| # This python script adds a new gdb command, "dump-guest-memory". It |
| # should be loaded with "source dump-guest-memory.py" at the (gdb) |
| # prompt. |
| # |
| # Copyright (C) 2013, Red Hat, Inc. |
| # |
| # Authors: |
| # Laszlo Ersek <lersek@redhat.com> |
| # |
| # This work is licensed under the terms of the GNU GPL, version 2 or later. See |
| # the COPYING file in the top-level directory. |
| # |
| # The leading docstring doesn't have idiomatic Python formatting. It is |
| # printed by gdb's "help" command (the first line is printed in the |
| # "help data" summary), and it should match how other help texts look in |
| # gdb. |
| |
| import struct |
| |
| class DumpGuestMemory(gdb.Command): |
| """Extract guest vmcore from qemu process coredump. |
| |
| The sole argument is FILE, identifying the target file to write the |
| guest vmcore to. |
| |
| This GDB command reimplements the dump-guest-memory QMP command in |
| python, using the representation of guest memory as captured in the qemu |
| coredump. The qemu process that has been dumped must have had the |
| command line option "-machine dump-guest-core=on". |
| |
| For simplicity, the "paging", "begin" and "end" parameters of the QMP |
| command are not supported -- no attempt is made to get the guest's |
| internal paging structures (ie. paging=false is hard-wired), and guest |
| memory is always fully dumped. |
| |
| Only x86_64 guests are supported. |
| |
| The CORE/NT_PRSTATUS and QEMU notes (that is, the VCPUs' statuses) are |
| not written to the vmcore. Preparing these would require context that is |
| only present in the KVM host kernel module when the guest is alive. A |
| fake ELF note is written instead, only to keep the ELF parser of "crash" |
| happy. |
| |
| Dependent on how busted the qemu process was at the time of the |
| coredump, this command might produce unpredictable results. If qemu |
| deliberately called abort(), or it was dumped in response to a signal at |
| a halfway fortunate point, then its coredump should be in reasonable |
| shape and this command should mostly work.""" |
| |
| TARGET_PAGE_SIZE = 0x1000 |
| TARGET_PAGE_MASK = 0xFFFFFFFFFFFFF000 |
| |
| # Various ELF constants |
| EM_X86_64 = 62 # AMD x86-64 target machine |
| ELFDATA2LSB = 1 # little endian |
| ELFCLASS64 = 2 |
| ELFMAG = "\x7FELF" |
| EV_CURRENT = 1 |
| ET_CORE = 4 |
| PT_LOAD = 1 |
| PT_NOTE = 4 |
| |
| # Special value for e_phnum. This indicates that the real number of |
| # program headers is too large to fit into e_phnum. Instead the real |
| # value is in the field sh_info of section 0. |
| PN_XNUM = 0xFFFF |
| |
| # Format strings for packing and header size calculation. |
| ELF64_EHDR = ("4s" # e_ident/magic |
| "B" # e_ident/class |
| "B" # e_ident/data |
| "B" # e_ident/version |
| "B" # e_ident/osabi |
| "8s" # e_ident/pad |
| "H" # e_type |
| "H" # e_machine |
| "I" # e_version |
| "Q" # e_entry |
| "Q" # e_phoff |
| "Q" # e_shoff |
| "I" # e_flags |
| "H" # e_ehsize |
| "H" # e_phentsize |
| "H" # e_phnum |
| "H" # e_shentsize |
| "H" # e_shnum |
| "H" # e_shstrndx |
| ) |
| ELF64_PHDR = ("I" # p_type |
| "I" # p_flags |
| "Q" # p_offset |
| "Q" # p_vaddr |
| "Q" # p_paddr |
| "Q" # p_filesz |
| "Q" # p_memsz |
| "Q" # p_align |
| ) |
| |
| def __init__(self): |
| super(DumpGuestMemory, self).__init__("dump-guest-memory", |
| gdb.COMMAND_DATA, |
| gdb.COMPLETE_FILENAME) |
| self.uintptr_t = gdb.lookup_type("uintptr_t") |
| self.elf64_ehdr_le = struct.Struct("<%s" % self.ELF64_EHDR) |
| self.elf64_phdr_le = struct.Struct("<%s" % self.ELF64_PHDR) |
| |
| def int128_get64(self, val): |
| assert (val["hi"] == 0) |
| return val["lo"] |
| |
