| /* | 
 |  *  Virtual page mapping | 
 |  * | 
 |  *  Copyright (c) 2003 Fabrice Bellard | 
 |  * | 
 |  * This library is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU Lesser General Public | 
 |  * License as published by the Free Software Foundation; either | 
 |  * version 2 of the License, or (at your option) any later version. | 
 |  * | 
 |  * This library is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * Lesser General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU Lesser General Public | 
 |  * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 | #include "config.h" | 
 | #ifndef _WIN32 | 
 | #include <sys/types.h> | 
 | #include <sys/mman.h> | 
 | #endif | 
 |  | 
 | #include "qemu-common.h" | 
 | #include "cpu.h" | 
 | #include "tcg.h" | 
 | #include "hw/hw.h" | 
 | #if !defined(CONFIG_USER_ONLY) | 
 | #include "hw/boards.h" | 
 | #endif | 
 | #include "hw/qdev.h" | 
 | #include "qemu/osdep.h" | 
 | #include "sysemu/kvm.h" | 
 | #include "sysemu/sysemu.h" | 
 | #include "hw/xen/xen.h" | 
 | #include "qemu/timer.h" | 
 | #include "qemu/config-file.h" | 
 | #include "qemu/error-report.h" | 
 | #include "exec/memory.h" | 
 | #include "sysemu/dma.h" | 
 | #include "exec/address-spaces.h" | 
 | #if defined(CONFIG_USER_ONLY) | 
 | #include <qemu.h> | 
 | #else /* !CONFIG_USER_ONLY */ | 
 | #include "sysemu/xen-mapcache.h" | 
 | #include "trace.h" | 
 | #endif | 
 | #include "exec/cpu-all.h" | 
 | #include "qemu/rcu_queue.h" | 
 | #include "qemu/main-loop.h" | 
 | #include "translate-all.h" | 
 | #include "sysemu/replay.h" | 
 |  | 
 | #include "exec/memory-internal.h" | 
 | #include "exec/ram_addr.h" | 
 |  | 
 | #include "qemu/range.h" | 
 | #ifndef _WIN32 | 
 | #include "qemu/mmap-alloc.h" | 
 | #endif | 
 |  | 
 | //#define DEBUG_SUBPAGE | 
 |  | 
 | #if !defined(CONFIG_USER_ONLY) | 
 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes | 
 |  * are protected by the ramlist lock. | 
 |  */ | 
 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; | 
 |  | 
 | static MemoryRegion *system_memory; | 
 | static MemoryRegion *system_io; | 
 |  | 
 | AddressSpace address_space_io; | 
 | AddressSpace address_space_memory; | 
 |  | 
 | MemoryRegion io_mem_rom, io_mem_notdirty; | 
 | static MemoryRegion io_mem_unassigned; | 
 |  | 
 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ | 
 | #define RAM_PREALLOC   (1 << 0) | 
 |  | 
 | /* RAM is mmap-ed with MAP_SHARED */ | 
 | #define RAM_SHARED     (1 << 1) | 
 |  | 
 | /* Only a portion of RAM (used_length) is actually used, and migrated. | 
 |  * This used_length size can change across reboots. | 
 |  */ | 
 | #define RAM_RESIZEABLE (1 << 2) | 
 |  | 
 | #endif | 
 |  | 
 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); | 
 | /* current CPU in the current thread. It is only valid inside | 
 |    cpu_exec() */ | 
 | __thread CPUState *current_cpu; | 
 | /* 0 = Do not count executed instructions. | 
 |    1 = Precise instruction counting. | 
 |    2 = Adaptive rate instruction counting.  */ | 
 | int use_icount; | 
 |  | 
 | #if !defined(CONFIG_USER_ONLY) | 
 |  | 
 | typedef struct PhysPageEntry PhysPageEntry; | 
 |  | 
 | struct PhysPageEntry { | 
 |     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ | 
 |     uint32_t skip : 6; | 
 |      /* index into phys_sections (!skip) or phys_map_nodes (skip) */ | 
 |     uint32_t ptr : 26; | 
 | }; | 
 |  | 
 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) | 
 |  | 
 | /* Size of the L2 (and L3, etc) page tables.  */ | 
 | #define ADDR_SPACE_BITS 64 | 
 |  | 
 | #define P_L2_BITS 9 | 
 | #define P_L2_SIZE (1 << P_L2_BITS) | 
 |  | 
 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | 
 |  | 
 | typedef PhysPageEntry Node[P_L2_SIZE]; | 
 |  | 
 | typedef struct PhysPageMap { | 
 |     struct rcu_head rcu; | 
 |  | 
 |     unsigned sections_nb; | 
 |     unsigned sections_nb_alloc; | 
 |     unsigned nodes_nb; | 
 |     unsigned nodes_nb_alloc; | 
 |     Node *nodes; | 
 |     MemoryRegionSection *sections; | 
 | } PhysPageMap; | 
 |  | 
 | struct AddressSpaceDispatch { | 
 |     struct rcu_head rcu; | 
 |  | 
 |     /* This is a multi-level map on the physical address space. | 
 |      * The bottom level has pointers to MemoryRegionSections. | 
 |      */ | 
 |     PhysPageEntry phys_map; | 
 |     PhysPageMap map; | 
 |     AddressSpace *as; | 
 | }; | 
 |  | 
 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | 
 | typedef struct subpage_t { | 
 |     MemoryRegion iomem; | 
 |     AddressSpace *as; | 
 |     hwaddr base; | 
 |     uint16_t sub_section[TARGET_PAGE_SIZE]; | 
 | } subpage_t; | 
 |  | 
 | #define PHYS_SECTION_UNASSIGNED 0 | 
 | #define PHYS_SECTION_NOTDIRTY 1 | 
 | #define PHYS_SECTION_ROM 2 | 
 | #define PHYS_SECTION_WATCH 3 | 
 |  | 
 | static void io_mem_init(void); | 
 | static void memory_map_init(void); | 
 | static void tcg_commit(MemoryListener *listener); | 
 |  | 
 | static MemoryRegion io_mem_watch; | 
 |  | 
 | /** | 
 |  * CPUAddressSpace: all the information a CPU needs about an AddressSpace | 
 |  * @cpu: the CPU whose AddressSpace this is | 
 |  * @as: the AddressSpace itself | 
 |  * @memory_dispatch: its dispatch pointer (cached, RCU protected) | 
 |  * @tcg_as_listener: listener for tracking changes to the AddressSpace | 
 |  */ | 
 | struct CPUAddressSpace { | 
 |     CPUState *cpu; | 
 |     AddressSpace *as; | 
 |     struct AddressSpaceDispatch *memory_dispatch; | 
 |     MemoryListener tcg_as_listener; | 
 | }; | 
 |  | 
 | #endif | 
 |  | 
 | #if !defined(CONFIG_USER_ONLY) | 
 |  | 
 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) | 
 | { | 
 |     if (map->nodes_nb + nodes > map->nodes_nb_alloc) { | 
 |         map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | 
 |         map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | 
 |         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | 
 |     } | 
 | } | 
 |  | 
 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) | 
 | { | 
 |     unsigned i; | 
 |     uint32_t ret; | 
 |     PhysPageEntry e; | 
 |     PhysPageEntry *p; | 
 |  | 
 |     ret = map->nodes_nb++; | 
 |     p = map->nodes[ret]; | 
 |     assert(ret != PHYS_MAP_NODE_NIL); | 
 |     assert(ret != map->nodes_nb_alloc); | 
 |  | 
 |     e.skip = leaf ? 0 : 1; | 
 |     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | 
 |     for (i = 0; i < P_L2_SIZE; ++i) { | 
 |         memcpy(&p[i], &e, sizeof(e)); | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, | 
 |                                 hwaddr *index, hwaddr *nb, uint16_t leaf, | 
 |                                 int level) | 
 | { | 
 |     PhysPageEntry *p; | 
 |     hwaddr step = (hwaddr)1 << (level * P_L2_BITS); | 
 |  | 
 |     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { | 
 |         lp->ptr = phys_map_node_alloc(map, level == 0); | 
 |     } | 
 |     p = map->nodes[lp->ptr]; | 
 |     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; | 
 |  | 
 |     while (*nb && lp < &p[P_L2_SIZE]) { | 
 |         if ((*index & (step - 1)) == 0 && *nb >= step) { | 
 |             lp->skip = 0; | 
 |             lp->ptr = leaf; | 
 |             *index += step; | 
 |             *nb -= step; | 
 |         } else { | 
 |             phys_page_set_level(map, lp, index, nb, leaf, level - 1); | 
 |         } | 
 |         ++lp; | 
 |     } | 
 | } | 
 |  | 
 | static void phys_page_set(AddressSpaceDispatch *d, | 
 |                           hwaddr index, hwaddr nb, | 
 |                           uint16_t leaf) | 
 | { | 
 |     /* Wildly overreserve - it doesn't matter much. */ | 
 |     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); | 
 |  | 
 |     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); | 
 | } | 
 |  | 
 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, | 
 |  * and update our entry so we can skip it and go directly to the destination. | 
 |  */ | 
 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | 
 | { | 
 |     unsigned valid_ptr = P_L2_SIZE; | 
 |     int valid = 0; | 
 |     PhysPageEntry *p; | 
 |     int i; | 
 |  | 
 |     if (lp->ptr == PHYS_MAP_NODE_NIL) { | 
 |         return; | 
 |     } | 
 |  | 
 |     p = nodes[lp->ptr]; | 
 |     for (i = 0; i < P_L2_SIZE; i++) { | 
 |         if (p[i].ptr == PHYS_MAP_NODE_NIL) { | 
 |             continue; | 
 |         } | 
 |  | 
 |         valid_ptr = i; | 
 |         valid++; | 
 |         if (p[i].skip) { | 
 |             phys_page_compact(&p[i], nodes, compacted); | 
 |         } | 
 |     } | 
 |  | 
 |     /* We can only compress if there's only one child. */ | 
 |     if (valid != 1) { | 
 |         return; | 
 |     } | 
 |  | 
 |     assert(valid_ptr < P_L2_SIZE); | 
 |  | 
 |     /* Don't compress if it won't fit in the # of bits we have. */ | 
 |     if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     lp->ptr = p[valid_ptr].ptr; | 
 |     if (!p[valid_ptr].skip) { | 
 |         /* If our only child is a leaf, make this a leaf. */ | 
 |         /* By design, we should have made this node a leaf to begin with so we | 
 |          * should never reach here. | 
 |          * But since it's so simple to handle this, let's do it just in case we | 
 |          * change this rule. | 
 |          */ | 
 |         lp->skip = 0; | 
 |     } else { | 
 |         lp->skip += p[valid_ptr].skip; | 
 |     } | 
 | } | 
 |  | 
 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | 
 | { | 
 |     DECLARE_BITMAP(compacted, nodes_nb); | 
 |  | 
 |     if (d->phys_map.skip) { | 
 |         phys_page_compact(&d->phys_map, d->map.nodes, compacted); | 
 |     } | 
 | } | 
 |  | 
 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, | 
 |                                            Node *nodes, MemoryRegionSection *sections) | 
 | { | 
 |     PhysPageEntry *p; | 
 |     hwaddr index = addr >> TARGET_PAGE_BITS; | 
 |     int i; | 
 |  | 
 |     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { | 
 |         if (lp.ptr == PHYS_MAP_NODE_NIL) { | 
 |             return §ions[PHYS_SECTION_UNASSIGNED]; | 
 |         } | 
 |         p = nodes[lp.ptr]; | 
 |         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; | 
 |     } | 
 |  | 
 |     if (sections[lp.ptr].size.hi || | 
 |         range_covers_byte(sections[lp.ptr].offset_within_address_space, | 
 |                           sections[lp.ptr].size.lo, addr)) { | 
 |         return §ions[lp.ptr]; | 
 |     } else { | 
 |         return §ions[PHYS_SECTION_UNASSIGNED]; | 
 |     } | 
 | } | 
 |  | 
 | bool memory_region_is_unassigned(MemoryRegion *mr) | 
 | { | 
 |     return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device | 
 |         && mr != &io_mem_watch; | 
 | } | 
 |  | 
 | /* Called from RCU critical section */ | 
 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, | 
 |                                                         hwaddr addr, | 
 |                                                         bool resolve_subpage) | 
 | { | 
 |     MemoryRegionSection *section; | 
 |     subpage_t *subpage; | 
 |  | 
 |     section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections); | 
 |     if (resolve_subpage && section->mr->subpage) { | 
 |         subpage = container_of(section->mr, subpage_t, iomem); | 
 |         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; | 
 |     } | 
 |     return section; | 
 | } | 
 |  | 
 | /* Called from RCU critical section */ | 
 | static MemoryRegionSection * | 
 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, | 
 |                                  hwaddr *plen, bool resolve_subpage) | 
 | { | 
 |     MemoryRegionSection *section; | 
 |     MemoryRegion *mr; | 
 |     Int128 diff; | 
 |  | 
 |     section = address_space_lookup_region(d, addr, resolve_subpage); | 
 |     /* Compute offset within MemoryRegionSection */ | 
 |     addr -= section->offset_within_address_space; | 
 |  | 
 |     /* Compute offset within MemoryRegion */ | 
 |     *xlat = addr + section->offset_within_region; | 
 |  | 
 |     mr = section->mr; | 
 |  | 
 |     /* MMIO registers can be expected to perform full-width accesses based only | 
 |      * on their address, without considering adjacent registers that could | 
 |      * decode to completely different MemoryRegions.  When such registers | 
 |      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | 
 |      * regions overlap wildly.  For this reason we cannot clamp the accesses | 
 |      * here. | 
 |      * | 
 |      * If the length is small (as is the case for address_space_ldl/stl), | 
 |      * everything works fine.  If the incoming length is large, however, | 
 |      * the caller really has to do the clamping through memory_access_size. | 
 |      */ | 
 |     if (memory_region_is_ram(mr)) { | 
 |         diff = int128_sub(section->size, int128_make64(addr)); | 
 |         *plen = int128_get64(int128_min(diff, int128_make64(*plen))); | 
 |     } | 
 |     return section; | 
 | } | 
 |  | 
 | /* Called from RCU critical section */ | 
 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, | 
 |                                       hwaddr *xlat, hwaddr *plen, | 
 |                                       bool is_write) | 
 | { | 
 |     IOMMUTLBEntry iotlb; | 
 |     MemoryRegionSection *section; | 
 |     MemoryRegion *mr; | 
 |  | 
 |     for (;;) { | 
 |         AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); | 
 |         section = address_space_translate_internal(d, addr, &addr, plen, true); | 
 |         mr = section->mr; | 
 |  | 
 |         if (!mr->iommu_ops) { | 
 |             break; | 
 |         } | 
 |  | 
 |         iotlb = mr->iommu_ops->translate(mr, addr, is_write); | 
 |         addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | 
 |                 | (addr & iotlb.addr_mask)); | 
 |         *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); | 
 |         if (!(iotlb.perm & (1 << is_write))) { | 
 |             mr = &io_mem_unassigned; | 
 |             break; | 
 |         } | 
 |  | 
 |         as = iotlb.target_as; | 
 |     } | 
 |  | 
 |     if (xen_enabled() && memory_access_is_direct(mr, is_write)) { | 
 |         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; | 
 |         *plen = MIN(page, *plen); | 
 |     } | 
 |  | 
 |     *xlat = addr; | 
 |     return mr; | 
 | } | 
 |  | 
 | /* Called from RCU critical section */ | 
 | MemoryRegionSection * | 
 | address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr, | 
 |                                   hwaddr *xlat, hwaddr *plen) | 
 | { | 
 |     MemoryRegionSection *section; | 
 |     section = address_space_translate_internal(cpu->cpu_ases[0].memory_dispatch, | 
 |                                                addr, xlat, plen, false); | 
 |  | 
 |     assert(!section->mr->iommu_ops); | 
 |     return section; | 
 | } | 
 | #endif | 
 |  | 
 | #if !defined(CONFIG_USER_ONLY) | 
 |  | 
 | static int cpu_common_post_load(void *opaque, int version_id) | 
 | { | 
 |     CPUState *cpu = opaque; | 
 |  | 
 |     /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the | 
 |        version_id is increased. */ | 
 |     cpu->interrupt_request &= ~0x01; | 
 |     tlb_flush(cpu, 1); | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static int cpu_common_pre_load(void *opaque) | 
