|  | /* | 
|  | * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator | 
|  | * | 
|  | * Copyright (c) 2004-2007 Fabrice Bellard | 
|  | * Copyright (c) 2007 Jocelyn Mayer | 
|  | * Copyright (c) 2010 David Gibson, IBM Corporation. | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | * | 
|  | */ | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "hw/hw.h" | 
|  | #include "hw/fw-path-provider.h" | 
|  | #include "elf.h" | 
|  | #include "net/net.h" | 
|  | #include "sysemu/blockdev.h" | 
|  | #include "sysemu/cpus.h" | 
|  | #include "sysemu/kvm.h" | 
|  | #include "kvm_ppc.h" | 
|  | #include "mmu-hash64.h" | 
|  | #include "qom/cpu.h" | 
|  |  | 
|  | #include "hw/boards.h" | 
|  | #include "hw/ppc/ppc.h" | 
|  | #include "hw/loader.h" | 
|  |  | 
|  | #include "hw/ppc/spapr.h" | 
|  | #include "hw/ppc/spapr_vio.h" | 
|  | #include "hw/pci-host/spapr.h" | 
|  | #include "hw/ppc/xics.h" | 
|  | #include "hw/pci/msi.h" | 
|  |  | 
|  | #include "hw/pci/pci.h" | 
|  | #include "hw/scsi/scsi.h" | 
|  | #include "hw/virtio/virtio-scsi.h" | 
|  |  | 
|  | #include "exec/address-spaces.h" | 
|  | #include "hw/usb.h" | 
|  | #include "qemu/config-file.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | #include <libfdt.h> | 
|  |  | 
|  | /* SLOF memory layout: | 
|  | * | 
|  | * SLOF raw image loaded at 0, copies its romfs right below the flat | 
|  | * device-tree, then position SLOF itself 31M below that | 
|  | * | 
|  | * So we set FW_OVERHEAD to 40MB which should account for all of that | 
|  | * and more | 
|  | * | 
|  | * We load our kernel at 4M, leaving space for SLOF initial image | 
|  | */ | 
|  | #define FDT_MAX_SIZE            0x40000 | 
|  | #define RTAS_MAX_SIZE           0x10000 | 
|  | #define FW_MAX_SIZE             0x400000 | 
|  | #define FW_FILE_NAME            "slof.bin" | 
|  | #define FW_OVERHEAD             0x2800000 | 
|  | #define KERNEL_LOAD_ADDR        FW_MAX_SIZE | 
|  |  | 
|  | #define MIN_RMA_SLOF            128UL | 
|  |  | 
|  | #define TIMEBASE_FREQ           512000000ULL | 
|  |  | 
|  | #define MAX_CPUS                256 | 
|  |  | 
|  | #define PHANDLE_XICP            0x00001111 | 
|  |  | 
|  | #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift)) | 
|  |  | 
|  |  | 
|  | typedef struct SPAPRMachine SPAPRMachine; | 
|  | #define TYPE_SPAPR_MACHINE      "spapr-machine" | 
|  | #define SPAPR_MACHINE(obj) \ | 
|  | OBJECT_CHECK(SPAPRMachine, (obj), TYPE_SPAPR_MACHINE) | 
|  |  | 
|  | /** | 
|  | * SPAPRMachine: | 
|  | */ | 
|  | struct SPAPRMachine { | 
|  | /*< private >*/ | 
|  | MachineState parent_obj; | 
|  |  | 
|  | /*< public >*/ | 
|  | char *kvm_type; | 
|  | }; | 
|  |  | 
|  |  | 
|  | sPAPREnvironment *spapr; | 
|  |  | 
|  | int spapr_allocate_irq(int hint, bool lsi) | 
|  | { | 
|  | int irq; | 
|  |  | 
|  | if (hint) { | 
|  | irq = hint; | 
|  | if (hint >= spapr->next_irq) { | 
|  | spapr->next_irq = hint + 1; | 
|  | } | 
|  | /* FIXME: we should probably check for collisions somehow */ | 
|  | } else { | 
|  | irq = spapr->next_irq++; | 
|  | } | 
|  |  | 
|  | /* Configure irq type */ | 
|  | if (!xics_get_qirq(spapr->icp, irq)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xics_set_irq_type(spapr->icp, irq, lsi); | 
|  |  | 
|  | return irq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate block of consequtive IRQs, returns a number of the first. | 
|  | * If msi==true, aligns the first IRQ number to num. | 
|  | */ | 
|  | int spapr_allocate_irq_block(int num, bool lsi, bool msi) | 
|  | { | 
|  | int first = -1; | 
|  | int i, hint = 0; | 
|  |  | 
|  | /* | 
|  | * MSIMesage::data is used for storing VIRQ so | 
|  | * it has to be aligned to num to support multiple | 
|  | * MSI vectors. MSI-X is not affected by this. | 
|  | * The hint is used for the first IRQ, the rest should | 
|  | * be allocated continuously. | 
|  | */ | 
|  | if (msi) { | 
|  | assert((num == 1) || (num == 2) || (num == 4) || | 
|  | (num == 8) || (num == 16) || (num == 32)); | 
|  | hint = (spapr->next_irq + num - 1) & ~(num - 1); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num; ++i) { | 
|  | int irq; | 
|  |  | 
|  | irq = spapr_allocate_irq(hint, lsi); | 
|  | if (!irq) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (0 == i) { | 
|  | first = irq; | 
|  | hint = 0; | 
|  | } | 
|  |  | 
|  | /* If the above doesn't create a consecutive block then that's | 
|  | * an internal bug */ | 
|  | assert(irq == (first + i)); | 
|  | } | 
|  |  | 
|  | return first; | 
|  | } | 
|  |  | 
|  | static XICSState *try_create_xics(const char *type, int nr_servers, | 
|  | int nr_irqs) | 
|  | { | 
|  | DeviceState *dev; | 
|  |  | 
|  | dev = qdev_create(NULL, type); | 
|  | qdev_prop_set_uint32(dev, "nr_servers", nr_servers); | 
|  | qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs); | 
|  | if (qdev_init(dev) < 0) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return XICS_COMMON(dev); | 
|  | } | 
|  |  | 
|  | static XICSState *xics_system_init(int nr_servers, int nr_irqs) | 
|  | { | 
|  | XICSState *icp = NULL; | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | QemuOpts *machine_opts = qemu_get_machine_opts(); | 
|  | bool irqchip_allowed = qemu_opt_get_bool(machine_opts, | 
|  | "kernel_irqchip", true); | 
|  | bool irqchip_required = qemu_opt_get_bool(machine_opts, | 
|  | "kernel_irqchip", false); | 
|  | if (irqchip_allowed) { | 
|  | icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs); | 
|  | } | 
|  |  | 
|  | if (irqchip_required && !icp) { | 
|  | perror("Failed to create in-kernel XICS\n"); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!icp) { | 
|  | icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs); | 
|  | } | 
|  |  | 
|  | if (!icp) { | 
|  | perror("Failed to create XICS\n"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | return icp; | 
|  | } | 
|  |  | 
|  | static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, | 
|  | int smt_threads) | 
|  | { | 
|  | int i, ret = 0; | 
|  | uint32_t servers_prop[smt_threads]; | 
|  | uint32_t gservers_prop[smt_threads * 2]; | 
|  | int index = ppc_get_vcpu_dt_id(cpu); | 
|  |  | 
|  | if (cpu->cpu_version) { | 
|  | ret = fdt_setprop(fdt, offset, "cpu-version", | 
|  | &cpu->cpu_version, sizeof(cpu->cpu_version)); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Build interrupt servers and gservers properties */ | 
|  | for (i = 0; i < smt_threads; i++) { | 
|  | servers_prop[i] = cpu_to_be32(index + i); | 