| def qtailq_foreach(self, head, field_str): |
| var_p = head["tqh_first"] |
| while (var_p != 0): |
| var = var_p.dereference() |
| yield var |
| var_p = var[field_str]["tqe_next"] |
| |
| def qemu_get_ram_block(self, ram_addr): |
| ram_blocks = gdb.parse_and_eval("ram_list.blocks") |
| for block in self.qtailq_foreach(ram_blocks, "next"): |
| if (ram_addr - block["offset"] < block["length"]): |
| return block |
| raise gdb.GdbError("Bad ram offset %x" % ram_addr) |
| |
| def qemu_get_ram_ptr(self, ram_addr): |
| block = self.qemu_get_ram_block(ram_addr) |
| return block["host"] + (ram_addr - block["offset"]) |
| |
| def memory_region_get_ram_ptr(self, mr): |
| if (mr["alias"] != 0): |
| return (self.memory_region_get_ram_ptr(mr["alias"].dereference()) + |
| mr["alias_offset"]) |
| return self.qemu_get_ram_ptr(mr["ram_addr"] & self.TARGET_PAGE_MASK) |
| |
| def guest_phys_blocks_init(self): |
| self.guest_phys_blocks = [] |
| |
| def guest_phys_blocks_append(self): |
| print "guest RAM blocks:" |
| print ("target_start target_end host_addr message " |
| "count") |
| print ("---------------- ---------------- ---------------- ------- " |
| "-----") |
| |
| current_map_p = gdb.parse_and_eval("address_space_memory.current_map") |
| current_map = current_map_p.dereference() |
| for cur in range(current_map["nr"]): |
| flat_range = (current_map["ranges"] + cur).dereference() |
| mr = flat_range["mr"].dereference() |
| |
| # we only care about RAM |
| if (not mr["ram"]): |
| continue |
| |
| section_size = self.int128_get64(flat_range["addr"]["size"]) |
| target_start = self.int128_get64(flat_range["addr"]["start"]) |
| target_end = target_start + section_size |
| host_addr = (self.memory_region_get_ram_ptr(mr) + |
| flat_range["offset_in_region"]) |
| predecessor = None |
| |
| # find continuity in guest physical address space |
| if (len(self.guest_phys_blocks) > 0): |
| predecessor = self.guest_phys_blocks[-1] |
| predecessor_size = (predecessor["target_end"] - |
| predecessor["target_start"]) |
| |
| # the memory API guarantees monotonically increasing |
| # traversal |
| assert (predecessor["target_end"] <= target_start) |
| |
| # we want continuity in both guest-physical and |
| # host-virtual memory |
| if (predecessor["target_end"] < target_start or |
| predecessor["host_addr"] + predecessor_size != host_addr): |
| predecessor = None |
| |
| if (predecessor is None): |
| # isolated mapping, add it to the list |
| self.guest_phys_blocks.append({"target_start": target_start, |
| "target_end" : target_end, |
| "host_addr" : host_addr}) |
| message = "added" |
| else: |
| # expand predecessor until @target_end; predecessor's |
| # start doesn't change |
| predecessor["target_end"] = target_end |
| message = "joined" |
| |
| print ("%016x %016x %016x %-7s %5u" % |
| (target_start, target_end, host_addr.cast(self.uintptr_t), |
| message, len(self.guest_phys_blocks))) |
| |
| def cpu_get_dump_info(self): |
| # We can't synchronize the registers with KVM post-mortem, and |
| # the bits in (first_x86_cpu->env.hflags) seem to be stale; they |
| # may not reflect long mode for example. Hence just assume the |
| # most common values. This also means that instruction pointer |
| # etc. will be bogus in the dump, but at least the RAM contents |
| # should be valid. |
| self.dump_info = {"d_machine": self.EM_X86_64, |
| "d_endian" : self.ELFDATA2LSB, |
| "d_class" : self.ELFCLASS64} |
| |
| def encode_elf64_ehdr_le(self): |
| return self.elf64_ehdr_le.pack( |
| self.ELFMAG, # e_ident/magic |
| self.dump_info["d_class"], # e_ident/class |
| self.dump_info["d_endian"], # e_ident/data |
| self.EV_CURRENT, # e_ident/version |
| 0, # e_ident/osabi |
