|  | /* | 
|  | * TPR optimization for 32-bit Windows guests (XP and Server 2003) | 
|  | * | 
|  | * Copyright (C) 2007-2008 Qumranet Technologies | 
|  | * Copyright (C) 2012      Jan Kiszka, Siemens AG | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL version 2, or | 
|  | * (at your option) any later version. See the COPYING file in the | 
|  | * top-level directory. | 
|  | */ | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "sysemu/cpus.h" | 
|  | #include "sysemu/kvm.h" | 
|  | #include "hw/i386/apic_internal.h" | 
|  | #include "hw/sysbus.h" | 
|  |  | 
|  | #define VAPIC_IO_PORT           0x7e | 
|  |  | 
|  | #define VAPIC_CPU_SHIFT         7 | 
|  |  | 
|  | #define ROM_BLOCK_SIZE          512 | 
|  | #define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1)) | 
|  |  | 
|  | typedef enum VAPICMode { | 
|  | VAPIC_INACTIVE = 0, | 
|  | VAPIC_ACTIVE   = 1, | 
|  | VAPIC_STANDBY  = 2, | 
|  | } VAPICMode; | 
|  |  | 
|  | typedef struct VAPICHandlers { | 
|  | uint32_t set_tpr; | 
|  | uint32_t set_tpr_eax; | 
|  | uint32_t get_tpr[8]; | 
|  | uint32_t get_tpr_stack; | 
|  | } QEMU_PACKED VAPICHandlers; | 
|  |  | 
|  | typedef struct GuestROMState { | 
|  | char signature[8]; | 
|  | uint32_t vaddr; | 
|  | uint32_t fixup_start; | 
|  | uint32_t fixup_end; | 
|  | uint32_t vapic_vaddr; | 
|  | uint32_t vapic_size; | 
|  | uint32_t vcpu_shift; | 
|  | uint32_t real_tpr_addr; | 
|  | VAPICHandlers up; | 
|  | VAPICHandlers mp; | 
|  | } QEMU_PACKED GuestROMState; | 
|  |  | 
|  | typedef struct VAPICROMState { | 
|  | SysBusDevice busdev; | 
|  | MemoryRegion io; | 
|  | MemoryRegion rom; | 
|  | uint32_t state; | 
|  | uint32_t rom_state_paddr; | 
|  | uint32_t rom_state_vaddr; | 
|  | uint32_t vapic_paddr; | 
|  | uint32_t real_tpr_addr; | 
|  | GuestROMState rom_state; | 
|  | size_t rom_size; | 
|  | bool rom_mapped_writable; | 
|  | } VAPICROMState; | 
|  |  | 
|  | #define TYPE_VAPIC "kvmvapic" | 
|  | #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC) | 
|  |  | 
|  | #define TPR_INSTR_ABS_MODRM             0x1 | 
|  | #define TPR_INSTR_MATCH_MODRM_REG       0x2 | 
|  |  | 
|  | typedef struct TPRInstruction { | 
|  | uint8_t opcode; | 
|  | uint8_t modrm_reg; | 
|  | unsigned int flags; | 
|  | TPRAccess access; | 
|  | size_t length; | 
|  | off_t addr_offset; | 
|  | } TPRInstruction; | 
|  |  | 
|  | /* must be sorted by length, shortest first */ | 
|  | static const TPRInstruction tpr_instr[] = { | 
|  | { /* mov abs to eax */ | 
|  | .opcode = 0xa1, | 
|  | .access = TPR_ACCESS_READ, | 
|  | .length = 5, | 
|  | .addr_offset = 1, | 
|  | }, | 
|  | { /* mov eax to abs */ | 
|  | .opcode = 0xa3, | 
|  | .access = TPR_ACCESS_WRITE, | 
|  | .length = 5, | 
|  | .addr_offset = 1, | 
|  | }, | 
|  | { /* mov r32 to r/m32 */ | 
|  | .opcode = 0x89, | 
|  | .flags = TPR_INSTR_ABS_MODRM, | 
|  | .access = TPR_ACCESS_WRITE, | 
|  | .length = 6, | 
|  | .addr_offset = 2, | 
|  | }, | 
|  | { /* mov r/m32 to r32 */ | 
|  | .opcode = 0x8b, | 
|  | .flags = TPR_INSTR_ABS_MODRM, | 
|  | .access = TPR_ACCESS_READ, | 
|  | .length = 6, | 
|  | .addr_offset = 2, | 
|  | }, | 
|  | { /* push r/m32 */ | 
|  | .opcode = 0xff, | 
|  | .modrm_reg = 6, | 
|  | .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG, | 
|  | .access = TPR_ACCESS_READ, | 
|  | .length = 6, | 
|  | .addr_offset = 2, | 
|  | }, | 
|  | { /* mov imm32, r/m32 (c7/0) */ | 
|  | .opcode = 0xc7, | 
|  | .modrm_reg = 0, | 
|  | .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG, | 
|  | .access = TPR_ACCESS_WRITE, | 
|  | .length = 10, | 