|  | /* Hack, direct the group queues back to cpu 0 */ | 
|  | gservers_prop[i*2] = cpu_to_be32(index + i); | 
|  | gservers_prop[i*2 + 1] = 0; | 
|  | } | 
|  | ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", | 
|  | servers_prop, sizeof(servers_prop)); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", | 
|  | gservers_prop, sizeof(gservers_prop)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr) | 
|  | { | 
|  | int ret = 0, offset, cpus_offset; | 
|  | CPUState *cs; | 
|  | char cpu_model[32]; | 
|  | int smt = kvmppc_smt_threads(); | 
|  | uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; | 
|  |  | 
|  | CPU_FOREACH(cs) { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | DeviceClass *dc = DEVICE_GET_CLASS(cs); | 
|  | int index = ppc_get_vcpu_dt_id(cpu); | 
|  | uint32_t associativity[] = {cpu_to_be32(0x5), | 
|  | cpu_to_be32(0x0), | 
|  | cpu_to_be32(0x0), | 
|  | cpu_to_be32(0x0), | 
|  | cpu_to_be32(cs->numa_node), | 
|  | cpu_to_be32(index)}; | 
|  |  | 
|  | if ((index % smt) != 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); | 
|  |  | 
|  | cpus_offset = fdt_path_offset(fdt, "/cpus"); | 
|  | if (cpus_offset < 0) { | 
|  | cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), | 
|  | "cpus"); | 
|  | if (cpus_offset < 0) { | 
|  | return cpus_offset; | 
|  | } | 
|  | } | 
|  | offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); | 
|  | if (offset < 0) { | 
|  | offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); | 
|  | if (offset < 0) { | 
|  | return offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nb_numa_nodes > 1) { | 
|  | ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, | 
|  | sizeof(associativity)); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = fdt_setprop(fdt, offset, "ibm,pft-size", | 
|  | pft_size_prop, sizeof(pft_size_prop)); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, | 
|  | ppc_get_compat_smt_threads(cpu)); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop, | 
|  | size_t maxsize) | 
|  | { | 
|  | size_t maxcells = maxsize / sizeof(uint32_t); | 
|  | int i, j, count; | 
|  | uint32_t *p = prop; | 
|  |  | 
|  | for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { | 
|  | struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; | 
|  |  | 
|  | if (!sps->page_shift) { | 
|  | break; | 
|  | } | 
|  | for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) { | 
|  | if (sps->enc[count].page_shift == 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if ((p - prop) >= (maxcells - 3 - count * 2)) { | 
|  | break; | 
|  | } | 
|  | *(p++) = cpu_to_be32(sps->page_shift); | 
|  | *(p++) = cpu_to_be32(sps->slb_enc); | 
|  | *(p++) = cpu_to_be32(count); | 
|  | for (j = 0; j < count; j++) { | 
|  | *(p++) = cpu_to_be32(sps->enc[j].page_shift); | 
|  | *(p++) = cpu_to_be32(sps->enc[j].pte_enc); | 
|  | } | 
|  | } | 
|  |  | 
|  | return (p - prop) * sizeof(uint32_t); | 
|  | } | 
|  |  | 
|  | #define _FDT(exp) \ | 
|  | do { \ | 
|  | int ret = (exp);                                           \ | 
|  | if (ret < 0) {                                             \ | 
|  | fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ | 
|  | #exp, fdt_strerror(ret));                      \ | 
|  | exit(1);                                               \ | 
|  | }                                                          \ | 
|  | } while (0) | 
|  |  | 
|  | static void add_str(GString *s, const gchar *s1) | 
|  | { | 
|  | g_string_append_len(s, s1, strlen(s1) + 1); | 
|  | } | 
|  |  | 
|  | static void *spapr_create_fdt_skel(hwaddr initrd_base, | 
|  | hwaddr initrd_size, | 
|  | hwaddr kernel_size, | 
|  | bool little_endian, | 
|  | const char *boot_device, | 
|  | const char *kernel_cmdline, | 
|  | uint32_t epow_irq) | 
|  | { | 
|  | void *fdt; | 
|  | CPUState *cs; | 
|  | uint32_t start_prop = cpu_to_be32(initrd_base); | 
|  | uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); | 
|  | GString *hypertas = g_string_sized_new(256); | 
|  | GString *qemu_hypertas = g_string_sized_new(256); | 
|  | uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; | 
|  | uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; | 
|  | int smt = kvmppc_smt_threads(); | 
|  | unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; | 
|  | QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL); | 
|  | unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0; | 
|  | uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1; | 
|  |  | 
|  | add_str(hypertas, "hcall-pft"); | 
|  | add_str(hypertas, "hcall-term"); | 
|  | add_str(hypertas, "hcall-dabr"); | 
|  | add_str(hypertas, "hcall-interrupt"); | 
|  | add_str(hypertas, "hcall-tce"); | 
|  | add_str(hypertas, "hcall-vio"); | 
|  | add_str(hypertas, "hcall-splpar"); | 
|  | add_str(hypertas, "hcall-bulk"); | 
|  | add_str(hypertas, "hcall-set-mode"); | 
|  | add_str(qemu_hypertas, "hcall-memop1"); | 
|  |  | 
|  | fdt = g_malloc0(FDT_MAX_SIZE); | 
|  | _FDT((fdt_create(fdt, FDT_MAX_SIZE))); | 
|  |  | 
|  | if (kernel_size) { | 
|  | _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); | 
|  | } | 
|  | if (initrd_size) { | 
|  | _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); | 
|  | } | 
|  | _FDT((fdt_finish_reservemap(fdt))); | 
|  |  | 
|  | /* Root node */ | 
|  | _FDT((fdt_begin_node(fdt, ""))); | 
|  | _FDT((fdt_property_string(fdt, "device_type", "chrp"))); | 
|  | _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); | 
|  | _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries"))); | 
|  |  | 
|  | _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); | 
|  | _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); | 
|  |  | 
|  | /* /chosen */ | 
|  | _FDT((fdt_begin_node(fdt, "chosen"))); | 
|  |  | 
|  | /* Set Form1_affinity */ | 
|  | _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); | 
|  |  | 
|  | _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); | 
|  | _FDT((fdt_property(fdt, "linux,initrd-start", | 
|  | &start_prop, sizeof(start_prop)))); | 
|  | _FDT((fdt_property(fdt, "linux,initrd-end", | 
|  | &end_prop, sizeof(end_prop)))); | 
|  | if (kernel_size) { | 
|  | uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), | 
|  | cpu_to_be64(kernel_size) }; | 
|  |  | 
|  | _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); | 
|  | if (little_endian) { | 
|  | _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0))); | 
|  | } | 
|  | } | 
|  | if (boot_device) { | 