 | { | 
 |     CPUState *cpu = opaque; | 
 |  | 
 |     cpu->exception_index = -1; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static bool cpu_common_exception_index_needed(void *opaque) | 
 | { | 
 |     CPUState *cpu = opaque; | 
 |  | 
 |     return tcg_enabled() && cpu->exception_index != -1; | 
 | } | 
 |  | 
 | static const VMStateDescription vmstate_cpu_common_exception_index = { | 
 |     .name = "cpu_common/exception_index", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .needed = cpu_common_exception_index_needed, | 
 |     .fields = (VMStateField[]) { | 
 |         VMSTATE_INT32(exception_index, CPUState), | 
 |         VMSTATE_END_OF_LIST() | 
 |     } | 
 | }; | 
 |  | 
 | static bool cpu_common_crash_occurred_needed(void *opaque) | 
 | { | 
 |     CPUState *cpu = opaque; | 
 |  | 
 |     return cpu->crash_occurred; | 
 | } | 
 |  | 
 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | 
 |     .name = "cpu_common/crash_occurred", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .needed = cpu_common_crash_occurred_needed, | 
 |     .fields = (VMStateField[]) { | 
 |         VMSTATE_BOOL(crash_occurred, CPUState), | 
 |         VMSTATE_END_OF_LIST() | 
 |     } | 
 | }; | 
 |  | 
 | const VMStateDescription vmstate_cpu_common = { | 
 |     .name = "cpu_common", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .pre_load = cpu_common_pre_load, | 
 |     .post_load = cpu_common_post_load, | 
 |     .fields = (VMStateField[]) { | 
 |         VMSTATE_UINT32(halted, CPUState), | 
 |         VMSTATE_UINT32(interrupt_request, CPUState), | 
 |         VMSTATE_END_OF_LIST() | 
 |     }, | 
 |     .subsections = (const VMStateDescription*[]) { | 
 |         &vmstate_cpu_common_exception_index, | 
 |         &vmstate_cpu_common_crash_occurred, | 
 |         NULL | 
 |     } | 
 | }; | 
 |  | 
 | #endif | 
 |  | 
 | CPUState *qemu_get_cpu(int index) | 
 | { | 
 |     CPUState *cpu; | 
 |  | 
 |     CPU_FOREACH(cpu) { | 
 |         if (cpu->cpu_index == index) { | 
 |             return cpu; | 
 |         } | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | #if !defined(CONFIG_USER_ONLY) | 
 | void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as) | 
 | { | 
 |     /* We only support one address space per cpu at the moment.  */ | 
 |     assert(cpu->as == as); | 
 |  | 
 |     if (cpu->cpu_ases) { | 
 |         /* We've already registered the listener for our only AS */ | 
 |         return; | 
 |     } | 
 |  | 
 |     cpu->cpu_ases = g_new0(CPUAddressSpace, 1); | 
 |     cpu->cpu_ases[0].cpu = cpu; | 
 |     cpu->cpu_ases[0].as = as; | 
 |     cpu->cpu_ases[0].tcg_as_listener.commit = tcg_commit; | 
 |     memory_listener_register(&cpu->cpu_ases[0].tcg_as_listener, as); | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef CONFIG_USER_ONLY | 
 | static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS); | 
 |  | 
 | static int cpu_get_free_index(Error **errp) | 
 | { | 
 |     int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS); | 
 |  | 
 |     if (cpu >= MAX_CPUMASK_BITS) { | 
 |         error_setg(errp, "Trying to use more CPUs than max of %d", | 
 |                    MAX_CPUMASK_BITS); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     bitmap_set(cpu_index_map, cpu, 1); | 
 |     return cpu; | 
 | } | 
 |  | 
 | void cpu_exec_exit(CPUState *cpu) | 
 | { | 
 |     if (cpu->cpu_index == -1) { | 
 |         /* cpu_index was never allocated by this @cpu or was already freed. */ | 
 |         return; | 
 |     } | 
 |  | 
 |     bitmap_clear(cpu_index_map, cpu->cpu_index, 1); | 
 |     cpu->cpu_index = -1; | 
 | } | 
 | #else | 
 |  | 
 | static int cpu_get_free_index(Error **errp) | 
 | { | 
 |     CPUState *some_cpu; | 
 |     int cpu_index = 0; | 
 |  | 
 |     CPU_FOREACH(some_cpu) { | 
 |         cpu_index++; | 
 |     } | 
 |     return cpu_index; | 
 | } | 
 |  | 
 | void cpu_exec_exit(CPUState *cpu) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | void cpu_exec_init(CPUState *cpu, Error **errp) | 
 | { | 
 |     CPUClass *cc = CPU_GET_CLASS(cpu); | 
 |     int cpu_index; | 
 |     Error *local_err = NULL; | 
 |  | 
 | #ifndef CONFIG_USER_ONLY | 
 |     cpu->as = &address_space_memory; | 
 |     cpu->thread_id = qemu_get_thread_id(); | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_USER_ONLY) | 
 |     cpu_list_lock(); | 
 | #endif | 
 |     cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err); | 
 |     if (local_err) { | 
 |         error_propagate(errp, local_err); | 
 | #if defined(CONFIG_USER_ONLY) | 
 |         cpu_list_unlock(); | 
 | #endif | 
 |         return; | 
 |     } | 
 |     QTAILQ_INSERT_TAIL(&cpus, cpu, node); | 
 | #if defined(CONFIG_USER_ONLY) | 
 |     cpu_list_unlock(); | 
 | #endif | 
 |     if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | 
 |         vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | 
 |     } | 
 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | 
 |     register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, | 
 |                     cpu_save, cpu_load, cpu->env_ptr); | 
 |     assert(cc->vmsd == NULL); | 
 |     assert(qdev_get_vmsd(DEVICE(cpu)) == NULL); | 
 | #endif | 
 |     if (cc->vmsd != NULL) { | 
 |         vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | 
 |     } | 
 | } | 
 |  | 
 | #if defined(CONFIG_USER_ONLY) | 
 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | 
 | { | 
 |     tb_invalidate_phys_page_range(pc, pc + 1, 0); | 
 | } | 
 | #else | 
 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | 
 | { | 
 |     hwaddr phys = cpu_get_phys_page_debug(cpu, pc); | 
 |     if (phys != -1) { | 
 |         tb_invalidate_phys_addr(cpu->as, | 
 |                                 phys | (pc & ~TARGET_PAGE_MASK)); | 
 |     } | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_USER_ONLY) | 
 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) | 
 |  | 
 | { | 
 | } | 
 |  | 
 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, | 
 |                           int flags) | 
 | { | 
 |     return -ENOSYS; | 
 | } | 
 |  | 
 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | 
 | { | 
 | } | 
 |  | 
 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, | 
 |                           int flags, CPUWatchpoint **watchpoint) | 
 | { | 
 |     return -ENOSYS; | 
 | } | 
 | #else | 
 | /* Add a watchpoint.  */ | 
 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, | 
 |                           int flags, CPUWatchpoint **watchpoint) | 
 | { | 
 |     CPUWatchpoint *wp; | 
 |  | 
 |     /* forbid ranges which are empty or run off the end of the address space */ | 
 |     if (len == 0 || (addr + len - 1) < addr) { | 
 |         error_report("tried to set invalid watchpoint at %" | 
 |                      VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | 
 |         return -EINVAL; | 
 |     } | 
 |     wp = g_malloc(sizeof(*wp)); | 
 |  | 
 |     wp->vaddr = addr; | 
 |     wp->len = len; | 
 |     wp->flags = flags; | 
 |  | 
 |     /* keep all GDB-injected watchpoints in front */ | 
 |     if (flags & BP_GDB) { | 
 |         QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | 
 |     } else { | 
 |         QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | 
 |     } | 
 |  | 
 |     tlb_flush_page(cpu, addr); | 
 |  | 
 |     if (watchpoint) | 
 |         *watchpoint = wp; | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Remove a specific watchpoint.  */ | 
 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, | 
 |                           int flags) | 
 | { | 
 |     CPUWatchpoint *wp; | 
 |  | 
 |     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | 
 |         if (addr == wp->vaddr && len == wp->len | 
 |                 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { | 
 |             cpu_watchpoint_remove_by_ref(cpu, wp); | 
 |             return 0; | 
 |         } | 
 |     } | 
 |     return -ENOENT; | 
 | } | 
 |  | 
 | /* Remove a specific watchpoint by reference.  */ | 
 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | 
 | { | 
 |     QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); | 
 |  | 
 |     tlb_flush_page(cpu, watchpoint->vaddr); | 
 |  | 
 |     g_free(watchpoint); | 
 | } | 
 |  | 
 | /* Remove all matching watchpoints.  */ | 
 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) | 
 | { | 
 |     CPUWatchpoint *wp, *next; | 
 |  | 
 |     QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { | 
 |         if (wp->flags & mask) { | 
 |             cpu_watchpoint_remove_by_ref(cpu, wp); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /* Return true if this watchpoint address matches the specified | 
 |  * access (ie the address range covered by the watchpoint overlaps | 
 |  * partially or completely with the address range covered by the | 
 |  * access). | 
 |  */ | 
 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | 
 |                                                   vaddr addr, | 
 |                                                   vaddr len) | 
 | { | 
 |     /* We know the lengths are non-zero, but a little caution is | 
 |      * required to avoid errors in the case where the range ends | 
 |      * exactly at the top of the address space and so addr + len | 
 |      * wraps round to zero. | 
 |      */ | 
 |     vaddr wpend = wp->vaddr + wp->len - 1; | 
 |     vaddr addrend = addr + len - 1; | 
 |  | 
 |     return !(addr > wpend || wp->vaddr > addrend); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* Add a breakpoint.  */ | 
 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, | 
 |                           CPUBreakpoint **breakpoint) | 
 | { | 
 |     CPUBreakpoint *bp; | 
 |  | 
 |     bp = g_malloc(sizeof(*bp)); | 
 |  | 
 |     bp->pc = pc; | 
 |     bp->flags = flags; | 
 |  | 
 |     /* keep all GDB-injected breakpoints in front */ | 
 |     if (flags & BP_GDB) { | 
 |         QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); | 
 |     } else { | 
 |         QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); | 
 |     } | 
 |  | 
 |     breakpoint_invalidate(cpu, pc); | 
 |  | 
 |     if (breakpoint) { | 
 |         *breakpoint = bp; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Remove a specific breakpoint.  */ | 
 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) | 
 | { | 
 |     CPUBreakpoint *bp; | 
 |  | 
 |     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { | 
 |         if (bp->pc == pc && bp->flags == flags) { | 
 |             cpu_breakpoint_remove_by_ref(cpu, bp); | 
 |             return 0; | 
 |         } | 
 |     } | 
 |     return -ENOENT; | 
 | } | 
 |  | 
 | /* Remove a specific breakpoint by reference.  */ | 
 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) | 
 | { | 
 |     QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); | 
 |  | 
 |     breakpoint_invalidate(cpu, breakpoint->pc); | 
 |  | 
 |     g_free(breakpoint); | 
 | } | 
 |  | 
 | /* Remove all matching breakpoints. */ | 
 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) | 
 | { | 
 |     CPUBreakpoint *bp, *next; | 
 |  | 
 |     QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { | 
 |         if (bp->flags & mask) { | 
 |             cpu_breakpoint_remove_by_ref(cpu, bp); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /* enable or disable single step mode. EXCP_DEBUG is returned by the | 
 |    CPU loop after each instruction */ | 
 | void cpu_single_step(CPUState *cpu, int enabled) | 
 | { | 
 |     if (cpu->singlestep_enabled != enabled) { | 
 |         cpu->singlestep_enabled = enabled; | 
 |         if (kvm_enabled()) { | 
 |             kvm_update_guest_debug(cpu, 0); | 
 |         } else { | 
 |             /* must flush all the translated code to avoid inconsistencies */ | 
 |             /* XXX: only flush what is necessary */ | 
 |             tb_flush(cpu); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void cpu_abort(CPUState *cpu, const char *fmt, ...) | 
 | { | 
 |     va_list ap; | 
 |     va_list ap2; | 
 |  | 
 |     va_start(ap, fmt); | 
 |     va_copy(ap2, ap); | 
 |     fprintf(stderr, "qemu: fatal: "); | 
 |     vfprintf(stderr, fmt, ap); | 
 |     fprintf(stderr, "\n"); | 
 |     cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); | 
 |     if (qemu_log_separate()) { | 
 |         qemu_log("qemu: fatal: "); | 
 |         qemu_log_vprintf(fmt, ap2); | 
 |         qemu_log("\n"); | 
 |         log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); | 
 |         qemu_log_flush(); | 
 |         qemu_log_close(); | 
 |     } | 
 |     va_end(ap2); | 
 |     va_end(ap); | 
 |     replay_finish(); | 
 | #if defined(CONFIG_USER_ONLY) | 
 |     { | 
 |         struct sigaction act; | 
 |         sigfillset(&act.sa_mask); | 
 |         act.sa_handler = SIG_DFL; | 
 |         sigaction(SIGABRT, &act, NULL); | 
 |     } | 
 | #endif | 
 |     abort(); | 
 | } | 
 |  | 
 | #if !defined(CONFIG_USER_ONLY) | 
 | /* Called from RCU critical section */ | 
 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) | 
 | { | 
 |     RAMBlock *block; | 
 |  | 
 |     block = atomic_rcu_read(&ram_list.mru_block); | 
 |     if (block && addr - block->offset < block->max_length) { | 
 |         return block; | 
 |     } | 
 |     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | 
 |         if (addr - block->offset < block->max_length) { | 
 |             goto found; | 
 |         } | 
 |     } | 
 |  | 
 |     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | 
 |     abort(); | 
 |  | 
 | found: | 
 |     /* It is safe to write mru_block outside the iothread lock.  This | 
 |      * is what happens: | 
 |      * | 
 |      *     mru_block = xxx | 
 |      *     rcu_read_unlock() | 
 |      *                                        xxx removed from list | 
 |      *                  rcu_read_lock() | 
 |      *                  read mru_block | 
 |      *                                        mru_block = NULL; | 
 |      *                                        call_rcu(reclaim_ramblock, xxx); | 
 |      *                  rcu_read_unlock() | 
 |      * | 
 |      * atomic_rcu_set is not needed here.  The block was already published | 
 |      * when it was placed into the list.  Here we're just making an extra | 
 |      * copy of the pointer. | 
 |      */ | 
 |     ram_list.mru_block = block; | 
 |     return block; | 
 | } | 
 |  | 
 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) | 
 | { | 
 |     CPUState *cpu; | 
 |     ram_addr_t start1; | 
 |     RAMBlock *block; | 
 |     ram_addr_t end; | 
 |  | 
 |     end = TARGET_PAGE_ALIGN(start + length); | 
 |     start &= TARGET_PAGE_MASK; | 
 |  | 
 |     rcu_read_lock(); | 
 |     block = qemu_get_ram_block(start); | 
 |     assert(block == qemu_get_ram_block(end - 1)); | 
 |     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); | 
 |     CPU_FOREACH(cpu) { | 
 |         tlb_reset_dirty(cpu, start1, length); | 
 |     } | 
 |     rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* Note: start and end must be within the same ram block.  */ | 
 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, | 
