| /* This is the Linux kernel elf-loading code, ported into user space */ |
| |
| #include <stdio.h> |
| #include <sys/types.h> |
| #include <fcntl.h> |
| #include <errno.h> |
| #include <unistd.h> |
| #include <sys/mman.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "qemu.h" |
| #include "disas/disas.h" |
| |
| #ifdef _ARCH_PPC64 |
| #undef ARCH_DLINFO |
| #undef ELF_PLATFORM |
| #undef ELF_HWCAP |
| #undef ELF_CLASS |
| #undef ELF_DATA |
| #undef ELF_ARCH |
| #endif |
| |
| /* from personality.h */ |
| |
| /* |
| * Flags for bug emulation. |
| * |
| * These occupy the top three bytes. |
| */ |
| enum { |
| ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ |
| FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors |
| * (signal handling) |
| */ |
| MMAP_PAGE_ZERO = 0x0100000, |
| ADDR_COMPAT_LAYOUT = 0x0200000, |
| READ_IMPLIES_EXEC = 0x0400000, |
| ADDR_LIMIT_32BIT = 0x0800000, |
| SHORT_INODE = 0x1000000, |
| WHOLE_SECONDS = 0x2000000, |
| STICKY_TIMEOUTS = 0x4000000, |
| ADDR_LIMIT_3GB = 0x8000000, |
| }; |
| |
| /* |
| * Personality types. |
| * |
| * These go in the low byte. Avoid using the top bit, it will |
| * conflict with error returns. |
| */ |
| enum { |
| PER_LINUX = 0x0000, |
| PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, |
| PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, |
| PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, |
| PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, |
| PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | |
| WHOLE_SECONDS | SHORT_INODE, |
| PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, |
| PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, |
| PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, |
| PER_BSD = 0x0006, |
| PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, |
| PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, |
| PER_LINUX32 = 0x0008, |
| PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, |
| PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ |
| PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ |
| PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ |
| PER_RISCOS = 0x000c, |
| PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, |
| PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, |
| PER_OSF4 = 0x000f, /* OSF/1 v4 */ |
| PER_HPUX = 0x0010, |
| PER_MASK = 0x00ff, |
| }; |
| |
| /* |
| * Return the base personality without flags. |
| */ |
| #define personality(pers) (pers & PER_MASK) |
| |
| /* this flag is uneffective under linux too, should be deleted */ |
| #ifndef MAP_DENYWRITE |
| #define MAP_DENYWRITE 0 |
| #endif |
| |
| /* should probably go in elf.h */ |
| #ifndef ELIBBAD |
| #define ELIBBAD 80 |
| #endif |
| |
| #ifdef TARGET_I386 |
| |
| #define ELF_PLATFORM get_elf_platform() |
| |
| static const char *get_elf_platform(void) |
| { |
| static char elf_platform[] = "i386"; |
| int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); |
| if (family > 6) |
| family = 6; |
| if (family >= 3) |
| elf_platform[1] = '0' + family; |
| return elf_platform; |
| } |
| |
| #define ELF_HWCAP get_elf_hwcap() |
| |
| static uint32_t get_elf_hwcap(void) |
| { |
| X86CPU *cpu = X86_CPU(thread_cpu); |
| |
| return cpu->env.features[FEAT_1_EDX]; |
| } |
| |
| #ifdef TARGET_X86_64 |
| #define ELF_START_MMAP 0x2aaaaab000ULL |
| #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) |
| |
| #define ELF_CLASS ELFCLASS64 |
| #define ELF_DATA ELFDATA2LSB |
| #define ELF_ARCH EM_X86_64 |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->rax = 0; |
| regs->rsp = infop->start_stack; |
| regs->rip = infop->entry; |
| if (bsd_type == target_freebsd) { |
| regs->rdi = infop->start_stack; |
| } |
| } |
| |
| #else |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| /* |
| * This is used to ensure we don't load something for the wrong architecture. |
| */ |
| #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) |
| |
| /* |
| * These are used to set parameters in the core dumps. |
| */ |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_DATA ELFDATA2LSB |
| #define ELF_ARCH EM_386 |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->esp = infop->start_stack; |
| regs->eip = infop->entry; |
| |
| /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program |
| starts %edx contains a pointer to a function which might be |
| registered using `atexit'. This provides a mean for the |
| dynamic linker to call DT_FINI functions for shared libraries |
| that have been loaded before the code runs. |
| |
| A value of 0 tells we have no such handler. */ |