|  | _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); | 
|  | } | 
|  | _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); | 
|  | _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); | 
|  | _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); | 
|  |  | 
|  | _FDT((fdt_end_node(fdt))); | 
|  |  | 
|  | /* cpus */ | 
|  | _FDT((fdt_begin_node(fdt, "cpus"))); | 
|  |  | 
|  | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | 
|  | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | 
|  |  | 
|  | CPU_FOREACH(cs) { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | DeviceClass *dc = DEVICE_GET_CLASS(cs); | 
|  | PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); | 
|  | int index = ppc_get_vcpu_dt_id(cpu); | 
|  | char *nodename; | 
|  | uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), | 
|  | 0xffffffff, 0xffffffff}; | 
|  | uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; | 
|  | uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; | 
|  | uint32_t page_sizes_prop[64]; | 
|  | size_t page_sizes_prop_size; | 
|  |  | 
|  | if ((index % smt) != 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nodename = g_strdup_printf("%s@%x", dc->fw_name, index); | 
|  |  | 
|  | _FDT((fdt_begin_node(fdt, nodename))); | 
|  |  | 
|  | g_free(nodename); | 
|  |  | 
|  | _FDT((fdt_property_cell(fdt, "reg", index))); | 
|  | _FDT((fdt_property_string(fdt, "device_type", "cpu"))); | 
|  |  | 
|  | _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); | 
|  | _FDT((fdt_property_cell(fdt, "d-cache-block-size", | 
|  | env->dcache_line_size))); | 
|  | _FDT((fdt_property_cell(fdt, "d-cache-line-size", | 
|  | env->dcache_line_size))); | 
|  | _FDT((fdt_property_cell(fdt, "i-cache-block-size", | 
|  | env->icache_line_size))); | 
|  | _FDT((fdt_property_cell(fdt, "i-cache-line-size", | 
|  | env->icache_line_size))); | 
|  |  | 
|  | if (pcc->l1_dcache_size) { | 
|  | _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size))); | 
|  | } else { | 
|  | fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n"); | 
|  | } | 
|  | if (pcc->l1_icache_size) { | 
|  | _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size))); | 
|  | } else { | 
|  | fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n"); | 
|  | } | 
|  |  | 
|  | _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); | 
|  | _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); | 
|  | _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); | 
|  | _FDT((fdt_property_string(fdt, "status", "okay"))); | 
|  | _FDT((fdt_property(fdt, "64-bit", NULL, 0))); | 
|  |  | 
|  | if (env->spr_cb[SPR_PURR].oea_read) { | 
|  | _FDT((fdt_property(fdt, "ibm,purr", NULL, 0))); | 
|  | } | 
|  |  | 
|  | if (env->mmu_model & POWERPC_MMU_1TSEG) { | 
|  | _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", | 
|  | segs, sizeof(segs)))); | 
|  | } | 
|  |  | 
|  | /* Advertise VMX/VSX (vector extensions) if available | 
|  | *   0 / no property == no vector extensions | 
|  | *   1               == VMX / Altivec available | 
|  | *   2               == VSX available */ | 
|  | if (env->insns_flags & PPC_ALTIVEC) { | 
|  | uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; | 
|  |  | 
|  | _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); | 
|  | } | 
|  |  | 
|  | /* Advertise DFP (Decimal Floating Point) if available | 
|  | *   0 / no property == no DFP | 
|  | *   1               == DFP available */ | 
|  | if (env->insns_flags2 & PPC2_DFP) { | 
|  | _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); | 
|  | } | 
|  |  | 
|  | page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop, | 
|  | sizeof(page_sizes_prop)); | 
|  | if (page_sizes_prop_size) { | 
|  | _FDT((fdt_property(fdt, "ibm,segment-page-sizes", | 
|  | page_sizes_prop, page_sizes_prop_size))); | 
|  | } | 
|  |  | 
|  | _FDT((fdt_property_cell(fdt, "ibm,chip-id", | 
|  | cs->cpu_index / cpus_per_socket))); | 
|  |  | 
|  | _FDT((fdt_end_node(fdt))); | 
|  | } | 
|  |  | 
|  | _FDT((fdt_end_node(fdt))); | 
|  |  | 
|  | /* RTAS */ | 
|  | _FDT((fdt_begin_node(fdt, "rtas"))); | 
|  |  | 
|  | if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { | 
|  | add_str(hypertas, "hcall-multi-tce"); | 
|  | } | 
|  | _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str, | 
|  | hypertas->len))); | 
|  | g_string_free(hypertas, TRUE); | 
|  | _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str, | 
|  | qemu_hypertas->len))); | 
|  | g_string_free(qemu_hypertas, TRUE); | 
|  |  | 
|  | _FDT((fdt_property(fdt, "ibm,associativity-reference-points", | 
|  | refpoints, sizeof(refpoints)))); | 
|  |  | 
|  | _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX))); | 
|  |  | 
|  | _FDT((fdt_end_node(fdt))); | 
|  |  | 
|  | /* interrupt controller */ | 
|  | _FDT((fdt_begin_node(fdt, "interrupt-controller"))); | 
|  |  | 
|  | _FDT((fdt_property_string(fdt, "device_type", | 
|  | "PowerPC-External-Interrupt-Presentation"))); | 
|  | _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); | 
|  | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); | 
|  | _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", | 
|  | interrupt_server_ranges_prop, | 
|  | sizeof(interrupt_server_ranges_prop)))); | 
|  | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); | 
|  | _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); | 
|  | _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); | 
|  |  | 
|  | _FDT((fdt_end_node(fdt))); | 
|  |  | 
|  | /* vdevice */ | 
|  | _FDT((fdt_begin_node(fdt, "vdevice"))); | 
|  |  | 
|  | _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); | 
|  | _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); | 
|  | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | 
|  | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | 
|  | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); | 
|  | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); | 
|  |  | 
|  | _FDT((fdt_end_node(fdt))); | 
|  |  | 
|  | /* event-sources */ | 
|  | spapr_events_fdt_skel(fdt, epow_irq); | 
|  |  | 
|  | /* /hypervisor node */ | 
|  | if (kvm_enabled()) { | 
|  | uint8_t hypercall[16]; | 
|  |  | 
|  | /* indicate KVM hypercall interface */ | 
|  | _FDT((fdt_begin_node(fdt, "hypervisor"))); | 
|  | _FDT((fdt_property_string(fdt, "compatible", "linux,kvm"))); | 
|  | if (kvmppc_has_cap_fixup_hcalls()) { | 
|  | /* | 
|  | * Older KVM versions with older guest kernels were broken with the | 