 |                                               ram_addr_t length, | 
 |                                               unsigned client) | 
 | { | 
 |     unsigned long end, page; | 
 |     bool dirty; | 
 |  | 
 |     if (length == 0) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; | 
 |     page = start >> TARGET_PAGE_BITS; | 
 |     dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client], | 
 |                                          page, end - page); | 
 |  | 
 |     if (dirty && tcg_enabled()) { | 
 |         tlb_reset_dirty_range_all(start, length); | 
 |     } | 
 |  | 
 |     return dirty; | 
 | } | 
 |  | 
 | /* Called from RCU critical section */ | 
 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, | 
 |                                        MemoryRegionSection *section, | 
 |                                        target_ulong vaddr, | 
 |                                        hwaddr paddr, hwaddr xlat, | 
 |                                        int prot, | 
 |                                        target_ulong *address) | 
 | { | 
 |     hwaddr iotlb; | 
 |     CPUWatchpoint *wp; | 
 |  | 
 |     if (memory_region_is_ram(section->mr)) { | 
 |         /* Normal RAM.  */ | 
 |         iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | 
 |             + xlat; | 
 |         if (!section->readonly) { | 
 |             iotlb |= PHYS_SECTION_NOTDIRTY; | 
 |         } else { | 
 |             iotlb |= PHYS_SECTION_ROM; | 
 |         } | 
 |     } else { | 
 |         AddressSpaceDispatch *d; | 
 |  | 
 |         d = atomic_rcu_read(§ion->address_space->dispatch); | 
 |         iotlb = section - d->map.sections; | 
 |         iotlb += xlat; | 
 |     } | 
 |  | 
 |     /* Make accesses to pages with watchpoints go via the | 
 |        watchpoint trap routines.  */ | 
 |     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | 
 |         if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { | 
 |             /* Avoid trapping reads of pages with a write breakpoint. */ | 
 |             if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | 
 |                 iotlb = PHYS_SECTION_WATCH + paddr; | 
 |                 *address |= TLB_MMIO; | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     return iotlb; | 
 | } | 
 | #endif /* defined(CONFIG_USER_ONLY) */ | 
 |  | 
 | #if !defined(CONFIG_USER_ONLY) | 
 |  | 
 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | 
 |                              uint16_t section); | 
 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); | 
 |  | 
 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = | 
 |                                qemu_anon_ram_alloc; | 
 |  | 
 | /* | 
 |  * Set a custom physical guest memory alloator. | 
 |  * Accelerators with unusual needs may need this.  Hopefully, we can | 
 |  * get rid of it eventually. | 
 |  */ | 
 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) | 
 | { | 
 |     phys_mem_alloc = alloc; | 
 | } | 
 |  | 
 | static uint16_t phys_section_add(PhysPageMap *map, | 
 |                                  MemoryRegionSection *section) | 
 | { | 
 |     /* The physical section number is ORed with a page-aligned | 
 |      * pointer to produce the iotlb entries.  Thus it should | 
 |      * never overflow into the page-aligned value. | 
 |      */ | 
 |     assert(map->sections_nb < TARGET_PAGE_SIZE); | 
 |  | 
 |     if (map->sections_nb == map->sections_nb_alloc) { | 
 |         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | 
 |         map->sections = g_renew(MemoryRegionSection, map->sections, | 
 |                                 map->sections_nb_alloc); | 
 |     } | 
 |     map->sections[map->sections_nb] = *section; | 
 |     memory_region_ref(section->mr); | 
 |     return map->sections_nb++; | 
 | } | 
 |  | 
 | static void phys_section_destroy(MemoryRegion *mr) | 
 | { | 
 |     bool have_sub_page = mr->subpage; | 
 |  | 
 |     memory_region_unref(mr); | 
 |  | 
 |     if (have_sub_page) { | 
 |         subpage_t *subpage = container_of(mr, subpage_t, iomem); | 
 |         object_unref(OBJECT(&subpage->iomem)); | 
 |         g_free(subpage); | 
 |     } | 
 | } | 
 |  | 
 | static void phys_sections_free(PhysPageMap *map) | 
 | { | 
 |     while (map->sections_nb > 0) { | 
 |         MemoryRegionSection *section = &map->sections[--map->sections_nb]; | 
 |         phys_section_destroy(section->mr); | 
 |     } | 
 |     g_free(map->sections); | 
 |     g_free(map->nodes); | 
 | } | 
 |  | 
 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) | 
 | { | 
 |     subpage_t *subpage; | 
 |     hwaddr base = section->offset_within_address_space | 
 |         & TARGET_PAGE_MASK; | 
 |     MemoryRegionSection *existing = phys_page_find(d->phys_map, base, | 
 |                                                    d->map.nodes, d->map.sections); | 
 |     MemoryRegionSection subsection = { | 
 |         .offset_within_address_space = base, | 
 |         .size = int128_make64(TARGET_PAGE_SIZE), | 
 |     }; | 
 |     hwaddr start, end; | 
 |  | 
 |     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); | 
 |  | 
 |     if (!(existing->mr->subpage)) { | 
 |         subpage = subpage_init(d->as, base); | 
 |         subsection.address_space = d->as; | 
 |         subsection.mr = &subpage->iomem; | 
 |         phys_page_set(d, base >> TARGET_PAGE_BITS, 1, | 
 |                       phys_section_add(&d->map, &subsection)); | 
 |     } else { | 
 |         subpage = container_of(existing->mr, subpage_t, iomem); | 
 |     } | 
 |     start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | 
 |     end = start + int128_get64(section->size) - 1; | 
 |     subpage_register(subpage, start, end, | 
 |                      phys_section_add(&d->map, section)); | 
 | } | 
 |  | 
 |  | 
 | static void register_multipage(AddressSpaceDispatch *d, | 
 |                                MemoryRegionSection *section) | 
 | { | 
 |     hwaddr start_addr = section->offset_within_address_space; | 
 |     uint16_t section_index = phys_section_add(&d->map, section); | 
 |     uint64_t num_pages = int128_get64(int128_rshift(section->size, | 
 |                                                     TARGET_PAGE_BITS)); | 
 |  | 
 |     assert(num_pages); | 
 |     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | 
 | } | 
 |  | 
 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) | 
 | { | 
 |     AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | 
 |     AddressSpaceDispatch *d = as->next_dispatch; | 
 |     MemoryRegionSection now = *section, remain = *section; | 
 |     Int128 page_size = int128_make64(TARGET_PAGE_SIZE); | 
 |  | 
 |     if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { | 
 |         uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | 
 |                        - now.offset_within_address_space; | 
 |  | 
 |         now.size = int128_min(int128_make64(left), now.size); | 
 |         register_subpage(d, &now); | 
 |     } else { | 
 |         now.size = int128_zero(); | 
 |     } | 
 |     while (int128_ne(remain.size, now.size)) { | 
 |         remain.size = int128_sub(remain.size, now.size); | 
 |         remain.offset_within_address_space += int128_get64(now.size); | 
 |         remain.offset_within_region += int128_get64(now.size); | 
 |         now = remain; | 
 |         if (int128_lt(remain.size, page_size)) { | 
 |             register_subpage(d, &now); | 
 |         } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { | 
 |             now.size = page_size; | 
 |             register_subpage(d, &now); | 
 |         } else { | 
 |             now.size = int128_and(now.size, int128_neg(page_size)); | 
 |             register_multipage(d, &now); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void qemu_flush_coalesced_mmio_buffer(void) | 
 | { | 
 |     if (kvm_enabled()) | 
 |         kvm_flush_coalesced_mmio_buffer(); | 
 | } | 
 |  | 
 | void qemu_mutex_lock_ramlist(void) | 
 | { | 
 |     qemu_mutex_lock(&ram_list.mutex); | 
 | } | 
 |  | 
 | void qemu_mutex_unlock_ramlist(void) | 
 | { | 
 |     qemu_mutex_unlock(&ram_list.mutex); | 
 | } | 
 |  | 
 | #ifdef __linux__ | 
 |  | 
 | #include <sys/vfs.h> | 
 |  | 
 | #define HUGETLBFS_MAGIC       0x958458f6 | 
 |  | 
 | static long gethugepagesize(const char *path, Error **errp) | 
 | { | 
 |     struct statfs fs; | 
 |     int ret; | 
 |  | 
 |     do { | 
 |         ret = statfs(path, &fs); | 
 |     } while (ret != 0 && errno == EINTR); | 
 |  | 
 |     if (ret != 0) { | 
 |         error_setg_errno(errp, errno, "failed to get page size of file %s", | 
 |                          path); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return fs.f_bsize; | 
 | } | 
 |  | 
 | static void *file_ram_alloc(RAMBlock *block, | 
 |                             ram_addr_t memory, | 
 |                             const char *path, | 
 |                             Error **errp) | 
 | { | 
 |     struct stat st; | 
 |     char *filename; | 
 |     char *sanitized_name; | 
 |     char *c; | 
 |     void *area; | 
 |     int fd; | 
 |     uint64_t hpagesize; | 
 |     Error *local_err = NULL; | 
 |  | 
 |     hpagesize = gethugepagesize(path, &local_err); | 
 |     if (local_err) { | 
 |         error_propagate(errp, local_err); | 
 |         goto error; | 
 |     } | 
 |     block->mr->align = hpagesize; | 
 |  | 
 |     if (memory < hpagesize) { | 
 |         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " | 
 |                    "or larger than huge page size 0x%" PRIx64, | 
 |                    memory, hpagesize); | 
 |         goto error; | 
 |     } | 
 |  | 
 |     if (kvm_enabled() && !kvm_has_sync_mmu()) { | 
 |         error_setg(errp, | 
 |                    "host lacks kvm mmu notifiers, -mem-path unsupported"); | 
 |         goto error; | 
 |     } | 
 |  | 
 |     if (!stat(path, &st) && S_ISDIR(st.st_mode)) { | 
 |         /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | 
 |         sanitized_name = g_strdup(memory_region_name(block->mr)); | 
 |         for (c = sanitized_name; *c != '\0'; c++) { | 
 |             if (*c == '/') { | 
 |                 *c = '_'; | 
 |             } | 
 |         } | 
 |  | 
 |         filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, | 
 |                                    sanitized_name); | 
 |         g_free(sanitized_name); | 
 |  | 
 |         fd = mkstemp(filename); | 
 |         if (fd >= 0) { | 
 |             unlink(filename); | 
 |         } | 
 |         g_free(filename); | 
 |     } else { | 
 |         fd = open(path, O_RDWR | O_CREAT, 0644); | 
 |     } | 
 |  | 
 |     if (fd < 0) { | 
 |         error_setg_errno(errp, errno, | 
 |                          "unable to create backing store for hugepages"); | 
 |         goto error; | 
 |     } | 
 |  | 
 |     memory = ROUND_UP(memory, hpagesize); | 
 |  | 
 |     /* | 
 |      * ftruncate is not supported by hugetlbfs in older | 
 |      * hosts, so don't bother bailing out on errors. | 
 |      * If anything goes wrong with it under other filesystems, | 
 |      * mmap will fail. | 
 |      */ | 
 |     if (ftruncate(fd, memory)) { | 
 |         perror("ftruncate"); | 
 |     } | 
 |  | 
 |     area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED); | 
 |     if (area == MAP_FAILED) { | 
 |         error_setg_errno(errp, errno, | 
 |                          "unable to map backing store for hugepages"); | 
 |         close(fd); | 
 |         goto error; | 
 |     } | 
 |  | 
 |     if (mem_prealloc) { | 
 |         os_mem_prealloc(fd, area, memory); | 
 |     } | 
 |  | 
 |     block->fd = fd; | 
 |     return area; | 
 |  | 
 | error: | 
 |     return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | /* Called with the ramlist lock held.  */ | 
 | static ram_addr_t find_ram_offset(ram_addr_t size) | 
 | { | 
 |     RAMBlock *block, *next_block; | 
 |     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; | 
 |  | 
 |     assert(size != 0); /* it would hand out same offset multiple times */ | 
 |  | 
 |     if (QLIST_EMPTY_RCU(&ram_list.blocks)) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | 
 |         ram_addr_t end, next = RAM_ADDR_MAX; | 
 |  | 
 |         end = block->offset + block->max_length; | 
 |  | 
 |         QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { | 
 |             if (next_block->offset >= end) { | 
 |                 next = MIN(next, next_block->offset); | 
 |             } | 
 |         } | 
 |         if (next - end >= size && next - end < mingap) { | 
 |             offset = end; | 
 |             mingap = next - end; | 
 |         } | 
 |     } | 
 |  | 
 |     if (offset == RAM_ADDR_MAX) { | 
 |         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | 
 |                 (uint64_t)size); | 
 |         abort(); | 
 |     } | 
 |  | 
 |     return offset; | 
 | } | 
 |  | 
 | ram_addr_t last_ram_offset(void) | 
 | { | 
 |     RAMBlock *block; | 
 |     ram_addr_t last = 0; | 
 |  | 
 |     rcu_read_lock(); | 
 |     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | 
 |         last = MAX(last, block->offset + block->max_length); | 
 |     } | 
 |     rcu_read_unlock(); | 
 |     return last; | 
 | } | 
 |  | 
 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) | 
 | { | 
 |     int ret; | 
 |  | 
 |     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | 
 |     if (!machine_dump_guest_core(current_machine)) { | 
 |         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); | 
 |         if (ret) { | 
 |             perror("qemu_madvise"); | 
 |             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | 
 |                             "but dump_guest_core=off specified\n"); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /* Called within an RCU critical section, or while the ramlist lock | 
 |  * is held. | 
 |  */ | 
 | static RAMBlock *find_ram_block(ram_addr_t addr) | 
 | { | 
 |     RAMBlock *block; | 
 |  | 
 |     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | 
 |         if (block->offset == addr) { | 
 |             return block; | 
 |         } | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | const char *qemu_ram_get_idstr(RAMBlock *rb) | 
 | { | 
 |     return rb->idstr; | 
 | } | 
 |  | 
 | /* Called with iothread lock held.  */ | 
 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) | 
 | { | 
 |     RAMBlock *new_block, *block; | 
 |  | 
 |     rcu_read_lock(); | 
 |     new_block = find_ram_block(addr); | 
 |     assert(new_block); | 
 |     assert(!new_block->idstr[0]); | 
 |  | 
 |     if (dev) { | 
 |         char *id = qdev_get_dev_path(dev); | 
 |         if (id) { | 
 |             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | 
 |             g_free(id); | 
 |         } | 
 |     } | 
 |     pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | 
 |  | 
 |     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | 
 |         if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { | 
 |             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", | 
 |                     new_block->idstr); | 
 |             abort(); | 
 |         } | 
 |     } | 
 |     rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* Called with iothread lock held.  */ | 
