| /* |
| * Copyright (c) 1982, 1986, 1988, 1993 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the University nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 |
| * ip_input.c,v 1.11 1994/11/16 10:17:08 jkh Exp |
| */ |
| |
| /* |
| * Changes and additions relating to SLiRP are |
| * Copyright (c) 1995 Danny Gasparovski. |
| * |
| * Please read the file COPYRIGHT for the |
| * terms and conditions of the copyright. |
| */ |
| |
| #include <slirp.h> |
| #include <qemu/osdep.h> |
| #include "ip_icmp.h" |
| |
| static struct ip *ip_reass(Slirp *slirp, struct ip *ip, struct ipq *fp); |
| static void ip_freef(Slirp *slirp, struct ipq *fp); |
| static void ip_enq(register struct ipasfrag *p, |
| register struct ipasfrag *prev); |
| static void ip_deq(register struct ipasfrag *p); |
| |
| /* |
| * IP initialization: fill in IP protocol switch table. |
| * All protocols not implemented in kernel go to raw IP protocol handler. |
| */ |
| void |
| ip_init(Slirp *slirp) |
| { |
| slirp->ipq.ip_link.next = slirp->ipq.ip_link.prev = &slirp->ipq.ip_link; |
| udp_init(slirp); |
| tcp_init(slirp); |
| icmp_init(slirp); |
| } |
| |
| void ip_cleanup(Slirp *slirp) |
| { |
| udp_cleanup(slirp); |
| tcp_cleanup(slirp); |
| icmp_cleanup(slirp); |
| } |
| |
| /* |
| * Ip input routine. Checksum and byte swap header. If fragmented |
| * try to reassemble. Process options. Pass to next level. |
| */ |
| void |
| ip_input(struct mbuf *m) |
| { |
| Slirp *slirp = m->slirp; |
| register struct ip *ip; |
| int hlen; |
| |
| DEBUG_CALL("ip_input"); |
| DEBUG_ARG("m = %lx", (long)m); |
| DEBUG_ARG("m_len = %d", m->m_len); |
| |
| if (m->m_len < sizeof (struct ip)) { |
| return; |
| } |
| |
| ip = mtod(m, struct ip *); |
| |
| if (ip->ip_v != IPVERSION) { |
| goto bad; |
| } |
| |
| hlen = ip->ip_hl << 2; |
| if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */ |
| goto bad; /* or packet too short */ |
| } |
| |
| /* keep ip header intact for ICMP reply |
| * ip->ip_sum = cksum(m, hlen); |
| * if (ip->ip_sum) { |
| */ |
| if(cksum(m,hlen)) { |
| goto bad; |
| } |
| |
| /* |
| * Convert fields to host representation. |
| */ |
| NTOHS(ip->ip_len); |
| if (ip->ip_len < hlen) { |
| goto bad; |
| } |
| NTOHS(ip->ip_id); |
| NTOHS(ip->ip_off); |
| |
| /* |
| * Check that the amount of data in the buffers |
| * is as at least much as the IP header would have us expect. |
| * Trim mbufs if longer than we expect. |
| * Drop packet if shorter than we expect. |
| */ |
| if (m->m_len < ip->ip_len) { |
| goto bad; |
| } |
| |
| /* Should drop packet if mbuf too long? hmmm... */ |
| if (m->m_len > ip->ip_len) |
| m_adj(m, ip->ip_len - m->m_len); |
| |
| /* check ip_ttl for a correct ICMP reply */ |
| if(ip->ip_ttl==0) { |
| icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl"); |
| goto bad; |
| } |
| |
| /* |
| * If offset or IP_MF are set, must reassemble. |
| * Otherwise, nothing need be done. |
| * (We could look in the reassembly queue to see |
| * if the packet was previously fragmented, |
| * but it's not worth the time; just let them time out.) |
| * |
| * XXX This should fail, don't fragment yet |
| */ |
| if (ip->ip_off &~ IP_DF) { |
| register struct ipq *fp; |
| struct qlink *l; |
| /* |
| * Look for queue of fragments |
| * of this datagram. |
