); |
| ac->name = "QTest"; |
| ac->available = qtest_available; |
| ac->init_machine = qtest_init_accel; |
| ac->allowed = &qtest_allowed; |
| } |
| |
| #define TYPE_QTEST_ACCEL ACCEL_CLASS_NAME("qtest") |
| |
| static const TypeInfo qtest_accel_type = { |
| .name = TYPE_QTEST_ACCEL, |
| .parent = TYPE_ACCEL, |
| .class_init = qtest_accel_class_init, |
| }; |
| |
| static void qtest_type_init(void) |
| { |
| type_register_static(&qtest_accel_type); |
| } |
| |
| type_init(qtest_type_init); |