 | void qemu_ram_unset_idstr(ram_addr_t addr) | 
 | { | 
 |     RAMBlock *block; | 
 |  | 
 |     /* FIXME: arch_init.c assumes that this is not called throughout | 
 |      * migration.  Ignore the problem since hot-unplug during migration | 
 |      * does not work anyway. | 
 |      */ | 
 |  | 
 |     rcu_read_lock(); | 
 |     block = find_ram_block(addr); | 
 |     if (block) { | 
 |         memset(block->idstr, 0, sizeof(block->idstr)); | 
 |     } | 
 |     rcu_read_unlock(); | 
 | } | 
 |  | 
 | static int memory_try_enable_merging(void *addr, size_t len) | 
 | { | 
 |     if (!machine_mem_merge(current_machine)) { | 
 |         /* disabled by the user */ | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | 
 | } | 
 |  | 
 | /* Only legal before guest might have detected the memory size: e.g. on | 
 |  * incoming migration, or right after reset. | 
 |  * | 
 |  * As memory core doesn't know how is memory accessed, it is up to | 
 |  * resize callback to update device state and/or add assertions to detect | 
 |  * misuse, if necessary. | 
 |  */ | 
 | int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp) | 
 | { | 
 |     RAMBlock *block = find_ram_block(base); | 
 |  | 
 |     assert(block); | 
 |  | 
 |     newsize = HOST_PAGE_ALIGN(newsize); | 
 |  | 
 |     if (block->used_length == newsize) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (!(block->flags & RAM_RESIZEABLE)) { | 
 |         error_setg_errno(errp, EINVAL, | 
 |                          "Length mismatch: %s: 0x" RAM_ADDR_FMT | 
 |                          " in != 0x" RAM_ADDR_FMT, block->idstr, | 
 |                          newsize, block->used_length); | 
 |         return -EINVAL; | 
 |     } | 
 |  | 
 |     if (block->max_length < newsize) { | 
 |         error_setg_errno(errp, EINVAL, | 
 |                          "Length too large: %s: 0x" RAM_ADDR_FMT | 
 |                          " > 0x" RAM_ADDR_FMT, block->idstr, | 
 |                          newsize, block->max_length); | 
 |         return -EINVAL; | 
 |     } | 
 |  | 
 |     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | 
 |     block->used_length = newsize; | 
 |     cpu_physical_memory_set_dirty_range(block->offset, block->used_length, | 
 |                                         DIRTY_CLIENTS_ALL); | 
 |     memory_region_set_size(block->mr, newsize); | 
 |     if (block->resized) { | 
 |         block->resized(block->idstr, newsize, block->host); | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp) | 
 | { | 
 |     RAMBlock *block; | 
 |     RAMBlock *last_block = NULL; | 
 |     ram_addr_t old_ram_size, new_ram_size; | 
 |  | 
 |     old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | 
 |  | 
 |     qemu_mutex_lock_ramlist(); | 
 |     new_block->offset = find_ram_offset(new_block->max_length); | 
 |  | 
 |     if (!new_block->host) { | 
 |         if (xen_enabled()) { | 
 |             xen_ram_alloc(new_block->offset, new_block->max_length, | 
 |                           new_block->mr); | 
 |         } else { | 
 |             new_block->host = phys_mem_alloc(new_block->max_length, | 
 |                                              &new_block->mr->align); | 
 |             if (!new_block->host) { | 
 |                 error_setg_errno(errp, errno, | 
 |                                  "cannot set up guest memory '%s'", | 
 |                                  memory_region_name(new_block->mr)); | 
 |                 qemu_mutex_unlock_ramlist(); | 
 |                 return -1; | 
 |             } | 
 |             memory_try_enable_merging(new_block->host, new_block->max_length); | 
 |         } | 
 |     } | 
 |  | 
 |     new_ram_size = MAX(old_ram_size, | 
 |               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | 
 |     if (new_ram_size > old_ram_size) { | 
 |         migration_bitmap_extend(old_ram_size, new_ram_size); | 
 |     } | 
 |     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ, | 
 |      * QLIST (which has an RCU-friendly variant) does not have insertion at | 
 |      * tail, so save the last element in last_block. | 
 |      */ | 
 |     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | 
 |         last_block = block; | 
 |         if (block->max_length < new_block->max_length) { | 
 |             break; | 
 |         } | 
 |     } | 
 |     if (block) { | 
 |         QLIST_INSERT_BEFORE_RCU(block, new_block, next); | 
 |     } else if (last_block) { | 
 |         QLIST_INSERT_AFTER_RCU(last_block, new_block, next); | 
 |     } else { /* list is empty */ | 
 |         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); | 
 |     } | 
 |     ram_list.mru_block = NULL; | 
 |  | 
 |     /* Write list before version */ | 
 |     smp_wmb(); | 
 |     ram_list.version++; | 
 |     qemu_mutex_unlock_ramlist(); | 
 |  | 
 |     new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | 
 |  | 
 |     if (new_ram_size > old_ram_size) { | 
 |         int i; | 
 |  | 
 |         /* ram_list.dirty_memory[] is protected by the iothread lock.  */ | 
 |         for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | 
 |             ram_list.dirty_memory[i] = | 
 |                 bitmap_zero_extend(ram_list.dirty_memory[i], | 
 |                                    old_ram_size, new_ram_size); | 
 |        } | 
 |     } | 
 |     cpu_physical_memory_set_dirty_range(new_block->offset, | 
 |                                         new_block->used_length, | 
 |                                         DIRTY_CLIENTS_ALL); | 
 |  | 
 |     if (new_block->host) { | 
 |         qemu_ram_setup_dump(new_block->host, new_block->max_length); | 
 |         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | 
 |         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | 
 |         if (kvm_enabled()) { | 
 |             kvm_setup_guest_memory(new_block->host, new_block->max_length); | 
 |         } | 
 |     } | 
 |  | 
 |     return new_block->offset; | 
 | } | 
 |  | 
 | #ifdef __linux__ | 
 | ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | 
 |                                     bool share, const char *mem_path, | 
 |                                     Error **errp) | 
 | { | 
 |     RAMBlock *new_block; | 
 |     ram_addr_t addr; | 
 |     Error *local_err = NULL; | 
 |  | 
 |     if (xen_enabled()) { | 
 |         error_setg(errp, "-mem-path not supported with Xen"); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (phys_mem_alloc != qemu_anon_ram_alloc) { | 
 |         /* | 
 |          * file_ram_alloc() needs to allocate just like | 
 |          * phys_mem_alloc, but we haven't bothered to provide | 
 |          * a hook there. | 
 |          */ | 
 |         error_setg(errp, | 
 |                    "-mem-path not supported with this accelerator"); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     size = HOST_PAGE_ALIGN(size); | 
 |     new_block = g_malloc0(sizeof(*new_block)); | 
 |     new_block->mr = mr; | 
 |     new_block->used_length = size; | 
 |     new_block->max_length = size; | 
 |     new_block->flags = share ? RAM_SHARED : 0; | 
 |     new_block->host = file_ram_alloc(new_block, size, | 
 |                                      mem_path, errp); | 
 |     if (!new_block->host) { | 
 |         g_free(new_block); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     addr = ram_block_add(new_block, &local_err); | 
 |     if (local_err) { | 
 |         g_free(new_block); | 
 |         error_propagate(errp, local_err); | 
 |         return -1; | 
 |     } | 
 |     return addr; | 
 | } | 
 | #endif | 
 |  | 
 | static | 
 | ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, | 
 |                                    void (*resized)(const char*, | 
 |                                                    uint64_t length, | 
 |                                                    void *host), | 
 |                                    void *host, bool resizeable, | 
 |                                    MemoryRegion *mr, Error **errp) | 
 | { | 
 |     RAMBlock *new_block; | 
 |     ram_addr_t addr; | 
 |     Error *local_err = NULL; | 
 |  | 
 |     size = HOST_PAGE_ALIGN(size); | 
 |     max_size = HOST_PAGE_ALIGN(max_size); | 
 |     new_block = g_malloc0(sizeof(*new_block)); | 
 |     new_block->mr = mr; | 
 |     new_block->resized = resized; | 
 |     new_block->used_length = size; | 
 |     new_block->max_length = max_size; | 
 |     assert(max_size >= size); | 
 |     new_block->fd = -1; | 
 |     new_block->host = host; | 
 |     if (host) { | 
 |         new_block->flags |= RAM_PREALLOC; | 
 |     } | 
 |     if (resizeable) { | 
 |         new_block->flags |= RAM_RESIZEABLE; | 
 |     } | 
 |     addr = ram_block_add(new_block, &local_err); | 
 |     if (local_err) { | 
 |         g_free(new_block); | 
 |         error_propagate(errp, local_err); | 
 |         return -1; | 
 |     } | 
 |     return addr; | 
 | } | 
 |  | 
 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, | 
 |                                    MemoryRegion *mr, Error **errp) | 
 | { | 
 |     return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | 
 | } | 
 |  | 
 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) | 
 | { | 
 |     return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); | 
 | } | 
 |  | 
 | ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, | 
 |                                      void (*resized)(const char*, | 
 |                                                      uint64_t length, | 
 |                                                      void *host), | 
 |                                      MemoryRegion *mr, Error **errp) | 
 | { | 
 |     return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | 
 | } | 
 |  | 
 | static void reclaim_ramblock(RAMBlock *block) | 
 | { | 
 |     if (block->flags & RAM_PREALLOC) { | 
 |         ; | 
 |     } else if (xen_enabled()) { | 
 |         xen_invalidate_map_cache_entry(block->host); | 
 | #ifndef _WIN32 | 
 |     } else if (block->fd >= 0) { | 
 |         qemu_ram_munmap(block->host, block->max_length); | 
 |         close(block->fd); | 
 | #endif | 
 |     } else { | 
 |         qemu_anon_ram_free(block->host, block->max_length); | 
 |     } | 
 |     g_free(block); | 
 | } | 
 |  | 
 | void qemu_ram_free(ram_addr_t addr) | 
 | { | 
 |     RAMBlock *block; | 
 |  | 
 |     qemu_mutex_lock_ramlist(); | 
 |     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | 
 |         if (addr == block->offset) { | 
 |             QLIST_REMOVE_RCU(block, next); | 
 |             ram_list.mru_block = NULL; | 
 |             /* Write list before version */ | 
 |             smp_wmb(); | 
 |             ram_list.version++; | 
 |             call_rcu(block, reclaim_ramblock, rcu); | 
 |             break; | 
 |         } | 
 |     } | 
 |     qemu_mutex_unlock_ramlist(); | 
 | } | 
 |  | 
 | #ifndef _WIN32 | 
 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | 
 | { | 
 |     RAMBlock *block; | 
 |     ram_addr_t offset; | 
 |     int flags; | 
 |     void *area, *vaddr; | 
 |  | 
 |     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | 
 |         offset = addr - block->offset; | 
 |         if (offset < block->max_length) { | 
 |             vaddr = ramblock_ptr(block, offset); | 
 |             if (block->flags & RAM_PREALLOC) { | 
 |                 ; | 
 |             } else if (xen_enabled()) { | 
 |                 abort(); | 
 |             } else { | 
 |                 flags = MAP_FIXED; | 
 |                 if (block->fd >= 0) { | 
 |                     flags |= (block->flags & RAM_SHARED ? | 
 |                               MAP_SHARED : MAP_PRIVATE); | 
 |                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | 
 |                                 flags, block->fd, offset); | 
 |                 } else { | 
 |                     /* | 
 |                      * Remap needs to match alloc.  Accelerators that | 
 |                      * set phys_mem_alloc never remap.  If they did, | 
 |                      * we'd need a remap hook here. | 
 |                      */ | 
 |                     assert(phys_mem_alloc == qemu_anon_ram_alloc); | 
 |  | 
 |                     flags |= MAP_PRIVATE | MAP_ANONYMOUS; | 
 |                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | 
 |                                 flags, -1, 0); | 
 |                 } | 
 |                 if (area != vaddr) { | 
 |                     fprintf(stderr, "Could not remap addr: " | 
 |                             RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | 
 |                             length, addr); | 
 |                     exit(1); | 
 |                 } | 
 |                 memory_try_enable_merging(vaddr, length); | 
 |                 qemu_ram_setup_dump(vaddr, length); | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 | #endif /* !_WIN32 */ | 
 |  | 
 | int qemu_get_ram_fd(ram_addr_t addr) | 
 | { | 
 |     RAMBlock *block; | 
 |     int fd; | 
 |  | 
 |     rcu_read_lock(); | 
 |     block = qemu_get_ram_block(addr); | 
 |     fd = block->fd; | 
 |     rcu_read_unlock(); | 
 |     return fd; | 
 | } | 
 |  | 
 | void qemu_set_ram_fd(ram_addr_t addr, int fd) | 
 | { | 
 |     RAMBlock *block; | 
 |  | 
 |     rcu_read_lock(); | 
 |     block = qemu_get_ram_block(addr); | 
 |     block->fd = fd; | 
 |     rcu_read_unlock(); | 
 | } | 
 |  | 
 | void *qemu_get_ram_block_host_ptr(ram_addr_t addr) | 
 | { | 
 |     RAMBlock *block; | 
 |     void *ptr; | 
 |  | 
 |     rcu_read_lock(); | 
 |     block = qemu_get_ram_block(addr); | 
 |     ptr = ramblock_ptr(block, 0); | 
 |     rcu_read_unlock(); | 
 |     return ptr; | 
 | } | 
 |  | 
 | /* Return a host pointer to ram allocated with qemu_ram_alloc. | 
 |  * This should not be used for general purpose DMA.  Use address_space_map | 
 |  * or address_space_rw instead. For local memory (e.g. video ram) that the | 
 |  * device owns, use memory_region_get_ram_ptr. | 
 |  * | 
 |  * Called within RCU critical section. | 
 |  */ | 
 | void *qemu_get_ram_ptr(ram_addr_t addr) | 
 | { | 
 |     RAMBlock *block = qemu_get_ram_block(addr); | 
 |  | 
 |     if (xen_enabled() && block->host == NULL) { | 
 |         /* We need to check if the requested address is in the RAM | 
 |          * because we don't want to map the entire memory in QEMU. | 
 |          * In that case just map until the end of the page. | 
 |          */ | 
 |         if (block->offset == 0) { | 
 |             return xen_map_cache(addr, 0, 0); | 
 |         } | 
 |  | 
 |         block->host = xen_map_cache(block->offset, block->max_length, 1); | 
 |     } | 
 |     return ramblock_ptr(block, addr - block->offset); | 
 | } | 
 |  | 
 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr | 
 |  * but takes a size argument. | 
 |  * | 
 |  * Called within RCU critical section. | 
 |  */ | 
 | static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size) | 
 | { | 
 |     RAMBlock *block; | 
 |     ram_addr_t offset_inside_block; | 
 |     if (*size == 0) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     block = qemu_get_ram_block(addr); | 
 |     offset_inside_block = addr - block->offset; | 
