| /* |
| * MMX/3DNow!/SSE/SSE2/SSE3/PNI support |
| * |
| * Copyright (c) 2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #if SHIFT == 0 |
| #define Reg MMXReg |
| #define XMM_ONLY(x...) |
| #define B(n) MMX_B(n) |
| #define W(n) MMX_W(n) |
| #define L(n) MMX_L(n) |
| #define Q(n) q |
| #define SUFFIX _mmx |
| #else |
| #define Reg XMMReg |
| #define XMM_ONLY(x...) x |
| #define B(n) XMM_B(n) |
| #define W(n) XMM_W(n) |
| #define L(n) XMM_L(n) |
| #define Q(n) XMM_Q(n) |
| #define SUFFIX _xmm |
| #endif |
| |
| void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 15) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->W(0) >>= shift; |
| d->W(1) >>= shift; |
| d->W(2) >>= shift; |
| d->W(3) >>= shift; |
| #if SHIFT == 1 |
| d->W(4) >>= shift; |
| d->W(5) >>= shift; |
| d->W(6) >>= shift; |
| d->W(7) >>= shift; |
| #endif |
| } |
| FORCE_RET(); |
| } |
| |
| void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 15) { |
| shift = 15; |
| } else { |
| shift = s->B(0); |
| } |
| d->W(0) = (int16_t)d->W(0) >> shift; |
| d->W(1) = (int16_t)d->W(1) >> shift; |
| d->W(2) = (int16_t)d->W(2) >> shift; |
| d->W(3) = (int16_t)d->W(3) >> shift; |
| #if SHIFT == 1 |
| d->W(4) = (int16_t)d->W(4) >> shift; |
| d->W(5) = (int16_t)d->W(5) >> shift; |
| d->W(6) = (int16_t)d->W(6) >> shift; |
| d->W(7) = (int16_t)d->W(7) >> shift; |
| #endif |
| } |
| |
| void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 15) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->W(0) <<= shift; |
| d->W(1) <<= shift; |
| d->W(2) <<= shift; |
| d->W(3) <<= shift; |
| #if SHIFT == 1 |
| d->W(4) <<= shift; |
| d->W(5) <<= shift; |
| d->W(6) <<= shift; |
| d->W(7) <<= shift; |
| #endif |
| } |
| FORCE_RET(); |
| } |
| |
| void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 31) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->L(0) >>= shift; |
| d->L(1) >>= shift; |
| #if SHIFT == 1 |
| d->L(2) >>= shift; |
| d->L(3) >>= shift; |
| #endif |
| } |
| FORCE_RET(); |
| } |
| |
| void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 31) { |
| shift = 31; |
| } else { |
| shift = s->B(0); |
| } |
| d->L(0) = (int32_t)d->L(0) >> shift; |
| d->L(1) = (int32_t)d->L(1) >> shift; |
| #if SHIFT == 1 |
| d->L(2) = (int32_t)d->L(2) >> shift; |
| d->L(3) = (int32_t)d->L(3) >> shift; |
| #endif |
| } |
| |
| void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 31) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->L(0) <<= shift; |
| d->L(1) <<= shift; |
| #if SHIFT == 1 |
| d->L(2) <<= shift; |
| d->L(3) <<= shift; |
| #endif |
| } |
| FORCE_RET(); |
| } |
| |
| void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 63) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->Q(0) >>= shift; |
| #if SHIFT == 1 |
| d->Q(1) >>= shift; |
| #endif |
| } |
| FORCE_RET(); |
| } |
| |
| void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 63) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->Q(0) <<= shift; |
| #if SHIFT == 1 |
| d->Q(1) <<= shift; |
| #endif |
| } |
| FORCE_RET(); |
| } |
| |
| #if SHIFT == 1 |
| void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s) |
| { |
| int shift, i; |
| |
| shift = s->L(0); |
| if (shift > 16) |
| shift = 16; |
| for(i = 0; i < 16 - shift; i++) |
| d->B(i) = d->B(i + shift); |
| for(i = 16 - shift; i < 16; i++) |
| d->B(i) = 0; |
| FORCE_RET(); |
| } |
| |
| void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s) |
| { |
| int shift, i; |
| |
| shift = s->L(0); |
| if (shift > 16) |
| shift = 16; |
| for(i = 15; i >= shift; i--) |
| d->B(i) = d->B(i - shift); |
| for(i = 0; i < shift; i++) |
| d->B(i) = 0; |
| FORCE_RET(); |
| } |
| #endif |
| |
| #define SSE_HELPER_B(name, F)\ |
| void glue(name, SUFFIX) (Reg *d, Reg *s)\ |
| {\ |
| d->B(0) = F(d->B(0), s->B(0));\ |
| d->B(1) = F(d->B(1), s->B(1));\ |
| d->B(2) = F(d->B(2), s->B(2));\ |
| d->B(3) = F(d->B(3), s->B(3));\ |
| d->B(4) = F(d->B(4), s->B(4));\ |
| d->B(5) = F(d->B(5), s->B(5));\ |
| d->B(6) = F(d->B(6), s->B(6));\ |
| d->B(7) = F(d->B(7), s->B(7));\ |
| XMM_ONLY(\ |
| d->B(8) = F(d->B(8), s->B(8));\ |
