|  | /* | 
|  | * ARM implementation of KVM hooks, 64 bit specific code | 
|  | * | 
|  | * Copyright Mian-M. Hamayun 2013, Virtual Open Systems | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
|  | * See the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/ioctl.h> | 
|  | #include <sys/mman.h> | 
|  |  | 
|  | #include <linux/kvm.h> | 
|  |  | 
|  | #include "config-host.h" | 
|  | #include "qemu-common.h" | 
|  | #include "qemu/timer.h" | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "sysemu/kvm.h" | 
|  | #include "kvm_arm.h" | 
|  | #include "cpu.h" | 
|  | #include "internals.h" | 
|  | #include "hw/arm/arm.h" | 
|  |  | 
|  | static inline void set_feature(uint64_t *features, int feature) | 
|  | { | 
|  | *features |= 1ULL << feature; | 
|  | } | 
|  |  | 
|  | bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc) | 
|  | { | 
|  | /* Identify the feature bits corresponding to the host CPU, and | 
|  | * fill out the ARMHostCPUClass fields accordingly. To do this | 
|  | * we have to create a scratch VM, create a single CPU inside it, | 
|  | * and then query that CPU for the relevant ID registers. | 
|  | * For AArch64 we currently don't care about ID registers at | 
|  | * all; we just want to know the CPU type. | 
|  | */ | 
|  | int fdarray[3]; | 
|  | uint64_t features = 0; | 
|  | /* Old kernels may not know about the PREFERRED_TARGET ioctl: however | 
|  | * we know these will only support creating one kind of guest CPU, | 
|  | * which is its preferred CPU type. Fortunately these old kernels | 
|  | * support only a very limited number of CPUs. | 
|  | */ | 
|  | static const uint32_t cpus_to_try[] = { | 
|  | KVM_ARM_TARGET_AEM_V8, | 
|  | KVM_ARM_TARGET_FOUNDATION_V8, | 
|  | KVM_ARM_TARGET_CORTEX_A57, | 
|  | QEMU_KVM_ARM_TARGET_NONE | 
|  | }; | 
|  | struct kvm_vcpu_init init; | 
|  |  | 
|  | if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ahcc->target = init.target; | 
|  | ahcc->dtb_compatible = "arm,arm-v8"; | 
|  |  | 
|  | kvm_arm_destroy_scratch_host_vcpu(fdarray); | 
|  |  | 
|  | /* We can assume any KVM supporting CPU is at least a v8 | 
|  | * with VFPv4+Neon; this in turn implies most of the other | 
|  | * feature bits. | 
|  | */ | 
|  | set_feature(&features, ARM_FEATURE_V8); | 
|  | set_feature(&features, ARM_FEATURE_VFP4); | 
|  | set_feature(&features, ARM_FEATURE_NEON); | 
|  | set_feature(&features, ARM_FEATURE_AARCH64); | 
|  |  | 
|  | ahcc->features = features; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5 | 
|  |  | 
|  | int kvm_arch_init_vcpu(CPUState *cs) | 
|  | { | 
|  | int ret; | 
|  | uint64_t mpidr; | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  |  | 
|  | if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || | 
|  | !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) { | 
|  | fprintf(stderr, "KVM is not supported for this guest CPU type\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Determine init features for this CPU */ | 
|  | memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); | 
|  | if (cpu->start_powered_off) { | 
|  | cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; | 
|  | } | 
|  | if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { | 
|  | cpu->psci_version = 2; | 
|  | cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; | 
|  | } | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | 
|  | cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT; | 
|  | } | 
|  |  | 
|  | /* Do KVM_ARM_VCPU_INIT ioctl */ | 
|  | ret = kvm_arm_vcpu_init(cs); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When KVM is in use, PSCI is emulated in-kernel and not by qemu. | 
|  | * Currently KVM has its own idea about MPIDR assignment, so we | 
|  | * override our defaults with what we get from KVM. | 
|  | */ | 
|  | ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK; | 
|  |  | 
|  | return kvm_arm_init_cpreg_list(cpu); | 
|  | } | 
|  |  | 
|  | bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) | 
|  | { | 
|  | /* Return true if the regidx is a register we should synchronize | 