| "", # e_ident/pad |
| self.ET_CORE, # e_type |
| self.dump_info["d_machine"], # e_machine |
| self.EV_CURRENT, # e_version |
| 0, # e_entry |
| self.elf64_ehdr_le.size, # e_phoff |
| 0, # e_shoff |
| 0, # e_flags |
| self.elf64_ehdr_le.size, # e_ehsize |
| self.elf64_phdr_le.size, # e_phentsize |
| self.phdr_num, # e_phnum |
| 0, # e_shentsize |
| 0, # e_shnum |
| 0 # e_shstrndx |
| ) |
| |
| def encode_elf64_note_le(self): |
| return self.elf64_phdr_le.pack(self.PT_NOTE, # p_type |
| 0, # p_flags |
| (self.memory_offset - |
| len(self.note)), # p_offset |
| 0, # p_vaddr |
| 0, # p_paddr |
| len(self.note), # p_filesz |
| len(self.note), # p_memsz |
| 0 # p_align |
| ) |
| |
| def encode_elf64_load_le(self, offset, start_hwaddr, range_size): |
| return self.elf64_phdr_le.pack(self.PT_LOAD, # p_type |
| 0, # p_flags |
| offset, # p_offset |
| 0, # p_vaddr |
| start_hwaddr, # p_paddr |
| range_size, # p_filesz |
| range_size, # p_memsz |
| 0 # p_align |
| ) |
| |
| def note_init(self, name, desc, type): |
| # name must include a trailing NUL |
| namesz = (len(name) + 1 + 3) / 4 * 4 |
| descsz = (len(desc) + 3) / 4 * 4 |
| fmt = ("<" # little endian |
| "I" # n_namesz |
| "I" # n_descsz |
| "I" # n_type |
| "%us" # name |
| "%us" # desc |
| % (namesz, descsz)) |
| self.note = struct.pack(fmt, |
| len(name) + 1, len(desc), type, name, desc) |
| |
| def dump_init(self): |
| self.guest_phys_blocks_init() |
| self.guest_phys_blocks_append() |
| self.cpu_get_dump_info() |
| # we have no way to retrieve the VCPU status from KVM |
| # post-mortem |
| self.note_init("NONE", "EMPTY", 0) |
| |
| # Account for PT_NOTE. |
| self.phdr_num = 1 |
| |
| # We should never reach PN_XNUM for paging=false dumps: there's |
| # just a handful of discontiguous ranges after merging. |
| self.phdr_num += len(self.guest_phys_blocks) |
| assert (self.phdr_num < self.PN_XNUM) |
| |
| # Calculate the ELF file offset where the memory dump commences: |
| # |
| # ELF header |
| # PT_NOTE |
| # PT_LOAD: 1 |
| # PT_LOAD: 2 |
| # ... |
| # PT_LOAD: len(self.guest_phys_blocks) |
| # ELF note |
| # memory dump |
| self.memory_offset = (self.elf64_ehdr_le.size + |
| self.elf64_phdr_le.size * self.phdr_num + |
| len(self.note)) |
| |
| def dump_begin(self, vmcore): |
| vmcore.write(self.encode_elf64_ehdr_le()) |
| vmcore.write(self.encode_elf64_note_le()) |
| running = self.memory_offset |
| for block in self.guest_phys_blocks: |
| range_size = block["target_end"] - block["target_start"] |
| vmcore.write(self.encode_elf64_load_le(running, |
| block["target_start"], |
| range_size)) |
| running += range_size |
| vmcore.write(self.note) |
| |
| def dump_iterate(self, vmcore): |
| qemu_core = gdb.inferiors()[0] |
| for block in self.guest_phys_blocks: |
| cur = block["host_addr"] |
| left = block["target_end"] - block["target_start"] |
| print ("dumping range at %016x for length %016x" % |
| (cur.cast(self.uintptr_t), left)) |
| while (left > 0): |
| chunk_size = min(self.TARGET_PAGE_SIZE, left) |
| chunk = qemu_core.read_memory(cur, chunk_size) |
| vmcore.write(chunk) |
| cur += chunk_size |
| left -= chunk_size |
| |
| def create_vmcore(self, filename): |
| vmcore = open(filename, "wb") |
| self.dump_begin(vmcore) |
| self.dump_iterate(vmcore) |
| vmcore.close() |
| |
| def invoke(self, args, from_tty): |
| # Unwittingly pressing the Enter key after the command should |
| # not dump the same multi-gig coredump to the same file. |
| self.dont_repeat() |
| |
| argv = gdb.string_to_argv(args) |
| if (len(argv) != 1): |
| raise gdb.GdbError("usage: dump-guest-memory FILE") |
| |
| self.dump_init() |
| self.create_vmcore(argv[0]) |
| |
| DumpGuestMemory() |