| /* | 
 |  *  emulator main execution loop | 
 |  * | 
 |  *  Copyright (c) 2003-2005 Fabrice Bellard | 
 |  * | 
 |  * This library is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU Lesser General Public | 
 |  * License as published by the Free Software Foundation; either | 
 |  * version 2 of the License, or (at your option) any later version. | 
 |  * | 
 |  * This library is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * Lesser General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU Lesser General Public | 
 |  * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 | #include "config.h" | 
 | #include "cpu.h" | 
 | #include "trace.h" | 
 | #include "disas/disas.h" | 
 | #include "tcg.h" | 
 | #include "qemu/atomic.h" | 
 | #include "sysemu/qtest.h" | 
 | #include "qemu/timer.h" | 
 | #include "exec/address-spaces.h" | 
 | #include "exec/memory-internal.h" | 
 | #include "qemu/rcu.h" | 
 |  | 
 | /* -icount align implementation. */ | 
 |  | 
 | typedef struct SyncClocks { | 
 |     int64_t diff_clk; | 
 |     int64_t last_cpu_icount; | 
 |     int64_t realtime_clock; | 
 | } SyncClocks; | 
 |  | 
 | #if !defined(CONFIG_USER_ONLY) | 
 | /* Allow the guest to have a max 3ms advance. | 
 |  * The difference between the 2 clocks could therefore | 
 |  * oscillate around 0. | 
 |  */ | 
 | #define VM_CLOCK_ADVANCE 3000000 | 
 | #define THRESHOLD_REDUCE 1.5 | 
 | #define MAX_DELAY_PRINT_RATE 2000000000LL | 
 | #define MAX_NB_PRINTS 100 | 
 |  | 
 | static void align_clocks(SyncClocks *sc, const CPUState *cpu) | 
 | { | 
 |     int64_t cpu_icount; | 
 |  | 
 |     if (!icount_align_option) { | 
 |         return; | 
 |     } | 
 |  | 
 |     cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; | 
 |     sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); | 
 |     sc->last_cpu_icount = cpu_icount; | 
 |  | 
 |     if (sc->diff_clk > VM_CLOCK_ADVANCE) { | 
 | #ifndef _WIN32 | 
 |         struct timespec sleep_delay, rem_delay; | 
 |         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; | 
 |         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; | 
 |         if (nanosleep(&sleep_delay, &rem_delay) < 0) { | 
 |             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; | 
 |         } else { | 
 |             sc->diff_clk = 0; | 
 |         } | 
 | #else | 
 |         Sleep(sc->diff_clk / SCALE_MS); | 
 |         sc->diff_clk = 0; | 
 | #endif | 
 |     } | 
 | } | 
 |  | 
 | static void print_delay(const SyncClocks *sc) | 
 | { | 
 |     static float threshold_delay; | 
 |     static int64_t last_realtime_clock; | 
 |     static int nb_prints; | 
 |  | 
 |     if (icount_align_option && | 
 |         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && | 
 |         nb_prints < MAX_NB_PRINTS) { | 
 |         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || | 
 |             (-sc->diff_clk / (float)1000000000LL < | 
 |              (threshold_delay - THRESHOLD_REDUCE))) { | 
 |             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; | 
 |             printf("Warning: The guest is now late by %.1f to %.1f seconds\n", | 
 |                    threshold_delay - 1, | 
 |                    threshold_delay); | 
 |             nb_prints++; | 
 |             last_realtime_clock = sc->realtime_clock; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void init_delay_params(SyncClocks *sc, | 
 |                               const CPUState *cpu) | 
 | { | 
 |     if (!icount_align_option) { | 
 |         return; | 
 |     } | 
 |     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); | 
 |     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; | 
 |     sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; | 
 |     if (sc->diff_clk < max_delay) { | 
 |         max_delay = sc->diff_clk; | 
 |     } | 
 |     if (sc->diff_clk > max_advance) { | 
 |         max_advance = sc->diff_clk; | 
 |     } | 
 |  | 
 |     /* Print every 2s max if the guest is late. We limit the number | 