|  | * via the cpreg_tuples array (ie is not a core reg we sync by | 
|  | * hand in kvm_arch_get/put_registers()) | 
|  | */ | 
|  | switch (regidx & KVM_REG_ARM_COPROC_MASK) { | 
|  | case KVM_REG_ARM_CORE: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef struct CPRegStateLevel { | 
|  | uint64_t regidx; | 
|  | int level; | 
|  | } CPRegStateLevel; | 
|  |  | 
|  | /* All system registers not listed in the following table are assumed to be | 
|  | * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less | 
|  | * often, you must add it to this table with a state of either | 
|  | * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. | 
|  | */ | 
|  | static const CPRegStateLevel non_runtime_cpregs[] = { | 
|  | { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE }, | 
|  | }; | 
|  |  | 
|  | int kvm_arm_cpreg_level(uint64_t regidx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) { | 
|  | const CPRegStateLevel *l = &non_runtime_cpregs[i]; | 
|  | if (l->regidx == regidx) { | 
|  | return l->level; | 
|  | } | 
|  | } | 
|  |  | 
|  | return KVM_PUT_RUNTIME_STATE; | 
|  | } | 
|  |  | 
|  | #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ | 
|  | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) | 
|  |  | 
|  | #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \ | 
|  | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) | 
|  |  | 
|  | #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \ | 
|  | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) | 
|  |  | 
|  | int kvm_arch_put_registers(CPUState *cs, int level) | 
|  | { | 
|  | struct kvm_one_reg reg; | 
|  | uint32_t fpr; | 
|  | uint64_t val; | 
|  | int i; | 
|  | int ret; | 
|  | unsigned int el; | 
|  |  | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  |  | 
|  | /* If we are in AArch32 mode then we need to copy the AArch32 regs to the | 
|  | * AArch64 registers before pushing them out to 64-bit KVM. | 
|  | */ | 
|  | if (!is_a64(env)) { | 
|  | aarch64_sync_32_to_64(env); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 31; i++) { | 
|  | reg.id = AARCH64_CORE_REG(regs.regs[i]); | 
|  | reg.addr = (uintptr_t) &env->xregs[i]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the | 
|  | * QEMU side we keep the current SP in xregs[31] as well. | 
|  | */ | 
|  | aarch64_save_sp(env, 1); | 
|  |  | 
|  | reg.id = AARCH64_CORE_REG(regs.sp); | 
|  | reg.addr = (uintptr_t) &env->sp_el[0]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | reg.id = AARCH64_CORE_REG(sp_el1); | 
|  | reg.addr = (uintptr_t) &env->sp_el[1]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ | 
|  | if (is_a64(env)) { | 
|  | val = pstate_read(env); | 
|  | } else { | 
|  | val = cpsr_read(env); | 
|  | } | 
|  | reg.id = AARCH64_CORE_REG(regs.pstate); | 
|  | reg.addr = (uintptr_t) &val; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | reg.id = AARCH64_CORE_REG(regs.pc); | 
|  | reg.addr = (uintptr_t) &env->pc; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | reg.id = AARCH64_CORE_REG(elr_el1); | 
|  | reg.addr = (uintptr_t) &env->elr_el[1]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Saved Program State Registers | 
|  | * | 
|  | * Before we restore from the banked_spsr[] array we need to | 
|  | * ensure that any modifications to env->spsr are correctly | 
|  | * reflected in the banks. | 
|  | */ | 
|  | el = arm_current_el(env); | 
|  | if (el > 0 && !is_a64(env)) { | 
|  | i = bank_number(env->uncached_cpsr & CPSR_M); | 
|  | env->banked_spsr[i] = env->spsr; | 
|  | } | 
|  |  | 
|  | /* KVM 0-4 map to QEMU banks 1-5 */ | 
|  | for (i = 0; i < KVM_NR_SPSR; i++) { | 
|  | reg.id = AARCH64_CORE_REG(spsr[i]); | 
|  | reg.addr = (uintptr_t) &env->banked_spsr[i + 1]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Advanced SIMD and FP registers | 
|  | * We map Qn = regs[2n+1]:regs[2n] | 
|  | */ | 
|  | for (i = 0; i < 32; i++) { | 
|  | int rd = i << 1; | 
|  | uint64_t fp_val[2]; | 
|  | #ifdef HOST_WORDS_BIGENDIAN | 
|  | fp_val[0] = env->vfp.regs[rd + 1]; | 
|  | fp_val[1] = env->vfp.regs[rd]; | 
|  | #else | 
|  | fp_val[1] = env->vfp.regs[rd + 1]; | 