|  | .addr_offset = 2, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void read_guest_rom_state(VAPICROMState *s) | 
|  | { | 
|  | cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state, | 
|  | sizeof(GuestROMState)); | 
|  | } | 
|  |  | 
|  | static void write_guest_rom_state(VAPICROMState *s) | 
|  | { | 
|  | cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state, | 
|  | sizeof(GuestROMState)); | 
|  | } | 
|  |  | 
|  | static void update_guest_rom_state(VAPICROMState *s) | 
|  | { | 
|  | read_guest_rom_state(s); | 
|  |  | 
|  | s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr); | 
|  | s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT); | 
|  |  | 
|  | write_guest_rom_state(s); | 
|  | } | 
|  |  | 
|  | static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env) | 
|  | { | 
|  | CPUState *cs = CPU(x86_env_get_cpu(env)); | 
|  | hwaddr paddr; | 
|  | target_ulong addr; | 
|  |  | 
|  | if (s->state == VAPIC_ACTIVE) { | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * If there is no prior TPR access instruction we could analyze (which is | 
|  | * the case after resume from hibernation), we need to scan the possible | 
|  | * virtual address space for the APIC mapping. | 
|  | */ | 
|  | for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) { | 
|  | paddr = cpu_get_phys_page_debug(cs, addr); | 
|  | if (paddr != APIC_DEFAULT_ADDRESS) { | 
|  | continue; | 
|  | } | 
|  | s->real_tpr_addr = addr + 0x80; | 
|  | update_guest_rom_state(s); | 
|  | return 0; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static uint8_t modrm_reg(uint8_t modrm) | 
|  | { | 
|  | return (modrm >> 3) & 7; | 
|  | } | 
|  |  | 
|  | static bool is_abs_modrm(uint8_t modrm) | 
|  | { | 
|  | return (modrm & 0xc7) == 0x05; | 
|  | } | 
|  |  | 
|  | static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr) | 
|  | { | 
|  | return opcode[0] == instr->opcode && | 
|  | (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) && | 
|  | (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) || | 
|  | modrm_reg(opcode[1]) == instr->modrm_reg); | 
|  | } | 
|  |  | 
|  | static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu, | 
|  | target_ulong *pip, TPRAccess access) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | const TPRInstruction *instr; | 
|  | target_ulong ip = *pip; | 
|  | uint8_t opcode[2]; | 
|  | uint32_t real_tpr_addr; | 
|  | int i; | 
|  |  | 
|  | if ((ip & 0xf0000000ULL) != 0x80000000ULL && | 
|  | (ip & 0xf0000000ULL) != 0xe0000000ULL) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Early Windows 2003 SMP initialization contains a | 
|  | * | 
|  | *   mov imm32, r/m32 | 
|  | * | 
|  | * instruction that is patched by TPR optimization. The problem is that | 
|  | * RSP, used by the patched instruction, is zero, so the guest gets a | 
|  | * double fault and dies. | 
|  | */ | 
|  | if (cpu->env.regs[R_ESP] == 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (kvm_enabled() && !kvm_irqchip_in_kernel()) { | 
|  | /* | 
|  | * KVM without kernel-based TPR access reporting will pass an IP that | 
|  | * points after the accessing instruction. So we need to look backward | 
|  | * to find the reason. | 
|  | */ | 
|  | for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) { | 
|  | instr = &tpr_instr[i]; | 
|  | if (instr->access != access) { | 
|  | continue; | 
|  | } | 
|  | if (cpu_memory_rw_debug(cs, ip - instr->length, opcode, | 
|  | sizeof(opcode), 0) < 0) { | 
|  | return -1; | 
|  | } | 
|  | if (opcode_matches(opcode, instr)) { | 
|  | ip -= instr->length; | 
|  | goto instruction_ok; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } else { | 