| d->B(9) = F(d->B(9), s->B(9));\ |
| d->B(10) = F(d->B(10), s->B(10));\ |
| d->B(11) = F(d->B(11), s->B(11));\ |
| d->B(12) = F(d->B(12), s->B(12));\ |
| d->B(13) = F(d->B(13), s->B(13));\ |
| d->B(14) = F(d->B(14), s->B(14));\ |
| d->B(15) = F(d->B(15), s->B(15));\ |
| )\ |
| } |
| |
| #define SSE_HELPER_W(name, F)\ |
| void glue(name, SUFFIX) (Reg *d, Reg *s)\ |
| {\ |
| d->W(0) = F(d->W(0), s->W(0));\ |
| d->W(1) = F(d->W(1), s->W(1));\ |
| d->W(2) = F(d->W(2), s->W(2));\ |
| d->W(3) = F(d->W(3), s->W(3));\ |
| XMM_ONLY(\ |
| d->W(4) = F(d->W(4), s->W(4));\ |
| d->W(5) = F(d->W(5), s->W(5));\ |
| d->W(6) = F(d->W(6), s->W(6));\ |
| d->W(7) = F(d->W(7), s->W(7));\ |
| )\ |
| } |
| |
| #define SSE_HELPER_L(name, F)\ |
| void glue(name, SUFFIX) (Reg *d, Reg *s)\ |
| {\ |
| d->L(0) = F(d->L(0), s->L(0));\ |
| d->L(1) = F(d->L(1), s->L(1));\ |
| XMM_ONLY(\ |
| d->L(2) = F(d->L(2), s->L(2));\ |
| d->L(3) = F(d->L(3), s->L(3));\ |
| )\ |
| } |
| |
| #define SSE_HELPER_Q(name, F)\ |
| void glue(name, SUFFIX) (Reg *d, Reg *s)\ |
| {\ |
| d->Q(0) = F(d->Q(0), s->Q(0));\ |
| XMM_ONLY(\ |
| d->Q(1) = F(d->Q(1), s->Q(1));\ |
| )\ |
| } |
| |
| #if SHIFT == 0 |
| static inline int satub(int x) |
| { |
| if (x < 0) |
| return 0; |
| else if (x > 255) |
| return 255; |
| else |
| return x; |
| } |
| |
| static inline int satuw(int x) |
| { |
| if (x < 0) |
| return 0; |
| else if (x > 65535) |
| return 65535; |
| else |
| return x; |
| } |
| |
| static inline int satsb(int x) |
| { |
| if (x < -128) |
| return -128; |
| else if (x > 127) |
| return 127; |
| else |
| return x; |
| } |
| |
| static inline int satsw(int x) |
| { |
| if (x < -32768) |
| return -32768; |
| else if (x > 32767) |
| return 32767; |
| else |
| return x; |
| } |
| |
| #define FADD(a, b) ((a) + (b)) |
| #define FADDUB(a, b) satub((a) + (b)) |
| #define FADDUW(a, b) satuw((a) + (b)) |
| #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b)) |
| #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b)) |
| |
| #define FSUB(a, b) ((a) - (b)) |
| #define FSUBUB(a, b) satub((a) - (b)) |
| #define FSUBUW(a, b) satuw((a) - (b)) |
| #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b)) |
| #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b)) |
| #define FMINUB(a, b) ((a) < (b)) ? (a) : (b) |
| #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b) |
| #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b) |
| #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b) |
| |
| #define FAND(a, b) (a) & (b) |
| #define FANDN(a, b) ((~(a)) & (b)) |
| #define FOR(a, b) (a) | (b) |
| #define FXOR(a, b) (a) ^ (b) |
| |
| #define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0 |
| #define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0 |
| #define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0 |
| #define FCMPEQ(a, b) (a) == (b) ? -1 : 0 |
| |
| #define FMULLW(a, b) (a) * (b) |
| #define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16 |
| #define FMULHUW(a, b) (a) * (b) >> 16 |
| #define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16 |
| |
| #define FAVG(a, b) ((a) + (b) + 1) >> 1 |
| #endif |
| |
| SSE_HELPER_B(helper_paddb, FADD) |
| SSE_HELPER_W(helper_paddw, FADD) |
| SSE_HELPER_L(helper_paddl, FADD) |
| SSE_HELPER_Q(helper_paddq, FADD) |
| |
| SSE_HELPER_B(helper_psubb, FSUB) |
| SSE_HELPER_W(helper_psubw, FSUB) |
| SSE_HELPER_L(helper_psubl, FSUB) |
| SSE_HELPER_Q(helper_psubq, FSUB) |
| |
| SSE_HELPER_B(helper_paddusb, FADDUB) |
| SSE_HELPER_B(helper_paddsb, FADDSB) |
| SSE_HELPER_B(helper_psubusb, FSUBUB) |
| SSE_HELPER_B(helper_psubsb, FSUBSB) |
| |
| SSE_HELPER_W(helper_paddusw, FADDUW) |
| SSE_HELPER_W(helper_paddsw, FADDSW) |
| SSE_HELPER_W(helper_psubusw, FSUBUW) |
| SSE_HELPER_W(helper_psubsw, FSUBSW) |
| |
| SSE_HELPER_B(helper_pminub, FMINUB) |
| SSE_HELPER_B(helper_pmaxub, FMAXUB) |
| |
| SSE_HELPER_W(helper_pminsw, FMINSW) |
| SSE_HELPER_W(helper_pmaxsw, FMAXSW) |
| |
| SSE_HELPER_Q(helper_pand, FAND) |
| SSE_HELPER_Q(helper_pandn, FANDN) |
| SSE_HELPER_Q(helper_por, FOR) |
