|  | /* | 
|  | * ARM implementation of KVM hooks, 32 bit specific code. | 
|  | * | 
|  | * Copyright Christoffer Dall 2009-2010 | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
|  | * See the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/ioctl.h> | 
|  | #include <sys/mman.h> | 
|  |  | 
|  | #include <linux/kvm.h> | 
|  |  | 
|  | #include "qemu-common.h" | 
|  | #include "qemu/timer.h" | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "sysemu/kvm.h" | 
|  | #include "kvm_arm.h" | 
|  | #include "cpu.h" | 
|  | #include "internals.h" | 
|  | #include "hw/arm/arm.h" | 
|  |  | 
|  | static inline void set_feature(uint64_t *features, int feature) | 
|  | { | 
|  | *features |= 1ULL << feature; | 
|  | } | 
|  |  | 
|  | bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc) | 
|  | { | 
|  | /* Identify the feature bits corresponding to the host CPU, and | 
|  | * fill out the ARMHostCPUClass fields accordingly. To do this | 
|  | * we have to create a scratch VM, create a single CPU inside it, | 
|  | * and then query that CPU for the relevant ID registers. | 
|  | */ | 
|  | int i, ret, fdarray[3]; | 
|  | uint32_t midr, id_pfr0, id_isar0, mvfr1; | 
|  | uint64_t features = 0; | 
|  | /* Old kernels may not know about the PREFERRED_TARGET ioctl: however | 
|  | * we know these will only support creating one kind of guest CPU, | 
|  | * which is its preferred CPU type. | 
|  | */ | 
|  | static const uint32_t cpus_to_try[] = { | 
|  | QEMU_KVM_ARM_TARGET_CORTEX_A15, | 
|  | QEMU_KVM_ARM_TARGET_NONE | 
|  | }; | 
|  | struct kvm_vcpu_init init; | 
|  | struct kvm_one_reg idregs[] = { | 
|  | { | 
|  | .id = KVM_REG_ARM | KVM_REG_SIZE_U32 | 
|  | | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0), | 
|  | .addr = (uintptr_t)&midr, | 
|  | }, | 
|  | { | 
|  | .id = KVM_REG_ARM | KVM_REG_SIZE_U32 | 
|  | | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0), | 
|  | .addr = (uintptr_t)&id_pfr0, | 
|  | }, | 
|  | { | 
|  | .id = KVM_REG_ARM | KVM_REG_SIZE_U32 | 
|  | | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0), | 
|  | .addr = (uintptr_t)&id_isar0, | 
|  | }, | 
|  | { | 
|  | .id = KVM_REG_ARM | KVM_REG_SIZE_U32 | 
|  | | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1, | 
|  | .addr = (uintptr_t)&mvfr1, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ahcc->target = init.target; | 
|  |  | 
|  | /* This is not strictly blessed by the device tree binding docs yet, | 
|  | * but in practice the kernel does not care about this string so | 
|  | * there is no point maintaining an KVM_ARM_TARGET_* -> string table. | 
|  | */ | 
|  | ahcc->dtb_compatible = "arm,arm-v7"; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(idregs); i++) { | 
|  | ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]); | 
|  | if (ret) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_arm_destroy_scratch_host_vcpu(fdarray); | 
|  |  | 
|  | if (ret) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Now we've retrieved all the register information we can | 
|  | * set the feature bits based on the ID register fields. | 
|  | * We can assume any KVM supporting CPU is at least a v7 | 
|  | * with VFPv3, LPAE and the generic timers; this in turn implies | 
|  | * most of the other feature bits, but a few must be tested. | 
|  | */ | 
|  | set_feature(&features, ARM_FEATURE_V7); | 
|  | set_feature(&features, ARM_FEATURE_VFP3); | 
|  | set_feature(&features, ARM_FEATURE_LPAE); | 
|  | set_feature(&features, ARM_FEATURE_GENERIC_TIMER); | 
|  |  | 
|  | switch (extract32(id_isar0, 24, 4)) { | 
|  | case 1: | 