|  | if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) { | 
|  | return -1; | 
|  | } | 
|  | for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) { | 
|  | instr = &tpr_instr[i]; | 
|  | if (opcode_matches(opcode, instr)) { | 
|  | goto instruction_ok; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | instruction_ok: | 
|  | /* | 
|  | * Grab the virtual TPR address from the instruction | 
|  | * and update the cached values. | 
|  | */ | 
|  | if (cpu_memory_rw_debug(cs, ip + instr->addr_offset, | 
|  | (void *)&real_tpr_addr, | 
|  | sizeof(real_tpr_addr), 0) < 0) { | 
|  | return -1; | 
|  | } | 
|  | real_tpr_addr = le32_to_cpu(real_tpr_addr); | 
|  | if ((real_tpr_addr & 0xfff) != 0x80) { | 
|  | return -1; | 
|  | } | 
|  | s->real_tpr_addr = real_tpr_addr; | 
|  | update_guest_rom_state(s); | 
|  |  | 
|  | *pip = ip; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip) | 
|  | { | 
|  | CPUState *cs = CPU(x86_env_get_cpu(env)); | 
|  | hwaddr paddr; | 
|  | uint32_t rom_state_vaddr; | 
|  | uint32_t pos, patch, offset; | 
|  |  | 
|  | /* nothing to do if already activated */ | 
|  | if (s->state == VAPIC_ACTIVE) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* bail out if ROM init code was not executed (missing ROM?) */ | 
|  | if (s->state == VAPIC_INACTIVE) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* find out virtual address of the ROM */ | 
|  | rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000); | 
|  | paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr); | 
|  | if (paddr == -1) { | 
|  | return -1; | 
|  | } | 
|  | paddr += rom_state_vaddr & ~TARGET_PAGE_MASK; | 
|  | if (paddr != s->rom_state_paddr) { | 
|  | return -1; | 
|  | } | 
|  | read_guest_rom_state(s); | 
|  | if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) { | 
|  | return -1; | 
|  | } | 
|  | s->rom_state_vaddr = rom_state_vaddr; | 
|  |  | 
|  | /* fixup addresses in ROM if needed */ | 
|  | if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) { | 
|  | return 0; | 
|  | } | 
|  | for (pos = le32_to_cpu(s->rom_state.fixup_start); | 
|  | pos < le32_to_cpu(s->rom_state.fixup_end); | 
|  | pos += 4) { | 
|  | cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr, | 
|  | &offset, sizeof(offset)); | 
|  | offset = le32_to_cpu(offset); | 
|  | cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch)); | 
|  | patch = le32_to_cpu(patch); | 
|  | patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr); | 
|  | patch = cpu_to_le32(patch); | 
|  | cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch)); | 
|  | } | 
|  | read_guest_rom_state(s); | 
|  | s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) - | 
|  | le32_to_cpu(s->rom_state.vaddr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tries to read the unique processor number from the Kernel Processor Control | 
|  | * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR | 
|  | * cannot be accessed or is considered invalid. This also ensures that we are | 
|  | * not patching the wrong guest. | 
|  | */ | 
|  | static int get_kpcr_number(X86CPU *cpu) | 
|  | { | 
|  | CPUX86State *env = &cpu->env; | 
|  | struct kpcr { | 
|  | uint8_t  fill1[0x1c]; | 
|  | uint32_t self; | 
|  | uint8_t  fill2[0x31]; | 
|  | uint8_t  number; | 
|  | } QEMU_PACKED kpcr; | 
|  |  | 
|  | if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base, | 
|  | (void *)&kpcr, sizeof(kpcr), 0) < 0 || | 
|  | kpcr.self != env->segs[R_FS].base) { | 
|  | return -1; | 
|  | } | 
|  | return kpcr.number; | 
|  | } | 
|  |  | 
|  | static int vapic_enable(VAPICROMState *s, X86CPU *cpu) | 
|  | { | 
|  | int cpu_number = get_kpcr_number(cpu); | 