|  | * magic page, don't allow the guest to map it. | 
|  | */ | 
|  | kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, | 
|  | sizeof(hypercall)); | 
|  | _FDT((fdt_property(fdt, "hcall-instructions", hypercall, | 
|  | sizeof(hypercall)))); | 
|  | } | 
|  | _FDT((fdt_end_node(fdt))); | 
|  | } | 
|  |  | 
|  | _FDT((fdt_end_node(fdt))); /* close root node */ | 
|  | _FDT((fdt_finish(fdt))); | 
|  |  | 
|  | return fdt; | 
|  | } | 
|  |  | 
|  | int spapr_h_cas_compose_response(target_ulong addr, target_ulong size) | 
|  | { | 
|  | void *fdt, *fdt_skel; | 
|  | sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; | 
|  |  | 
|  | size -= sizeof(hdr); | 
|  |  | 
|  | /* Create sceleton */ | 
|  | fdt_skel = g_malloc0(size); | 
|  | _FDT((fdt_create(fdt_skel, size))); | 
|  | _FDT((fdt_begin_node(fdt_skel, ""))); | 
|  | _FDT((fdt_end_node(fdt_skel))); | 
|  | _FDT((fdt_finish(fdt_skel))); | 
|  | fdt = g_malloc0(size); | 
|  | _FDT((fdt_open_into(fdt_skel, fdt, size))); | 
|  | g_free(fdt_skel); | 
|  |  | 
|  | /* Fix skeleton up */ | 
|  | _FDT((spapr_fixup_cpu_dt(fdt, spapr))); | 
|  |  | 
|  | /* Pack resulting tree */ | 
|  | _FDT((fdt_pack(fdt))); | 
|  |  | 
|  | if (fdt_totalsize(fdt) + sizeof(hdr) > size) { | 
|  | trace_spapr_cas_failed(size); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); | 
|  | cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); | 
|  | trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); | 
|  | g_free(fdt); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt) | 
|  | { | 
|  | uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), | 
|  | cpu_to_be32(0x0), cpu_to_be32(0x0), | 
|  | cpu_to_be32(0x0)}; | 
|  | char mem_name[32]; | 
|  | hwaddr node0_size, mem_start, node_size; | 
|  | uint64_t mem_reg_property[2]; | 
|  | int i, off; | 
|  |  | 
|  | /* memory node(s) */ | 
|  | if (nb_numa_nodes > 1 && numa_info[0].node_mem < ram_size) { | 
|  | node0_size = numa_info[0].node_mem; | 
|  | } else { | 
|  | node0_size = ram_size; | 
|  | } | 
|  |  | 
|  | /* RMA */ | 
|  | mem_reg_property[0] = 0; | 
|  | mem_reg_property[1] = cpu_to_be64(spapr->rma_size); | 
|  | off = fdt_add_subnode(fdt, 0, "memory@0"); | 
|  | _FDT(off); | 
|  | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | 
|  | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | 
|  | sizeof(mem_reg_property)))); | 
|  | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | 
|  | sizeof(associativity)))); | 
|  |  | 
|  | /* RAM: Node 0 */ | 
|  | if (node0_size > spapr->rma_size) { | 
|  | mem_reg_property[0] = cpu_to_be64(spapr->rma_size); | 
|  | mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size); | 
|  |  | 
|  | sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size); | 
|  | off = fdt_add_subnode(fdt, 0, mem_name); | 
|  | _FDT(off); | 
|  | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | 
|  | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | 
|  | sizeof(mem_reg_property)))); | 
|  | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | 
|  | sizeof(associativity)))); | 
|  | } | 
|  |  | 
|  | /* RAM: Node 1 and beyond */ | 
|  | mem_start = node0_size; | 
|  | for (i = 1; i < nb_numa_nodes; i++) { | 
|  | mem_reg_property[0] = cpu_to_be64(mem_start); | 
|  | if (mem_start >= ram_size) { | 
|  | node_size = 0; | 
|  | } else { | 
|  | node_size = numa_info[i].node_mem; | 
|  | if (node_size > ram_size - mem_start) { | 
|  | node_size = ram_size - mem_start; | 
|  | } | 
|  | } | 
|  | mem_reg_property[1] = cpu_to_be64(node_size); | 
|  | associativity[3] = associativity[4] = cpu_to_be32(i); | 
|  | sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); | 
|  | off = fdt_add_subnode(fdt, 0, mem_name); | 
|  | _FDT(off); | 
|  | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | 
|  | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | 
|  | sizeof(mem_reg_property)))); | 
|  | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | 
|  | sizeof(associativity)))); | 
|  | mem_start += node_size; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void spapr_finalize_fdt(sPAPREnvironment *spapr, | 
|  | hwaddr fdt_addr, | 
|  | hwaddr rtas_addr, | 
|  | hwaddr rtas_size) | 
|  | { | 
|  | int ret, i; | 
|  | size_t cb = 0; | 
|  | char *bootlist; | 
|  | void *fdt; | 
|  | sPAPRPHBState *phb; | 
|  |  | 
|  | fdt = g_malloc(FDT_MAX_SIZE); | 
|  |  | 
|  | /* open out the base tree into a temp buffer for the final tweaks */ | 
|  | _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); | 
|  |  | 
|  | ret = spapr_populate_memory(spapr, fdt); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "couldn't setup memory nodes in fdt\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | ret = spapr_populate_vdevice(spapr->vio_bus, fdt); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "couldn't setup vio devices in fdt\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | QLIST_FOREACH(phb, &spapr->phbs, list) { | 
|  | ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); | 
|  | } | 
|  |  | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "couldn't setup PCI devices in fdt\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* RTAS */ | 
|  | ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); | 
|  | } | 
|  |  | 
|  | /* Advertise NUMA via ibm,associativity */ | 
|  | ret = spapr_fixup_cpu_dt(fdt, spapr); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "Couldn't finalize CPU device tree properties\n"); | 
|  | } | 
|  |  | 
|  | bootlist = get_boot_devices_list(&cb, true); | 
|  | if (cb && bootlist) { | 
|  | int offset = fdt_path_offset(fdt, "/chosen"); | 
|  | if (offset < 0) { | 
|  | exit(1); | 
|  | } | 
|  | for (i = 0; i < cb; i++) { | 
|  | if (bootlist[i] == '\n') { | 
|  | bootlist[i] = ' '; | 
|  | } | 
|  |  | 
|  | } | 
|  | ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist); | 
|  | } | 
|  |  | 
|  | if (!spapr->has_graphics) { | 
|  | spapr_populate_chosen_stdout(fdt, spapr->vio_bus); | 
|  | } | 
|  |  | 
|  | _FDT((fdt_pack(fdt))); | 
|  |  | 
|  | if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { | 
|  | hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n", | 
|  | fdt_totalsize(fdt), FDT_MAX_SIZE); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); | 
|  |  | 
|  | g_free(fdt); | 
|  | } | 
|  |  | 
|  | static uint64_t translate_kernel_address(void *opaque, uint64_t addr) | 
|  | { | 
|  | return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; | 
|  | } | 
|  |  | 
