|  | /* | 
|  | *  AArch64 specific helpers | 
|  | * | 
|  | *  Copyright (c) 2013 Alexander Graf <agraf@suse.de> | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "cpu.h" | 
|  | #include "exec/gdbstub.h" | 
|  | #include "exec/helper-proto.h" | 
|  | #include "qemu/host-utils.h" | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "qemu/bitops.h" | 
|  | #include "internals.h" | 
|  | #include "qemu/crc32c.h" | 
|  | #include <zlib.h> /* For crc32 */ | 
|  |  | 
|  | /* C2.4.7 Multiply and divide */ | 
|  | /* special cases for 0 and LLONG_MIN are mandated by the standard */ | 
|  | uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) | 
|  | { | 
|  | if (den == 0) { | 
|  | return 0; | 
|  | } | 
|  | return num / den; | 
|  | } | 
|  |  | 
|  | int64_t HELPER(sdiv64)(int64_t num, int64_t den) | 
|  | { | 
|  | if (den == 0) { | 
|  | return 0; | 
|  | } | 
|  | if (num == LLONG_MIN && den == -1) { | 
|  | return LLONG_MIN; | 
|  | } | 
|  | return num / den; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(clz64)(uint64_t x) | 
|  | { | 
|  | return clz64(x); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(cls64)(uint64_t x) | 
|  | { | 
|  | return clrsb64(x); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(cls32)(uint32_t x) | 
|  | { | 
|  | return clrsb32(x); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(clz32)(uint32_t x) | 
|  | { | 
|  | return clz32(x); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(rbit64)(uint64_t x) | 
|  | { | 
|  | /* assign the correct byte position */ | 
|  | x = bswap64(x); | 
|  |  | 
|  | /* assign the correct nibble position */ | 
|  | x = ((x & 0xf0f0f0f0f0f0f0f0ULL) >> 4) | 
|  | | ((x & 0x0f0f0f0f0f0f0f0fULL) << 4); | 
|  |  | 
|  | /* assign the correct bit position */ | 
|  | x = ((x & 0x8888888888888888ULL) >> 3) | 
|  | | ((x & 0x4444444444444444ULL) >> 1) | 
|  | | ((x & 0x2222222222222222ULL) << 1) | 
|  | | ((x & 0x1111111111111111ULL) << 3); | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /* Convert a softfloat float_relation_ (as returned by | 
|  | * the float*_compare functions) to the correct ARM | 
|  | * NZCV flag state. | 
|  | */ | 
|  | static inline uint32_t float_rel_to_flags(int res) | 
|  | { | 
|  | uint64_t flags; | 
|  | switch (res) { | 
|  | case float_relation_equal: | 
|  | flags = PSTATE_Z | PSTATE_C; | 
|  | break; | 
|  | case float_relation_less: | 
|  | flags = PSTATE_N; | 
|  | break; | 
|  | case float_relation_greater: | 
|  | flags = PSTATE_C; | 
|  | break; | 
|  | case float_relation_unordered: | 
|  | default: | 
|  | flags = PSTATE_C | PSTATE_V; | 
|  | break; | 
|  | } | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) | 
|  | { | 
|  | return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) | 
|  | { | 
|  | return float_rel_to_flags(float32_compare(x, y, fp_status)); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) | 
|  | { | 
|  | return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) | 
|  | { | 
|  | return float_rel_to_flags(float64_compare(x, y, fp_status)); | 
|  | } | 
|  |  | 
|  | float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  |  | 
|  | if ((float32_is_zero(a) && float32_is_infinity(b)) || | 
|  | (float32_is_infinity(a) && float32_is_zero(b))) { | 
|  | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | 
|  | return make_float32((1U << 30) | | 
|  | ((float32_val(a) ^ float32_val(b)) & (1U << 31))); | 
|  | } | 
|  | return float32_mul(a, b, fpst); | 
|  | } | 
|  |  | 
|  | float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  |  | 
|  | if ((float64_is_zero(a) && float64_is_infinity(b)) || | 
|  | (float64_is_infinity(a) && float64_is_zero(b))) { | 
|  | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | 
|  | return make_float64((1ULL << 62) | | 
|  | ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); | 
|  | } | 