|  | hwaddr vapic_paddr; | 
|  | static const uint8_t enabled = 1; | 
|  |  | 
|  | if (cpu_number < 0) { | 
|  | return -1; | 
|  | } | 
|  | vapic_paddr = s->vapic_paddr + | 
|  | (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT); | 
|  | cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled), | 
|  | &enabled, sizeof(enabled)); | 
|  | apic_enable_vapic(cpu->apic_state, vapic_paddr); | 
|  |  | 
|  | s->state = VAPIC_ACTIVE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte) | 
|  | { | 
|  | cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1); | 
|  | } | 
|  |  | 
|  | static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip, | 
|  | uint32_t target) | 
|  | { | 
|  | uint32_t offset; | 
|  |  | 
|  | offset = cpu_to_le32(target - ip - 5); | 
|  | patch_byte(cpu, ip, 0xe8); /* call near */ | 
|  | cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1); | 
|  | } | 
|  |  | 
|  | static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | CPUX86State *env = &cpu->env; | 
|  | VAPICHandlers *handlers; | 
|  | uint8_t opcode[2]; | 
|  | uint32_t imm32; | 
|  | target_ulong current_pc = 0; | 
|  | target_ulong current_cs_base = 0; | 
|  | int current_flags = 0; | 
|  |  | 
|  | if (smp_cpus == 1) { | 
|  | handlers = &s->rom_state.up; | 
|  | } else { | 
|  | handlers = &s->rom_state.mp; | 
|  | } | 
|  |  | 
|  | if (!kvm_enabled()) { | 
|  | cpu_restore_state(cs, cs->mem_io_pc); | 
|  | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | 
|  | ¤t_flags); | 
|  | } | 
|  |  | 
|  | pause_all_vcpus(); | 
|  |  | 
|  | cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0); | 
|  |  | 
|  | switch (opcode[0]) { | 
|  | case 0x89: /* mov r32 to r/m32 */ | 
|  | patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */ | 
|  | patch_call(s, cpu, ip + 1, handlers->set_tpr); | 
|  | break; | 
|  | case 0x8b: /* mov r/m32 to r32 */ | 
|  | patch_byte(cpu, ip, 0x90); | 
|  | patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]); | 
|  | break; | 
|  | case 0xa1: /* mov abs to eax */ | 
|  | patch_call(s, cpu, ip, handlers->get_tpr[0]); | 
|  | break; | 
|  | case 0xa3: /* mov eax to abs */ | 
|  | patch_call(s, cpu, ip, handlers->set_tpr_eax); | 
|  | break; | 
|  | case 0xc7: /* mov imm32, r/m32 (c7/0) */ | 
|  | patch_byte(cpu, ip, 0x68);  /* push imm32 */ | 
|  | cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0); | 
|  | cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1); | 
|  | patch_call(s, cpu, ip + 5, handlers->set_tpr); | 
|  | break; | 
|  | case 0xff: /* push r/m32 */ | 
|  | patch_byte(cpu, ip, 0x50); /* push eax */ | 
|  | patch_call(s, cpu, ip + 1, handlers->get_tpr_stack); | 
|  | break; | 
|  | default: | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | resume_all_vcpus(); | 
|  |  | 
|  | if (!kvm_enabled()) { | 
|  | cs->current_tb = NULL; | 
|  | tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1); | 
|  | cpu_resume_from_signal(cs, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip, | 
|  | TPRAccess access) | 
|  | { | 
|  | VAPICROMState *s = VAPIC(dev); | 
|  | X86CPU *cpu = X86_CPU(cs); | 
|  | CPUX86State *env = &cpu->env; | 
|  |  | 
|  | cpu_synchronize_state(cs); | 
|  |  | 
|  | if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) { | 
|  | if (s->state == VAPIC_ACTIVE) { | 
|  | vapic_enable(s, cpu); | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (update_rom_mapping(s, env, ip) < 0) { | 
|  | return; | 
|  | } | 
|  | if (vapic_enable(s, cpu) < 0) { | 
|  | return; | 
|  | } | 
|  | patch_instruction(s, cpu, ip); | 
|  | } | 
|  |  | 
|  | typedef struct VAPICEnableTPRReporting { | 