| regs->edx = 0; |
| } |
| #endif |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #endif |
| |
| #ifdef TARGET_ARM |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_ARM ) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define ELF_DATA ELFDATA2MSB |
| #else |
| #define ELF_DATA ELFDATA2LSB |
| #endif |
| #define ELF_ARCH EM_ARM |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| abi_long stack = infop->start_stack; |
| memset(regs, 0, sizeof(*regs)); |
| regs->ARM_cpsr = 0x10; |
| if (infop->entry & 1) |
| regs->ARM_cpsr |= CPSR_T; |
| regs->ARM_pc = infop->entry & 0xfffffffe; |
| regs->ARM_sp = infop->start_stack; |
| /* FIXME - what to for failure of get_user()? */ |
| get_user_ual(regs->ARM_r2, stack + 8); /* envp */ |
| get_user_ual(regs->ARM_r1, stack + 4); /* envp */ |
| /* XXX: it seems that r0 is zeroed after ! */ |
| regs->ARM_r0 = 0; |
| /* For uClinux PIC binaries. */ |
| /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ |
| regs->ARM_r10 = infop->start_data; |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| enum |
| { |
| ARM_HWCAP_ARM_SWP = 1 << 0, |
| ARM_HWCAP_ARM_HALF = 1 << 1, |
| ARM_HWCAP_ARM_THUMB = 1 << 2, |
| ARM_HWCAP_ARM_26BIT = 1 << 3, |
| ARM_HWCAP_ARM_FAST_MULT = 1 << 4, |
| ARM_HWCAP_ARM_FPA = 1 << 5, |
| ARM_HWCAP_ARM_VFP = 1 << 6, |
| ARM_HWCAP_ARM_EDSP = 1 << 7, |
| }; |
| |
| #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \ |
| | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \ |
| | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP) |
| |
| #endif |
| |
| #ifdef TARGET_SPARC |
| #ifdef TARGET_SPARC64 |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #ifndef TARGET_ABI32 |
| #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) |
| #else |
| #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) |
| #endif |
| |
| #define ELF_CLASS ELFCLASS64 |
| #define ELF_DATA ELFDATA2MSB |
| #define ELF_ARCH EM_SPARCV9 |
| |
| #define STACK_BIAS 2047 |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| #ifndef TARGET_ABI32 |
| regs->tstate = 0; |
| #endif |
| regs->pc = infop->entry; |
| regs->npc = regs->pc + 4; |
| regs->y = 0; |
| #ifdef TARGET_ABI32 |
| regs->u_regs[14] = infop->start_stack - 16 * 4; |
| #else |
| if (personality(infop->personality) == PER_LINUX32) |
| regs->u_regs[14] = infop->start_stack - 16 * 4; |
| else { |
| regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; |
| if (bsd_type == target_freebsd) { |
| regs->u_regs[8] = infop->start_stack; |
| regs->u_regs[11] = infop->start_stack; |
| } |
| } |
| #endif |
| } |
| |
| #else |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_SPARC ) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_DATA ELFDATA2MSB |
| #define ELF_ARCH EM_SPARC |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->psr = 0; |
| regs->pc = infop->entry; |
| regs->npc = regs->pc + 4; |
| regs->y = 0; |
| regs->u_regs[14] = infop->start_stack - 16 * 4; |
| } |
| |
| #endif |
| #endif |
| |
| #ifdef TARGET_PPC |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
| |
| #define elf_check_arch(x) ( (x) == EM_PPC64 ) |
| |
| #define ELF_CLASS ELFCLASS64 |
| |
| #else |
| |
| #define elf_check_arch(x) ( (x) == EM_PPC ) |
| |
| #define ELF_CLASS ELFCLASS32 |
| |
| #endif |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define ELF_DATA ELFDATA2MSB |
| #else |
| #define ELF_DATA ELFDATA2LSB |
| #endif |
| #define ELF_ARCH EM_PPC |
| |
| /* |
| * We need to put in some extra aux table entries to tell glibc what |
| * the cache block size is, so it can use the dcbz instruction safely. |
| */ |
| #define AT_DCACHEBSIZE 19 |
| #define AT_ICACHEBSIZE 20 |
| #define AT_UCACHEBSIZE 21 |
| /* A special ignored type value for PPC, for glibc compatibility. */ |
| #define AT_IGNOREPPC 22 |
| /* |
| * The requirements here are: |
| * - keep the final alignment of sp (sp & 0xf) |
| * - make sure the 32-bit value at the first 16 byte aligned position of |
| * AUXV is greater than 16 for glibc compatibility. |
| * AT_IGNOREPPC is used for that. |
| * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, |
| * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. |
| */ |
| #define DLINFO_ARCH_ITEMS 5 |
| #define ARCH_DLINFO \ |
| do { \ |
| NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \ |
| NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \ |
| NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ |
| /* \ |
| * Now handle glibc compatibility. \ |
| */ \ |
| NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ |
| NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ |
| } while (0) |
| |
| static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
| { |
| abi_ulong pos = infop->start_stack; |
| abi_ulong tmp; |
| #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
| abi_ulong entry, toc; |
| #endif |
| |
| _regs->gpr[1] = infop->start_stack; |
| #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
| entry = ldq_raw(infop->entry) + infop->load_addr; |
| toc = ldq_raw(infop->entry + 8) + infop->load_addr; |
| _regs->gpr[2] = toc; |
| infop->entry = entry; |
| #endif |
| _regs->nip = infop->entry; |
| /* Note that isn't exactly what regular kernel does |
| * but this is what the ABI wants and is needed to allow |
| * execution of PPC BSD programs. |
| */ |
| /* FIXME - what to for failure of get_user()? */ |
| get_user_ual(_regs->gpr[3], pos); |
| pos += sizeof(abi_ulong); |
| _regs->gpr[4] = pos; |
| for (tmp = 1; tmp != 0; pos += sizeof(abi_ulong)) |
| tmp = ldl(pos); |
| _regs->gpr[5] = pos; |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #endif |
| |
| #ifdef TARGET_MIPS |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_MIPS ) |
| |
| #ifdef TARGET_MIPS64 |
| #define ELF_CLASS ELFCLASS64 |
| #else |
| #define ELF_CLASS ELFCLASS32 |
| #endif |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define ELF_DATA ELFDATA2MSB |
| #else |
| #define ELF_DATA ELFDATA2LSB |
| #endif |
| #define ELF_ARCH EM_MIPS |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->cp0_status = 2 << CP0St_KSU; |
| regs->cp0_epc = infop->entry; |
| regs->regs[29] = infop->start_stack; |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #endif /* TARGET_MIPS */ |
| |
| #ifdef TARGET_SH4 |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_SH ) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_DATA ELFDATA2LSB |
| #define ELF_ARCH EM_SH |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| /* Check other registers XXXXX */ |
| regs->pc = infop->entry; |
| regs->regs[15] = infop->start_stack; |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #endif |
| |
| #ifdef TARGET_CRIS |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_CRIS ) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_DATA ELFDATA2LSB |
| #define ELF_ARCH EM_CRIS |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->erp = infop->entry; |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 8192 |
| |
| #endif |
| |
| #ifdef TARGET_M68K |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_68K ) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_DATA ELFDATA2MSB |
| #define ELF_ARCH EM_68K |
| |
| /* ??? Does this need to do anything? |
| #define ELF_PLAT_INIT(_r) */ |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->usp = infop->start_stack; |
| regs->sr = 0; |
| regs->pc = infop->entry; |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 8192 |
| |
| #endif |
| |
| #ifdef TARGET_ALPHA |
| |
| #define ELF_START_MMAP (0x30000000000ULL) |
| |
| #define elf_check_arch(x) ( (x) == ELF_ARCH ) |
| |
| #define ELF_CLASS ELFCLASS64 |
| #define ELF_DATA ELFDATA2MSB |
| #define ELF_ARCH EM_ALPHA |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->pc = infop->entry; |
| regs->ps = 8; |
| regs->usp = infop->start_stack; |
| regs->unique = infop->start_data; /* ? */ |
| printf("Set unique value to " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", |
| regs->unique, infop->start_data); |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 8192 |
| |
| #endif /* TARGET_ALPHA */ |
| |
| #ifndef ELF_PLATFORM |
| #define ELF_PLATFORM (NULL) |
| #endif |
| |
| #ifndef ELF_HWCAP |
| #define ELF_HWCAP 0 |
| #endif |
| |
| #ifdef TARGET_ABI32 |
| #undef ELF_CLASS |
| #define ELF_CLASS ELFCLASS32 |
| #undef bswaptls |
| #define bswaptls(ptr) bswap32s(ptr) |
| #endif |
| |
| #include "elf.h" |
| |
| struct exec |
| { |
| unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
| unsigned int a_text; /* length of text, in bytes */ |
| unsigned int a_data; /* length of data, in bytes */ |
| unsigned int a_bss; /* length of uninitialized data area, in bytes */ |
| unsigned int a_syms; /* length of symbol table data in file, in bytes */ |
| unsigned int a_entry; /* start address */ |
| unsigned int a_trsize; /* length of relocation info for text, in bytes */ |
| unsigned int a_drsize; /* length of relocation info for data, in bytes */ |
| }; |
| |
| |
| #define N_MAGIC(exec) ((exec).a_info & 0xffff) |
| #define OMAGIC 0407 |
| #define NMAGIC 0410 |
| #define ZMAGIC 0413 |
| #define QMAGIC 0314 |
| |
| /* max code+data+bss space allocated to elf interpreter */ |
| #define INTERP_MAP_SIZE (32 * 1024 * 1024) |