|  | return float64_mul(a, b, fpst); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices, | 
|  | uint32_t rn, uint32_t numregs) | 
|  | { | 
|  | /* Helper function for SIMD TBL and TBX. We have to do the table | 
|  | * lookup part for the 64 bits worth of indices we're passed in. | 
|  | * result is the initial results vector (either zeroes for TBL | 
|  | * or some guest values for TBX), rn the register number where | 
|  | * the table starts, and numregs the number of registers in the table. | 
|  | * We return the results of the lookups. | 
|  | */ | 
|  | int shift; | 
|  |  | 
|  | for (shift = 0; shift < 64; shift += 8) { | 
|  | int index = extract64(indices, shift, 8); | 
|  | if (index < 16 * numregs) { | 
|  | /* Convert index (a byte offset into the virtual table | 
|  | * which is a series of 128-bit vectors concatenated) | 
|  | * into the correct vfp.regs[] element plus a bit offset | 
|  | * into that element, bearing in mind that the table | 
|  | * can wrap around from V31 to V0. | 
|  | */ | 
|  | int elt = (rn * 2 + (index >> 3)) % 64; | 
|  | int bitidx = (index & 7) * 8; | 
|  | uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8); | 
|  |  | 
|  | result = deposit64(result, shift, 8, val); | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* 64bit/double versions of the neon float compare functions */ | 
|  | uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | return -float64_eq_quiet(a, b, fpst); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | return -float64_le(b, a, fpst); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | return -float64_lt(b, a, fpst); | 
|  | } | 
|  |  | 
|  | /* Reciprocal step and sqrt step. Note that unlike the A32/T32 | 
|  | * versions, these do a fully fused multiply-add or | 
|  | * multiply-add-and-halve. | 
|  | */ | 
|  | #define float32_two make_float32(0x40000000) | 
|  | #define float32_three make_float32(0x40400000) | 
|  | #define float32_one_point_five make_float32(0x3fc00000) | 
|  |  | 
|  | #define float64_two make_float64(0x4000000000000000ULL) | 
|  | #define float64_three make_float64(0x4008000000000000ULL) | 
|  | #define float64_one_point_five make_float64(0x3FF8000000000000ULL) | 
|  |  | 
|  | float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  |  | 
|  | a = float32_chs(a); | 
|  | if ((float32_is_infinity(a) && float32_is_zero(b)) || | 
|  | (float32_is_infinity(b) && float32_is_zero(a))) { | 
|  | return float32_two; | 
|  | } | 
|  | return float32_muladd(a, b, float32_two, 0, fpst); | 
|  | } | 
|  |  | 
|  | float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  |  | 
|  | a = float64_chs(a); | 
|  | if ((float64_is_infinity(a) && float64_is_zero(b)) || | 
|  | (float64_is_infinity(b) && float64_is_zero(a))) { | 
|  | return float64_two; | 
|  | } | 
|  | return float64_muladd(a, b, float64_two, 0, fpst); | 
|  | } | 
|  |  | 
|  | float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  |  | 
|  | a = float32_chs(a); | 
|  | if ((float32_is_infinity(a) && float32_is_zero(b)) || | 
|  | (float32_is_infinity(b) && float32_is_zero(a))) { | 
|  | return float32_one_point_five; | 
|  | } | 
|  | return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); | 
|  | } | 
|  |  | 
|  | float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  |  | 
|  | a = float64_chs(a); | 
|  | if ((float64_is_infinity(a) && float64_is_zero(b)) || | 
|  | (float64_is_infinity(b) && float64_is_zero(a))) { | 
|  | return float64_one_point_five; | 
|  | } | 
|  | return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); | 
|  | } | 
|  |  | 
|  | /* Pairwise long add: add pairs of adjacent elements into | 
|  | * double-width elements in the result (eg _s8 is an 8x8->16 op) | 
|  | */ | 
|  | uint64_t HELPER(neon_addlp_s8)(uint64_t a) | 
|  | { | 
|  | uint64_t nsignmask = 0x0080008000800080ULL; | 
|  | uint64_t wsignmask = 0x8000800080008000ULL; | 