|  | DeviceState *apic; | 
|  | bool enable; | 
|  | } VAPICEnableTPRReporting; | 
|  |  | 
|  | static void vapic_do_enable_tpr_reporting(void *data) | 
|  | { | 
|  | VAPICEnableTPRReporting *info = data; | 
|  |  | 
|  | apic_enable_tpr_access_reporting(info->apic, info->enable); | 
|  | } | 
|  |  | 
|  | static void vapic_enable_tpr_reporting(bool enable) | 
|  | { | 
|  | VAPICEnableTPRReporting info = { | 
|  | .enable = enable, | 
|  | }; | 
|  | CPUState *cs; | 
|  | X86CPU *cpu; | 
|  |  | 
|  | CPU_FOREACH(cs) { | 
|  | cpu = X86_CPU(cs); | 
|  | info.apic = cpu->apic_state; | 
|  | run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vapic_reset(DeviceState *dev) | 
|  | { | 
|  | VAPICROMState *s = VAPIC(dev); | 
|  |  | 
|  | s->state = VAPIC_INACTIVE; | 
|  | s->rom_state_paddr = 0; | 
|  | vapic_enable_tpr_reporting(false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the IRQ polling hypercalls to the supported variant: | 
|  | *  - vmcall if using KVM in-kernel irqchip | 
|  | *  - 32-bit VAPIC port write otherwise | 
|  | */ | 
|  | static int patch_hypercalls(VAPICROMState *s) | 
|  | { | 
|  | hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK; | 
|  | static const uint8_t vmcall_pattern[] = { /* vmcall */ | 
|  | 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1 | 
|  | }; | 
|  | static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */ | 
|  | 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e | 
|  | }; | 
|  | uint8_t alternates[2]; | 
|  | const uint8_t *pattern; | 
|  | const uint8_t *patch; | 
|  | int patches = 0; | 
|  | off_t pos; | 
|  | uint8_t *rom; | 
|  |  | 
|  | rom = g_malloc(s->rom_size); | 
|  | cpu_physical_memory_read(rom_paddr, rom, s->rom_size); | 
|  |  | 
|  | for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) { | 
|  | if (kvm_irqchip_in_kernel()) { | 
|  | pattern = outl_pattern; | 
|  | alternates[0] = outl_pattern[7]; | 
|  | alternates[1] = outl_pattern[7]; | 
|  | patch = &vmcall_pattern[5]; | 
|  | } else { | 
|  | pattern = vmcall_pattern; | 
|  | alternates[0] = vmcall_pattern[7]; | 
|  | alternates[1] = 0xd9; /* AMD's VMMCALL */ | 
|  | patch = &outl_pattern[5]; | 
|  | } | 
|  | if (memcmp(rom + pos, pattern, 7) == 0 && | 
|  | (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) { | 
|  | cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3); | 
|  | /* | 
|  | * Don't flush the tb here. Under ordinary conditions, the patched | 
|  | * calls are miles away from the current IP. Under malicious | 
|  | * conditions, the guest could trick us to crash. | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | g_free(rom); | 
|  |  | 
|  | if (patches != 0 && patches != 2) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For TCG mode or the time KVM honors read-only memory regions, we need to | 
|  | * enable write access to the option ROM so that variables can be updated by | 
|  | * the guest. | 
|  | */ | 
|  | static int vapic_map_rom_writable(VAPICROMState *s) | 
|  | { | 
|  | hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK; | 
|  | MemoryRegionSection section; | 
|  | MemoryRegion *as; | 
|  | size_t rom_size; | 
|  | uint8_t *ram; | 
|  |  | 
|  | as = sysbus_address_space(&s->busdev); | 
|  |  | 
|  | if (s->rom_mapped_writable) { | 
|  | memory_region_del_subregion(as, &s->rom); | 
|  | memory_region_destroy(&s->rom); | 
|  | } | 
|  |  | 
|  | /* grab RAM memory region (region @rom_paddr may still be pc.rom) */ | 
|  | section = memory_region_find(as, 0, 1); | 
|  |  | 
|  | /* read ROM size from RAM region */ | 
|  | if (rom_paddr + 2 >= memory_region_size(section.mr)) { | 