| */ |
| for (l = slirp->ipq.ip_link.next; l != &slirp->ipq.ip_link; |
| l = l->next) { |
| fp = container_of(l, struct ipq, ip_link); |
| if (ip->ip_id == fp->ipq_id && |
| ip->ip_src.s_addr == fp->ipq_src.s_addr && |
| ip->ip_dst.s_addr == fp->ipq_dst.s_addr && |
| ip->ip_p == fp->ipq_p) |
| goto found; |
| } |
| fp = NULL; |
| found: |
| |
| /* |
| * Adjust ip_len to not reflect header, |
| * set ip_mff if more fragments are expected, |
| * convert offset of this to bytes. |
| */ |
| ip->ip_len -= hlen; |
| if (ip->ip_off & IP_MF) |
| ip->ip_tos |= 1; |
| else |
| ip->ip_tos &= ~1; |
| |
| ip->ip_off <<= 3; |
| |
| /* |
| * If datagram marked as having more fragments |
| * or if this is not the first fragment, |
| * attempt reassembly; if it succeeds, proceed. |
| */ |
| if (ip->ip_tos & 1 || ip->ip_off) { |
| ip = ip_reass(slirp, ip, fp); |
| if (ip == NULL) |
| return; |
| m = dtom(slirp, ip); |
| } else |
| if (fp) |
| ip_freef(slirp, fp); |
| |
| } else |
| ip->ip_len -= hlen; |
| |
| /* |
| * Switch out to protocol's input routine. |
| */ |
| switch (ip->ip_p) { |
| case IPPROTO_TCP: |
| tcp_input(m, hlen, (struct socket *)NULL); |
| break; |
| case IPPROTO_UDP: |
| udp_input(m, hlen); |
| break; |
| case IPPROTO_ICMP: |
| icmp_input(m, hlen); |
| break; |
| default: |
| m_free(m); |
| } |
| return; |
| bad: |
| m_free(m); |
| } |
| |
| #define iptofrag(P) ((struct ipasfrag *)(((char*)(P)) - sizeof(struct qlink))) |
| #define fragtoip(P) ((struct ip*)(((char*)(P)) + sizeof(struct qlink))) |
| /* |
| * Take incoming datagram fragment and try to |
| * reassemble it into whole datagram. If a chain for |
| * reassembly of this datagram already exists, then it |
| * is given as fp; otherwise have to make a chain. |
| */ |
| static struct ip * |
| ip_reass(Slirp *slirp, struct ip *ip, struct ipq *fp) |
| { |
| register struct mbuf *m = dtom(slirp, ip); |
| register struct ipasfrag *q; |
| int hlen = ip->ip_hl << 2; |
| int i, next; |
| |
| DEBUG_CALL("ip_reass"); |
| DEBUG_ARG("ip = %lx", (long)ip); |
| DEBUG_ARG("fp = %lx", (long)fp); |
| DEBUG_ARG("m = %lx", (long)m); |
| |
| /* |
| * Presence of header sizes in mbufs |
| * would confuse code below. |
| * Fragment m_data is concatenated. |
| */ |
| m->m_data += hlen; |
| m->m_len -= hlen; |
| |
| /* |
| * If first fragment to arrive, create a reassembly queue. |
| */ |
| if (fp == NULL) { |
| struct mbuf *t = m_get(slirp); |
| |
| if (t == NULL) { |
| goto dropfrag; |
| } |
| fp = mtod(t, struct ipq *); |
| insque(&fp->ip_link, &slirp->ipq.ip_link); |
| fp->ipq_ttl = IPFRAGTTL; |
| fp->ipq_p = ip->ip_p; |
| fp->ipq_id = ip->ip_id; |
| fp->frag_link.next = fp->frag_link.prev = &fp->frag_link; |
| fp->ipq_src = ip->ip_src; |
| fp->ipq_dst = ip->ip_dst; |
| q = (struct ipasfrag *)fp; |
| goto insert; |
| } |
| |
| /* |
| * Find a segment which begins after this one does. |
| */ |
| for (q = fp->frag_link.next; q != (struct ipasfrag *)&fp->frag_link; |
| q = q->ipf_next) |
| if (q->ipf_off > ip->ip_off) |
| break; |
| |
| /* |
| * If there is a preceding segment, it may provide some of |
| * our data already. If so, drop the data from the incoming |
| * segment. If it provides all of our data, drop us. |
| */ |
| if (q->ipf_prev != &fp->frag_link) { |
| struct ipasfrag *pq = q->ipf_prev; |