|  | static void emulate_spapr_hypercall(PowerPCCPU *cpu) | 
|  | { | 
|  | CPUPPCState *env = &cpu->env; | 
|  |  | 
|  | if (msr_pr) { | 
|  | hcall_dprintf("Hypercall made with MSR[PR]=1\n"); | 
|  | env->gpr[3] = H_PRIVILEGE; | 
|  | } else { | 
|  | env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spapr_reset_htab(sPAPREnvironment *spapr) | 
|  | { | 
|  | long shift; | 
|  |  | 
|  | /* allocate hash page table.  For now we always make this 16mb, | 
|  | * later we should probably make it scale to the size of guest | 
|  | * RAM */ | 
|  |  | 
|  | shift = kvmppc_reset_htab(spapr->htab_shift); | 
|  |  | 
|  | if (shift > 0) { | 
|  | /* Kernel handles htab, we don't need to allocate one */ | 
|  | spapr->htab_shift = shift; | 
|  | kvmppc_kern_htab = true; | 
|  | } else { | 
|  | if (!spapr->htab) { | 
|  | /* Allocate an htab if we don't yet have one */ | 
|  | spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr)); | 
|  | } | 
|  |  | 
|  | /* And clear it */ | 
|  | memset(spapr->htab, 0, HTAB_SIZE(spapr)); | 
|  | } | 
|  |  | 
|  | /* Update the RMA size if necessary */ | 
|  | if (spapr->vrma_adjust) { | 
|  | hwaddr node0_size = (nb_numa_nodes > 1) ? | 
|  | numa_info[0].node_mem : ram_size; | 
|  | spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ppc_spapr_reset(void) | 
|  | { | 
|  | PowerPCCPU *first_ppc_cpu; | 
|  |  | 
|  | /* Reset the hash table & recalc the RMA */ | 
|  | spapr_reset_htab(spapr); | 
|  |  | 
|  | qemu_devices_reset(); | 
|  |  | 
|  | /* Load the fdt */ | 
|  | spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, | 
|  | spapr->rtas_size); | 
|  |  | 
|  | /* Set up the entry state */ | 
|  | first_ppc_cpu = POWERPC_CPU(first_cpu); | 
|  | first_ppc_cpu->env.gpr[3] = spapr->fdt_addr; | 
|  | first_ppc_cpu->env.gpr[5] = 0; | 
|  | first_cpu->halted = 0; | 
|  | first_ppc_cpu->env.nip = spapr->entry_point; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void spapr_cpu_reset(void *opaque) | 
|  | { | 
|  | PowerPCCPU *cpu = opaque; | 
|  | CPUState *cs = CPU(cpu); | 
|  | CPUPPCState *env = &cpu->env; | 
|  |  | 
|  | cpu_reset(cs); | 
|  |  | 
|  | /* All CPUs start halted.  CPU0 is unhalted from the machine level | 
|  | * reset code and the rest are explicitly started up by the guest | 
|  | * using an RTAS call */ | 
|  | cs->halted = 1; | 
|  |  | 
|  | env->spr[SPR_HIOR] = 0; | 
|  |  | 
|  | env->external_htab = (uint8_t *)spapr->htab; | 
|  | if (kvm_enabled() && !env->external_htab) { | 
|  | /* | 
|  | * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte* | 
|  | * functions do the right thing. | 
|  | */ | 
|  | env->external_htab = (void *)1; | 
|  | } | 
|  | env->htab_base = -1; | 
|  | /* | 
|  | * htab_mask is the mask used to normalize hash value to PTEG index. | 
|  | * htab_shift is log2 of hash table size. | 
|  | * We have 8 hpte per group, and each hpte is 16 bytes. | 
|  | * ie have 128 bytes per hpte entry. | 
|  | */ | 
|  | env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1; | 
|  | env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab | | 
|  | (spapr->htab_shift - 18); | 
|  | } | 
|  |  | 
|  | static void spapr_create_nvram(sPAPREnvironment *spapr) | 
|  | { | 
|  | DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); | 
|  | DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); | 
|  |  | 
|  | if (dinfo) { | 
|  | qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv); | 
|  | } | 
|  |  | 
|  | qdev_init_nofail(dev); | 
|  |  | 
|  | spapr->nvram = (struct sPAPRNVRAM *)dev; | 
|  | } | 
|  |  | 
|  | /* Returns whether we want to use VGA or not */ | 
|  | static int spapr_vga_init(PCIBus *pci_bus) | 
|  | { | 
|  | switch (vga_interface_type) { | 
|  | case VGA_NONE: | 
|  | return false; | 
|  | case VGA_DEVICE: | 
|  | return true; | 
|  | case VGA_STD: | 
|  | return pci_vga_init(pci_bus) != NULL; | 
|  | default: | 
|  | fprintf(stderr, "This vga model is not supported," | 
|  | "currently it only supports -vga std\n"); | 
|  | exit(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_spapr = { | 
|  | .name = "spapr", | 
|  | .version_id = 2, | 
|  | .minimum_version_id = 1, | 
|  | .fields = (VMStateField[]) { | 
|  | VMSTATE_UINT32(next_irq, sPAPREnvironment), | 
|  |  | 
|  | /* RTC offset */ | 
|  | VMSTATE_UINT64(rtc_offset, sPAPREnvironment), | 
|  | VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2)) | 
|  | #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) | 
|  | #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) | 
|  | #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) | 
|  |  | 
|  | static int htab_save_setup(QEMUFile *f, void *opaque) | 
|  | { | 
|  | sPAPREnvironment *spapr = opaque; | 
|  |  | 
|  | /* "Iteration" header */ | 
|  | qemu_put_be32(f, spapr->htab_shift); | 
|  |  | 
|  | if (spapr->htab) { | 
|  | spapr->htab_save_index = 0; | 
|  | spapr->htab_first_pass = true; | 
|  | } else { | 
|  | assert(kvm_enabled()); | 
|  |  | 
|  | spapr->htab_fd = kvmppc_get_htab_fd(false); | 
|  | if (spapr->htab_fd < 0) { | 
|  | fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n", | 
|  | strerror(errno)); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr, | 
|  | int64_t max_ns) | 
|  | { | 
|  | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | 
|  | int index = spapr->htab_save_index; | 
|  | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | 
|  |  | 
|  | assert(spapr->htab_first_pass); | 
|  |  | 
|  | do { | 
|  | int chunkstart; | 
|  |  | 
|  | /* Consume invalid HPTEs */ | 
|  | while ((index < htabslots) | 
|  | && !HPTE_VALID(HPTE(spapr->htab, index))) { | 
|  | index++; | 
|  | CLEAN_HPTE(HPTE(spapr->htab, index)); | 
|  | } | 
|  |  | 
|  | /* Consume valid HPTEs */ | 
|  | chunkstart = index; | 
|  | while ((index < htabslots) | 
|  | && HPTE_VALID(HPTE(spapr->htab, index))) { | 
|  | index++; | 
|  | CLEAN_HPTE(HPTE(spapr->htab, index)); | 
|  | } | 
|  |  | 
|  | if (index > chunkstart) { | 
|  | int n_valid = index - chunkstart; | 
|  |  | 
|  | qemu_put_be32(f, chunkstart); | 
|  | qemu_put_be16(f, n_valid); | 
|  | qemu_put_be16(f, 0); | 
|  | qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), | 
|  | HASH_PTE_SIZE_64 * n_valid); | 
|  |  | 
|  | if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } while ((index < htabslots) && !qemu_file_rate_limit(f)); | 
|  |  | 
|  | if (index >= htabslots) { | 
|  | assert(index == htabslots); | 
|  | index = 0; | 
|  | spapr->htab_first_pass = false; | 
|  | } | 
|  | spapr->htab_save_index = index; | 