| |
| /* max code+data+bss+brk space allocated to ET_DYN executables */ |
| #define ET_DYN_MAP_SIZE (128 * 1024 * 1024) |
| |
| /* Necessary parameters */ |
| #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE |
| #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) |
| #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) |
| |
| #define INTERPRETER_NONE 0 |
| #define INTERPRETER_AOUT 1 |
| #define INTERPRETER_ELF 2 |
| |
| #define DLINFO_ITEMS 12 |
| |
| static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
| { |
| memcpy(to, from, n); |
| } |
| |
| static int load_aout_interp(void * exptr, int interp_fd); |
| |
| #ifdef BSWAP_NEEDED |
| static void bswap_ehdr(struct elfhdr *ehdr) |
| { |
| bswap16s(&ehdr->e_type); /* Object file type */ |
| bswap16s(&ehdr->e_machine); /* Architecture */ |
| bswap32s(&ehdr->e_version); /* Object file version */ |
| bswaptls(&ehdr->e_entry); /* Entry point virtual address */ |
| bswaptls(&ehdr->e_phoff); /* Program header table file offset */ |
| bswaptls(&ehdr->e_shoff); /* Section header table file offset */ |
| bswap32s(&ehdr->e_flags); /* Processor-specific flags */ |
| bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ |
| bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ |
| bswap16s(&ehdr->e_phnum); /* Program header table entry count */ |
| bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ |
| bswap16s(&ehdr->e_shnum); /* Section header table entry count */ |
| bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ |
| } |
| |
| static void bswap_phdr(struct elf_phdr *phdr) |
| { |
| bswap32s(&phdr->p_type); /* Segment type */ |
| bswaptls(&phdr->p_offset); /* Segment file offset */ |
| bswaptls(&phdr->p_vaddr); /* Segment virtual address */ |
| bswaptls(&phdr->p_paddr); /* Segment physical address */ |
| bswaptls(&phdr->p_filesz); /* Segment size in file */ |
| bswaptls(&phdr->p_memsz); /* Segment size in memory */ |
| bswap32s(&phdr->p_flags); /* Segment flags */ |
| bswaptls(&phdr->p_align); /* Segment alignment */ |
| } |
| |
| static void bswap_shdr(struct elf_shdr *shdr) |
| { |
| bswap32s(&shdr->sh_name); |
| bswap32s(&shdr->sh_type); |
| bswaptls(&shdr->sh_flags); |
| bswaptls(&shdr->sh_addr); |
| bswaptls(&shdr->sh_offset); |
| bswaptls(&shdr->sh_size); |
| bswap32s(&shdr->sh_link); |
| bswap32s(&shdr->sh_info); |
| bswaptls(&shdr->sh_addralign); |
| bswaptls(&shdr->sh_entsize); |
| } |
| |
| static void bswap_sym(struct elf_sym *sym) |
| { |
| bswap32s(&sym->st_name); |
| bswaptls(&sym->st_value); |
| bswaptls(&sym->st_size); |
| bswap16s(&sym->st_shndx); |
| } |
| #endif |
| |
| /* |
| * 'copy_elf_strings()' copies argument/envelope strings from user |
| * memory to free pages in kernel mem. These are in a format ready |
| * to be put directly into the top of new user memory. |
| * |
| */ |
| static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, |
| abi_ulong p) |
| { |
| char *tmp, *tmp1, *pag = NULL; |
| int len, offset = 0; |
| |
| if (!p) { |
| return 0; /* bullet-proofing */ |
| } |
| while (argc-- > 0) { |
| tmp = argv[argc]; |
| if (!tmp) { |
| fprintf(stderr, "VFS: argc is wrong"); |
| exit(-1); |
| } |
| tmp1 = tmp; |
| while (*tmp++); |
| len = tmp - tmp1; |
| if (p < len) { /* this shouldn't happen - 128kB */ |
| return 0; |
| } |
| while (len) { |
| --p; --tmp; --len; |
| if (--offset < 0) { |
| offset = p % TARGET_PAGE_SIZE; |
| pag = (char *)page[p/TARGET_PAGE_SIZE]; |
| if (!pag) { |
| pag = g_try_malloc0(TARGET_PAGE_SIZE); |
| page[p/TARGET_PAGE_SIZE] = pag; |
| if (!pag) |
| return 0; |
| } |
| } |
| if (len == 0 || offset == 0) { |
| *(pag + offset) = *tmp; |
| } |
| else { |
| int bytes_to_copy = (len > offset) ? offset : len; |
| tmp -= bytes_to_copy; |
| p -= bytes_to_copy; |
| offset -= bytes_to_copy; |
| len -= bytes_to_copy; |
| memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); |
| } |
| } |
| } |
| return p; |
| } |
| |
| static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, |
| struct image_info *info) |
| { |
| abi_ulong stack_base, size, error; |
| int i; |
| |
| /* Create enough stack to hold everything. If we don't use |
| * it for args, we'll use it for something else... |
| */ |
| size = x86_stack_size; |
| if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) |
| size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; |
| error = target_mmap(0, |
| size + qemu_host_page_size, |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANON, |
| -1, 0); |
| if (error == -1) { |
| perror("stk mmap"); |
| exit(-1); |
| } |
| /* we reserve one extra page at the top of the stack as guard */ |