 |        of printed messages to NB_PRINT_MAX(currently 100) */ | 
 |     print_delay(sc); | 
 | } | 
 | #else | 
 | static void align_clocks(SyncClocks *sc, const CPUState *cpu) | 
 | { | 
 | } | 
 |  | 
 | static void init_delay_params(SyncClocks *sc, const CPUState *cpu) | 
 | { | 
 | } | 
 | #endif /* CONFIG USER ONLY */ | 
 |  | 
 | void cpu_loop_exit(CPUState *cpu) | 
 | { | 
 |     cpu->current_tb = NULL; | 
 |     siglongjmp(cpu->jmp_env, 1); | 
 | } | 
 |  | 
 | /* exit the current TB from a signal handler. The host registers are | 
 |    restored in a state compatible with the CPU emulator | 
 |  */ | 
 | #if defined(CONFIG_SOFTMMU) | 
 | void cpu_resume_from_signal(CPUState *cpu, void *puc) | 
 | { | 
 |     /* XXX: restore cpu registers saved in host registers */ | 
 |  | 
 |     cpu->exception_index = -1; | 
 |     siglongjmp(cpu->jmp_env, 1); | 
 | } | 
 |  | 
 | void cpu_reload_memory_map(CPUState *cpu) | 
 | { | 
 |     AddressSpaceDispatch *d; | 
 |  | 
 |     if (qemu_in_vcpu_thread()) { | 
 |         /* Do not let the guest prolong the critical section as much as it | 
 |          * as it desires. | 
 |          * | 
 |          * Currently, this is prevented by the I/O thread's periodinc kicking | 
 |          * of the VCPU thread (iothread_requesting_mutex, qemu_cpu_kick_thread) | 
 |          * but this will go away once TCG's execution moves out of the global | 
 |          * mutex. | 
 |          * | 
 |          * This pair matches cpu_exec's rcu_read_lock()/rcu_read_unlock(), which | 
 |          * only protects cpu->as->dispatch.  Since we reload it below, we can | 
 |          * split the critical section. | 
 |          */ | 
 |         rcu_read_unlock(); | 
 |         rcu_read_lock(); | 
 |     } | 
 |  | 
 |     /* The CPU and TLB are protected by the iothread lock.  */ | 
 |     d = atomic_rcu_read(&cpu->as->dispatch); | 
 |     cpu->memory_dispatch = d; | 
 |     tlb_flush(cpu, 1); | 
 | } | 
 | #endif | 
 |  | 
 | /* Execute a TB, and fix up the CPU state afterwards if necessary */ | 
 | static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr) | 
 | { | 
 |     CPUArchState *env = cpu->env_ptr; | 
 |     uintptr_t next_tb; | 
 |  | 
 | #if defined(DEBUG_DISAS) | 
 |     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { | 
 | #if defined(TARGET_I386) | 
 |         log_cpu_state(cpu, CPU_DUMP_CCOP); | 
 | #elif defined(TARGET_M68K) | 
 |         /* ??? Should not modify env state for dumping.  */ | 
 |         cpu_m68k_flush_flags(env, env->cc_op); | 
 |         env->cc_op = CC_OP_FLAGS; | 
 |         env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); | 
 |         log_cpu_state(cpu, 0); | 
 | #else | 
 |         log_cpu_state(cpu, 0); | 
 | #endif | 
 |     } | 
 | #endif /* DEBUG_DISAS */ | 
 |  | 
 |     cpu->can_do_io = 0; | 
 |     next_tb = tcg_qemu_tb_exec(env, tb_ptr); | 
 |     cpu->can_do_io = 1; | 
 |     trace_exec_tb_exit((void *) (next_tb & ~TB_EXIT_MASK), | 
 |                        next_tb & TB_EXIT_MASK); | 
 |  | 
 |     if ((next_tb & TB_EXIT_MASK) > TB_EXIT_IDX1) { | 
 |         /* We didn't start executing this TB (eg because the instruction | 
 |          * counter hit zero); we must restore the guest PC to the address | 
 |          * of the start of the TB. | 
 |          */ | 
 |         CPUClass *cc = CPU_GET_CLASS(cpu); | 
 |         TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); | 
 |         if (cc->synchronize_from_tb) { | 
 |             cc->synchronize_from_tb(cpu, tb); | 
 |         } else { | 
 |             assert(cc->set_pc); | 
 |             cc->set_pc(cpu, tb->pc); | 
 |         } | 
 |     } | 
 |     if ((next_tb & TB_EXIT_MASK) == TB_EXIT_REQUESTED) { | 
 |         /* We were asked to stop executing TBs (probably a pending | 
 |          * interrupt. We've now stopped, so clear the flag. | 
 |          */ | 
 |         cpu->tcg_exit_req = 0; | 
 |     } | 
 |     return next_tb; | 
 | } | 
 |  | 
 | /* Execute the code without caching the generated code. An interpreter | 