| SSE_HELPER_Q(helper_pxor, FXOR) |
| |
| SSE_HELPER_B(helper_pcmpgtb, FCMPGTB) |
| SSE_HELPER_W(helper_pcmpgtw, FCMPGTW) |
| SSE_HELPER_L(helper_pcmpgtl, FCMPGTL) |
| |
| SSE_HELPER_B(helper_pcmpeqb, FCMPEQ) |
| SSE_HELPER_W(helper_pcmpeqw, FCMPEQ) |
| SSE_HELPER_L(helper_pcmpeql, FCMPEQ) |
| |
| SSE_HELPER_W(helper_pmullw, FMULLW) |
| #if SHIFT == 0 |
| SSE_HELPER_W(helper_pmulhrw, FMULHRW) |
| #endif |
| SSE_HELPER_W(helper_pmulhuw, FMULHUW) |
| SSE_HELPER_W(helper_pmulhw, FMULHW) |
| |
| SSE_HELPER_B(helper_pavgb, FAVG) |
| SSE_HELPER_W(helper_pavgw, FAVG) |
| |
| void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s) |
| { |
| d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0); |
| #if SHIFT == 1 |
| d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2); |
| #endif |
| } |
| |
| void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s) |
| { |
| int i; |
| |
| for(i = 0; i < (2 << SHIFT); i++) { |
| d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) + |
| (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1); |
| } |
| FORCE_RET(); |
| } |
| |
| #if SHIFT == 0 |
| static inline int abs1(int a) |
| { |
| if (a < 0) |
| return -a; |
| else |
| return a; |
| } |
| #endif |
| void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s) |
| { |
| unsigned int val; |
| |
| val = 0; |
| val += abs1(d->B(0) - s->B(0)); |
| val += abs1(d->B(1) - s->B(1)); |
| val += abs1(d->B(2) - s->B(2)); |
| val += abs1(d->B(3) - s->B(3)); |
| val += abs1(d->B(4) - s->B(4)); |
| val += abs1(d->B(5) - s->B(5)); |
| val += abs1(d->B(6) - s->B(6)); |
| val += abs1(d->B(7) - s->B(7)); |
| d->Q(0) = val; |
| #if SHIFT == 1 |
| val = 0; |
| val += abs1(d->B(8) - s->B(8)); |
| val += abs1(d->B(9) - s->B(9)); |
| val += abs1(d->B(10) - s->B(10)); |
| val += abs1(d->B(11) - s->B(11)); |
| val += abs1(d->B(12) - s->B(12)); |
| val += abs1(d->B(13) - s->B(13)); |
| val += abs1(d->B(14) - s->B(14)); |
| val += abs1(d->B(15) - s->B(15)); |
| d->Q(1) = val; |
| #endif |
| } |
| |
| void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s) |
| { |
| int i; |
| for(i = 0; i < (8 << SHIFT); i++) { |
| if (s->B(i) & 0x80) |
| stb(A0 + i, d->B(i)); |
| } |
| FORCE_RET(); |
| } |
| |
| void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val) |
| { |
| d->L(0) = val; |
| d->L(1) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } |
| |
| #ifdef TARGET_X86_64 |
| void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val) |
| { |
| d->Q(0) = val; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } |
| #endif |
| |
| #if SHIFT == 0 |
| void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| r.W(0) = s->W(order & 3); |
| r.W(1) = s->W((order >> 2) & 3); |
| r.W(2) = s->W((order >> 4) & 3); |
| r.W(3) = s->W((order >> 6) & 3); |
| *d = r; |
| } |
| #else |
| void helper_shufps(Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| r.L(0) = d->L(order & 3); |
| r.L(1) = d->L((order >> 2) & 3); |
| r.L(2) = s->L((order >> 4) & 3); |
| r.L(3) = s->L((order >> 6) & 3); |
| *d = r; |
| } |
| |
| void helper_shufpd(Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| r.Q(0) = d->Q(order & 1); |
| r.Q(1) = s->Q((order >> 1) & 1); |
| *d = r; |
| } |
| |
| void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| r.L(0) = s->L(order & 3); |
| r.L(1) = s->L((order >> 2) & 3); |
| r.L(2) = s->L((order >> 4) & 3); |
| r.L(3) = s->L((order >> 6) & 3); |
| *d = r; |
| } |
| |
| void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| r.W(0) = s->W(order & 3); |
| r.W(1) = s->W((order >> 2) & 3); |
| r.W(2) = s->W((order >> 4) & 3); |
| r.W(3) = s->W((order >> 6) & 3); |
| r.Q(1) = s->Q(1); |
| *d = r; |
| } |
| |
| void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| r.Q(0) = s->Q(0); |
| r.W(4) = s->W(4 + (order & 3)); |
| r.W(5) = s->W(4 + ((order >> 2) & 3)); |
| r.W(6) = s->W(4 + ((order >> 4) & 3)); |
| r.W(7) = s->W(4 + ((order >> 6) & 3)); |
| *d = r; |
| } |
| #endif |
| |
| #if SHIFT == 1 |
| /* FPU ops */ |
| /* XXX: not accurate */ |
| |
| #define SSE_HELPER_S(name, F)\ |
| void helper_ ## name ## ps (Reg *d, Reg *s)\ |