|  | uint64_t elementmask = 0x00ff00ff00ff00ffULL; | 
|  | uint64_t tmp1, tmp2; | 
|  | uint64_t res, signres; | 
|  |  | 
|  | /* Extract odd elements, sign extend each to a 16 bit field */ | 
|  | tmp1 = a & elementmask; | 
|  | tmp1 ^= nsignmask; | 
|  | tmp1 |= wsignmask; | 
|  | tmp1 = (tmp1 - nsignmask) ^ wsignmask; | 
|  | /* Ditto for the even elements */ | 
|  | tmp2 = (a >> 8) & elementmask; | 
|  | tmp2 ^= nsignmask; | 
|  | tmp2 |= wsignmask; | 
|  | tmp2 = (tmp2 - nsignmask) ^ wsignmask; | 
|  |  | 
|  | /* calculate the result by summing bits 0..14, 16..22, etc, | 
|  | * and then adjusting the sign bits 15, 23, etc manually. | 
|  | * This ensures the addition can't overflow the 16 bit field. | 
|  | */ | 
|  | signres = (tmp1 ^ tmp2) & wsignmask; | 
|  | res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); | 
|  | res ^= signres; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_addlp_u8)(uint64_t a) | 
|  | { | 
|  | uint64_t tmp; | 
|  |  | 
|  | tmp = a & 0x00ff00ff00ff00ffULL; | 
|  | tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_addlp_s16)(uint64_t a) | 
|  | { | 
|  | int32_t reslo, reshi; | 
|  |  | 
|  | reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); | 
|  | reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); | 
|  |  | 
|  | return (uint32_t)reslo | (((uint64_t)reshi) << 32); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(neon_addlp_u16)(uint64_t a) | 
|  | { | 
|  | uint64_t tmp; | 
|  |  | 
|  | tmp = a & 0x0000ffff0000ffffULL; | 
|  | tmp += (a >> 16) & 0x0000ffff0000ffffULL; | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ | 
|  | float32 HELPER(frecpx_f32)(float32 a, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | uint32_t val32, sbit; | 
|  | int32_t exp; | 
|  |  | 
|  | if (float32_is_any_nan(a)) { | 
|  | float32 nan = a; | 
|  | if (float32_is_signaling_nan(a)) { | 
|  | float_raise(float_flag_invalid, fpst); | 
|  | nan = float32_maybe_silence_nan(a); | 
|  | } | 
|  | if (fpst->default_nan_mode) { | 
|  | nan = float32_default_nan; | 
|  | } | 
|  | return nan; | 
|  | } | 
|  |  | 
|  | val32 = float32_val(a); | 
|  | sbit = 0x80000000ULL & val32; | 
|  | exp = extract32(val32, 23, 8); | 
|  |  | 
|  | if (exp == 0) { | 
|  | return make_float32(sbit | (0xfe << 23)); | 
|  | } else { | 
|  | return make_float32(sbit | (~exp & 0xff) << 23); | 
|  | } | 
|  | } | 
|  |  | 
|  | float64 HELPER(frecpx_f64)(float64 a, void *fpstp) | 
|  | { | 
|  | float_status *fpst = fpstp; | 
|  | uint64_t val64, sbit; | 
|  | int64_t exp; | 
|  |  | 
|  | if (float64_is_any_nan(a)) { | 
|  | float64 nan = a; | 
|  | if (float64_is_signaling_nan(a)) { | 
|  | float_raise(float_flag_invalid, fpst); | 
|  | nan = float64_maybe_silence_nan(a); | 
|  | } | 
|  | if (fpst->default_nan_mode) { | 
|  | nan = float64_default_nan; | 
|  | } | 
|  | return nan; | 
|  | } | 
|  |  | 
|  | val64 = float64_val(a); | 
|  | sbit = 0x8000000000000000ULL & val64; | 
|  | exp = extract64(float64_val(a), 52, 11); | 
|  |  | 
|  | if (exp == 0) { | 
|  | return make_float64(sbit | (0x7feULL << 52)); | 
|  | } else { | 
|  | return make_float64(sbit | (~exp & 0x7ffULL) << 52); | 
|  | } | 
|  | } | 
|  |  | 
|  | float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) | 
|  | { | 
|  | /* Von Neumann rounding is implemented by using round-to-zero | 
|  | * and then setting the LSB of the result if Inexact was raised. | 
|  | */ | 
|  | float32 r; | 
|  | float_status *fpst = &env->vfp.fp_status; | 
|  | float_status tstat = *fpst; | 
|  | int exflags; | 
|  |  | 
|  | set_float_rounding_mode(float_round_to_zero, &tstat); | 
|  | set_float_exception_flags(0, &tstat); | 
|  | r = float64_to_float32(a, &tstat); | 
|  | r = float32_maybe_silence_nan(r); | 
|  | exflags = get_float_exception_flags(&tstat); | 
|  | if (exflags & float_flag_inexact) { | 