| target_mprotect(error + size, qemu_host_page_size, PROT_NONE); |
| |
| stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; |
| p += stack_base; |
| |
| for (i = 0 ; i < MAX_ARG_PAGES ; i++) { |
| if (bprm->page[i]) { |
| info->rss++; |
| /* FIXME - check return value of memcpy_to_target() for failure */ |
| memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); |
| g_free(bprm->page[i]); |
| } |
| stack_base += TARGET_PAGE_SIZE; |
| } |
| return p; |
| } |
| |
| static void set_brk(abi_ulong start, abi_ulong end) |
| { |
| /* page-align the start and end addresses... */ |
| start = HOST_PAGE_ALIGN(start); |
| end = HOST_PAGE_ALIGN(end); |
| if (end <= start) |
| return; |
| if(target_mmap(start, end - start, |
| PROT_READ | PROT_WRITE | PROT_EXEC, |
| MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { |
| perror("cannot mmap brk"); |
| exit(-1); |
| } |
| } |
| |
| |
| /* We need to explicitly zero any fractional pages after the data |
| section (i.e. bss). This would contain the junk from the file that |
| should not be in memory. */ |
| static void padzero(abi_ulong elf_bss, abi_ulong last_bss) |
| { |
| abi_ulong nbyte; |
| |
| if (elf_bss >= last_bss) |
| return; |
| |
| /* XXX: this is really a hack : if the real host page size is |
| smaller than the target page size, some pages after the end |
| of the file may not be mapped. A better fix would be to |
| patch target_mmap(), but it is more complicated as the file |
| size must be known */ |
| if (qemu_real_host_page_size < qemu_host_page_size) { |
| abi_ulong end_addr, end_addr1; |
| end_addr1 = (elf_bss + qemu_real_host_page_size - 1) & |
| ~(qemu_real_host_page_size - 1); |
| end_addr = HOST_PAGE_ALIGN(elf_bss); |
| if (end_addr1 < end_addr) { |
| mmap((void *)g2h(end_addr1), end_addr - end_addr1, |
| PROT_READ|PROT_WRITE|PROT_EXEC, |
| MAP_FIXED|MAP_PRIVATE|MAP_ANON, -1, 0); |
| } |
| } |
| |
| nbyte = elf_bss & (qemu_host_page_size-1); |
| if (nbyte) { |
| nbyte = qemu_host_page_size - nbyte; |
| do { |
| /* FIXME - what to do if put_user() fails? */ |
| put_user_u8(0, elf_bss); |
| elf_bss++; |
| } while (--nbyte); |
| } |
| } |
| |
| |
| static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, |
| struct elfhdr * exec, |
| abi_ulong load_addr, |
| abi_ulong load_bias, |
| abi_ulong interp_load_addr, int ibcs, |
| struct image_info *info) |
| { |
| abi_ulong sp; |
| int size; |
| abi_ulong u_platform; |
| const char *k_platform; |
| const int n = sizeof(elf_addr_t); |
| |
| sp = p; |
| u_platform = 0; |
| k_platform = ELF_PLATFORM; |
| if (k_platform) { |
| size_t len = strlen(k_platform) + 1; |
| sp -= (len + n - 1) & ~(n - 1); |
| u_platform = sp; |
| /* FIXME - check return value of memcpy_to_target() for failure */ |
| memcpy_to_target(sp, k_platform, len); |
| } |
| /* |
| * Force 16 byte _final_ alignment here for generality. |
| */ |
| sp = sp &~ (abi_ulong)15; |
| size = (DLINFO_ITEMS + 1) * 2; |
| if (k_platform) |
| size += 2; |
| #ifdef DLINFO_ARCH_ITEMS |
| size += DLINFO_ARCH_ITEMS * 2; |
| #endif |
| size += envc + argc + 2; |
| size += (!ibcs ? 3 : 1); /* argc itself */ |
| size *= n; |
| if (size & 15) |
| sp -= 16 - (size & 15); |
| |
| /* This is correct because Linux defines |
| * elf_addr_t as Elf32_Off / Elf64_Off |
| */ |
| #define NEW_AUX_ENT(id, val) do { \ |
| sp -= n; put_user_ual(val, sp); \ |
| sp -= n; put_user_ual(id, sp); \ |
| } while(0) |
| |
| NEW_AUX_ENT (AT_NULL, 0); |
| |
| /* There must be exactly DLINFO_ITEMS entries here. */ |
| NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff)); |
| NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); |
| NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); |
| NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); |
| NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr)); |
| NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); |
| NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry); |
| NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); |
| NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); |
| NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); |
| NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); |
| NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); |
| NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); |
| if (k_platform) |
| NEW_AUX_ENT(AT_PLATFORM, u_platform); |
| #ifdef ARCH_DLINFO |
| /* |
| * ARCH_DLINFO must come last so platform specific code can enforce |
| * special alignment requirements on the AUXV if necessary (eg. PPC). |
| */ |