 |    could be used if available. */ | 
 | static void cpu_exec_nocache(CPUArchState *env, int max_cycles, | 
 |                              TranslationBlock *orig_tb) | 
 | { | 
 |     CPUState *cpu = ENV_GET_CPU(env); | 
 |     TranslationBlock *tb; | 
 |     target_ulong pc = orig_tb->pc; | 
 |     target_ulong cs_base = orig_tb->cs_base; | 
 |     uint64_t flags = orig_tb->flags; | 
 |  | 
 |     /* Should never happen. | 
 |        We only end up here when an existing TB is too long.  */ | 
 |     if (max_cycles > CF_COUNT_MASK) | 
 |         max_cycles = CF_COUNT_MASK; | 
 |  | 
 |     /* tb_gen_code can flush our orig_tb, invalidate it now */ | 
 |     tb_phys_invalidate(orig_tb, -1); | 
 |     tb = tb_gen_code(cpu, pc, cs_base, flags, | 
 |                      max_cycles | CF_NOCACHE); | 
 |     cpu->current_tb = tb; | 
 |     /* execute the generated code */ | 
 |     trace_exec_tb_nocache(tb, tb->pc); | 
 |     cpu_tb_exec(cpu, tb->tc_ptr); | 
 |     cpu->current_tb = NULL; | 
 |     tb_phys_invalidate(tb, -1); | 
 |     tb_free(tb); | 
 | } | 
 |  | 
 | static TranslationBlock *tb_find_slow(CPUArchState *env, | 
 |                                       target_ulong pc, | 
 |                                       target_ulong cs_base, | 
 |                                       uint64_t flags) | 
 | { | 
 |     CPUState *cpu = ENV_GET_CPU(env); | 
 |     TranslationBlock *tb, **ptb1; | 
 |     unsigned int h; | 
 |     tb_page_addr_t phys_pc, phys_page1; | 
 |     target_ulong virt_page2; | 
 |  | 
 |     tcg_ctx.tb_ctx.tb_invalidated_flag = 0; | 
 |  | 
 |     /* find translated block using physical mappings */ | 
 |     phys_pc = get_page_addr_code(env, pc); | 
 |     phys_page1 = phys_pc & TARGET_PAGE_MASK; | 
 |     h = tb_phys_hash_func(phys_pc); | 
 |     ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h]; | 
 |     for(;;) { | 
 |         tb = *ptb1; | 
 |         if (!tb) | 
 |             goto not_found; | 
 |         if (tb->pc == pc && | 
 |             tb->page_addr[0] == phys_page1 && | 
 |             tb->cs_base == cs_base && | 
 |             tb->flags == flags) { | 
 |             /* check next page if needed */ | 
 |             if (tb->page_addr[1] != -1) { | 
 |                 tb_page_addr_t phys_page2; | 
 |  | 
 |                 virt_page2 = (pc & TARGET_PAGE_MASK) + | 
 |                     TARGET_PAGE_SIZE; | 
 |                 phys_page2 = get_page_addr_code(env, virt_page2); | 
 |                 if (tb->page_addr[1] == phys_page2) | 
 |                     goto found; | 
 |             } else { | 
 |                 goto found; | 
 |             } | 
 |         } | 
 |         ptb1 = &tb->phys_hash_next; | 
 |     } | 
 |  not_found: | 
 |    /* if no translated code available, then translate it now */ | 
 |     tb = tb_gen_code(cpu, pc, cs_base, flags, 0); | 
 |  | 
 |  found: | 
 |     /* Move the last found TB to the head of the list */ | 
 |     if (likely(*ptb1)) { | 
 |         *ptb1 = tb->phys_hash_next; | 
 |         tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h]; | 
 |         tcg_ctx.tb_ctx.tb_phys_hash[h] = tb; | 
 |     } | 
 |     /* we add the TB in the virtual pc hash table */ | 
 |     cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; | 
 |     return tb; | 
 | } | 
 |  | 
 | static inline TranslationBlock *tb_find_fast(CPUArchState *env) | 
 | { | 
 |     CPUState *cpu = ENV_GET_CPU(env); | 
 |     TranslationBlock *tb; | 
 |     target_ulong cs_base, pc; | 
 |     int flags; | 
 |  | 
 |     /* we record a subset of the CPU state. It will | 
 |        always be the same before a given translated block | 
 |        is executed. */ | 
 |     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); | 
 |     tb = cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; | 
 |     if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || | 
 |                  tb->flags != flags)) { | 
 |         tb = tb_find_slow(env, pc, cs_base, flags); | 
 |     } | 