| {\ |
| d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ |
| d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\ |
| d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\ |
| d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\ |
| }\ |
| \ |
| void helper_ ## name ## ss (Reg *d, Reg *s)\ |
| {\ |
| d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ |
| }\ |
| void helper_ ## name ## pd (Reg *d, Reg *s)\ |
| {\ |
| d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ |
| d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\ |
| }\ |
| \ |
| void helper_ ## name ## sd (Reg *d, Reg *s)\ |
| {\ |
| d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ |
| } |
| |
| #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status) |
| #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status) |
| #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status) |
| #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status) |
| #define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b) |
| #define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b) |
| #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status) |
| |
| SSE_HELPER_S(add, FPU_ADD) |
| SSE_HELPER_S(sub, FPU_SUB) |
| SSE_HELPER_S(mul, FPU_MUL) |
| SSE_HELPER_S(div, FPU_DIV) |
| SSE_HELPER_S(min, FPU_MIN) |
| SSE_HELPER_S(max, FPU_MAX) |
| SSE_HELPER_S(sqrt, FPU_SQRT) |
| |
| |
| /* float to float conversions */ |
| void helper_cvtps2pd(Reg *d, Reg *s) |
| { |
| float32 s0, s1; |
| s0 = s->XMM_S(0); |
| s1 = s->XMM_S(1); |
| d->XMM_D(0) = float32_to_float64(s0, &env->sse_status); |
| d->XMM_D(1) = float32_to_float64(s1, &env->sse_status); |
| } |
| |
| void helper_cvtpd2ps(Reg *d, Reg *s) |
| { |
| d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status); |
| d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status); |
| d->Q(1) = 0; |
| } |
| |
| void helper_cvtss2sd(Reg *d, Reg *s) |
| { |
| d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status); |
| } |
| |
| void helper_cvtsd2ss(Reg *d, Reg *s) |
| { |
| d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status); |
| } |
| |
| /* integer to float */ |
| void helper_cvtdq2ps(Reg *d, Reg *s) |
| { |
| d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status); |
| d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status); |
| d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status); |
| d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status); |
| } |
| |
| void helper_cvtdq2pd(Reg *d, Reg *s) |
| { |
| int32_t l0, l1; |
| l0 = (int32_t)s->XMM_L(0); |
| l1 = (int32_t)s->XMM_L(1); |
| d->XMM_D(0) = int32_to_float64(l0, &env->sse_status); |
| d->XMM_D(1) = int32_to_float64(l1, &env->sse_status); |
| } |
| |
| void helper_cvtpi2ps(XMMReg *d, MMXReg *s) |
| { |
| d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status); |
| d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status); |
| } |
| |
| void helper_cvtpi2pd(XMMReg *d, MMXReg *s) |
| { |
| d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status); |
| d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status); |
| } |
| |
| void helper_cvtsi2ss(XMMReg *d, uint32_t val) |
| { |
| d->XMM_S(0) = int32_to_float32(val, &env->sse_status); |
| } |
| |
| void helper_cvtsi2sd(XMMReg *d, uint32_t val) |
| { |
| d->XMM_D(0) = int32_to_float64(val, &env->sse_status); |
| } |
| |
| #ifdef TARGET_X86_64 |
| void helper_cvtsq2ss(XMMReg *d, uint64_t val) |
| { |
| d->XMM_S(0) = int64_to_float32(val, &env->sse_status); |
| } |
| |
| void helper_cvtsq2sd(XMMReg *d, uint64_t val) |
| { |
| d->XMM_D(0) = int64_to_float64(val, &env->sse_status); |
| } |
| #endif |
| |
| /* float to integer */ |
| void helper_cvtps2dq(XMMReg *d, XMMReg *s) |
| { |
| d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status); |
| d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status); |
| d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status); |
| d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status); |
| } |
| |
| void helper_cvtpd2dq(XMMReg *d, XMMReg *s) |