|  | return -1; | 
|  | } | 
|  | ram = memory_region_get_ram_ptr(section.mr); | 
|  | rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE; | 
|  | if (rom_size == 0) { | 
|  | return -1; | 
|  | } | 
|  | s->rom_size = rom_size; | 
|  |  | 
|  | /* We need to round to avoid creating subpages | 
|  | * from which we cannot run code. */ | 
|  | rom_size += rom_paddr & ~TARGET_PAGE_MASK; | 
|  | rom_paddr &= TARGET_PAGE_MASK; | 
|  | rom_size = TARGET_PAGE_ALIGN(rom_size); | 
|  |  | 
|  | memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr, | 
|  | rom_paddr, rom_size); | 
|  | memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000); | 
|  | s->rom_mapped_writable = true; | 
|  | memory_region_unref(section.mr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vapic_prepare(VAPICROMState *s) | 
|  | { | 
|  | if (vapic_map_rom_writable(s) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (patch_hypercalls(s) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | vapic_enable_tpr_reporting(true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vapic_write(void *opaque, hwaddr addr, uint64_t data, | 
|  | unsigned int size) | 
|  | { | 
|  | CPUState *cs = current_cpu; | 
|  | X86CPU *cpu = X86_CPU(cs); | 
|  | CPUX86State *env = &cpu->env; | 
|  | hwaddr rom_paddr; | 
|  | VAPICROMState *s = opaque; | 
|  |  | 
|  | cpu_synchronize_state(cs); | 
|  |  | 
|  | /* | 
|  | * The VAPIC supports two PIO-based hypercalls, both via port 0x7E. | 
|  | *  o 16-bit write access: | 
|  | *    Reports the option ROM initialization to the hypervisor. Written | 
|  | *    value is the offset of the state structure in the ROM. | 
|  | *  o 8-bit write access: | 
|  | *    Reactivates the VAPIC after a guest hibernation, i.e. after the | 
|  | *    option ROM content has been re-initialized by a guest power cycle. | 
|  | *  o 32-bit write access: | 
|  | *    Poll for pending IRQs, considering the current VAPIC state. | 
|  | */ | 
|  | switch (size) { | 
|  | case 2: | 
|  | if (s->state == VAPIC_INACTIVE) { | 
|  | rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK; | 
|  | s->rom_state_paddr = rom_paddr + data; | 
|  |  | 
|  | s->state = VAPIC_STANDBY; | 
|  | } | 
|  | if (vapic_prepare(s) < 0) { | 
|  | s->state = VAPIC_INACTIVE; | 
|  | s->rom_state_paddr = 0; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 1: | 
|  | if (kvm_enabled()) { | 
|  | /* | 
|  | * Disable triggering instruction in ROM by writing a NOP. | 
|  | * | 
|  | * We cannot do this in TCG mode as the reported IP is not | 
|  | * accurate. | 
|  | */ | 
|  | pause_all_vcpus(); | 
|  | patch_byte(cpu, env->eip - 2, 0x66); | 
|  | patch_byte(cpu, env->eip - 1, 0x90); | 
|  | resume_all_vcpus(); | 
|  | } | 
|  |  | 
|  | if (s->state == VAPIC_ACTIVE) { | 
|  | break; | 
|  | } | 
|  | if (update_rom_mapping(s, env, env->eip) < 0) { | 
|  | break; | 
|  | } | 
|  | if (find_real_tpr_addr(s, env) < 0) { | 
|  | break; | 
|  | } | 
|  | vapic_enable(s, cpu); | 
|  | break; | 
|  | default: | 
|  | case 4: | 
|  | if (!kvm_irqchip_in_kernel()) { | 
|  | apic_poll_irq(cpu->apic_state); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size) | 
|  | { | 
|  | return 0xffffffff; | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps vapic_ops = { | 
|  | .write = vapic_write, | 
|  | .read = vapic_read, | 
|  | .endianness = DEVICE_NATIVE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static void vapic_realize(DeviceState *dev, Error **errp) | 
|  | { | 
|  | SysBusDevice *sbd = SYS_BUS_DEVICE(dev); | 
|  | VAPICROMState *s = VAPIC(dev); | 
|  |  | 
|  | memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2); | 