 |     return tb; | 
 | } | 
 |  | 
 | static void cpu_handle_debug_exception(CPUArchState *env) | 
 | { | 
 |     CPUState *cpu = ENV_GET_CPU(env); | 
 |     CPUClass *cc = CPU_GET_CLASS(cpu); | 
 |     CPUWatchpoint *wp; | 
 |  | 
 |     if (!cpu->watchpoint_hit) { | 
 |         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | 
 |             wp->flags &= ~BP_WATCHPOINT_HIT; | 
 |         } | 
 |     } | 
 |  | 
 |     cc->debug_excp_handler(cpu); | 
 | } | 
 |  | 
 | /* main execution loop */ | 
 |  | 
 | volatile sig_atomic_t exit_request; | 
 |  | 
 | int cpu_exec(CPUArchState *env) | 
 | { | 
 |     CPUState *cpu = ENV_GET_CPU(env); | 
 |     CPUClass *cc = CPU_GET_CLASS(cpu); | 
 | #ifdef TARGET_I386 | 
 |     X86CPU *x86_cpu = X86_CPU(cpu); | 
 | #endif | 
 |     int ret, interrupt_request; | 
 |     TranslationBlock *tb; | 
 |     uint8_t *tc_ptr; | 
 |     uintptr_t next_tb; | 
 |     SyncClocks sc; | 
 |  | 
 |     /* This must be volatile so it is not trashed by longjmp() */ | 
 |     volatile bool have_tb_lock = false; | 
 |  | 
 |     if (cpu->halted) { | 
 |         if (!cpu_has_work(cpu)) { | 
 |             return EXCP_HALTED; | 
 |         } | 
 |  | 
 |         cpu->halted = 0; | 
 |     } | 
 |  | 
 |     current_cpu = cpu; | 
 |  | 
 |     /* As long as current_cpu is null, up to the assignment just above, | 
 |      * requests by other threads to exit the execution loop are expected to | 
 |      * be issued using the exit_request global. We must make sure that our | 
 |      * evaluation of the global value is performed past the current_cpu | 
 |      * value transition point, which requires a memory barrier as well as | 
 |      * an instruction scheduling constraint on modern architectures.  */ | 
 |     smp_mb(); | 
 |  | 
 |     rcu_read_lock(); | 
 |  | 
 |     if (unlikely(exit_request)) { | 
 |         cpu->exit_request = 1; | 
 |     } | 
 |  | 
 |     cc->cpu_exec_enter(cpu); | 
 |  | 
 |     /* Calculate difference between guest clock and host clock. | 
 |      * This delay includes the delay of the last cycle, so | 
 |      * what we have to do is sleep until it is 0. As for the | 
 |      * advance/delay we gain here, we try to fix it next time. | 
 |      */ | 
 |     init_delay_params(&sc, cpu); | 
 |  | 
 |     /* prepare setjmp context for exception handling */ | 
 |     for(;;) { | 
 |         if (sigsetjmp(cpu->jmp_env, 0) == 0) { | 
 |             /* if an exception is pending, we execute it here */ | 
 |             if (cpu->exception_index >= 0) { | 
 |                 if (cpu->exception_index >= EXCP_INTERRUPT) { | 
 |                     /* exit request from the cpu execution loop */ | 
 |                     ret = cpu->exception_index; | 
 |                     if (ret == EXCP_DEBUG) { | 
 |                         cpu_handle_debug_exception(env); | 
 |                     } | 
 |                     cpu->exception_index = -1; | 
 |                     break; | 
 |                 } else { | 
 | #if defined(CONFIG_USER_ONLY) | 
 |                     /* if user mode only, we simulate a fake exception | 
 |                        which will be handled outside the cpu execution | 
 |                        loop */ | 
 | #if defined(TARGET_I386) | 
 |                     cc->do_interrupt(cpu); | 
 | #endif | 
 |                     ret = cpu->exception_index; | 
 |                     cpu->exception_index = -1; | 
 |                     break; | 
 | #else | 
 |                     cc->do_interrupt(cpu); | 
 |                     cpu->exception_index = -1; | 
 | #endif | 
 |                 } | 
 |             } | 
 |  | 
 |             next_tb = 0; /* force lookup of first TB */ | 
 |             for(;;) { | 
 |                 interrupt_request = cpu->interrupt_request; | 
 |                 if (unlikely(interrupt_request)) { | 
 |                     if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { | 
 |                         /* Mask out external interrupts for this step. */ | 