| { |
| d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status); |
| d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status); |
| d->XMM_Q(1) = 0; |
| } |
| |
| void helper_cvtps2pi(MMXReg *d, XMMReg *s) |
| { |
| d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status); |
| d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status); |
| } |
| |
| void helper_cvtpd2pi(MMXReg *d, XMMReg *s) |
| { |
| d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status); |
| d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status); |
| } |
| |
| int32_t helper_cvtss2si(XMMReg *s) |
| { |
| return float32_to_int32(s->XMM_S(0), &env->sse_status); |
| } |
| |
| int32_t helper_cvtsd2si(XMMReg *s) |
| { |
| return float64_to_int32(s->XMM_D(0), &env->sse_status); |
| } |
| |
| #ifdef TARGET_X86_64 |
| int64_t helper_cvtss2sq(XMMReg *s) |
| { |
| return float32_to_int64(s->XMM_S(0), &env->sse_status); |
| } |
| |
| int64_t helper_cvtsd2sq(XMMReg *s) |
| { |
| return float64_to_int64(s->XMM_D(0), &env->sse_status); |
| } |
| #endif |
| |
| /* float to integer truncated */ |
| void helper_cvttps2dq(XMMReg *d, XMMReg *s) |
| { |
| d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status); |
| d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status); |
| d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status); |
| d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status); |
| } |
| |
| void helper_cvttpd2dq(XMMReg *d, XMMReg *s) |
| { |
| d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status); |
| d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status); |
| d->XMM_Q(1) = 0; |
| } |
| |
| void helper_cvttps2pi(MMXReg *d, XMMReg *s) |
| { |
| d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status); |
| d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status); |
| } |
| |
| void helper_cvttpd2pi(MMXReg *d, XMMReg *s) |
| { |
| d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status); |
| d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status); |
| } |
| |
| int32_t helper_cvttss2si(XMMReg *s) |
| { |
| return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status); |
| } |
| |
| int32_t helper_cvttsd2si(XMMReg *s) |
| { |
| return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status); |
| } |
| |
| #ifdef TARGET_X86_64 |
| int64_t helper_cvttss2sq(XMMReg *s) |
| { |
| return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status); |
| } |
| |
| int64_t helper_cvttsd2sq(XMMReg *s) |
| { |
| return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status); |
| } |
| #endif |
| |
| void helper_rsqrtps(XMMReg *d, XMMReg *s) |
| { |
| d->XMM_S(0) = approx_rsqrt(s->XMM_S(0)); |
| d->XMM_S(1) = approx_rsqrt(s->XMM_S(1)); |
| d->XMM_S(2) = approx_rsqrt(s->XMM_S(2)); |
| d->XMM_S(3) = approx_rsqrt(s->XMM_S(3)); |
| } |
| |
| void helper_rsqrtss(XMMReg *d, XMMReg *s) |
| { |
| d->XMM_S(0) = approx_rsqrt(s->XMM_S(0)); |
| } |
| |
| void helper_rcpps(XMMReg *d, XMMReg *s) |
| { |
| d->XMM_S(0) = approx_rcp(s->XMM_S(0)); |
| d->XMM_S(1) = approx_rcp(s->XMM_S(1)); |
| d->XMM_S(2) = approx_rcp(s->XMM_S(2)); |
| d->XMM_S(3) = approx_rcp(s->XMM_S(3)); |
| } |
| |
| void helper_rcpss(XMMReg *d, XMMReg *s) |
| { |
| d->XMM_S(0) = approx_rcp(s->XMM_S(0)); |
| } |
| |
| void helper_haddps(XMMReg *d, XMMReg *s) |
| { |
| XMMReg r; |
| r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1); |
| r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3); |
| r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1); |
| r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3); |
| *d = r; |
| } |
| |
| void helper_haddpd(XMMReg *d, XMMReg *s) |
| { |
| XMMReg r; |
| r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1); |
| r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1); |
| *d = r; |
| } |
| |
| void helper_hsubps(XMMReg *d, XMMReg *s) |
| { |
| XMMReg r; |
| r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1); |
| r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3); |
| r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1); |