| i = pq->ipf_off + pq->ipf_len - ip->ip_off; |
| if (i > 0) { |
| if (i >= ip->ip_len) |
| goto dropfrag; |
| m_adj(dtom(slirp, ip), i); |
| ip->ip_off += i; |
| ip->ip_len -= i; |
| } |
| } |
| |
| /* |
| * While we overlap succeeding segments trim them or, |
| * if they are completely covered, dequeue them. |
| */ |
| while (q != (struct ipasfrag*)&fp->frag_link && |
| ip->ip_off + ip->ip_len > q->ipf_off) { |
| i = (ip->ip_off + ip->ip_len) - q->ipf_off; |
| if (i < q->ipf_len) { |
| q->ipf_len -= i; |
| q->ipf_off += i; |
| m_adj(dtom(slirp, q), i); |
| break; |
| } |
| q = q->ipf_next; |
| m_free(dtom(slirp, q->ipf_prev)); |
| ip_deq(q->ipf_prev); |
| } |
| |
| insert: |
| /* |
| * Stick new segment in its place; |
| * check for complete reassembly. |
| */ |
| ip_enq(iptofrag(ip), q->ipf_prev); |
| next = 0; |
| for (q = fp->frag_link.next; q != (struct ipasfrag*)&fp->frag_link; |
| q = q->ipf_next) { |
| if (q->ipf_off != next) |
| return NULL; |
| next += q->ipf_len; |
| } |
| if (((struct ipasfrag *)(q->ipf_prev))->ipf_tos & 1) |
| return NULL; |
| |
| /* |
| * Reassembly is complete; concatenate fragments. |
| */ |
| q = fp->frag_link.next; |
| m = dtom(slirp, q); |
| |
| q = (struct ipasfrag *) q->ipf_next; |
| while (q != (struct ipasfrag*)&fp->frag_link) { |
| struct mbuf *t = dtom(slirp, q); |
| q = (struct ipasfrag *) q->ipf_next; |
| m_cat(m, t); |
| } |
| |
| /* |
| * Create header for new ip packet by |
| * modifying header of first packet; |
| * dequeue and discard fragment reassembly header. |
| * Make header visible. |
| */ |
| q = fp->frag_link.next; |
| |
| /* |
| * If the fragments concatenated to an mbuf that's |
| * bigger than the total size of the fragment, then and |
| * m_ext buffer was alloced. But fp->ipq_next points to |
| * the old buffer (in the mbuf), so we must point ip |
| * into the new buffer. |
| */ |
| if (m->m_flags & M_EXT) { |
| int delta = (char *)q - m->m_dat; |
| q = (struct ipasfrag *)(m->m_ext + delta); |
| } |
| |
| ip = fragtoip(q); |
| ip->ip_len = next; |
| ip->ip_tos &= ~1; |
| ip->ip_src = fp->ipq_src; |
| ip->ip_dst = fp->ipq_dst; |
| remque(&fp->ip_link); |
| (void) m_free(dtom(slirp, fp)); |
| m->m_len += (ip->ip_hl << 2); |
| m->m_data -= (ip->ip_hl << 2); |
| |
| return ip; |
| |
| dropfrag: |
| m_free(m); |
| return NULL; |
| } |
| |
| /* |
| * Free a fragment reassembly header and all |
| * associated datagrams. |
| */ |
| static void |
| ip_freef(Slirp *slirp, struct ipq *fp) |
| { |
| register struct ipasfrag *q, *p; |
| |
| for (q = fp->frag_link.next; q != (struct ipasfrag*)&fp->frag_link; q = p) { |
| p = q->ipf_next; |
| ip_deq(q); |
| m_free(dtom(slirp, q)); |
| } |
| remque(&fp->ip_link); |
| (void) m_free(dtom(slirp, fp)); |
| } |
| |
| /* |
| * Put an ip fragment on a reassembly chain. |
| * Like insque, but pointers in middle of structure. |
| */ |
| static void |
| ip_enq(register struct ipasfrag *p, register struct ipasfrag *prev) |
| { |
| DEBUG_CALL("ip_enq"); |
| DEBUG_ARG("prev = %lx", (long)prev); |
| p->ipf_prev = prev; |
| p->ipf_next = prev->ipf_next; |
| ((struct ipasfrag *)(prev->ipf_next))->ipf_prev = p; |
| prev->ipf_next = p; |
| } |
| |
| /* |
| * To ip_enq as remque is to insque. |
| */ |
| static void |
| ip_deq(register struct ipasfrag *p) |