 |                         interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; | 
 |                     } | 
 |                     if (interrupt_request & CPU_INTERRUPT_DEBUG) { | 
 |                         cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | 
 |                         cpu->exception_index = EXCP_DEBUG; | 
 |                         cpu_loop_exit(cpu); | 
 |                     } | 
 |                     if (interrupt_request & CPU_INTERRUPT_HALT) { | 
 |                         cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; | 
 |                         cpu->halted = 1; | 
 |                         cpu->exception_index = EXCP_HLT; | 
 |                         cpu_loop_exit(cpu); | 
 |                     } | 
 | #if defined(TARGET_I386) | 
 |                     if (interrupt_request & CPU_INTERRUPT_INIT) { | 
 |                         cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0); | 
 |                         do_cpu_init(x86_cpu); | 
 |                         cpu->exception_index = EXCP_HALTED; | 
 |                         cpu_loop_exit(cpu); | 
 |                     } | 
 | #else | 
 |                     if (interrupt_request & CPU_INTERRUPT_RESET) { | 
 |                         cpu_reset(cpu); | 
 |                     } | 
 | #endif | 
 |                     /* The target hook has 3 exit conditions: | 
 |                        False when the interrupt isn't processed, | 
 |                        True when it is, and we should restart on a new TB, | 
 |                        and via longjmp via cpu_loop_exit.  */ | 
 |                     if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { | 
 |                         next_tb = 0; | 
 |                     } | 
 |                     /* Don't use the cached interrupt_request value, | 
 |                        do_interrupt may have updated the EXITTB flag. */ | 
 |                     if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB) { | 
 |                         cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; | 
 |                         /* ensure that no TB jump will be modified as | 
 |                            the program flow was changed */ | 
 |                         next_tb = 0; | 
 |                     } | 
 |                 } | 
 |                 if (unlikely(cpu->exit_request)) { | 
 |                     cpu->exit_request = 0; | 
 |                     cpu->exception_index = EXCP_INTERRUPT; | 
 |                     cpu_loop_exit(cpu); | 
 |                 } | 
 |                 spin_lock(&tcg_ctx.tb_ctx.tb_lock); | 
 |                 have_tb_lock = true; | 
 |                 tb = tb_find_fast(env); | 
 |                 /* Note: we do it here to avoid a gcc bug on Mac OS X when | 
 |                    doing it in tb_find_slow */ | 
 |                 if (tcg_ctx.tb_ctx.tb_invalidated_flag) { | 
 |                     /* as some TB could have been invalidated because | 
 |                        of memory exceptions while generating the code, we | 
 |                        must recompute the hash index here */ | 
 |                     next_tb = 0; | 
 |                     tcg_ctx.tb_ctx.tb_invalidated_flag = 0; | 
 |                 } | 
 |                 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { | 
 |                     qemu_log("Trace %p [" TARGET_FMT_lx "] %s\n", | 
 |                              tb->tc_ptr, tb->pc, lookup_symbol(tb->pc)); | 
 |                 } | 
 |                 /* see if we can patch the calling TB. When the TB | 
 |                    spans two pages, we cannot safely do a direct | 
 |                    jump. */ | 
 |                 if (next_tb != 0 && tb->page_addr[1] == -1) { | 
 |                     tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK), | 
 |                                 next_tb & TB_EXIT_MASK, tb); | 
 |                 } | 
 |                 have_tb_lock = false; | 
 |                 spin_unlock(&tcg_ctx.tb_ctx.tb_lock); | 