|  | set_feature(&features, ARM_FEATURE_THUMB_DIV); | 
|  | break; | 
|  | case 2: | 
|  | set_feature(&features, ARM_FEATURE_ARM_DIV); | 
|  | set_feature(&features, ARM_FEATURE_THUMB_DIV); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (extract32(id_pfr0, 12, 4) == 1) { | 
|  | set_feature(&features, ARM_FEATURE_THUMB2EE); | 
|  | } | 
|  | if (extract32(mvfr1, 20, 4) == 1) { | 
|  | set_feature(&features, ARM_FEATURE_VFP_FP16); | 
|  | } | 
|  | if (extract32(mvfr1, 12, 4) == 1) { | 
|  | set_feature(&features, ARM_FEATURE_NEON); | 
|  | } | 
|  | if (extract32(mvfr1, 28, 4) == 1) { | 
|  | /* FMAC support implies VFPv4 */ | 
|  | set_feature(&features, ARM_FEATURE_VFP4); | 
|  | } | 
|  |  | 
|  | ahcc->features = features; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) | 
|  | { | 
|  | /* Return true if the regidx is a register we should synchronize | 
|  | * via the cpreg_tuples array (ie is not a core reg we sync by | 
|  | * hand in kvm_arch_get/put_registers()) | 
|  | */ | 
|  | switch (regidx & KVM_REG_ARM_COPROC_MASK) { | 
|  | case KVM_REG_ARM_CORE: | 
|  | case KVM_REG_ARM_VFP: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_arch_init_vcpu(CPUState *cs) | 
|  | { | 
|  | int ret; | 
|  | uint64_t v; | 
|  | struct kvm_one_reg r; | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  |  | 
|  | if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) { | 
|  | fprintf(stderr, "KVM is not supported for this guest CPU type\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Determine init features for this CPU */ | 
|  | memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); | 
|  | if (cpu->start_powered_off) { | 
|  | cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; | 
|  | } | 
|  | if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { | 
|  | cpu->psci_version = 2; | 
|  | cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; | 
|  | } | 
|  |  | 
|  | /* Do KVM_ARM_VCPU_INIT ioctl */ | 
|  | ret = kvm_arm_vcpu_init(cs); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Query the kernel to make sure it supports 32 VFP | 
|  | * registers: QEMU's "cortex-a15" CPU is always a | 
|  | * VFP-D32 core. The simplest way to do this is just | 
|  | * to attempt to read register d31. | 
|  | */ | 
|  | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31; | 
|  | r.addr = (uintptr_t)(&v); | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | 
|  | if (ret == -ENOENT) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return kvm_arm_init_cpreg_list(cpu); | 
|  | } | 
|  |  | 
|  | typedef struct Reg { | 
|  | uint64_t id; | 
|  | int offset; | 
|  | } Reg; | 
|  |  | 
|  | #define COREREG(KERNELNAME, QEMUFIELD)                       \ | 
|  | {                                                        \ | 
|  | KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \ | 
|  | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ | 
|  | offsetof(CPUARMState, QEMUFIELD)                     \ | 
|  | } | 
|  |  | 
|  | #define VFPSYSREG(R)                                       \ | 
|  | {                                                      \ | 
|  | KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \ | 
|  | KVM_REG_ARM_VFP_##R,                               \ | 
|  | offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R])      \ | 
|  | } | 
|  |  | 
|  | /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */ | 
|  | #define COREREG64(KERNELNAME, QEMUFIELD)                     \ | 
|  | {                                                        \ | 
|  | KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \ | 