|  | } | 
|  |  | 
|  | static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr, | 
|  | int64_t max_ns) | 
|  | { | 
|  | bool final = max_ns < 0; | 
|  | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | 
|  | int examined = 0, sent = 0; | 
|  | int index = spapr->htab_save_index; | 
|  | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | 
|  |  | 
|  | assert(!spapr->htab_first_pass); | 
|  |  | 
|  | do { | 
|  | int chunkstart, invalidstart; | 
|  |  | 
|  | /* Consume non-dirty HPTEs */ | 
|  | while ((index < htabslots) | 
|  | && !HPTE_DIRTY(HPTE(spapr->htab, index))) { | 
|  | index++; | 
|  | examined++; | 
|  | } | 
|  |  | 
|  | chunkstart = index; | 
|  | /* Consume valid dirty HPTEs */ | 
|  | while ((index < htabslots) | 
|  | && HPTE_DIRTY(HPTE(spapr->htab, index)) | 
|  | && HPTE_VALID(HPTE(spapr->htab, index))) { | 
|  | CLEAN_HPTE(HPTE(spapr->htab, index)); | 
|  | index++; | 
|  | examined++; | 
|  | } | 
|  |  | 
|  | invalidstart = index; | 
|  | /* Consume invalid dirty HPTEs */ | 
|  | while ((index < htabslots) | 
|  | && HPTE_DIRTY(HPTE(spapr->htab, index)) | 
|  | && !HPTE_VALID(HPTE(spapr->htab, index))) { | 
|  | CLEAN_HPTE(HPTE(spapr->htab, index)); | 
|  | index++; | 
|  | examined++; | 
|  | } | 
|  |  | 
|  | if (index > chunkstart) { | 
|  | int n_valid = invalidstart - chunkstart; | 
|  | int n_invalid = index - invalidstart; | 
|  |  | 
|  | qemu_put_be32(f, chunkstart); | 
|  | qemu_put_be16(f, n_valid); | 
|  | qemu_put_be16(f, n_invalid); | 
|  | qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), | 
|  | HASH_PTE_SIZE_64 * n_valid); | 
|  | sent += index - chunkstart; | 
|  |  | 
|  | if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (examined >= htabslots) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (index >= htabslots) { | 
|  | assert(index == htabslots); | 
|  | index = 0; | 
|  | } | 
|  | } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); | 
|  |  | 
|  | if (index >= htabslots) { | 
|  | assert(index == htabslots); | 
|  | index = 0; | 
|  | } | 
|  |  | 
|  | spapr->htab_save_index = index; | 
|  |  | 
|  | return (examined >= htabslots) && (sent == 0) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | #define MAX_ITERATION_NS    5000000 /* 5 ms */ | 
|  | #define MAX_KVM_BUF_SIZE    2048 | 
|  |  | 
|  | static int htab_save_iterate(QEMUFile *f, void *opaque) | 
|  | { | 
|  | sPAPREnvironment *spapr = opaque; | 
|  | int rc = 0; | 
|  |  | 
|  | /* Iteration header */ | 
|  | qemu_put_be32(f, 0); | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | assert(kvm_enabled()); | 
|  |  | 
|  | rc = kvmppc_save_htab(f, spapr->htab_fd, | 
|  | MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); | 
|  | if (rc < 0) { | 
|  | return rc; | 
|  | } | 
|  | } else  if (spapr->htab_first_pass) { | 
|  | htab_save_first_pass(f, spapr, MAX_ITERATION_NS); | 
|  | } else { | 
|  | rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); | 
|  | } | 
|  |  | 
|  | /* End marker */ | 
|  | qemu_put_be32(f, 0); | 
|  | qemu_put_be16(f, 0); | 
|  | qemu_put_be16(f, 0); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int htab_save_complete(QEMUFile *f, void *opaque) | 
|  | { | 
|  | sPAPREnvironment *spapr = opaque; | 
|  |  | 
|  | /* Iteration header */ | 
|  | qemu_put_be32(f, 0); | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | int rc; | 
|  |  | 
|  | assert(kvm_enabled()); | 
|  |  | 
|  | rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1); | 
|  | if (rc < 0) { | 
|  | return rc; | 
|  | } | 
|  | close(spapr->htab_fd); | 
|  | spapr->htab_fd = -1; | 
|  | } else { | 
|  | htab_save_later_pass(f, spapr, -1); | 
|  | } | 
|  |  | 
|  | /* End marker */ | 
|  | qemu_put_be32(f, 0); | 
|  | qemu_put_be16(f, 0); | 
|  | qemu_put_be16(f, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int htab_load(QEMUFile *f, void *opaque, int version_id) | 
|  | { | 
|  | sPAPREnvironment *spapr = opaque; | 
|  | uint32_t section_hdr; | 
|  | int fd = -1; | 
|  |  | 
|  | if (version_id < 1 || version_id > 1) { | 
|  | fprintf(stderr, "htab_load() bad version\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | section_hdr = qemu_get_be32(f); | 
|  |  | 
|  | if (section_hdr) { | 
|  | /* First section, just the hash shift */ | 
|  | if (spapr->htab_shift != section_hdr) { | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | assert(kvm_enabled()); | 
|  |  | 
|  | fd = kvmppc_get_htab_fd(true); | 
|  | if (fd < 0) { | 
|  | fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n", | 
|  | strerror(errno)); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (true) { | 
|  | uint32_t index; | 
|  | uint16_t n_valid, n_invalid; | 
|  |  | 
|  | index = qemu_get_be32(f); | 
|  | n_valid = qemu_get_be16(f); | 
|  | n_invalid = qemu_get_be16(f); | 
|  |  | 
|  | if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { | 
|  | /* End of Stream */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((index + n_valid + n_invalid) > | 
|  | (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { | 
|  | /* Bad index in stream */ | 
|  | fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) " | 
|  | "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid, | 
|  | spapr->htab_shift); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (spapr->htab) { | 
|  | if (n_valid) { | 
|  | qemu_get_buffer(f, HPTE(spapr->htab, index), | 
|  | HASH_PTE_SIZE_64 * n_valid); | 
|  | } | 
|  | if (n_invalid) { | 
|  | memset(HPTE(spapr->htab, index + n_valid), 0, | 
|  | HASH_PTE_SIZE_64 * n_invalid); | 
|  | } | 
|  | } else { | 
|  | int rc; | 
|  |  | 
|  | assert(fd >= 0); | 
|  |  | 
|  | rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); | 
|  | if (rc < 0) { | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | assert(fd >= 0); | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static SaveVMHandlers savevm_htab_handlers = { | 
|  | .save_live_setup = htab_save_setup, | 
|  | .save_live_iterate = htab_save_iterate, | 
|  | .save_live_complete = htab_save_complete, | 
|  | .load_state = htab_load, | 
|  | }; | 
|  |  | 
|  | /* pSeries LPAR / sPAPR hardware init */ | 
|  | static void ppc_spapr_init(MachineState *machine) | 
|  | { | 
|  | ram_addr_t ram_size = machine->ram_size; | 
|  | const char *cpu_model = machine->cpu_model; | 
|  | const char *kernel_filename = machine->kernel_filename; | 
|  | const char *kernel_cmdline = machine->kernel_cmdline; | 
|  | const char *initrd_filename = machine->initrd_filename; | 