 |  | 
 |                 /* cpu_interrupt might be called while translating the | 
 |                    TB, but before it is linked into a potentially | 
 |                    infinite loop and becomes env->current_tb. Avoid | 
 |                    starting execution if there is a pending interrupt. */ | 
 |                 cpu->current_tb = tb; | 
 |                 barrier(); | 
 |                 if (likely(!cpu->exit_request)) { | 
 |                     trace_exec_tb(tb, tb->pc); | 
 |                     tc_ptr = tb->tc_ptr; | 
 |                     /* execute the generated code */ | 
 |                     next_tb = cpu_tb_exec(cpu, tc_ptr); | 
 |                     switch (next_tb & TB_EXIT_MASK) { | 
 |                     case TB_EXIT_REQUESTED: | 
 |                         /* Something asked us to stop executing | 
 |                          * chained TBs; just continue round the main | 
 |                          * loop. Whatever requested the exit will also | 
 |                          * have set something else (eg exit_request or | 
 |                          * interrupt_request) which we will handle | 
 |                          * next time around the loop. | 
 |                          */ | 
 |                         next_tb = 0; | 
 |                         break; | 
 |                     case TB_EXIT_ICOUNT_EXPIRED: | 
 |                     { | 
 |                         /* Instruction counter expired.  */ | 
 |                         int insns_left = cpu->icount_decr.u32; | 
 |                         if (cpu->icount_extra && insns_left >= 0) { | 
 |                             /* Refill decrementer and continue execution.  */ | 
 |                             cpu->icount_extra += insns_left; | 
 |                             insns_left = MIN(0xffff, cpu->icount_extra); | 
 |                             cpu->icount_extra -= insns_left; | 
 |                             cpu->icount_decr.u16.low = insns_left; | 
 |                         } else { | 
 |                             if (insns_left > 0) { | 
 |                                 /* Execute remaining instructions.  */ | 
 |                                 tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); | 
 |                                 cpu_exec_nocache(env, insns_left, tb); | 
 |                                 align_clocks(&sc, cpu); | 
 |                             } | 
 |                             cpu->exception_index = EXCP_INTERRUPT; | 
 |                             next_tb = 0; | 
 |                             cpu_loop_exit(cpu); | 
 |                         } | 
 |                         break; | 
 |                     } | 
 |                     default: | 
 |                         break; | 
 |                     } | 
 |                 } | 
 |                 cpu->current_tb = NULL; | 
 |                 /* Try to align the host and virtual clocks | 
 |                    if the guest is in advance */ | 
 |                 align_clocks(&sc, cpu); | 
 |                 /* reset soft MMU for next block (it can currently | 
 |                    only be set by a memory fault) */ | 
 |             } /* for(;;) */ | 
 |         } else { | 
 |             /* Reload env after longjmp - the compiler may have smashed all | 
 |              * local variables as longjmp is marked 'noreturn'. */ | 
 |             cpu = current_cpu; | 
 |             env = cpu->env_ptr; | 
 |             cc = CPU_GET_CLASS(cpu); | 
 |             cpu->can_do_io = 1; | 
 | #ifdef TARGET_I386 | 
 |             x86_cpu = X86_CPU(cpu); | 
 | #endif | 
 |             if (have_tb_lock) { | 
 |                 spin_unlock(&tcg_ctx.tb_ctx.tb_lock); | 
 |                 have_tb_lock = false; | 
 |             } | 
 |         } | 
 |     } /* for(;;) */ | 
 |  | 
 |     cc->cpu_exec_exit(cpu); | 
 |     rcu_read_unlock(); | 
 |  | 
 |     /* fail safe : never use current_cpu outside cpu_exec() */ | 
 |     current_cpu = NULL; | 
 |     return ret; | 
 | } |