|  | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ | 
|  | offsetoflow32(CPUARMState, QEMUFIELD)                \ | 
|  | } | 
|  |  | 
|  | static const Reg regs[] = { | 
|  | /* R0_usr .. R14_usr */ | 
|  | COREREG(usr_regs.uregs[0], regs[0]), | 
|  | COREREG(usr_regs.uregs[1], regs[1]), | 
|  | COREREG(usr_regs.uregs[2], regs[2]), | 
|  | COREREG(usr_regs.uregs[3], regs[3]), | 
|  | COREREG(usr_regs.uregs[4], regs[4]), | 
|  | COREREG(usr_regs.uregs[5], regs[5]), | 
|  | COREREG(usr_regs.uregs[6], regs[6]), | 
|  | COREREG(usr_regs.uregs[7], regs[7]), | 
|  | COREREG(usr_regs.uregs[8], usr_regs[0]), | 
|  | COREREG(usr_regs.uregs[9], usr_regs[1]), | 
|  | COREREG(usr_regs.uregs[10], usr_regs[2]), | 
|  | COREREG(usr_regs.uregs[11], usr_regs[3]), | 
|  | COREREG(usr_regs.uregs[12], usr_regs[4]), | 
|  | COREREG(usr_regs.uregs[13], banked_r13[0]), | 
|  | COREREG(usr_regs.uregs[14], banked_r14[0]), | 
|  | /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */ | 
|  | COREREG(svc_regs[0], banked_r13[1]), | 
|  | COREREG(svc_regs[1], banked_r14[1]), | 
|  | COREREG64(svc_regs[2], banked_spsr[1]), | 
|  | COREREG(abt_regs[0], banked_r13[2]), | 
|  | COREREG(abt_regs[1], banked_r14[2]), | 
|  | COREREG64(abt_regs[2], banked_spsr[2]), | 
|  | COREREG(und_regs[0], banked_r13[3]), | 
|  | COREREG(und_regs[1], banked_r14[3]), | 
|  | COREREG64(und_regs[2], banked_spsr[3]), | 
|  | COREREG(irq_regs[0], banked_r13[4]), | 
|  | COREREG(irq_regs[1], banked_r14[4]), | 
|  | COREREG64(irq_regs[2], banked_spsr[4]), | 
|  | /* R8_fiq .. R14_fiq and SPSR_fiq */ | 
|  | COREREG(fiq_regs[0], fiq_regs[0]), | 
|  | COREREG(fiq_regs[1], fiq_regs[1]), | 
|  | COREREG(fiq_regs[2], fiq_regs[2]), | 
|  | COREREG(fiq_regs[3], fiq_regs[3]), | 
|  | COREREG(fiq_regs[4], fiq_regs[4]), | 
|  | COREREG(fiq_regs[5], banked_r13[5]), | 
|  | COREREG(fiq_regs[6], banked_r14[5]), | 
|  | COREREG64(fiq_regs[7], banked_spsr[5]), | 
|  | /* R15 */ | 
|  | COREREG(usr_regs.uregs[15], regs[15]), | 
|  | /* VFP system registers */ | 
|  | VFPSYSREG(FPSID), | 
|  | VFPSYSREG(MVFR1), | 
|  | VFPSYSREG(MVFR0), | 
|  | VFPSYSREG(FPEXC), | 
|  | VFPSYSREG(FPINST), | 
|  | VFPSYSREG(FPINST2), | 
|  | }; | 
|  |  | 
|  | int kvm_arch_put_registers(CPUState *cs, int level) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  | struct kvm_one_reg r; | 
|  | int mode, bn; | 
|  | int ret, i; | 
|  | uint32_t cpsr, fpscr; | 
|  |  | 
|  | /* Make sure the banked regs are properly set */ | 
|  | mode = env->uncached_cpsr & CPSR_M; | 
|  | bn = bank_number(mode); | 
|  | if (mode == ARM_CPU_MODE_FIQ) { | 
|  | memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | 
|  | } else { | 
|  | memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | 
|  | } | 
|  | env->banked_r13[bn] = env->regs[13]; | 
|  | env->banked_r14[bn] = env->regs[14]; | 
|  | env->banked_spsr[bn] = env->spsr; | 
|  |  | 
|  | /* Now we can safely copy stuff down to the kernel */ | 
|  | for (i = 0; i < ARRAY_SIZE(regs); i++) { | 
|  | r.id = regs[i].id; | 
|  | r.addr = (uintptr_t)(env) + regs[i].offset; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Special cases which aren't a single CPUARMState field */ | 
|  | cpsr = cpsr_read(env); | 
|  | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | | 
|  | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); | 
|  | r.addr = (uintptr_t)(&cpsr); | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* VFP registers */ | 
|  | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; | 
|  | for (i = 0; i < 32; i++) { | 