|  | const char *boot_device = machine->boot_order; | 
|  | PowerPCCPU *cpu; | 
|  | CPUPPCState *env; | 
|  | PCIHostState *phb; | 
|  | int i; | 
|  | MemoryRegion *sysmem = get_system_memory(); | 
|  | MemoryRegion *ram = g_new(MemoryRegion, 1); | 
|  | hwaddr rma_alloc_size; | 
|  | hwaddr node0_size = (nb_numa_nodes > 1) ? numa_info[0].node_mem : ram_size; | 
|  | uint32_t initrd_base = 0; | 
|  | long kernel_size = 0, initrd_size = 0; | 
|  | long load_limit, rtas_limit, fw_size; | 
|  | bool kernel_le = false; | 
|  | char *filename; | 
|  |  | 
|  | msi_supported = true; | 
|  |  | 
|  | spapr = g_malloc0(sizeof(*spapr)); | 
|  | QLIST_INIT(&spapr->phbs); | 
|  |  | 
|  | cpu_ppc_hypercall = emulate_spapr_hypercall; | 
|  |  | 
|  | /* Allocate RMA if necessary */ | 
|  | rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); | 
|  |  | 
|  | if (rma_alloc_size == -1) { | 
|  | hw_error("qemu: Unable to create RMA\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | if (rma_alloc_size && (rma_alloc_size < node0_size)) { | 
|  | spapr->rma_size = rma_alloc_size; | 
|  | } else { | 
|  | spapr->rma_size = node0_size; | 
|  |  | 
|  | /* With KVM, we don't actually know whether KVM supports an | 
|  | * unbounded RMA (PR KVM) or is limited by the hash table size | 
|  | * (HV KVM using VRMA), so we always assume the latter | 
|  | * | 
|  | * In that case, we also limit the initial allocations for RTAS | 
|  | * etc... to 256M since we have no way to know what the VRMA size | 
|  | * is going to be as it depends on the size of the hash table | 
|  | * isn't determined yet. | 
|  | */ | 
|  | if (kvm_enabled()) { | 
|  | spapr->vrma_adjust = 1; | 
|  | spapr->rma_size = MIN(spapr->rma_size, 0x10000000); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (spapr->rma_size > node0_size) { | 
|  | fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n", | 
|  | spapr->rma_size); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* We place the device tree and RTAS just below either the top of the RMA, | 
|  | * or just below 2GB, whichever is lowere, so that it can be | 
|  | * processed with 32-bit real mode code if necessary */ | 
|  | rtas_limit = MIN(spapr->rma_size, 0x80000000); | 
|  | spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; | 
|  | spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; | 
|  | load_limit = spapr->fdt_addr - FW_OVERHEAD; | 
|  |  | 
|  | /* We aim for a hash table of size 1/128 the size of RAM.  The | 
|  | * normal rule of thumb is 1/64 the size of RAM, but that's much | 
|  | * more than needed for the Linux guests we support. */ | 
|  | spapr->htab_shift = 18; /* Minimum architected size */ | 
|  | while (spapr->htab_shift <= 46) { | 
|  | if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) { | 
|  | break; | 
|  | } | 
|  | spapr->htab_shift++; | 
|  | } | 
|  |  | 
|  | /* Set up Interrupt Controller before we create the VCPUs */ | 
|  | spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads, | 
|  | XICS_IRQS); | 
|  | spapr->next_irq = XICS_IRQ_BASE; | 
|  |  | 
|  | /* init CPUs */ | 
|  | if (cpu_model == NULL) { | 
|  | cpu_model = kvm_enabled() ? "host" : "POWER7"; | 
|  | } | 
|  | for (i = 0; i < smp_cpus; i++) { | 
|  | cpu = cpu_ppc_init(cpu_model); | 
|  | if (cpu == NULL) { | 
|  | fprintf(stderr, "Unable to find PowerPC CPU definition\n"); | 
|  | exit(1); | 
|  | } | 
|  | env = &cpu->env; | 
|  |  | 
|  | /* Set time-base frequency to 512 MHz */ | 
|  | cpu_ppc_tb_init(env, TIMEBASE_FREQ); | 
|  |  | 
|  | /* PAPR always has exception vectors in RAM not ROM. To ensure this, | 
|  | * MSR[IP] should never be set. | 
|  | */ | 
|  | env->msr_mask &= ~(1 << 6); | 
|  |  | 
|  | /* Tell KVM that we're in PAPR mode */ | 
|  | if (kvm_enabled()) { | 
|  | kvmppc_set_papr(cpu); | 
|  | } | 
|  |  | 
|  | if (cpu->max_compat) { | 
|  | if (ppc_set_compat(cpu, cpu->max_compat) < 0) { | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | xics_cpu_setup(spapr->icp, cpu); | 
|  |  | 
|  | qemu_register_reset(spapr_cpu_reset, cpu); | 
|  | } | 
|  |  | 
|  | /* allocate RAM */ | 
|  | spapr->ram_limit = ram_size; | 
|  | if (spapr->ram_limit > rma_alloc_size) { | 
|  | ram_addr_t nonrma_base = rma_alloc_size; | 
|  | ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; | 
|  |  | 
|  | memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size); | 
|  | vmstate_register_ram_global(ram); | 
|  | memory_region_add_subregion(sysmem, nonrma_base, ram); | 
|  | } | 
|  |  | 
|  | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); | 
|  | spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, | 
|  | rtas_limit - spapr->rtas_addr); | 
|  | if (spapr->rtas_size < 0) { | 
|  | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); | 
|  | exit(1); | 
|  | } | 
|  | if (spapr->rtas_size > RTAS_MAX_SIZE) { | 
|  | hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n", | 
|  | spapr->rtas_size, RTAS_MAX_SIZE); | 
|  | exit(1); | 
|  | } | 
|  | g_free(filename); | 
|  |  | 
|  | /* Set up EPOW events infrastructure */ | 
|  | spapr_events_init(spapr); | 
|  |  | 
|  | /* Set up VIO bus */ | 
|  | spapr->vio_bus = spapr_vio_bus_init(); | 
|  |  | 
|  | for (i = 0; i < MAX_SERIAL_PORTS; i++) { | 
|  | if (serial_hds[i]) { | 
|  | spapr_vty_create(spapr->vio_bus, serial_hds[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We always have at least the nvram device on VIO */ | 
|  | spapr_create_nvram(spapr); | 
|  |  | 
|  | /* Set up PCI */ | 
|  | spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW); | 
|  | spapr_pci_rtas_init(); | 
|  |  | 
|  | phb = spapr_create_phb(spapr, 0); | 
|  |  | 
|  | for (i = 0; i < nb_nics; i++) { | 
|  | NICInfo *nd = &nd_table[i]; | 
|  |  | 
|  | if (!nd->model) { | 
|  | nd->model = g_strdup("ibmveth"); | 
|  | } | 
|  |  | 
|  | if (strcmp(nd->model, "ibmveth") == 0) { | 
|  | spapr_vlan_create(spapr->vio_bus, nd); | 
|  | } else { | 
|  | pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { | 
|  | spapr_vscsi_create(spapr->vio_bus); | 
|  | } | 
|  |  | 
|  | /* Graphics */ | 
|  | if (spapr_vga_init(phb->bus)) { | 
|  | spapr->has_graphics = true; | 
|  | } | 
|  |  | 
|  | if (usb_enabled(spapr->has_graphics)) { | 
|  | pci_create_simple(phb->bus, -1, "pci-ohci"); | 
|  | if (spapr->has_graphics) { | 
|  | usbdevice_create("keyboard"); | 
|  | usbdevice_create("mouse"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { | 
|  | fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " | 