| { |
| ((struct ipasfrag *)(p->ipf_prev))->ipf_next = p->ipf_next; |
| ((struct ipasfrag *)(p->ipf_next))->ipf_prev = p->ipf_prev; |
| } |
| |
| /* |
| * IP timer processing; |
| * if a timer expires on a reassembly |
| * queue, discard it. |
| */ |
| void |
| ip_slowtimo(Slirp *slirp) |
| { |
| struct qlink *l; |
| |
| DEBUG_CALL("ip_slowtimo"); |
| |
| l = slirp->ipq.ip_link.next; |
| |
| if (l == NULL) |
| return; |
| |
| while (l != &slirp->ipq.ip_link) { |
| struct ipq *fp = container_of(l, struct ipq, ip_link); |
| l = l->next; |
| if (--fp->ipq_ttl == 0) { |
| ip_freef(slirp, fp); |
| } |
| } |
| } |
| |
| /* |
| * Do option processing on a datagram, |
| * possibly discarding it if bad options are encountered, |
| * or forwarding it if source-routed. |
| * Returns 1 if packet has been forwarded/freed, |
| * 0 if the packet should be processed further. |
| */ |
| |
| #ifdef notdef |
| |
| int |
| ip_dooptions(m) |
| struct mbuf *m; |
| { |
| register struct ip *ip = mtod(m, struct ip *); |
| register u_char *cp; |
| register struct ip_timestamp *ipt; |
| register struct in_ifaddr *ia; |
| int opt, optlen, cnt, off, code, type, forward = 0; |
| struct in_addr *sin, dst; |
| typedef uint32_t n_time; |
| n_time ntime; |
| |
| dst = ip->ip_dst; |
| cp = (u_char *)(ip + 1); |
| cnt = (ip->ip_hl << 2) - sizeof (struct ip); |
| for (; cnt > 0; cnt -= optlen, cp += optlen) { |
| opt = cp[IPOPT_OPTVAL]; |
| if (opt == IPOPT_EOL) |
| break; |
| if (opt == IPOPT_NOP) |
| optlen = 1; |
| else { |
| optlen = cp[IPOPT_OLEN]; |
| if (optlen <= 0 || optlen > cnt) { |
| code = &cp[IPOPT_OLEN] - (u_char *)ip; |
| goto bad; |
| } |
| } |
| switch (opt) { |
| |
| default: |
| break; |
| |
| /* |
| * Source routing with record. |
| * Find interface with current destination address. |
| * If none on this machine then drop if strictly routed, |
| * or do nothing if loosely routed. |
| * Record interface address and bring up next address |
| * component. If strictly routed make sure next |
| * address is on directly accessible net. |
| */ |
| case IPOPT_LSRR: |
| case IPOPT_SSRR: |
| if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { |
| code = &cp[IPOPT_OFFSET] - (u_char *)ip; |
| goto bad; |
| } |
| ipaddr.sin_addr = ip->ip_dst; |
| ia = (struct in_ifaddr *) |
| ifa_ifwithaddr((struct sockaddr *)&ipaddr); |
| if (ia == 0) { |
| if (opt == IPOPT_SSRR) { |
| type = ICMP_UNREACH; |
| code = ICMP_UNREACH_SRCFAIL; |
| goto bad; |
| } |
| /* |
| * Loose routing, and not at next destination |
| * yet; nothing to do except forward. |
| */ |
| break; |
| } |
| off--; /* 0 origin */ |
| if (off > optlen - sizeof(struct in_addr)) { |
| /* |
| * End of source route. Should be for us. |
| */ |
| save_rte(cp, ip->ip_src); |
| break; |
| } |
| /* |
| * locate outgoing interface |
| */ |
| bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr, |
| sizeof(ipaddr.sin_addr)); |
| if (opt == IPOPT_SSRR) { |
| #define INA struct in_ifaddr * |
| #define SA struct sockaddr * |
| if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) |
| ia = (INA)ifa_ifwithnet((SA)&ipaddr); |
| } else |
| ia = ip_rtaddr(ipaddr.sin_addr); |
| if (ia == 0) { |
| type = ICMP_UNREACH; |
| code = ICMP_UNREACH_SRCFAIL; |
| goto bad; |
| } |
| ip->ip_dst = ipaddr.sin_addr; |