|  | r = make_float32(float32_val(r) | 1); | 
|  | } | 
|  | exflags |= get_float_exception_flags(fpst); | 
|  | set_float_exception_flags(exflags, fpst); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* 64-bit versions of the CRC helpers. Note that although the operation | 
|  | * (and the prototypes of crc32c() and crc32() mean that only the bottom | 
|  | * 32 bits of the accumulator and result are used, we pass and return | 
|  | * uint64_t for convenience of the generated code. Unlike the 32-bit | 
|  | * instruction set versions, val may genuinely have 64 bits of data in it. | 
|  | * The upper bytes of val (above the number specified by 'bytes') must have | 
|  | * been zeroed out by the caller. | 
|  | */ | 
|  | uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) | 
|  | { | 
|  | uint8_t buf[8]; | 
|  |  | 
|  | stq_le_p(buf, val); | 
|  |  | 
|  | /* zlib crc32 converts the accumulator and output to one's complement.  */ | 
|  | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) | 
|  | { | 
|  | uint8_t buf[8]; | 
|  |  | 
|  | stq_le_p(buf, val); | 
|  |  | 
|  | /* Linux crc32c converts the output to one's complement.  */ | 
|  | return crc32c(acc, buf, bytes) ^ 0xffffffff; | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | /* Handle a CPU exception.  */ | 
|  | void aarch64_cpu_do_interrupt(CPUState *cs) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  | unsigned int new_el = arm_excp_target_el(cs, cs->exception_index); | 
|  | target_ulong addr = env->cp15.vbar_el[new_el]; | 
|  | unsigned int new_mode = aarch64_pstate_mode(new_el, true); | 
|  | int i; | 
|  |  | 
|  | if (arm_current_el(env) < new_el) { | 
|  | if (env->aarch64) { | 
|  | addr += 0x400; | 
|  | } else { | 
|  | addr += 0x600; | 
|  | } | 
|  | } else if (pstate_read(env) & PSTATE_SP) { | 
|  | addr += 0x200; | 
|  | } | 
|  |  | 
|  | arm_log_exception(cs->exception_index); | 
|  | qemu_log_mask(CPU_LOG_INT, "...from EL%d\n", arm_current_el(env)); | 
|  | if (qemu_loglevel_mask(CPU_LOG_INT) | 
|  | && !excp_is_internal(cs->exception_index)) { | 
|  | qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%" PRIx32 "\n", | 
|  | env->exception.syndrome); | 
|  | } | 
|  |  | 
|  | if (arm_is_psci_call(cpu, cs->exception_index)) { | 
|  | arm_handle_psci_call(cpu); | 
|  | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (cs->exception_index) { | 
|  | case EXCP_PREFETCH_ABORT: | 
|  | case EXCP_DATA_ABORT: | 
|  | env->cp15.far_el[new_el] = env->exception.vaddress; | 
|  | qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", | 
|  | env->cp15.far_el[new_el]); | 
|  | /* fall through */ | 
|  | case EXCP_BKPT: | 
|  | case EXCP_UDEF: | 
|  | case EXCP_SWI: | 
|  | case EXCP_HVC: | 
|  | case EXCP_HYP_TRAP: | 
|  | case EXCP_SMC: | 
|  | env->cp15.esr_el[new_el] = env->exception.syndrome; | 
|  | break; | 
|  | case EXCP_IRQ: | 
|  | case EXCP_VIRQ: | 
|  | addr += 0x80; | 
|  | break; | 
|  | case EXCP_FIQ: | 
|  | case EXCP_VFIQ: | 
|  | addr += 0x100; | 
|  | break; | 
|  | default: | 
|  | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | 
|  | } | 
|  |  | 
|  | if (is_a64(env)) { | 
|  | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); | 
|  | aarch64_save_sp(env, arm_current_el(env)); | 
|  | env->elr_el[new_el] = env->pc; | 
|  | } else { | 
|  | env->banked_spsr[0] = cpsr_read(env); | 
|  | if (!env->thumb) { | 
|  | env->cp15.esr_el[new_el] |= 1 << 25; | 
|  | } | 
|  | env->elr_el[new_el] = env->regs[15]; | 
|  |  | 
|  | for (i = 0; i < 15; i++) { | 
|  | env->xregs[i] = env->regs[i]; | 
|  | } | 
|  |  | 
|  | env->condexec_bits = 0; | 
|  | } | 
|  |  | 
|  | pstate_write(env, PSTATE_DAIF | new_mode); | 
|  | env->aarch64 = 1; | 
|  | aarch64_restore_sp(env, new_el); | 
|  |  | 
|  | env->pc = addr; | 
|  | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | 
|  | } | 
|  | #endif |