|  | fp_val[0] = env->vfp.regs[rd]; | 
|  | #endif | 
|  | reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]); | 
|  | reg.addr = (uintptr_t)(&fp_val); | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | reg.addr = (uintptr_t)(&fpr); | 
|  | fpr = vfp_get_fpsr(env); | 
|  | reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | fpr = vfp_get_fpcr(env); | 
|  | reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!write_list_to_kvmstate(cpu, level)) { | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | kvm_arm_sync_mpstate_to_kvm(cpu); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_arch_get_registers(CPUState *cs) | 
|  | { | 
|  | struct kvm_one_reg reg; | 
|  | uint64_t val; | 
|  | uint32_t fpr; | 
|  | unsigned int el; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  |  | 
|  | for (i = 0; i < 31; i++) { | 
|  | reg.id = AARCH64_CORE_REG(regs.regs[i]); | 
|  | reg.addr = (uintptr_t) &env->xregs[i]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | reg.id = AARCH64_CORE_REG(regs.sp); | 
|  | reg.addr = (uintptr_t) &env->sp_el[0]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | reg.id = AARCH64_CORE_REG(sp_el1); | 
|  | reg.addr = (uintptr_t) &env->sp_el[1]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | reg.id = AARCH64_CORE_REG(regs.pstate); | 
|  | reg.addr = (uintptr_t) &val; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | env->aarch64 = ((val & PSTATE_nRW) == 0); | 
|  | if (is_a64(env)) { | 
|  | pstate_write(env, val); | 
|  | } else { | 
|  | env->uncached_cpsr = val & CPSR_M; | 
|  | cpsr_write(env, val, 0xffffffff); | 
|  | } | 
|  |  | 
|  | /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the | 
|  | * QEMU side we keep the current SP in xregs[31] as well. | 
|  | */ | 
|  | aarch64_restore_sp(env, 1); | 
|  |  | 
|  | reg.id = AARCH64_CORE_REG(regs.pc); | 
|  | reg.addr = (uintptr_t) &env->pc; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* If we are in AArch32 mode then we need to sync the AArch32 regs with the | 
|  | * incoming AArch64 regs received from 64-bit KVM. | 
|  | * We must perform this after all of the registers have been acquired from | 
|  | * the kernel. | 
|  | */ | 
|  | if (!is_a64(env)) { | 
|  | aarch64_sync_64_to_32(env); | 
|  | } | 
|  |  | 
|  | reg.id = AARCH64_CORE_REG(elr_el1); | 
|  | reg.addr = (uintptr_t) &env->elr_el[1]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Fetch the SPSR registers | 
|  | * | 
|  | * KVM SPSRs 0-4 map to QEMU banks 1-5 | 
|  | */ | 
|  | for (i = 0; i < KVM_NR_SPSR; i++) { | 
|  | reg.id = AARCH64_CORE_REG(spsr[i]); | 
|  | reg.addr = (uintptr_t) &env->banked_spsr[i + 1]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | el = arm_current_el(env); | 
|  | if (el > 0 && !is_a64(env)) { | 
|  | i = bank_number(env->uncached_cpsr & CPSR_M); | 
|  | env->spsr = env->banked_spsr[i]; | 
|  | } | 
|  |  | 
|  | /* Advanced SIMD and FP registers | 
|  | * We map Qn = regs[2n+1]:regs[2n] | 
|  | */ | 
|  | for (i = 0; i < 32; i++) { | 
|  | uint64_t fp_val[2]; | 
|  | reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]); | 
|  | reg.addr = (uintptr_t)(&fp_val); | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } else { | 
|  | int rd = i << 1; | 
|  | #ifdef HOST_WORDS_BIGENDIAN | 
|  | env->vfp.regs[rd + 1] = fp_val[0]; | 
|  | env->vfp.regs[rd] = fp_val[1]; | 
|  | #else | 
|  | env->vfp.regs[rd + 1] = fp_val[1]; | 
|  | env->vfp.regs[rd] = fp_val[0]; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | reg.addr = (uintptr_t)(&fpr); | 
|  | reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | vfp_set_fpsr(env, fpr); | 
|  |  | 
|  | reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | vfp_set_fpcr(env, fpr); | 
|  |  | 
|  | if (!write_kvmstate_to_list(cpu)) { | 
|  | return EINVAL; | 
|  | } | 
|  | /* Note that it's OK to have registers which aren't in CPUState, | 
|  | * so we can ignore a failure return here. | 
|  | */ | 
|  | write_list_to_cpustate(cpu); | 
|  |  | 
|  | kvm_arm_sync_mpstate_to_qemu(cpu); | 
|  |  | 
|  | /* TODO: other registers */ | 
|  | return ret; | 
|  | } |