|  | sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io); | 
|  | sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2); | 
|  |  | 
|  | option_rom[nb_option_roms].name = "kvmvapic.bin"; | 
|  | option_rom[nb_option_roms].bootindex = -1; | 
|  | nb_option_roms++; | 
|  | } | 
|  |  | 
|  | static void do_vapic_enable(void *data) | 
|  | { | 
|  | VAPICROMState *s = data; | 
|  | X86CPU *cpu = X86_CPU(first_cpu); | 
|  |  | 
|  | vapic_enable(s, cpu); | 
|  | } | 
|  |  | 
|  | static int vapic_post_load(void *opaque, int version_id) | 
|  | { | 
|  | VAPICROMState *s = opaque; | 
|  | uint8_t *zero; | 
|  |  | 
|  | /* | 
|  | * The old implementation of qemu-kvm did not provide the state | 
|  | * VAPIC_STANDBY. Reconstruct it. | 
|  | */ | 
|  | if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) { | 
|  | s->state = VAPIC_STANDBY; | 
|  | } | 
|  |  | 
|  | if (s->state != VAPIC_INACTIVE) { | 
|  | if (vapic_prepare(s) < 0) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | if (s->state == VAPIC_ACTIVE) { | 
|  | if (smp_cpus == 1) { | 
|  | run_on_cpu(first_cpu, do_vapic_enable, s); | 
|  | } else { | 
|  | zero = g_malloc0(s->rom_state.vapic_size); | 
|  | cpu_physical_memory_write(s->vapic_paddr, zero, | 
|  | s->rom_state.vapic_size); | 
|  | g_free(zero); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_handlers = { | 
|  | .name = "kvmvapic-handlers", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .fields = (VMStateField[]) { | 
|  | VMSTATE_UINT32(set_tpr, VAPICHandlers), | 
|  | VMSTATE_UINT32(set_tpr_eax, VAPICHandlers), | 
|  | VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8), | 
|  | VMSTATE_UINT32(get_tpr_stack, VAPICHandlers), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_guest_rom = { | 
|  | .name = "kvmvapic-guest-rom", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .fields = (VMStateField[]) { | 
|  | VMSTATE_UNUSED(8),     /* signature */ | 
|  | VMSTATE_UINT32(vaddr, GuestROMState), | 
|  | VMSTATE_UINT32(fixup_start, GuestROMState), | 
|  | VMSTATE_UINT32(fixup_end, GuestROMState), | 
|  | VMSTATE_UINT32(vapic_vaddr, GuestROMState), | 
|  | VMSTATE_UINT32(vapic_size, GuestROMState), | 
|  | VMSTATE_UINT32(vcpu_shift, GuestROMState), | 
|  | VMSTATE_UINT32(real_tpr_addr, GuestROMState), | 
|  | VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers), | 
|  | VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_vapic = { | 
|  | .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */ | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .post_load = vapic_post_load, | 
|  | .fields = (VMStateField[]) { | 
|  | VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom, | 
|  | GuestROMState), | 
|  | VMSTATE_UINT32(state, VAPICROMState), | 
|  | VMSTATE_UINT32(real_tpr_addr, VAPICROMState), | 
|  | VMSTATE_UINT32(rom_state_vaddr, VAPICROMState), | 
|  | VMSTATE_UINT32(vapic_paddr, VAPICROMState), | 
|  | VMSTATE_UINT32(rom_state_paddr, VAPICROMState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void vapic_class_init(ObjectClass *klass, void *data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  |  | 
|  | dc->reset   = vapic_reset; | 
|  | dc->vmsd    = &vmstate_vapic; | 
|  | dc->realize = vapic_realize; | 
|  | } | 
|  |  | 
|  | static const TypeInfo vapic_type = { | 
|  | .name          = TYPE_VAPIC, | 
|  | .parent        = TYPE_SYS_BUS_DEVICE, | 
|  | .instance_size = sizeof(VAPICROMState), | 
|  | .class_init    = vapic_class_init, | 
|  | }; | 
|  |  | 
|  | static void vapic_register(void) | 
|  | { | 
|  | type_register_static(&vapic_type); | 
|  | } | 
|  |  | 
|  | type_init(vapic_register); |