|  | "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | if (kernel_filename) { | 
|  | uint64_t lowaddr = 0; | 
|  |  | 
|  | kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, | 
|  | NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); | 
|  | if (kernel_size == ELF_LOAD_WRONG_ENDIAN) { | 
|  | kernel_size = load_elf(kernel_filename, | 
|  | translate_kernel_address, NULL, | 
|  | NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0); | 
|  | kernel_le = kernel_size > 0; | 
|  | } | 
|  | if (kernel_size < 0) { | 
|  | fprintf(stderr, "qemu: error loading %s: %s\n", | 
|  | kernel_filename, load_elf_strerror(kernel_size)); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* load initrd */ | 
|  | if (initrd_filename) { | 
|  | /* Try to locate the initrd in the gap between the kernel | 
|  | * and the firmware. Add a bit of space just in case | 
|  | */ | 
|  | initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; | 
|  | initrd_size = load_image_targphys(initrd_filename, initrd_base, | 
|  | load_limit - initrd_base); | 
|  | if (initrd_size < 0) { | 
|  | fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", | 
|  | initrd_filename); | 
|  | exit(1); | 
|  | } | 
|  | } else { | 
|  | initrd_base = 0; | 
|  | initrd_size = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bios_name == NULL) { | 
|  | bios_name = FW_FILE_NAME; | 
|  | } | 
|  | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); | 
|  | fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); | 
|  | if (fw_size < 0) { | 
|  | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); | 
|  | exit(1); | 
|  | } | 
|  | g_free(filename); | 
|  |  | 
|  | spapr->entry_point = 0x100; | 
|  |  | 
|  | vmstate_register(NULL, 0, &vmstate_spapr, spapr); | 
|  | register_savevm_live(NULL, "spapr/htab", -1, 1, | 
|  | &savevm_htab_handlers, spapr); | 
|  |  | 
|  | /* Prepare the device tree */ | 
|  | spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size, | 
|  | kernel_size, kernel_le, | 
|  | boot_device, kernel_cmdline, | 
|  | spapr->epow_irq); | 
|  | assert(spapr->fdt_skel != NULL); | 
|  | } | 
|  |  | 
|  | static int spapr_kvm_type(const char *vm_type) | 
|  | { | 
|  | if (!vm_type) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!strcmp(vm_type, "HV")) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!strcmp(vm_type, "PR")) { | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | error_report("Unknown kvm-type specified '%s'", vm_type); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Implementation of an interface to adjust firmware patch | 
|  | * for the bootindex property handling. | 
|  | */ | 
|  | static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, | 
|  | DeviceState *dev) | 
|  | { | 
|  | #define CAST(type, obj, name) \ | 
|  | ((type *)object_dynamic_cast(OBJECT(obj), (name))) | 
|  | SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE); | 
|  | sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); | 
|  |  | 
|  | if (d) { | 
|  | void *spapr = CAST(void, bus->parent, "spapr-vscsi"); | 
|  | VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); | 
|  | USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); | 
|  |  | 
|  | if (spapr) { | 
|  | /* | 
|  | * Replace "channel@0/disk@0,0" with "disk@8000000000000000": | 
|  | * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun | 
|  | * in the top 16 bits of the 64-bit LUN | 
|  | */ | 
|  | unsigned id = 0x8000 | (d->id << 8) | d->lun; | 
|  | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | 
|  | (uint64_t)id << 48); | 
|  | } else if (virtio) { | 
|  | /* | 
|  | * We use SRP luns of the form 01000000 | (target << 8) | lun | 
|  | * in the top 32 bits of the 64-bit LUN | 
|  | * Note: the quote above is from SLOF and it is wrong, | 
|  | * the actual binding is: | 
|  | * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) | 
|  | */ | 
|  | unsigned id = 0x1000000 | (d->id << 16) | d->lun; | 
|  | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | 
|  | (uint64_t)id << 32); | 
|  | } else if (usb) { | 
|  | /* | 
|  | * We use SRP luns of the form 01000000 | (usb-port << 16) | lun | 
|  | * in the top 32 bits of the 64-bit LUN | 
|  | */ | 
|  | unsigned usb_port = atoi(usb->port->path); | 
|  | unsigned id = 0x1000000 | (usb_port << 16) | d->lun; | 
|  | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | 
|  | (uint64_t)id << 32); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (phb) { | 
|  | /* Replace "pci" with "pci@800000020000000" */ | 
|  | return g_strdup_printf("pci@%"PRIX64, phb->buid); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static char *spapr_get_kvm_type(Object *obj, Error **errp) | 
|  | { | 
|  | SPAPRMachine *sm = SPAPR_MACHINE(obj); | 
|  |  | 
|  | return g_strdup(sm->kvm_type); | 
|  | } | 
|  |  | 
|  | static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) | 
|  | { | 
|  | SPAPRMachine *sm = SPAPR_MACHINE(obj); | 
|  |  | 
|  | g_free(sm->kvm_type); | 
|  | sm->kvm_type = g_strdup(value); | 
|  | } | 
|  |  | 
|  | static void spapr_machine_initfn(Object *obj) | 
|  | { | 
|  | object_property_add_str(obj, "kvm-type", | 
|  | spapr_get_kvm_type, spapr_set_kvm_type, NULL); | 
|  | } | 
|  |  | 
|  | static void spapr_machine_class_init(ObjectClass *oc, void *data) | 
|  | { | 
|  | MachineClass *mc = MACHINE_CLASS(oc); | 
|  | FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); | 
|  |  | 
|  | mc->name = "pseries"; | 
|  | mc->desc = "pSeries Logical Partition (PAPR compliant)"; | 
|  | mc->is_default = 1; | 
|  | mc->init = ppc_spapr_init; | 
|  | mc->reset = ppc_spapr_reset; | 
|  | mc->block_default_type = IF_SCSI; | 
|  | mc->max_cpus = MAX_CPUS; | 
|  | mc->no_parallel = 1; | 
|  | mc->default_boot_order = NULL; | 
|  | mc->kvm_type = spapr_kvm_type; | 
|  |  | 
|  | fwc->get_dev_path = spapr_get_fw_dev_path; | 
|  | } | 
|  |  | 
|  | static const TypeInfo spapr_machine_info = { | 
|  | .name          = TYPE_SPAPR_MACHINE, | 
|  | .parent        = TYPE_MACHINE, | 
|  | .instance_size = sizeof(SPAPRMachine), | 
|  | .instance_init = spapr_machine_initfn, | 
|  | .class_init    = spapr_machine_class_init, | 
|  | .interfaces = (InterfaceInfo[]) { | 
|  | { TYPE_FW_PATH_PROVIDER }, | 
|  | { } | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void spapr_machine_register_types(void) | 
|  | { | 
|  | type_register_static(&spapr_machine_info); | 
|  | } | 
|  |  | 
|  | type_init(spapr_machine_register_types) |