|  | r.addr = (uintptr_t)(&env->vfp.regs[i]); | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | r.id++; | 
|  | } | 
|  |  | 
|  | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | | 
|  | KVM_REG_ARM_VFP_FPSCR; | 
|  | fpscr = vfp_get_fpscr(env); | 
|  | r.addr = (uintptr_t)&fpscr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Note that we do not call write_cpustate_to_list() | 
|  | * here, so we are only writing the tuple list back to | 
|  | * KVM. This is safe because nothing can change the | 
|  | * CPUARMState cp15 fields (in particular gdb accesses cannot) | 
|  | * and so there are no changes to sync. In fact syncing would | 
|  | * be wrong at this point: for a constant register where TCG and | 
|  | * KVM disagree about its value, the preceding write_list_to_cpustate() | 
|  | * would not have had any effect on the CPUARMState value (since the | 
|  | * register is read-only), and a write_cpustate_to_list() here would | 
|  | * then try to write the TCG value back into KVM -- this would either | 
|  | * fail or incorrectly change the value the guest sees. | 
|  | * | 
|  | * If we ever want to allow the user to modify cp15 registers via | 
|  | * the gdb stub, we would need to be more clever here (for instance | 
|  | * tracking the set of registers kvm_arch_get_registers() successfully | 
|  | * managed to update the CPUARMState with, and only allowing those | 
|  | * to be written back up into the kernel). | 
|  | */ | 
|  | if (!write_list_to_kvmstate(cpu)) { | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | kvm_arm_sync_mpstate_to_kvm(cpu); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_arch_get_registers(CPUState *cs) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  | struct kvm_one_reg r; | 
|  | int mode, bn; | 
|  | int ret, i; | 
|  | uint32_t cpsr, fpscr; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(regs); i++) { | 
|  | r.id = regs[i].id; | 
|  | r.addr = (uintptr_t)(env) + regs[i].offset; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Special cases which aren't a single CPUARMState field */ | 
|  | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | | 
|  | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); | 
|  | r.addr = (uintptr_t)(&cpsr); | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | cpsr_write(env, cpsr, 0xffffffff); | 
|  |  | 
|  | /* Make sure the current mode regs are properly set */ | 
|  | mode = env->uncached_cpsr & CPSR_M; | 
|  | bn = bank_number(mode); | 
|  | if (mode == ARM_CPU_MODE_FIQ) { | 
|  | memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); | 
|  | } else { | 
|  | memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); | 
|  | } | 
|  | env->regs[13] = env->banked_r13[bn]; | 
|  | env->regs[14] = env->banked_r14[bn]; | 
|  | env->spsr = env->banked_spsr[bn]; | 
|  |  | 
|  | /* VFP registers */ | 
|  | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; | 
|  | for (i = 0; i < 32; i++) { | 
|  | r.addr = (uintptr_t)(&env->vfp.regs[i]); | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | r.id++; | 
|  | } | 
|  |  | 
|  | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | | 
|  | KVM_REG_ARM_VFP_FPSCR; | 
|  | r.addr = (uintptr_t)&fpscr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | vfp_set_fpscr(env, fpscr); | 
|  |  | 
|  | if (!write_kvmstate_to_list(cpu)) { | 
|  | return EINVAL; | 
|  | } | 
|  | /* Note that it's OK to have registers which aren't in CPUState, | 
|  | * so we can ignore a failure return here. | 
|  | */ | 
|  | write_list_to_cpustate(cpu); | 
|  |  | 
|  | kvm_arm_sync_mpstate_to_qemu(cpu); | 
|  |  | 
|  | return 0; | 
|  | } |