 |     *size = MIN(*size, block->max_length - offset_inside_block); | 
 |  | 
 |     if (xen_enabled() && block->host == NULL) { | 
 |         /* We need to check if the requested address is in the RAM | 
 |          * because we don't want to map the entire memory in QEMU. | 
 |          * In that case just map the requested area. | 
 |          */ | 
 |         if (block->offset == 0) { | 
 |             return xen_map_cache(addr, *size, 1); | 
 |         } | 
 |  | 
 |         block->host = xen_map_cache(block->offset, block->max_length, 1); | 
 |     } | 
 |  | 
 |     return ramblock_ptr(block, offset_inside_block); | 
 | } | 
 |  | 
 | /* | 
 |  * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | 
 |  * in that RAMBlock. | 
 |  * | 
 |  * ptr: Host pointer to look up | 
 |  * round_offset: If true round the result offset down to a page boundary | 
 |  * *ram_addr: set to result ram_addr | 
 |  * *offset: set to result offset within the RAMBlock | 
 |  * | 
 |  * Returns: RAMBlock (or NULL if not found) | 
 |  * | 
 |  * By the time this function returns, the returned pointer is not protected | 
 |  * by RCU anymore.  If the caller is not within an RCU critical section and | 
 |  * does not hold the iothread lock, it must have other means of protecting the | 
 |  * pointer, such as a reference to the region that includes the incoming | 
 |  * ram_addr_t. | 
 |  */ | 
 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, | 
 |                                    ram_addr_t *ram_addr, | 
 |                                    ram_addr_t *offset) | 
 | { | 
 |     RAMBlock *block; | 
 |     uint8_t *host = ptr; | 
 |  | 
 |     if (xen_enabled()) { | 
 |         rcu_read_lock(); | 
 |         *ram_addr = xen_ram_addr_from_mapcache(ptr); | 
 |         block = qemu_get_ram_block(*ram_addr); | 
 |         if (block) { | 
 |             *offset = (host - block->host); | 
 |         } | 
 |         rcu_read_unlock(); | 
 |         return block; | 
 |     } | 
 |  | 
 |     rcu_read_lock(); | 
 |     block = atomic_rcu_read(&ram_list.mru_block); | 
 |     if (block && block->host && host - block->host < block->max_length) { | 
 |         goto found; | 
 |     } | 
 |  | 
 |     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | 
 |         /* This case append when the block is not mapped. */ | 
 |         if (block->host == NULL) { | 
 |             continue; | 
 |         } | 
 |         if (host - block->host < block->max_length) { | 
 |             goto found; | 
 |         } | 
 |     } | 
 |  | 
 |     rcu_read_unlock(); | 
 |     return NULL; | 
 |  | 
 | found: | 
 |     *offset = (host - block->host); | 
 |     if (round_offset) { | 
 |         *offset &= TARGET_PAGE_MASK; | 
 |     } | 
 |     *ram_addr = block->offset + *offset; | 
 |     rcu_read_unlock(); | 
 |     return block; | 
 | } | 
 |  | 
 | /* | 
 |  * Finds the named RAMBlock | 
 |  * | 
 |  * name: The name of RAMBlock to find | 
 |  * | 
 |  * Returns: RAMBlock (or NULL if not found) | 
 |  */ | 
 | RAMBlock *qemu_ram_block_by_name(const char *name) | 
 | { | 
 |     RAMBlock *block; | 
 |  | 
 |     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | 
 |         if (!strcmp(name, block->idstr)) { | 
 |             return block; | 
 |         } | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | /* Some of the softmmu routines need to translate from a host pointer | 
 |    (typically a TLB entry) back to a ram offset.  */ | 
 | MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | 
 | { | 
 |     RAMBlock *block; | 
 |     ram_addr_t offset; /* Not used */ | 
 |  | 
 |     block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset); | 
 |  | 
 |     if (!block) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     return block->mr; | 
 | } | 
 |  | 
 | /* Called within RCU critical section.  */ | 
 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, | 
 |                                uint64_t val, unsigned size) | 
 | { | 
 |     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { | 
 |         tb_invalidate_phys_page_fast(ram_addr, size); | 
 |     } | 
 |     switch (size) { | 
 |     case 1: | 
 |         stb_p(qemu_get_ram_ptr(ram_addr), val); | 
 |         break; | 
 |     case 2: | 
 |         stw_p(qemu_get_ram_ptr(ram_addr), val); | 
 |         break; | 
 |     case 4: | 
 |         stl_p(qemu_get_ram_ptr(ram_addr), val); | 
 |         break; | 
 |     default: | 
 |         abort(); | 
 |     } | 
 |     /* Set both VGA and migration bits for simplicity and to remove | 
 |      * the notdirty callback faster. | 
 |      */ | 
 |     cpu_physical_memory_set_dirty_range(ram_addr, size, | 
 |                                         DIRTY_CLIENTS_NOCODE); | 
 |     /* we remove the notdirty callback only if the code has been | 
 |        flushed */ | 
 |     if (!cpu_physical_memory_is_clean(ram_addr)) { | 
 |         tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); | 
 |     } | 
 | } | 
 |  | 
 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, | 
 |                                  unsigned size, bool is_write) | 
 | { | 
 |     return is_write; | 
 | } | 
 |  | 
 | static const MemoryRegionOps notdirty_mem_ops = { | 
 |     .write = notdirty_mem_write, | 
 |     .valid.accepts = notdirty_mem_accepts, | 
 |     .endianness = DEVICE_NATIVE_ENDIAN, | 
 | }; | 
 |  | 
 | /* Generate a debug exception if a watchpoint has been hit.  */ | 
 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) | 
 | { | 
 |     CPUState *cpu = current_cpu; | 
 |     CPUArchState *env = cpu->env_ptr; | 
 |     target_ulong pc, cs_base; | 
 |     target_ulong vaddr; | 
 |     CPUWatchpoint *wp; | 
 |     int cpu_flags; | 
 |  | 
 |     if (cpu->watchpoint_hit) { | 
 |         /* We re-entered the check after replacing the TB. Now raise | 
 |          * the debug interrupt so that is will trigger after the | 
 |          * current instruction. */ | 
 |         cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); | 
 |         return; | 
 |     } | 
 |     vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; | 
 |     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | 
 |         if (cpu_watchpoint_address_matches(wp, vaddr, len) | 
 |             && (wp->flags & flags)) { | 
 |             if (flags == BP_MEM_READ) { | 
 |                 wp->flags |= BP_WATCHPOINT_HIT_READ; | 
 |             } else { | 
 |                 wp->flags |= BP_WATCHPOINT_HIT_WRITE; | 
 |             } | 
 |             wp->hitaddr = vaddr; | 
 |             wp->hitattrs = attrs; | 
 |             if (!cpu->watchpoint_hit) { | 
 |                 cpu->watchpoint_hit = wp; | 
 |                 tb_check_watchpoint(cpu); | 
 |                 if (wp->flags & BP_STOP_BEFORE_ACCESS) { | 
 |                     cpu->exception_index = EXCP_DEBUG; | 
 |                     cpu_loop_exit(cpu); | 
 |                 } else { | 
 |                     cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | 
 |                     tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); | 
 |                     cpu_resume_from_signal(cpu, NULL); | 
 |                 } | 
 |             } | 
 |         } else { | 
 |             wp->flags &= ~BP_WATCHPOINT_HIT; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /* Watchpoint access routines.  Watchpoints are inserted using TLB tricks, | 
 |    so these check for a hit then pass through to the normal out-of-line | 
 |    phys routines.  */ | 
 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, | 
 |                                   unsigned size, MemTxAttrs attrs) | 
 | { | 
 |     MemTxResult res; | 
 |     uint64_t data; | 
 |  | 
 |     check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | 
 |     switch (size) { | 
 |     case 1: | 
 |         data = address_space_ldub(&address_space_memory, addr, attrs, &res); | 
 |         break; | 
 |     case 2: | 
 |         data = address_space_lduw(&address_space_memory, addr, attrs, &res); | 
 |         break; | 
 |     case 4: | 
 |         data = address_space_ldl(&address_space_memory, addr, attrs, &res); | 
 |         break; | 
 |     default: abort(); | 
 |     } | 
 |     *pdata = data; | 
 |     return res; | 
 | } | 
 |  | 
 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, | 
 |                                    uint64_t val, unsigned size, | 
 |                                    MemTxAttrs attrs) | 
 | { | 
 |     MemTxResult res; | 
 |  | 
 |     check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | 
 |     switch (size) { | 
 |     case 1: | 
 |         address_space_stb(&address_space_memory, addr, val, attrs, &res); | 
 |         break; | 
 |     case 2: | 
 |         address_space_stw(&address_space_memory, addr, val, attrs, &res); | 
 |         break; | 
 |     case 4: | 
 |         address_space_stl(&address_space_memory, addr, val, attrs, &res); | 
 |         break; | 
 |     default: abort(); | 
 |     } | 
 |     return res; | 
 | } | 
 |  | 
 | static const MemoryRegionOps watch_mem_ops = { | 
 |     .read_with_attrs = watch_mem_read, | 
 |     .write_with_attrs = watch_mem_write, | 
 |     .endianness = DEVICE_NATIVE_ENDIAN, | 
 | }; | 
 |  | 
 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, | 
 |                                 unsigned len, MemTxAttrs attrs) | 
 | { | 
 |     subpage_t *subpage = opaque; | 
 |     uint8_t buf[8]; | 
 |     MemTxResult res; | 
 |  | 
 | #if defined(DEBUG_SUBPAGE) | 
 |     printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, | 
 |            subpage, len, addr); | 
 | #endif | 
 |     res = address_space_read(subpage->as, addr + subpage->base, | 
 |                              attrs, buf, len); | 
 |     if (res) { | 
 |         return res; | 
 |     } | 
 |     switch (len) { | 
 |     case 1: | 
 |         *data = ldub_p(buf); | 
 |         return MEMTX_OK; | 
 |     case 2: | 
 |         *data = lduw_p(buf); | 
 |         return MEMTX_OK; | 
 |     case 4: | 
 |         *data = ldl_p(buf); | 
 |         return MEMTX_OK; | 
 |     case 8: | 
 |         *data = ldq_p(buf); | 
 |         return MEMTX_OK; | 
 |     default: | 
 |         abort(); | 
 |     } | 
 | } | 
 |  | 
 | static MemTxResult subpage_write(void *opaque, hwaddr addr, | 
 |                                  uint64_t value, unsigned len, MemTxAttrs attrs) | 
 | { | 
 |     subpage_t *subpage = opaque; | 
 |     uint8_t buf[8]; | 
 |  | 
 | #if defined(DEBUG_SUBPAGE) | 
 |     printf("%s: subpage %p len %u addr " TARGET_FMT_plx | 
 |            " value %"PRIx64"\n", | 
 |            __func__, subpage, len, addr, value); | 
 | #endif | 
 |     switch (len) { | 
 |     case 1: | 
 |         stb_p(buf, value); | 
 |         break; | 
 |     case 2: | 
 |         stw_p(buf, value); | 
 |         break; | 
 |     case 4: | 
 |         stl_p(buf, value); | 
 |         break; | 
 |     case 8: | 
 |         stq_p(buf, value); | 
 |         break; | 
 |     default: | 
 |         abort(); | 
 |     } | 
 |     return address_space_write(subpage->as, addr + subpage->base, | 
 |                                attrs, buf, len); | 
 | } | 
 |  | 
 | static bool subpage_accepts(void *opaque, hwaddr addr, | 
 |                             unsigned len, bool is_write) | 
 | { | 
 |     subpage_t *subpage = opaque; | 
 | #if defined(DEBUG_SUBPAGE) | 
 |     printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", | 
 |            __func__, subpage, is_write ? 'w' : 'r', len, addr); | 
 | #endif | 
 |  | 
 |     return address_space_access_valid(subpage->as, addr + subpage->base, | 
 |                                       len, is_write); | 
 | } | 
 |  | 
 | static const MemoryRegionOps subpage_ops = { | 
 |     .read_with_attrs = subpage_read, | 
 |     .write_with_attrs = subpage_write, | 
 |     .impl.min_access_size = 1, | 
 |     .impl.max_access_size = 8, | 
 |     .valid.min_access_size = 1, | 
 |     .valid.max_access_size = 8, | 
 |     .valid.accepts = subpage_accepts, | 
 |     .endianness = DEVICE_NATIVE_ENDIAN, | 
 | }; | 
 |  | 
 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | 
 |                              uint16_t section) | 
 | { | 
 |     int idx, eidx; | 
 |  | 
 |     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | 
 |         return -1; | 
 |     idx = SUBPAGE_IDX(start); | 
 |     eidx = SUBPAGE_IDX(end); | 
 | #if defined(DEBUG_SUBPAGE) | 
 |     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", | 
 |            __func__, mmio, start, end, idx, eidx, section); | 
 | #endif | 
 |     for (; idx <= eidx; idx++) { | 
 |         mmio->sub_section[idx] = section; | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) | 
 | { | 
 |     subpage_t *mmio; | 
 |  | 
 |     mmio = g_malloc0(sizeof(subpage_t)); | 
 |  | 
 |     mmio->as = as; | 
 |     mmio->base = base; | 
 |     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, | 
 |                           NULL, TARGET_PAGE_SIZE); | 
 |     mmio->iomem.subpage = true; | 
 | #if defined(DEBUG_SUBPAGE) | 
 |     printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, | 
 |            mmio, base, TARGET_PAGE_SIZE); | 
 | #endif | 
 |     subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); | 
 |  | 
 |     return mmio; | 
 | } | 
 |  | 
 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, | 
 |                               MemoryRegion *mr) | 
 | { | 
 |     assert(as); | 
 |     MemoryRegionSection section = { | 
 |         .address_space = as, | 
 |         .mr = mr, | 
 |         .offset_within_address_space = 0, | 
 |         .offset_within_region = 0, | 
 |         .size = int128_2_64(), | 
 |     }; | 
 |  | 
 |     return phys_section_add(map, §ion); | 
 | } | 
 |  | 
 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index) | 
 | { | 
 |     CPUAddressSpace *cpuas = &cpu->cpu_ases[0]; | 
 |     AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); | 
 |     MemoryRegionSection *sections = d->map.sections; | 
 |  | 
 |     return sections[index & ~TARGET_PAGE_MASK].mr; | 
 | } | 
 |  | 
 | static void io_mem_init(void) | 
 | { | 
 |     memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); | 
 |     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, | 
 |                           NULL, UINT64_MAX); | 
 |     memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, | 
 |                           NULL, UINT64_MAX); | 
 |     memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, | 
 |                           NULL, UINT64_MAX); | 
 | } | 
 |  | 
 | static void mem_begin(MemoryListener *listener) | 
 | { | 
 |     AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | 
 |     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); | 
 |     uint16_t n; | 
 |  | 
 |     n = dummy_section(&d->map, as, &io_mem_unassigned); | 
 |     assert(n == PHYS_SECTION_UNASSIGNED); | 
 |     n = dummy_section(&d->map, as, &io_mem_notdirty); | 
 |     assert(n == PHYS_SECTION_NOTDIRTY); | 
 |     n = dummy_section(&d->map, as, &io_mem_rom); | 
 |     assert(n == PHYS_SECTION_ROM); | 
 |     n = dummy_section(&d->map, as, &io_mem_watch); | 
 |     assert(n == PHYS_SECTION_WATCH); | 
 |  | 
 |     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; | 