| r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3); |
| *d = r; |
| } |
| |
| void helper_hsubpd(XMMReg *d, XMMReg *s) |
| { |
| XMMReg r; |
| r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1); |
| r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1); |
| *d = r; |
| } |
| |
| void helper_addsubps(XMMReg *d, XMMReg *s) |
| { |
| d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0); |
| d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1); |
| d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2); |
| d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3); |
| } |
| |
| void helper_addsubpd(XMMReg *d, XMMReg *s) |
| { |
| d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0); |
| d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1); |
| } |
| |
| /* XXX: unordered */ |
| #define SSE_HELPER_CMP(name, F)\ |
| void helper_ ## name ## ps (Reg *d, Reg *s)\ |
| {\ |
| d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ |
| d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\ |
| d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\ |
| d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\ |
| }\ |
| \ |
| void helper_ ## name ## ss (Reg *d, Reg *s)\ |
| {\ |
| d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ |
| }\ |
| void helper_ ## name ## pd (Reg *d, Reg *s)\ |
| {\ |
| d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ |
| d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\ |
| }\ |
| \ |
| void helper_ ## name ## sd (Reg *d, Reg *s)\ |
| {\ |
| d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ |
| } |
| |
| #define FPU_CMPEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? -1 : 0 |
| #define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0 |
| #define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0 |
| #define FPU_CMPUNORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? - 1 : 0 |
| #define FPU_CMPNEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? 0 : -1 |
| #define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1 |
| #define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1 |
| #define FPU_CMPORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? 0 : -1 |
| |
| SSE_HELPER_CMP(cmpeq, FPU_CMPEQ) |
| SSE_HELPER_CMP(cmplt, FPU_CMPLT) |
| SSE_HELPER_CMP(cmple, FPU_CMPLE) |
| SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD) |
| SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ) |
| SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT) |
| SSE_HELPER_CMP(cmpnle, FPU_CMPNLE) |
| SSE_HELPER_CMP(cmpord, FPU_CMPORD) |
| |
| const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; |
| |
| void helper_ucomiss(Reg *d, Reg *s) |
| { |
| int ret; |
| float32 s0, s1; |
| |
| s0 = d->XMM_S(0); |
| s1 = s->XMM_S(0); |
| ret = float32_compare_quiet(s0, s1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| FORCE_RET(); |
| } |
| |
| void helper_comiss(Reg *d, Reg *s) |
| { |
| int ret; |
| float32 s0, s1; |
| |
| s0 = d->XMM_S(0); |
| s1 = s->XMM_S(0); |
| ret = float32_compare(s0, s1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| FORCE_RET(); |
| } |
| |
| void helper_ucomisd(Reg *d, Reg *s) |
| { |
| int ret; |
| float64 d0, d1; |
| |
| d0 = d->XMM_D(0); |
| d1 = s->XMM_D(0); |
| ret = float64_compare_quiet(d0, d1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| FORCE_RET(); |
| } |
| |
| void helper_comisd(Reg *d, Reg *s) |
| { |
| int ret; |
| float64 d0, d1; |
| |
| d0 = d->XMM_D(0); |
| d1 = s->XMM_D(0); |
| ret = float64_compare(d0, d1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| FORCE_RET(); |
| } |
| |
| uint32_t helper_movmskps(Reg *s) |
| { |
| int b0, b1, b2, b3; |
| b0 = s->XMM_L(0) >> 31; |
| b1 = s->XMM_L(1) >> 31; |
| b2 = s->XMM_L(2) >> 31; |
| b3 = s->XMM_L(3) >> 31; |
| return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3); |
| } |
| |
| uint32_t helper_movmskpd(Reg *s) |
| { |
| int b0, b1; |
| b0 = s->XMM_L(1) >> 31; |
| b1 = s->XMM_L(3) >> 31; |
| return b0 | (b1 << 1); |
| } |
| |
| #endif |
| |
| uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s) |