| ARCH_DLINFO; |
| #endif |
| #undef NEW_AUX_ENT |
| |
| sp = loader_build_argptr(envc, argc, sp, p, !ibcs); |
| return sp; |
| } |
| |
| |
| static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex, |
| int interpreter_fd, |
| abi_ulong *interp_load_addr) |
| { |
| struct elf_phdr *elf_phdata = NULL; |
| struct elf_phdr *eppnt; |
| abi_ulong load_addr = 0; |
| int load_addr_set = 0; |
| int retval; |
| abi_ulong last_bss, elf_bss; |
| abi_ulong error; |
| int i; |
| |
| elf_bss = 0; |
| last_bss = 0; |
| error = 0; |
| |
| #ifdef BSWAP_NEEDED |
| bswap_ehdr(interp_elf_ex); |
| #endif |
| /* First of all, some simple consistency checks */ |
| if ((interp_elf_ex->e_type != ET_EXEC && |
| interp_elf_ex->e_type != ET_DYN) || |
| !elf_check_arch(interp_elf_ex->e_machine)) { |
| return ~((abi_ulong)0UL); |
| } |
| |
| |
| /* Now read in all of the header information */ |
| |
| if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE) |
| return ~(abi_ulong)0UL; |
| |
| elf_phdata = (struct elf_phdr *) |
| malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); |
| |
| if (!elf_phdata) |
| return ~((abi_ulong)0UL); |
| |
| /* |
| * If the size of this structure has changed, then punt, since |
| * we will be doing the wrong thing. |
| */ |
| if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) { |
| free(elf_phdata); |
| return ~((abi_ulong)0UL); |
| } |
| |
| retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET); |
| if(retval >= 0) { |
| retval = read(interpreter_fd, |
| (char *) elf_phdata, |
| sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); |
| } |
| if (retval < 0) { |
| perror("load_elf_interp"); |
| exit(-1); |
| free (elf_phdata); |
| return retval; |
| } |
| #ifdef BSWAP_NEEDED |
| eppnt = elf_phdata; |
| for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) { |
| bswap_phdr(eppnt); |
| } |
| #endif |
| |
| if (interp_elf_ex->e_type == ET_DYN) { |
| /* in order to avoid hardcoding the interpreter load |
| address in qemu, we allocate a big enough memory zone */ |
| error = target_mmap(0, INTERP_MAP_SIZE, |
| PROT_NONE, MAP_PRIVATE | MAP_ANON, |
| -1, 0); |
| if (error == -1) { |
| perror("mmap"); |
| exit(-1); |
| } |
| load_addr = error; |
| load_addr_set = 1; |
| } |
| |
| eppnt = elf_phdata; |
| for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) |
| if (eppnt->p_type == PT_LOAD) { |
| int elf_type = MAP_PRIVATE | MAP_DENYWRITE; |
| int elf_prot = 0; |
| abi_ulong vaddr = 0; |
| abi_ulong k; |
| |
| if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; |
| if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; |
| if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; |
| if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) { |
| elf_type |= MAP_FIXED; |
| vaddr = eppnt->p_vaddr; |
| } |
| error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr), |
| eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr), |
| elf_prot, |
| elf_type, |
| interpreter_fd, |
| eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr)); |
| |
| if (error == -1) { |
| /* Real error */ |
| close(interpreter_fd); |
| free(elf_phdata); |
| return ~((abi_ulong)0UL); |
| } |
| |
| if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) { |
| load_addr = error; |
| load_addr_set = 1; |
| } |
| |
| /* |
| * Find the end of the file mapping for this phdr, and keep |
| * track of the largest address we see for this. |
| */ |
| k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; |
| if (k > elf_bss) elf_bss = k; |
| |
| /* |
| * Do the same thing for the memory mapping - between |
| * elf_bss and last_bss is the bss section. |
| */ |
| k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; |
| if (k > last_bss) last_bss = k; |
| } |
| |
| /* Now use mmap to map the library into memory. */ |
| |
| close(interpreter_fd); |
| |
| /* |
| * Now fill out the bss section. First pad the last page up |
| * to the page boundary, and then perform a mmap to make sure |
| * that there are zeromapped pages up to and including the last |
| * bss page. |
| */ |
| padzero(elf_bss, last_bss); |
| elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */ |
| |
| /* Map the last of the bss segment */ |
| if (last_bss > elf_bss) { |
| target_mmap(elf_bss, last_bss-elf_bss, |
| PROT_READ|PROT_WRITE|PROT_EXEC, |
| MAP_FIXED|MAP_PRIVATE|MAP_ANON, -1, 0); |
| } |
| free(elf_phdata); |
| |
| *interp_load_addr = load_addr; |
| return ((abi_ulong) interp_elf_ex->e_entry) + load_addr; |
| } |
| |
| static int symfind(const void *s0, const void *s1) |
| { |
| target_ulong addr = *(target_ulong *)s0; |