 |     d->as = as; | 
 |     as->next_dispatch = d; | 
 | } | 
 |  | 
 | static void address_space_dispatch_free(AddressSpaceDispatch *d) | 
 | { | 
 |     phys_sections_free(&d->map); | 
 |     g_free(d); | 
 | } | 
 |  | 
 | static void mem_commit(MemoryListener *listener) | 
 | { | 
 |     AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | 
 |     AddressSpaceDispatch *cur = as->dispatch; | 
 |     AddressSpaceDispatch *next = as->next_dispatch; | 
 |  | 
 |     phys_page_compact_all(next, next->map.nodes_nb); | 
 |  | 
 |     atomic_rcu_set(&as->dispatch, next); | 
 |     if (cur) { | 
 |         call_rcu(cur, address_space_dispatch_free, rcu); | 
 |     } | 
 | } | 
 |  | 
 | static void tcg_commit(MemoryListener *listener) | 
 | { | 
 |     CPUAddressSpace *cpuas; | 
 |     AddressSpaceDispatch *d; | 
 |  | 
 |     /* since each CPU stores ram addresses in its TLB cache, we must | 
 |        reset the modified entries */ | 
 |     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); | 
 |     cpu_reloading_memory_map(); | 
 |     /* The CPU and TLB are protected by the iothread lock. | 
 |      * We reload the dispatch pointer now because cpu_reloading_memory_map() | 
 |      * may have split the RCU critical section. | 
 |      */ | 
 |     d = atomic_rcu_read(&cpuas->as->dispatch); | 
 |     cpuas->memory_dispatch = d; | 
 |     tlb_flush(cpuas->cpu, 1); | 
 | } | 
 |  | 
 | void address_space_init_dispatch(AddressSpace *as) | 
 | { | 
 |     as->dispatch = NULL; | 
 |     as->dispatch_listener = (MemoryListener) { | 
 |         .begin = mem_begin, | 
 |         .commit = mem_commit, | 
 |         .region_add = mem_add, | 
 |         .region_nop = mem_add, | 
 |         .priority = 0, | 
 |     }; | 
 |     memory_listener_register(&as->dispatch_listener, as); | 
 | } | 
 |  | 
 | void address_space_unregister(AddressSpace *as) | 
 | { | 
 |     memory_listener_unregister(&as->dispatch_listener); | 
 | } | 
 |  | 
 | void address_space_destroy_dispatch(AddressSpace *as) | 
 | { | 
 |     AddressSpaceDispatch *d = as->dispatch; | 
 |  | 
 |     atomic_rcu_set(&as->dispatch, NULL); | 
 |     if (d) { | 
 |         call_rcu(d, address_space_dispatch_free, rcu); | 
 |     } | 
 | } | 
 |  | 
 | static void memory_map_init(void) | 
 | { | 
 |     system_memory = g_malloc(sizeof(*system_memory)); | 
 |  | 
 |     memory_region_init(system_memory, NULL, "system", UINT64_MAX); | 
 |     address_space_init(&address_space_memory, system_memory, "memory"); | 
 |  | 
 |     system_io = g_malloc(sizeof(*system_io)); | 
 |     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", | 
 |                           65536); | 
 |     address_space_init(&address_space_io, system_io, "I/O"); | 
 | } | 
 |  | 
 | MemoryRegion *get_system_memory(void) | 
 | { | 
 |     return system_memory; | 
 | } | 
 |  | 
 | MemoryRegion *get_system_io(void) | 
 | { | 
 |     return system_io; | 
 | } | 
 |  | 
 | #endif /* !defined(CONFIG_USER_ONLY) */ | 
 |  | 
 | /* physical memory access (slow version, mainly for debug) */ | 
 | #if defined(CONFIG_USER_ONLY) | 
 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | 
 |                         uint8_t *buf, int len, int is_write) | 
 | { | 
 |     int l, flags; | 
 |     target_ulong page; | 
 |     void * p; | 
 |  | 
 |     while (len > 0) { | 
 |         page = addr & TARGET_PAGE_MASK; | 
 |         l = (page + TARGET_PAGE_SIZE) - addr; | 
 |         if (l > len) | 
 |             l = len; | 
 |         flags = page_get_flags(page); | 
 |         if (!(flags & PAGE_VALID)) | 
 |             return -1; | 
 |         if (is_write) { | 
 |             if (!(flags & PAGE_WRITE)) | 
 |                 return -1; | 
 |             /* XXX: this code should not depend on lock_user */ | 
 |             if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | 
 |                 return -1; | 
 |             memcpy(p, buf, l); | 
 |             unlock_user(p, addr, l); | 
 |         } else { | 
 |             if (!(flags & PAGE_READ)) | 
 |                 return -1; | 
 |             /* XXX: this code should not depend on lock_user */ | 
 |             if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | 
 |                 return -1; | 
 |             memcpy(buf, p, l); | 
 |             unlock_user(p, addr, 0); | 
 |         } | 
 |         len -= l; | 
 |         buf += l; | 
 |         addr += l; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, | 
 |                                      hwaddr length) | 
 | { | 
 |     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); | 
 |     /* No early return if dirty_log_mask is or becomes 0, because | 
 |      * cpu_physical_memory_set_dirty_range will still call | 
 |      * xen_modified_memory. | 
 |      */ | 
 |     if (dirty_log_mask) { | 
 |         dirty_log_mask = | 
 |             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | 
 |     } | 
 |     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | 
 |         tb_invalidate_phys_range(addr, addr + length); | 
 |         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | 
 |     } | 
 |     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); | 
 | } | 
 |  | 
 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) | 
 | { | 
 |     unsigned access_size_max = mr->ops->valid.max_access_size; | 
 |  | 
 |     /* Regions are assumed to support 1-4 byte accesses unless | 
 |        otherwise specified.  */ | 
 |     if (access_size_max == 0) { | 
 |         access_size_max = 4; | 
 |     } | 
 |  | 
 |     /* Bound the maximum access by the alignment of the address.  */ | 
 |     if (!mr->ops->impl.unaligned) { | 
 |         unsigned align_size_max = addr & -addr; | 
 |         if (align_size_max != 0 && align_size_max < access_size_max) { | 
 |             access_size_max = align_size_max; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Don't attempt accesses larger than the maximum.  */ | 
 |     if (l > access_size_max) { | 
 |         l = access_size_max; | 
 |     } | 
 |     l = pow2floor(l); | 
 |  | 
 |     return l; | 
 | } | 
 |  | 
 | static bool prepare_mmio_access(MemoryRegion *mr) | 
 | { | 
 |     bool unlocked = !qemu_mutex_iothread_locked(); | 
 |     bool release_lock = false; | 
 |  | 
 |     if (unlocked && mr->global_locking) { | 
 |         qemu_mutex_lock_iothread(); | 
 |         unlocked = false; | 
 |         release_lock = true; | 
 |     } | 
 |     if (mr->flush_coalesced_mmio) { | 
 |         if (unlocked) { | 
 |             qemu_mutex_lock_iothread(); | 
 |         } | 
 |         qemu_flush_coalesced_mmio_buffer(); | 
 |         if (unlocked) { | 
 |             qemu_mutex_unlock_iothread(); | 
 |         } | 
 |     } | 
 |  | 
 |     return release_lock; | 
 | } | 
 |  | 
 | /* Called within RCU critical section.  */ | 
 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | 
 |                                                 MemTxAttrs attrs, | 
 |                                                 const uint8_t *buf, | 
 |                                                 int len, hwaddr addr1, | 
 |                                                 hwaddr l, MemoryRegion *mr) | 
 | { | 
 |     uint8_t *ptr; | 
 |     uint64_t val; | 
 |     MemTxResult result = MEMTX_OK; | 
 |     bool release_lock = false; | 
 |  | 
 |     for (;;) { | 
 |         if (!memory_access_is_direct(mr, true)) { | 
 |             release_lock |= prepare_mmio_access(mr); | 
 |             l = memory_access_size(mr, l, addr1); | 
 |             /* XXX: could force current_cpu to NULL to avoid | 
 |                potential bugs */ | 
 |             switch (l) { | 
 |             case 8: | 
 |                 /* 64 bit write access */ | 
 |                 val = ldq_p(buf); | 
 |                 result |= memory_region_dispatch_write(mr, addr1, val, 8, | 
 |                                                        attrs); | 
 |                 break; | 
 |             case 4: | 
 |                 /* 32 bit write access */ | 
 |                 val = ldl_p(buf); | 
 |                 result |= memory_region_dispatch_write(mr, addr1, val, 4, | 
 |                                                        attrs); | 
 |                 break; | 
 |             case 2: | 
 |                 /* 16 bit write access */ | 
 |                 val = lduw_p(buf); | 
 |                 result |= memory_region_dispatch_write(mr, addr1, val, 2, | 
 |                                                        attrs); | 
 |                 break; | 
 |             case 1: | 
 |                 /* 8 bit write access */ | 
 |                 val = ldub_p(buf); | 
 |                 result |= memory_region_dispatch_write(mr, addr1, val, 1, | 
 |                                                        attrs); | 
 |                 break; | 
 |             default: | 
 |                 abort(); | 
 |             } | 
 |         } else { | 
 |             addr1 += memory_region_get_ram_addr(mr); | 
 |             /* RAM case */ | 
 |             ptr = qemu_get_ram_ptr(addr1); | 
 |             memcpy(ptr, buf, l); | 
 |             invalidate_and_set_dirty(mr, addr1, l); | 
 |         } | 
 |  | 
 |         if (release_lock) { | 
 |             qemu_mutex_unlock_iothread(); | 
 |             release_lock = false; | 
 |         } | 
 |  | 
 |         len -= l; | 
 |         buf += l; | 
 |         addr += l; | 
 |  | 
 |         if (!len) { | 
 |             break; | 
 |         } | 
 |  | 
 |         l = len; | 
 |         mr = address_space_translate(as, addr, &addr1, &l, true); | 
 |     } | 
 |  | 
 |     return result; | 
 | } | 
 |  | 
 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, | 
 |                                 const uint8_t *buf, int len) | 
 | { | 
 |     hwaddr l; | 
 |     hwaddr addr1; | 
 |     MemoryRegion *mr; | 
 |     MemTxResult result = MEMTX_OK; | 
 |  | 
 |     if (len > 0) { | 
 |         rcu_read_lock(); | 
 |         l = len; | 
 |         mr = address_space_translate(as, addr, &addr1, &l, true); | 
 |         result = address_space_write_continue(as, addr, attrs, buf, len, | 
 |                                               addr1, l, mr); | 
 |         rcu_read_unlock(); | 
 |     } | 
 |  | 
 |     return result; | 
 | } | 
 |  | 
 | /* Called within RCU critical section.  */ | 
 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | 
 |                                         MemTxAttrs attrs, uint8_t *buf, | 
 |                                         int len, hwaddr addr1, hwaddr l, | 
 |                                         MemoryRegion *mr) | 
 | { | 
 |     uint8_t *ptr; | 
 |     uint64_t val; | 
 |     MemTxResult result = MEMTX_OK; | 
 |     bool release_lock = false; | 
 |  | 
 |     for (;;) { | 
 |         if (!memory_access_is_direct(mr, false)) { | 
 |             /* I/O case */ | 
 |             release_lock |= prepare_mmio_access(mr); | 
 |             l = memory_access_size(mr, l, addr1); | 
 |             switch (l) { | 
 |             case 8: | 
 |                 /* 64 bit read access */ | 
 |                 result |= memory_region_dispatch_read(mr, addr1, &val, 8, | 
 |                                                       attrs); | 
 |                 stq_p(buf, val); | 
 |                 break; | 
 |             case 4: | 
 |                 /* 32 bit read access */ | 
 |                 result |= memory_region_dispatch_read(mr, addr1, &val, 4, | 
 |                                                       attrs); | 
 |                 stl_p(buf, val); | 
 |                 break; | 
 |             case 2: | 
 |                 /* 16 bit read access */ | 
 |                 result |= memory_region_dispatch_read(mr, addr1, &val, 2, | 
 |                                                       attrs); | 
 |                 stw_p(buf, val); | 
 |                 break; | 
 |             case 1: | 
 |                 /* 8 bit read access */ | 
 |                 result |= memory_region_dispatch_read(mr, addr1, &val, 1, | 
 |                                                       attrs); | 
 |                 stb_p(buf, val); | 
 |                 break; | 
 |             default: | 
 |                 abort(); | 
 |             } | 
 |         } else { | 
 |             /* RAM case */ | 
 |             ptr = qemu_get_ram_ptr(mr->ram_addr + addr1); | 
 |             memcpy(buf, ptr, l); | 
 |         } | 
 |  | 
 |         if (release_lock) { | 
 |             qemu_mutex_unlock_iothread(); | 
 |             release_lock = false; | 
 |         } | 
 |  | 
 |         len -= l; | 
 |         buf += l; | 
 |         addr += l; | 
 |  | 
 |         if (!len) { | 
 |             break; | 
 |         } | 
 |  | 
 |         l = len; | 
 |         mr = address_space_translate(as, addr, &addr1, &l, false); | 
 |     } | 
 |  | 
 |     return result; | 
 | } | 
 |  | 
 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, | 
 |                                     MemTxAttrs attrs, uint8_t *buf, int len) | 
 | { | 
 |     hwaddr l; | 
 |     hwaddr addr1; | 
 |     MemoryRegion *mr; | 
 |     MemTxResult result = MEMTX_OK; | 
 |  | 
 |     if (len > 0) { | 
 |         rcu_read_lock(); | 
 |         l = len; | 
 |         mr = address_space_translate(as, addr, &addr1, &l, false); | 
 |         result = address_space_read_continue(as, addr, attrs, buf, len, | 
 |                                              addr1, l, mr); | 
 |         rcu_read_unlock(); | 
 |     } | 
 |  | 
 |     return result; | 
 | } | 
 |  | 
 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, | 
 |                              uint8_t *buf, int len, bool is_write) | 
 | { | 
 |     if (is_write) { | 
 |         return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | 
 |     } else { | 
 |         return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | 
 |     } | 
 | } | 
 |  | 
 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, | 
 |                             int len, int is_write) | 
 | { | 
 |     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, | 
 |                      buf, len, is_write); | 
 | } | 
 |  | 
 | enum write_rom_type { | 
 |     WRITE_DATA, | 
 |     FLUSH_CACHE, | 
 | }; | 
 |  | 
 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, | 
 |     hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) | 
 | { | 
 |     hwaddr l; | 
 |     uint8_t *ptr; | 
 |     hwaddr addr1; | 
 |     MemoryRegion *mr; | 
 |  | 
 |     rcu_read_lock(); | 
 |     while (len > 0) { | 
 |         l = len; | 
 |         mr = address_space_translate(as, addr, &addr1, &l, true); | 
 |  | 
 |         if (!(memory_region_is_ram(mr) || | 
 |               memory_region_is_romd(mr))) { | 
 |             l = memory_access_size(mr, l, addr1); | 
 |         } else { | 
 |             addr1 += memory_region_get_ram_addr(mr); | 
 |             /* ROM/RAM case */ | 
 |             ptr = qemu_get_ram_ptr(addr1); | 
 |             switch (type) { | 
 |             case WRITE_DATA: | 
 |                 memcpy(ptr, buf, l); | 
 |                 invalidate_and_set_dirty(mr, addr1, l); | 
 |                 break; | 
 |             case FLUSH_CACHE: | 
 |                 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | 