| { |
| uint32_t val; |
| val = 0; |
| val |= (s->XMM_B(0) >> 7); |
| val |= (s->XMM_B(1) >> 6) & 0x02; |
| val |= (s->XMM_B(2) >> 5) & 0x04; |
| val |= (s->XMM_B(3) >> 4) & 0x08; |
| val |= (s->XMM_B(4) >> 3) & 0x10; |
| val |= (s->XMM_B(5) >> 2) & 0x20; |
| val |= (s->XMM_B(6) >> 1) & 0x40; |
| val |= (s->XMM_B(7)) & 0x80; |
| #if SHIFT == 1 |
| val |= (s->XMM_B(8) << 1) & 0x0100; |
| val |= (s->XMM_B(9) << 2) & 0x0200; |
| val |= (s->XMM_B(10) << 3) & 0x0400; |
| val |= (s->XMM_B(11) << 4) & 0x0800; |
| val |= (s->XMM_B(12) << 5) & 0x1000; |
| val |= (s->XMM_B(13) << 6) & 0x2000; |
| val |= (s->XMM_B(14) << 7) & 0x4000; |
| val |= (s->XMM_B(15) << 8) & 0x8000; |
| #endif |
| return val; |
| } |
| |
| void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s) |
| { |
| Reg r; |
| |
| r.B(0) = satsb((int16_t)d->W(0)); |
| r.B(1) = satsb((int16_t)d->W(1)); |
| r.B(2) = satsb((int16_t)d->W(2)); |
| r.B(3) = satsb((int16_t)d->W(3)); |
| #if SHIFT == 1 |
| r.B(4) = satsb((int16_t)d->W(4)); |
| r.B(5) = satsb((int16_t)d->W(5)); |
| r.B(6) = satsb((int16_t)d->W(6)); |
| r.B(7) = satsb((int16_t)d->W(7)); |
| #endif |
| r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0)); |
| r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1)); |
| r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2)); |
| r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3)); |
| #if SHIFT == 1 |
| r.B(12) = satsb((int16_t)s->W(4)); |
| r.B(13) = satsb((int16_t)s->W(5)); |
| r.B(14) = satsb((int16_t)s->W(6)); |
| r.B(15) = satsb((int16_t)s->W(7)); |
| #endif |
| *d = r; |
| } |
| |
| void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s) |
| { |
| Reg r; |
| |
| r.B(0) = satub((int16_t)d->W(0)); |
| r.B(1) = satub((int16_t)d->W(1)); |
| r.B(2) = satub((int16_t)d->W(2)); |
| r.B(3) = satub((int16_t)d->W(3)); |
| #if SHIFT == 1 |
| r.B(4) = satub((int16_t)d->W(4)); |
| r.B(5) = satub((int16_t)d->W(5)); |
| r.B(6) = satub((int16_t)d->W(6)); |
| r.B(7) = satub((int16_t)d->W(7)); |
| #endif |
| r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0)); |
| r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1)); |
| r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2)); |
| r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3)); |
| #if SHIFT == 1 |
| r.B(12) = satub((int16_t)s->W(4)); |
| r.B(13) = satub((int16_t)s->W(5)); |
| r.B(14) = satub((int16_t)s->W(6)); |
| r.B(15) = satub((int16_t)s->W(7)); |
| #endif |
| *d = r; |
| } |
| |
| void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s) |
| { |
| Reg r; |
| |
| r.W(0) = satsw(d->L(0)); |
| r.W(1) = satsw(d->L(1)); |
| #if SHIFT == 1 |
| r.W(2) = satsw(d->L(2)); |
| r.W(3) = satsw(d->L(3)); |
| #endif |
| r.W((2 << SHIFT) + 0) = satsw(s->L(0)); |
| r.W((2 << SHIFT) + 1) = satsw(s->L(1)); |
| #if SHIFT == 1 |
| r.W(6) = satsw(s->L(2)); |
| r.W(7) = satsw(s->L(3)); |
| #endif |
| *d = r; |
| } |
| |
| #define UNPCK_OP(base_name, base) \ |
| \ |
| void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s) \ |
| { \ |
| Reg r; \ |
| \ |
| r.B(0) = d->B((base << (SHIFT + 2)) + 0); \ |
| r.B(1) = s->B((base << (SHIFT + 2)) + 0); \ |
| r.B(2) = d->B((base << (SHIFT + 2)) + 1); \ |
| r.B(3) = s->B((base << (SHIFT + 2)) + 1); \ |
| r.B(4) = d->B((base << (SHIFT + 2)) + 2); \ |
| r.B(5) = s->B((base << (SHIFT + 2)) + 2); \ |
| r.B(6) = d->B((base << (SHIFT + 2)) + 3); \ |
| r.B(7) = s->B((base << (SHIFT + 2)) + 3); \ |
| XMM_ONLY( \ |
| r.B(8) = d->B((base << (SHIFT + 2)) + 4); \ |
| r.B(9) = s->B((base << (SHIFT + 2)) + 4); \ |
| r.B(10) = d->B((base << (SHIFT + 2)) + 5); \ |
| r.B(11) = s->B((base << (SHIFT + 2)) + 5); \ |
| r.B(12) = d->B((base << (SHIFT + 2)) + 6); \ |
| r.B(13) = s->B((base << (SHIFT + 2)) + 6); \ |
| r.B(14) = d->B((base << (SHIFT + 2)) + 7); \ |
| r.B(15) = s->B((base << (SHIFT + 2)) + 7); \ |
| ) \ |
| *d = r; \ |
| } \ |
| \ |
| void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s) \ |
| { \ |
| Reg r; \ |
| \ |
| r.W(0) = d->W((base << (SHIFT + 1)) + 0); \ |
| r.W(1) = s->W((base << (SHIFT + 1)) + 0); \ |