| bcopy((caddr_t)&(IA_SIN(ia)->sin_addr), |
| (caddr_t)(cp + off), sizeof(struct in_addr)); |
| cp[IPOPT_OFFSET] += sizeof(struct in_addr); |
| /* |
| * Let ip_intr's mcast routing check handle mcast pkts |
| */ |
| forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); |
| break; |
| |
| case IPOPT_RR: |
| if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { |
| code = &cp[IPOPT_OFFSET] - (u_char *)ip; |
| goto bad; |
| } |
| /* |
| * If no space remains, ignore. |
| */ |
| off--; /* 0 origin */ |
| if (off > optlen - sizeof(struct in_addr)) |
| break; |
| bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr, |
| sizeof(ipaddr.sin_addr)); |
| /* |
| * locate outgoing interface; if we're the destination, |
| * use the incoming interface (should be same). |
| */ |
| if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && |
| (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) { |
| type = ICMP_UNREACH; |
| code = ICMP_UNREACH_HOST; |
| goto bad; |
| } |
| bcopy((caddr_t)&(IA_SIN(ia)->sin_addr), |
| (caddr_t)(cp + off), sizeof(struct in_addr)); |
| cp[IPOPT_OFFSET] += sizeof(struct in_addr); |
| break; |
| |
| case IPOPT_TS: |
| code = cp - (u_char *)ip; |
| ipt = (struct ip_timestamp *)cp; |
| if (ipt->ipt_len < 5) |
| goto bad; |
| if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) { |
| if (++ipt->ipt_oflw == 0) |
| goto bad; |
| break; |
| } |
| sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1); |
| switch (ipt->ipt_flg) { |
| |
| case IPOPT_TS_TSONLY: |
| break; |
| |
| case IPOPT_TS_TSANDADDR: |
| if (ipt->ipt_ptr + sizeof(n_time) + |
| sizeof(struct in_addr) > ipt->ipt_len) |
| goto bad; |
| ipaddr.sin_addr = dst; |
| ia = (INA)ifaof_ i f p foraddr((SA)&ipaddr, |
| m->m_pkthdr.rcvif); |
| if (ia == 0) |
| continue; |
| bcopy((caddr_t)&IA_SIN(ia)->sin_addr, |
| (caddr_t)sin, sizeof(struct in_addr)); |
| ipt->ipt_ptr += sizeof(struct in_addr); |
| break; |
| |
| case IPOPT_TS_PRESPEC: |
| if (ipt->ipt_ptr + sizeof(n_time) + |
| sizeof(struct in_addr) > ipt->ipt_len) |
| goto bad; |
| bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr, |
| sizeof(struct in_addr)); |
| if (ifa_ifwithaddr((SA)&ipaddr) == 0) |
| continue; |
| ipt->ipt_ptr += sizeof(struct in_addr); |
| break; |
| |
| default: |
| goto bad; |
| } |
| ntime = iptime(); |
| bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1, |
| sizeof(n_time)); |
| ipt->ipt_ptr += sizeof(n_time); |
| } |
| } |
| if (forward) { |
| ip_forward(m, 1); |
| return (1); |
| } |
| return (0); |
| bad: |
| icmp_error(m, type, code, 0, 0); |
| |
| return (1); |
| } |
| |
| #endif /* notdef */ |
| |
| /* |
| * Strip out IP options, at higher |
| * level protocol in the kernel. |
| * Second argument is buffer to which options |
| * will be moved, and return value is their length. |
| * (XXX) should be deleted; last arg currently ignored. |
| */ |
| void |
| ip_stripoptions(register struct mbuf *m, struct mbuf *mopt) |
| { |
| register int i; |
| struct ip *ip = mtod(m, struct ip *); |
| register caddr_t opts; |
| int olen; |
| |
| olen = (ip->ip_hl<<2) - sizeof (struct ip); |
| opts = (caddr_t)(ip + 1); |
| i = m->m_len - (sizeof (struct ip) + olen); |
| memcpy(opts, opts + olen, (unsigned)i); |
| m->m_len -= olen; |
| |
| ip->ip_hl = sizeof(struct ip) >> 2; |
| } |