 |                 break; | 
 |             } | 
 |         } | 
 |         len -= l; | 
 |         buf += l; | 
 |         addr += l; | 
 |     } | 
 |     rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* used for ROM loading : can write in RAM and ROM */ | 
 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, | 
 |                                    const uint8_t *buf, int len) | 
 | { | 
 |     cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); | 
 | } | 
 |  | 
 | void cpu_flush_icache_range(hwaddr start, int len) | 
 | { | 
 |     /* | 
 |      * This function should do the same thing as an icache flush that was | 
 |      * triggered from within the guest. For TCG we are always cache coherent, | 
 |      * so there is no need to flush anything. For KVM / Xen we need to flush | 
 |      * the host's instruction cache at least. | 
 |      */ | 
 |     if (tcg_enabled()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     cpu_physical_memory_write_rom_internal(&address_space_memory, | 
 |                                            start, NULL, len, FLUSH_CACHE); | 
 | } | 
 |  | 
 | typedef struct { | 
 |     MemoryRegion *mr; | 
 |     void *buffer; | 
 |     hwaddr addr; | 
 |     hwaddr len; | 
 |     bool in_use; | 
 | } BounceBuffer; | 
 |  | 
 | static BounceBuffer bounce; | 
 |  | 
 | typedef struct MapClient { | 
 |     QEMUBH *bh; | 
 |     QLIST_ENTRY(MapClient) link; | 
 | } MapClient; | 
 |  | 
 | QemuMutex map_client_list_lock; | 
 | static QLIST_HEAD(map_client_list, MapClient) map_client_list | 
 |     = QLIST_HEAD_INITIALIZER(map_client_list); | 
 |  | 
 | static void cpu_unregister_map_client_do(MapClient *client) | 
 | { | 
 |     QLIST_REMOVE(client, link); | 
 |     g_free(client); | 
 | } | 
 |  | 
 | static void cpu_notify_map_clients_locked(void) | 
 | { | 
 |     MapClient *client; | 
 |  | 
 |     while (!QLIST_EMPTY(&map_client_list)) { | 
 |         client = QLIST_FIRST(&map_client_list); | 
 |         qemu_bh_schedule(client->bh); | 
 |         cpu_unregister_map_client_do(client); | 
 |     } | 
 | } | 
 |  | 
 | void cpu_register_map_client(QEMUBH *bh) | 
 | { | 
 |     MapClient *client = g_malloc(sizeof(*client)); | 
 |  | 
 |     qemu_mutex_lock(&map_client_list_lock); | 
 |     client->bh = bh; | 
 |     QLIST_INSERT_HEAD(&map_client_list, client, link); | 
 |     if (!atomic_read(&bounce.in_use)) { | 
 |         cpu_notify_map_clients_locked(); | 
 |     } | 
 |     qemu_mutex_unlock(&map_client_list_lock); | 
 | } | 
 |  | 
 | void cpu_exec_init_all(void) | 
 | { | 
 |     qemu_mutex_init(&ram_list.mutex); | 
 |     io_mem_init(); | 
 |     memory_map_init(); | 
 |     qemu_mutex_init(&map_client_list_lock); | 
 | } | 
 |  | 
 | void cpu_unregister_map_client(QEMUBH *bh) | 
 | { | 
 |     MapClient *client; | 
 |  | 
 |     qemu_mutex_lock(&map_client_list_lock); | 
 |     QLIST_FOREACH(client, &map_client_list, link) { | 
 |         if (client->bh == bh) { | 
 |             cpu_unregister_map_client_do(client); | 
 |             break; | 
 |         } | 
 |     } | 
 |     qemu_mutex_unlock(&map_client_list_lock); | 
 | } | 
 |  | 
 | static void cpu_notify_map_clients(void) | 
 | { | 
 |     qemu_mutex_lock(&map_client_list_lock); | 
 |     cpu_notify_map_clients_locked(); | 
 |     qemu_mutex_unlock(&map_client_list_lock); | 
 | } | 
 |  | 
 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) | 
 | { | 
 |     MemoryRegion *mr; | 
 |     hwaddr l, xlat; | 
 |  | 
 |     rcu_read_lock(); | 
 |     while (len > 0) { | 
 |         l = len; | 
 |         mr = address_space_translate(as, addr, &xlat, &l, is_write); | 
 |         if (!memory_access_is_direct(mr, is_write)) { | 
 |             l = memory_access_size(mr, l, addr); | 
 |             if (!memory_region_access_valid(mr, xlat, l, is_write)) { | 
 |                 return false; | 
 |             } | 
 |         } | 
 |  | 
 |         len -= l; | 
 |         addr += l; | 
 |     } | 
 |     rcu_read_unlock(); | 
 |     return true; | 
 | } | 
 |  | 
 | /* Map a physical memory region into a host virtual address. | 
 |  * May map a subset of the requested range, given by and returned in *plen. | 
 |  * May return NULL if resources needed to perform the mapping are exhausted. | 
 |  * Use only for reads OR writes - not for read-modify-write operations. | 
 |  * Use cpu_register_map_client() to know when retrying the map operation is | 
 |  * likely to succeed. | 
 |  */ | 
 | void *address_space_map(AddressSpace *as, | 
 |                         hwaddr addr, | 
 |                         hwaddr *plen, | 
 |                         bool is_write) | 
 | { | 
 |     hwaddr len = *plen; | 
 |     hwaddr done = 0; | 
 |     hwaddr l, xlat, base; | 
 |     MemoryRegion *mr, *this_mr; | 
 |     ram_addr_t raddr; | 
 |     void *ptr; | 
 |  | 
 |     if (len == 0) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     l = len; | 
 |     rcu_read_lock(); | 
 |     mr = address_space_translate(as, addr, &xlat, &l, is_write); | 
 |  | 
 |     if (!memory_access_is_direct(mr, is_write)) { | 
 |         if (atomic_xchg(&bounce.in_use, true)) { | 
 |             rcu_read_unlock(); | 
 |             return NULL; | 
 |         } | 
 |         /* Avoid unbounded allocations */ | 
 |         l = MIN(l, TARGET_PAGE_SIZE); | 
 |         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | 
 |         bounce.addr = addr; | 
 |         bounce.len = l; | 
 |  | 
 |         memory_region_ref(mr); | 
 |         bounce.mr = mr; | 
 |         if (!is_write) { | 
 |             address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, | 
 |                                bounce.buffer, l); | 
 |         } | 
 |  | 
 |         rcu_read_unlock(); | 
 |         *plen = l; | 
 |         return bounce.buffer; | 
 |     } | 
 |  | 
 |     base = xlat; | 
 |     raddr = memory_region_get_ram_addr(mr); | 
 |  | 
 |     for (;;) { | 
 |         len -= l; | 
 |         addr += l; | 
 |         done += l; | 
 |         if (len == 0) { | 
 |             break; | 
 |         } | 
 |  | 
 |         l = len; | 
 |         this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | 
 |         if (this_mr != mr || xlat != base + done) { | 
 |             break; | 
 |         } | 
 |     } | 
 |  | 
 |     memory_region_ref(mr); | 
 |     *plen = done; | 
 |     ptr = qemu_ram_ptr_length(raddr + base, plen); | 
 |     rcu_read_unlock(); | 
 |  | 
 |     return ptr; | 
 | } | 
 |  | 
 | /* Unmaps a memory region previously mapped by address_space_map(). | 
 |  * Will also mark the memory as dirty if is_write == 1.  access_len gives | 
 |  * the amount of memory that was actually read or written by the caller. | 
 |  */ | 
 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, | 
 |                          int is_write, hwaddr access_len) | 
 | { | 
 |     if (buffer != bounce.buffer) { | 
 |         MemoryRegion *mr; | 
 |         ram_addr_t addr1; | 
 |  | 
 |         mr = qemu_ram_addr_from_host(buffer, &addr1); | 
 |         assert(mr != NULL); | 
 |         if (is_write) { | 
 |             invalidate_and_set_dirty(mr, addr1, access_len); | 
 |         } | 
 |         if (xen_enabled()) { | 
 |             xen_invalidate_map_cache_entry(buffer); | 
 |         } | 
 |         memory_region_unref(mr); | 
 |         return; | 
 |     } | 
 |     if (is_write) { | 
 |         address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, | 
 |                             bounce.buffer, access_len); | 
 |     } | 
 |     qemu_vfree(bounce.buffer); | 
 |     bounce.buffer = NULL; | 
 |     memory_region_unref(bounce.mr); | 
 |     atomic_mb_set(&bounce.in_use, false); | 
 |     cpu_notify_map_clients(); | 
 | } | 
 |  | 
 | void *cpu_physical_memory_map(hwaddr addr, | 
 |                               hwaddr *plen, | 
 |                               int is_write) | 
 | { | 
 |     return address_space_map(&address_space_memory, addr, plen, is_write); | 
 | } | 
 |  | 
 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, | 
 |                                int is_write, hwaddr access_len) | 
 | { | 
 |     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | 
 | } | 
 |  | 
 | /* warning: addr must be aligned */ | 
 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, | 
 |                                                   MemTxAttrs attrs, | 
 |                                                   MemTxResult *result, | 
 |                                                   enum device_endian endian) | 
 | { | 
 |     uint8_t *ptr; | 
 |     uint64_t val; | 
 |     MemoryRegion *mr; | 
 |     hwaddr l = 4; | 
 |     hwaddr addr1; | 
 |     MemTxResult r; | 
 |     bool release_lock = false; | 
 |  | 
 |     rcu_read_lock(); | 
 |     mr = address_space_translate(as, addr, &addr1, &l, false); | 
 |     if (l < 4 || !memory_access_is_direct(mr, false)) { | 
 |         release_lock |= prepare_mmio_access(mr); | 
 |  | 
 |         /* I/O case */ | 
 |         r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); | 
 | #if defined(TARGET_WORDS_BIGENDIAN) | 
 |         if (endian == DEVICE_LITTLE_ENDIAN) { | 
 |             val = bswap32(val); | 
 |         } | 
 | #else | 
 |         if (endian == DEVICE_BIG_ENDIAN) { | 
 |             val = bswap32(val); | 
 |         } | 
 | #endif | 
 |     } else { | 
 |         /* RAM case */ | 
 |         ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | 
 |                                 & TARGET_PAGE_MASK) | 
 |                                + addr1); | 
 |         switch (endian) { | 
 |         case DEVICE_LITTLE_ENDIAN: | 
 |             val = ldl_le_p(ptr); | 
 |             break; | 
 |         case DEVICE_BIG_ENDIAN: | 
 |             val = ldl_be_p(ptr); | 
 |             break; | 
 |         default: | 
 |             val = ldl_p(ptr); | 
 |             break; | 
 |         } | 
 |         r = MEMTX_OK; | 
 |     } | 
 |     if (result) { | 
 |         *result = r; | 
 |     } | 
 |     if (release_lock) { | 
 |         qemu_mutex_unlock_iothread(); | 
 |     } | 
 |     rcu_read_unlock(); | 
 |     return val; | 
 | } | 
 |  | 
 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, | 
 |                            MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     return address_space_ldl_internal(as, addr, attrs, result, | 
 |                                       DEVICE_NATIVE_ENDIAN); | 
 | } | 
 |  | 
 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | 
 |                               MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     return address_space_ldl_internal(as, addr, attrs, result, | 
 |                                       DEVICE_LITTLE_ENDIAN); | 
 | } | 
 |  | 
 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | 
 |                               MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     return address_space_ldl_internal(as, addr, attrs, result, | 
 |                                       DEVICE_BIG_ENDIAN); | 
 | } | 
 |  | 
 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) | 
 | { | 
 |     return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) | 
 | { | 
 |     return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) | 
 | { | 
 |     return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | /* warning: addr must be aligned */ | 
 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, | 
 |                                                   MemTxAttrs attrs, | 
 |                                                   MemTxResult *result, | 
 |                                                   enum device_endian endian) | 
 | { | 
 |     uint8_t *ptr; | 
 |     uint64_t val; | 
 |     MemoryRegion *mr; | 
 |     hwaddr l = 8; | 
 |     hwaddr addr1; | 
 |     MemTxResult r; | 
 |     bool release_lock = false; | 
 |  | 
 |     rcu_read_lock(); | 
 |     mr = address_space_translate(as, addr, &addr1, &l, | 
 |                                  false); | 
 |     if (l < 8 || !memory_access_is_direct(mr, false)) { | 
 |         release_lock |= prepare_mmio_access(mr); | 
 |  | 
 |         /* I/O case */ | 
 |         r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); | 
 | #if defined(TARGET_WORDS_BIGENDIAN) | 
 |         if (endian == DEVICE_LITTLE_ENDIAN) { | 
 |             val = bswap64(val); | 
 |         } | 
 | #else | 
 |         if (endian == DEVICE_BIG_ENDIAN) { | 
 |             val = bswap64(val); | 
 |         } | 
 | #endif | 
 |     } else { | 
 |         /* RAM case */ | 
 |         ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | 
 |                                 & TARGET_PAGE_MASK) | 
 |                                + addr1); | 
 |         switch (endian) { | 
 |         case DEVICE_LITTLE_ENDIAN: | 
 |             val = ldq_le_p(ptr); | 
 |             break; | 
 |         case DEVICE_BIG_ENDIAN: | 
 |             val = ldq_be_p(ptr); | 
 |             break; | 
 |         default: | 
 |             val = ldq_p(ptr); | 
 |             break; | 
 |         } | 
 |         r = MEMTX_OK; | 
 |     } | 
 |     if (result) { | 
 |         *result = r; | 
 |     } | 
 |     if (release_lock) { | 
 |         qemu_mutex_unlock_iothread(); | 
 |     } | 
 |     rcu_read_unlock(); | 
 |     return val; | 
 | } | 
 |  | 
 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, | 
 |                            MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     return address_space_ldq_internal(as, addr, attrs, result, | 
 |                                       DEVICE_NATIVE_ENDIAN); | 
 | } | 
 |  | 
 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | 
 |                            MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     return address_space_ldq_internal(as, addr, attrs, result, | 
 |                                       DEVICE_LITTLE_ENDIAN); | 
 | } | 
 |  | 
 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | 
 |                            MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     return address_space_ldq_internal(as, addr, attrs, result, | 
 |                                       DEVICE_BIG_ENDIAN); | 
 | } | 
 |  | 
 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) | 
 | { | 
 |     return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) | 
 | { | 
 |     return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) | 
 | { | 
 |     return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | /* XXX: optimize */ | 
 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, | 
 |                             MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     uint8_t val; | 
 |     MemTxResult r; | 
 |  | 
 |     r = address_space_rw(as, addr, attrs, &val, 1, 0); | 
 |     if (result) { | 
 |         *result = r; | 
 |     } | 
 |     return val; | 
 | } | 
 |  | 
 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) | 
 | { | 
 |     return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | /* warning: addr must be aligned */ | 
 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, | 
 |                                                    hwaddr addr, | 
 |                                                    MemTxAttrs attrs, | 