| r.W(2) = d->W((base << (SHIFT + 1)) + 1); \ |
| r.W(3) = s->W((base << (SHIFT + 1)) + 1); \ |
| XMM_ONLY( \ |
| r.W(4) = d->W((base << (SHIFT + 1)) + 2); \ |
| r.W(5) = s->W((base << (SHIFT + 1)) + 2); \ |
| r.W(6) = d->W((base << (SHIFT + 1)) + 3); \ |
| r.W(7) = s->W((base << (SHIFT + 1)) + 3); \ |
| ) \ |
| *d = r; \ |
| } \ |
| \ |
| void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s) \ |
| { \ |
| Reg r; \ |
| \ |
| r.L(0) = d->L((base << SHIFT) + 0); \ |
| r.L(1) = s->L((base << SHIFT) + 0); \ |
| XMM_ONLY( \ |
| r.L(2) = d->L((base << SHIFT) + 1); \ |
| r.L(3) = s->L((base << SHIFT) + 1); \ |
| ) \ |
| *d = r; \ |
| } \ |
| \ |
| XMM_ONLY( \ |
| void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s) \ |
| { \ |
| Reg r; \ |
| \ |
| r.Q(0) = d->Q(base); \ |
| r.Q(1) = s->Q(base); \ |
| *d = r; \ |
| } \ |
| ) |
| |
| UNPCK_OP(l, 0) |
| UNPCK_OP(h, 1) |
| |
| /* 3DNow! float ops */ |
| #if SHIFT == 0 |
| void helper_pi2fd(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status); |
| d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status); |
| } |
| |
| void helper_pi2fw(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status); |
| d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status); |
| } |
| |
| void helper_pf2id(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status); |
| d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pf2iw(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status)); |
| d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status)); |
| } |
| |
| void helper_pfacc(MMXReg *d, MMXReg *s) |
| { |
| MMXReg r; |
| r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); |
| r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); |
| *d = r; |
| } |
| |
| void helper_pfadd(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pfcmpeq(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_eq(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0; |
| d->MMX_L(1) = float32_eq(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0; |
| } |
| |
| void helper_pfcmpge(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0; |
| d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0; |
| } |
| |
| void helper_pfcmpgt(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0; |
| d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0; |
| } |
| |
| void helper_pfmax(MMXReg *d, MMXReg *s) |
| { |
| if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) |
| d->MMX_S(0) = s->MMX_S(0); |
| if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) |
| d->MMX_S(1) = s->MMX_S(1); |
| } |
| |
| void helper_pfmin(MMXReg *d, MMXReg *s) |
| { |
| if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) |
| d->MMX_S(0) = s->MMX_S(0); |
| if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) |
| d->MMX_S(1) = s->MMX_S(1); |
| } |
| |
| void helper_pfmul(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pfnacc(MMXReg *d, MMXReg *s) |
| { |
| MMXReg r; |
| r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); |
| r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); |
| *d = r; |
| } |
| |
| void helper_pfpnacc(MMXReg *d, MMXReg *s) |
| { |
| MMXReg r; |
| r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); |
| r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); |
| *d = r; |
| } |
| |
| void helper_pfrcp(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = approx_rcp(s->MMX_S(0)); |
| d->MMX_S(1) = d->MMX_S(0); |
| } |
| |
| void helper_pfrsqrt(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff; |
| d->MMX_S(1) = approx_rsqrt(d->MMX_S(1)); |
| d->MMX_L(1) |= s->MMX_L(0) & 0x80000000; |
| d->MMX_L(0) = d->MMX_L(1); |
| } |
| |
| void helper_pfsub(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pfsubr(MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pswapd(MMXReg *d, MMXReg *s) |
| { |
| MMXReg r; |
| r.MMX_L(0) = s->MMX_L(1); |
| r.MMX_L(1) = s->MMX_L(0); |
| *d = r; |
| } |
| #endif |
| |
| #undef SHIFT |
| #undef XMM_ONLY |
| #undef Reg |
| #undef B |
| #undef W |
| #undef L |
| #undef Q |
| #undef SUFFIX |