| struct elf_sym *sym = (struct elf_sym *)s1; |
| int result = 0; |
| if (addr < sym->st_value) { |
| result = -1; |
| } else if (addr >= sym->st_value + sym->st_size) { |
| result = 1; |
| } |
| return result; |
| } |
| |
| static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) |
| { |
| #if ELF_CLASS == ELFCLASS32 |
| struct elf_sym *syms = s->disas_symtab.elf32; |
| #else |
| struct elf_sym *syms = s->disas_symtab.elf64; |
| #endif |
| |
| // binary search |
| struct elf_sym *sym; |
| |
| sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); |
| if (sym != NULL) { |
| return s->disas_strtab + sym->st_name; |
| } |
| |
| return ""; |
| } |
| |
| /* FIXME: This should use elf_ops.h */ |
| static int symcmp(const void *s0, const void *s1) |
| { |
| struct elf_sym *sym0 = (struct elf_sym *)s0; |
| struct elf_sym *sym1 = (struct elf_sym *)s1; |
| return (sym0->st_value < sym1->st_value) |
| ? -1 |
| : ((sym0->st_value > sym1->st_value) ? 1 : 0); |
| } |
| |
| /* Best attempt to load symbols from this ELF object. */ |
| static void load_symbols(struct elfhdr *hdr, int fd) |
| { |
| unsigned int i, nsyms; |
| struct elf_shdr sechdr, symtab, strtab; |
| char *strings; |
| struct syminfo *s; |
| struct elf_sym *syms, *new_syms; |
| |
| lseek(fd, hdr->e_shoff, SEEK_SET); |
| for (i = 0; i < hdr->e_shnum; i++) { |
| if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr)) |
| return; |
| #ifdef BSWAP_NEEDED |
| bswap_shdr(&sechdr); |
| #endif |
| if (sechdr.sh_type == SHT_SYMTAB) { |
| symtab = sechdr; |
| lseek(fd, hdr->e_shoff |
| + sizeof(sechdr) * sechdr.sh_link, SEEK_SET); |
| if (read(fd, &strtab, sizeof(strtab)) |
| != sizeof(strtab)) |
| return; |
| #ifdef BSWAP_NEEDED |
| bswap_shdr(&strtab); |
| #endif |
| goto found; |
| } |
| } |
| return; /* Shouldn't happen... */ |
| |
| found: |
| /* Now know where the strtab and symtab are. Snarf them. */ |
| s = malloc(sizeof(*s)); |
| syms = malloc(symtab.sh_size); |
| if (!syms) { |
| free(s); |
| return; |
| } |
| s->disas_strtab = strings = malloc(strtab.sh_size); |
| if (!s->disas_strtab) { |
| free(s); |
| free(syms); |
| return; |
| } |
| |
| lseek(fd, symtab.sh_offset, SEEK_SET); |
| if (read(fd, syms, symtab.sh_size) != symtab.sh_size) { |
| free(s); |
| free(syms); |
| free(strings); |
| return; |
| } |
| |
| nsyms = symtab.sh_size / sizeof(struct elf_sym); |
| |
| i = 0; |
| while (i < nsyms) { |
| #ifdef BSWAP_NEEDED |
| bswap_sym(syms + i); |
| #endif |
| // Throw away entries which we do not need. |
| if (syms[i].st_shndx == SHN_UNDEF || |
| syms[i].st_shndx >= SHN_LORESERVE || |
| ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { |
| nsyms--; |
| if (i < nsyms) { |
| syms[i] = syms[nsyms]; |
| } |
| continue; |
| } |
| #if defined(TARGET_ARM) || defined (TARGET_MIPS) |
| /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
| syms[i].st_value &= ~(target_ulong)1; |
| #endif |
| i++; |
| } |
| |
| /* Attempt to free the storage associated with the local symbols |
| that we threw away. Whether or not this has any effect on the |
| memory allocation depends on the malloc implementation and how |
| many symbols we managed to discard. */ |
| new_syms = realloc(syms, nsyms * sizeof(*syms)); |
| if (new_syms == NULL) { |
| free(s); |
| free(syms); |
| free(strings); |
| return; |
| } |
| syms = new_syms; |
| |
| qsort(syms, nsyms, sizeof(*syms), symcmp); |
| |
| lseek(fd, strtab.sh_offset, SEEK_SET); |
| if (read(fd, strings, strtab.sh_size) != strtab.sh_size) { |
| free(s); |
| free(syms); |
| free(strings); |
| return; |
| } |
| s->disas_num_syms = nsyms; |
| #if ELF_CLASS == ELFCLASS32 |
| s->disas_symtab.elf32 = syms; |
| s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx; |
| #else |
| s->disas_symtab.elf64 = syms; |
| s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx; |
| #endif |
| s->next = syminfos; |
| syminfos = s; |
| } |
| |
| int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, |
| struct image_info * info) |
| { |
| struct elfhdr elf_ex; |
| struct elfhdr interp_elf_ex; |
| struct exec interp_ex; |
| int interpreter_fd = -1; /* avoid warning */ |
| abi_ulong load_addr, load_bias; |
| int load_addr_set = 0; |
| unsigned int interpreter_type = INTERPRETER_NONE; |
| unsigned char ibcs2_interpreter; |
| int i; |
| abi_ulong mapped_addr; |
| struct elf_phdr * elf_ppnt; |
| struct elf_phdr *elf_phdata; |
| abi_ulong elf_bss, k, elf_brk; |
| int retval; |
| char * elf_interpreter; |
| abi_ulong elf_entry, interp_load_addr = 0; |
| int status; |
| abi_ulong start_code, end_code, start_data, end_data; |
| abi_ulong reloc_func_desc = 0; |