 |                                                    MemTxResult *result, | 
 |                                                    enum device_endian endian) | 
 | { | 
 |     uint8_t *ptr; | 
 |     uint64_t val; | 
 |     MemoryRegion *mr; | 
 |     hwaddr l = 2; | 
 |     hwaddr addr1; | 
 |     MemTxResult r; | 
 |     bool release_lock = false; | 
 |  | 
 |     rcu_read_lock(); | 
 |     mr = address_space_translate(as, addr, &addr1, &l, | 
 |                                  false); | 
 |     if (l < 2 || !memory_access_is_direct(mr, false)) { | 
 |         release_lock |= prepare_mmio_access(mr); | 
 |  | 
 |         /* I/O case */ | 
 |         r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); | 
 | #if defined(TARGET_WORDS_BIGENDIAN) | 
 |         if (endian == DEVICE_LITTLE_ENDIAN) { | 
 |             val = bswap16(val); | 
 |         } | 
 | #else | 
 |         if (endian == DEVICE_BIG_ENDIAN) { | 
 |             val = bswap16(val); | 
 |         } | 
 | #endif | 
 |     } else { | 
 |         /* RAM case */ | 
 |         ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | 
 |                                 & TARGET_PAGE_MASK) | 
 |                                + addr1); | 
 |         switch (endian) { | 
 |         case DEVICE_LITTLE_ENDIAN: | 
 |             val = lduw_le_p(ptr); | 
 |             break; | 
 |         case DEVICE_BIG_ENDIAN: | 
 |             val = lduw_be_p(ptr); | 
 |             break; | 
 |         default: | 
 |             val = lduw_p(ptr); | 
 |             break; | 
 |         } | 
 |         r = MEMTX_OK; | 
 |     } | 
 |     if (result) { | 
 |         *result = r; | 
 |     } | 
 |     if (release_lock) { | 
 |         qemu_mutex_unlock_iothread(); | 
 |     } | 
 |     rcu_read_unlock(); | 
 |     return val; | 
 | } | 
 |  | 
 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, | 
 |                            MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     return address_space_lduw_internal(as, addr, attrs, result, | 
 |                                        DEVICE_NATIVE_ENDIAN); | 
 | } | 
 |  | 
 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | 
 |                            MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     return address_space_lduw_internal(as, addr, attrs, result, | 
 |                                        DEVICE_LITTLE_ENDIAN); | 
 | } | 
 |  | 
 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | 
 |                            MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     return address_space_lduw_internal(as, addr, attrs, result, | 
 |                                        DEVICE_BIG_ENDIAN); | 
 | } | 
 |  | 
 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) | 
 | { | 
 |     return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) | 
 | { | 
 |     return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) | 
 | { | 
 |     return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | /* warning: addr must be aligned. The ram page is not masked as dirty | 
 |    and the code inside is not invalidated. It is useful if the dirty | 
 |    bits are used to track modified PTEs */ | 
 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, | 
 |                                 MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     uint8_t *ptr; | 
 |     MemoryRegion *mr; | 
 |     hwaddr l = 4; | 
 |     hwaddr addr1; | 
 |     MemTxResult r; | 
 |     uint8_t dirty_log_mask; | 
 |     bool release_lock = false; | 
 |  | 
 |     rcu_read_lock(); | 
 |     mr = address_space_translate(as, addr, &addr1, &l, | 
 |                                  true); | 
 |     if (l < 4 || !memory_access_is_direct(mr, true)) { | 
 |         release_lock |= prepare_mmio_access(mr); | 
 |  | 
 |         r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); | 
 |     } else { | 
 |         addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | 
 |         ptr = qemu_get_ram_ptr(addr1); | 
 |         stl_p(ptr, val); | 
 |  | 
 |         dirty_log_mask = memory_region_get_dirty_log_mask(mr); | 
 |         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | 
 |         cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask); | 
 |         r = MEMTX_OK; | 
 |     } | 
 |     if (result) { | 
 |         *result = r; | 
 |     } | 
 |     if (release_lock) { | 
 |         qemu_mutex_unlock_iothread(); | 
 |     } | 
 |     rcu_read_unlock(); | 
 | } | 
 |  | 
 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) | 
 | { | 
 |     address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | /* warning: addr must be aligned */ | 
 | static inline void address_space_stl_internal(AddressSpace *as, | 
 |                                               hwaddr addr, uint32_t val, | 
 |                                               MemTxAttrs attrs, | 
 |                                               MemTxResult *result, | 
 |                                               enum device_endian endian) | 
 | { | 
 |     uint8_t *ptr; | 
 |     MemoryRegion *mr; | 
 |     hwaddr l = 4; | 
 |     hwaddr addr1; | 
 |     MemTxResult r; | 
 |     bool release_lock = false; | 
 |  | 
 |     rcu_read_lock(); | 
 |     mr = address_space_translate(as, addr, &addr1, &l, | 
 |                                  true); | 
 |     if (l < 4 || !memory_access_is_direct(mr, true)) { | 
 |         release_lock |= prepare_mmio_access(mr); | 
 |  | 
 | #if defined(TARGET_WORDS_BIGENDIAN) | 
 |         if (endian == DEVICE_LITTLE_ENDIAN) { | 
 |             val = bswap32(val); | 
 |         } | 
 | #else | 
 |         if (endian == DEVICE_BIG_ENDIAN) { | 
 |             val = bswap32(val); | 
 |         } | 
 | #endif | 
 |         r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); | 
 |     } else { | 
 |         /* RAM case */ | 
 |         addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | 
 |         ptr = qemu_get_ram_ptr(addr1); | 
 |         switch (endian) { | 
 |         case DEVICE_LITTLE_ENDIAN: | 
 |             stl_le_p(ptr, val); | 
 |             break; | 
 |         case DEVICE_BIG_ENDIAN: | 
 |             stl_be_p(ptr, val); | 
 |             break; | 
 |         default: | 
 |             stl_p(ptr, val); | 
 |             break; | 
 |         } | 
 |         invalidate_and_set_dirty(mr, addr1, 4); | 
 |         r = MEMTX_OK; | 
 |     } | 
 |     if (result) { | 
 |         *result = r; | 
 |     } | 
 |     if (release_lock) { | 
 |         qemu_mutex_unlock_iothread(); | 
 |     } | 
 |     rcu_read_unlock(); | 
 | } | 
 |  | 
 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, | 
 |                        MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     address_space_stl_internal(as, addr, val, attrs, result, | 
 |                                DEVICE_NATIVE_ENDIAN); | 
 | } | 
 |  | 
 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | 
 |                        MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     address_space_stl_internal(as, addr, val, attrs, result, | 
 |                                DEVICE_LITTLE_ENDIAN); | 
 | } | 
 |  | 
 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | 
 |                        MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     address_space_stl_internal(as, addr, val, attrs, result, | 
 |                                DEVICE_BIG_ENDIAN); | 
 | } | 
 |  | 
 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) | 
 | { | 
 |     address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) | 
 | { | 
 |     address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) | 
 | { | 
 |     address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | /* XXX: optimize */ | 
 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, | 
 |                        MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     uint8_t v = val; | 
 |     MemTxResult r; | 
 |  | 
 |     r = address_space_rw(as, addr, attrs, &v, 1, 1); | 
 |     if (result) { | 
 |         *result = r; | 
 |     } | 
 | } | 
 |  | 
 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | 
 | { | 
 |     address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | /* warning: addr must be aligned */ | 
 | static inline void address_space_stw_internal(AddressSpace *as, | 
 |                                               hwaddr addr, uint32_t val, | 
 |                                               MemTxAttrs attrs, | 
 |                                               MemTxResult *result, | 
 |                                               enum device_endian endian) | 
 | { | 
 |     uint8_t *ptr; | 
 |     MemoryRegion *mr; | 
 |     hwaddr l = 2; | 
 |     hwaddr addr1; | 
 |     MemTxResult r; | 
 |     bool release_lock = false; | 
 |  | 
 |     rcu_read_lock(); | 
 |     mr = address_space_translate(as, addr, &addr1, &l, true); | 
 |     if (l < 2 || !memory_access_is_direct(mr, true)) { | 
 |         release_lock |= prepare_mmio_access(mr); | 
 |  | 
 | #if defined(TARGET_WORDS_BIGENDIAN) | 
 |         if (endian == DEVICE_LITTLE_ENDIAN) { | 
 |             val = bswap16(val); | 
 |         } | 
 | #else | 
 |         if (endian == DEVICE_BIG_ENDIAN) { | 
 |             val = bswap16(val); | 
 |         } | 
 | #endif | 
 |         r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); | 
 |     } else { | 
 |         /* RAM case */ | 
 |         addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | 
 |         ptr = qemu_get_ram_ptr(addr1); | 
 |         switch (endian) { | 
 |         case DEVICE_LITTLE_ENDIAN: | 
 |             stw_le_p(ptr, val); | 
 |             break; | 
 |         case DEVICE_BIG_ENDIAN: | 
 |             stw_be_p(ptr, val); | 
 |             break; | 
 |         default: | 
 |             stw_p(ptr, val); | 
 |             break; | 
 |         } | 
 |         invalidate_and_set_dirty(mr, addr1, 2); | 
 |         r = MEMTX_OK; | 
 |     } | 
 |     if (result) { | 
 |         *result = r; | 
 |     } | 
 |     if (release_lock) { | 
 |         qemu_mutex_unlock_iothread(); | 
 |     } | 
 |     rcu_read_unlock(); | 
 | } | 
 |  | 
 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, | 
 |                        MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     address_space_stw_internal(as, addr, val, attrs, result, | 
 |                                DEVICE_NATIVE_ENDIAN); | 
 | } | 
 |  | 
 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | 
 |                        MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     address_space_stw_internal(as, addr, val, attrs, result, | 
 |                                DEVICE_LITTLE_ENDIAN); | 
 | } | 
 |  | 
 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | 
 |                        MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     address_space_stw_internal(as, addr, val, attrs, result, | 
 |                                DEVICE_BIG_ENDIAN); | 
 | } | 
 |  | 
 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) | 
 | { | 
 |     address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) | 
 | { | 
 |     address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) | 
 | { | 
 |     address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | /* XXX: optimize */ | 
 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, | 
 |                        MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     MemTxResult r; | 
 |     val = tswap64(val); | 
 |     r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | 
 |     if (result) { | 
 |         *result = r; | 
 |     } | 
 | } | 
 |  | 
 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, | 
 |                        MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     MemTxResult r; | 
 |     val = cpu_to_le64(val); | 
 |     r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | 
 |     if (result) { | 
 |         *result = r; | 
 |     } | 
 | } | 
 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | 
 |                        MemTxAttrs attrs, MemTxResult *result) | 
 | { | 
 |     MemTxResult r; | 
 |     val = cpu_to_be64(val); | 
 |     r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | 
 |     if (result) { | 
 |         *result = r; | 
 |     } | 
 | } | 
 |  | 
 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | 
 | { | 
 |     address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | 
 | { | 
 |     address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) | 
 | { | 
 |     address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | 
 | } | 
 |  | 
 | /* virtual memory access for debug (includes writing to ROM) */ | 
 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | 
 |                         uint8_t *buf, int len, int is_write) | 
 | { | 
 |     int l; | 
 |     hwaddr phys_addr; | 
 |     target_ulong page; | 
 |  | 
 |     while (len > 0) { | 
 |         page = addr & TARGET_PAGE_MASK; | 
 |         phys_addr = cpu_get_phys_page_debug(cpu, page); | 
 |         /* if no physical page mapped, return an error */ | 
 |         if (phys_addr == -1) | 
 |             return -1; | 
 |         l = (page + TARGET_PAGE_SIZE) - addr; | 
 |         if (l > len) | 
 |             l = len; | 
 |         phys_addr += (addr & ~TARGET_PAGE_MASK); | 
 |         if (is_write) { | 
 |             cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l); | 
 |         } else { | 
 |             address_space_rw(cpu->as, phys_addr, MEMTXATTRS_UNSPECIFIED, | 
 |                              buf, l, 0); | 
 |         } | 
 |         len -= l; | 
 |         buf += l; | 
 |         addr += l; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Allows code that needs to deal with migration bitmaps etc to still be built | 
 |  * target independent. | 
 |  */ | 
 | size_t qemu_target_page_bits(void) | 
 | { | 
 |     return TARGET_PAGE_BITS; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * A helper function for the _utterly broken_ virtio device model to find out if | 
 |  * it's running on a big endian machine. Don't do this at home kids! | 
 |  */ | 
 | bool target_words_bigendian(void); | 
 | bool target_words_bigendian(void) | 
 | { | 
 | #if defined(TARGET_WORDS_BIGENDIAN) | 
 |     return true; | 
 | #else | 
 |     return false; | 
 | #endif | 
 | } | 
 |  | 
 | #ifndef CONFIG_USER_ONLY | 
 | bool cpu_physical_memory_is_io(hwaddr phys_addr) | 
 | { | 
 |     MemoryRegion*mr; | 
 |     hwaddr l = 1; | 
 |     bool res; | 
 |  | 
 |     rcu_read_lock(); | 
 |     mr = address_space_translate(&address_space_memory, | 
 |                                  phys_addr, &phys_addr, &l, false); | 
 |  | 
 |     res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); | 
 |     rcu_read_unlock(); | 
 |     return res; | 
 | } | 
 |  | 
 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) | 
 | { | 
 |     RAMBlock *block; | 
 |     int ret = 0; | 
 |  | 
 |     rcu_read_lock(); | 
 |     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | 
 |         ret = func(block->idstr, block->host, block->offset, | 
 |                    block->used_length, opaque); | 
 |         if (ret) { | 
 |             break; | 
 |         } | 
 |     } | 
 |     rcu_read_unlock(); | 
 |     return ret; | 
 | } | 
 | #endif |