| /* Coverity Scan model |
| * |
| * Copyright (C) 2014 Red Hat, Inc. |
| * |
| * Authors: |
| * Markus Armbruster <armbru@redhat.com> |
| * Paolo Bonzini <pbonzini@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or, at your |
| * option, any later version. See the COPYING file in the top-level directory. |
| */ |
| |
| |
| /* |
| * This is the source code for our Coverity user model file. The |
| * purpose of user models is to increase scanning accuracy by explaining |
| * code Coverity can't see (out of tree libraries) or doesn't |
| * sufficiently understand. Better accuracy means both fewer false |
| * positives and more true defects. Memory leaks in particular. |
| * |
| * - A model file can't import any header files. Some built-in primitives are |
| * available but not wchar_t, NULL etc. |
| * - Modeling doesn't need full structs and typedefs. Rudimentary structs |
| * and similar types are sufficient. |
| * - An uninitialized local variable signifies that the variable could be |
| * any value. |
| * |
| * The model file must be uploaded by an admin in the analysis settings of |
| * http://scan.coverity.com/projects/378 |
| */ |
| |
| #define NULL ((void *)0) |
| |
| typedef unsigned char uint8_t; |
| typedef char int8_t; |
| typedef unsigned int uint32_t; |
| typedef int int32_t; |
| typedef long ssize_t; |
| typedef unsigned long long uint64_t; |
| typedef long long int64_t; |
| typedef _Bool bool; |
| |
| /* exec.c */ |
| |
| typedef struct AddressSpace AddressSpace; |
| typedef uint64_t hwaddr; |
| |
| static void __write(uint8_t *buf, ssize_t len) |
| { |
| int first, last; |
| __coverity_negative_sink__(len); |
| if (len == 0) return; |
| buf[0] = first; |
| buf[len-1] = last; |
| __coverity_writeall__(buf); |
| } |
| |
| static void __read(uint8_t *buf, ssize_t len) |
| { |
| __coverity_negative_sink__(len); |
| if (len == 0) return; |
| int first = buf[0]; |
| int last = buf[len-1]; |
| } |
| |
| bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, |
| int len, bool is_write) |
| { |
| bool result; |
| |
| // TODO: investigate impact of treating reads as producing |
| // tainted data, with __coverity_tainted_data_argument__(buf). |
| if (is_write) __write(buf, len); else __read(buf, len); |
| |
| return result; |
| } |
| |
| /* Tainting */ |
| |
| typedef struct {} name2keysym_t; |
| static int get_keysym(const name2keysym_t *table, |
| const char *name) |
| { |
| int result; |
| if (result > 0) { |
| __coverity_tainted_string_sanitize_content__(name); |
| return result; |
| } else { |
| return 0; |
| } |
| } |
| |
| /* glib memory allocation functions. |
| * |
| * Note that we ignore the fact that g_malloc of 0 bytes returns NULL, |
| * and g_realloc of 0 bytes frees the pointer. |
| * |
| * Modeling this would result in Coverity flagging a lot of memory |
| * allocations as potentially returning NULL, and asking us to check |
| * whether the result of the allocation is NULL or not. However, the |
| * resulting pointer should never be dereferenced anyway, and in fact |
| * it is not in the vast majority of cases. |
| * |
| * If a dereference did happen, this would suppress a defect report |
| * for an actual null pointer dereference. But it's too unlikely to |
| * be worth wading through the false positives, and with some luck |
| * we'll get a buffer overflow reported anyway. |
| */ |
| |
| void *malloc(size_t); |
| void *calloc(size_t, size_t); |
| void *realloc(void *, size_t); |
| void free(void *); |
| |
| void * |
| g_malloc(size_t n_bytes) |
| { |
| void *mem; |
| __coverity_negative_sink__(n_bytes); |
| mem = malloc(n_bytes == 0 ? 1 : n_bytes); |
| if (!mem) __coverity_panic__(); |
| return mem; |
| } |
| |
| void * |
| g_malloc0(size_t n_bytes) |
| { |
| void *mem; |
| __coverity_negative_sink__(n_bytes); |
| mem = calloc(1, n_bytes == 0 ? 1 : n_bytes); |
| if (!mem) __coverity_panic__(); |
| return mem; |
| } |
| |
| void g_free(void *mem) |
| { |
| free(mem); |
| } |
| |
| void *g_realloc(void * mem, size_t n_bytes) |
| { |
| __coverity_negative_sink__(n_bytes); |
| mem = realloc(mem, n_bytes == 0 ? 1 : n_bytes); |
| if (!mem) __coverity_panic__(); |
| return mem; |
| } |
| |
| void *g_try_malloc(size_t n_bytes) |
| { |
| __coverity_negative_sink__(n_bytes); |
| return malloc(n_bytes == 0 ? 1 : n_bytes); |
| } |
| |
| void *g_try_malloc0(size_t n_bytes) |
| { |
| __coverity_negative_sink__(n_bytes); |
| return calloc(1, n_bytes == 0 ? 1 : n_bytes); |
| } |
| |
| void *g_try_realloc(void *mem, size_t n_bytes) |
| { |
| __coverity_negative_sink__(n_bytes); |
| return realloc(mem, n_bytes == 0 ? 1 : n_bytes); |
| } |
| |
| /* Other glib functions */ |
| |
| typedef struct _GIOChannel GIOChannel; |
| GIOChannel *g_io_channel_unix_new(int fd) |
| { |
| GIOChannel *c = g_malloc0(sizeof(GIOChannel)); |
| __coverity_escape__(fd); |
| return c; |
| } |
| |
| void g_assertion_message_expr(const char *domain, |
| const char *file, |
| int line, |
| const char *func, |
| const char *expr) |
| { |
| __coverity_panic__(); |
| } |