| abi_ulong elf_stack; |
| char passed_fileno[6]; |
| |
| ibcs2_interpreter = 0; |
| status = 0; |
| load_addr = 0; |
| load_bias = 0; |
| elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */ |
| #ifdef BSWAP_NEEDED |
| bswap_ehdr(&elf_ex); |
| #endif |
| |
| /* First of all, some simple consistency checks */ |
| if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) || |
| (! elf_check_arch(elf_ex.e_machine))) { |
| return -ENOEXEC; |
| } |
| |
| bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); |
| bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); |
| bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); |
| if (!bprm->p) { |
| retval = -E2BIG; |
| } |
| |
| /* Now read in all of the header information */ |
| elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum); |
| if (elf_phdata == NULL) { |
| return -ENOMEM; |
| } |
| |
| retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET); |
| if(retval > 0) { |
| retval = read(bprm->fd, (char *) elf_phdata, |
| elf_ex.e_phentsize * elf_ex.e_phnum); |
| } |
| |
| if (retval < 0) { |
| perror("load_elf_binary"); |
| exit(-1); |
| free (elf_phdata); |
| return -errno; |
| } |
| |
| #ifdef BSWAP_NEEDED |
| elf_ppnt = elf_phdata; |
| for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) { |
| bswap_phdr(elf_ppnt); |
| } |
| #endif |
| elf_ppnt = elf_phdata; |
| |
| elf_bss = 0; |
| elf_brk = 0; |
| |
| |
| elf_stack = ~((abi_ulong)0UL); |
| elf_interpreter = NULL; |
| start_code = ~((abi_ulong)0UL); |
| end_code = 0; |
| start_data = 0; |
| end_data = 0; |
| interp_ex.a_info = 0; |
| |
| for(i=0;i < elf_ex.e_phnum; i++) { |
| if (elf_ppnt->p_type == PT_INTERP) { |
| if ( elf_interpreter != NULL ) |
| { |
| free (elf_phdata); |
| free(elf_interpreter); |
| close(bprm->fd); |
| return -EINVAL; |
| } |
| |
| /* This is the program interpreter used for |
| * shared libraries - for now assume that this |
| * is an a.out format binary |
| */ |
| |
| elf_interpreter = (char *)malloc(elf_ppnt->p_filesz); |
| |
| if (elf_interpreter == NULL) { |
| free (elf_phdata); |
| close(bprm->fd); |
| return -ENOMEM; |
| } |
| |
| retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET); |
| if(retval >= 0) { |
| retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz); |
| } |
| if(retval < 0) { |
| perror("load_elf_binary2"); |
| exit(-1); |
| } |
| |
| /* If the program interpreter is one of these two, |
| then assume an iBCS2 image. Otherwise assume |
| a native linux image. */ |
| |
| /* JRP - Need to add X86 lib dir stuff here... */ |
| |
| if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 || |
| strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) { |
| ibcs2_interpreter = 1; |
| } |
| |
| #if 0 |
| printf("Using ELF interpreter %s\n", path(elf_interpreter)); |
| #endif |
| if (retval >= 0) { |
| retval = open(path(elf_interpreter), O_RDONLY); |
| if(retval >= 0) { |
| interpreter_fd = retval; |
| } |
| else { |
| perror(elf_interpreter); |
| exit(-1); |
| /* retval = -errno; */ |
| } |
| } |
| |
| if (retval >= 0) { |
| retval = lseek(interpreter_fd, 0, SEEK_SET); |
| if(retval >= 0) { |
| retval = read(interpreter_fd,bprm->buf,128); |
| } |
| } |
| if (retval >= 0) { |
| interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */ |
| interp_elf_ex = *((struct elfhdr *) bprm->buf); /* elf exec-header */ |
| } |
| if (retval < 0) { |
| perror("load_elf_binary3"); |
| exit(-1); |
| free (elf_phdata); |
| free(elf_interpreter); |
| close(bprm->fd); |
| return retval; |
| } |
| } |
| elf_ppnt++; |
| } |
| |
| /* Some simple consistency checks for the interpreter */ |
| if (elf_interpreter){ |
| interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT; |
| |
| /* Now figure out which format our binary is */ |
| if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) && |
| (N_MAGIC(interp_ex) != QMAGIC)) { |
| interpreter_type = INTERPRETER_ELF; |
| } |
| |
| if (interp_elf_ex.e_ident[0] != 0x7f || |
| strncmp((char *)&interp_elf_ex.e_ident[1], "ELF",3) != 0) { |
| interpreter_type &= ~INTERPRETER_ELF; |
| } |
| |
| if (!interpreter_type) { |
| free(elf_interpreter); |
| free(elf_phdata); |
| close(bprm->fd); |
| return -ELIBBAD; |
| } |
| } |
| |
| /* OK, we are done with that, now set up the arg stuff, |
| and then start this sucker up */ |
| |
| { |
| char * passed_p; |
| |
| if (interpreter_type == INTERPRETER_AOUT) { |
| snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd); |
| passed_p = passed_fileno; |
| |
| if (elf_interpreter) { |
| bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p); |
| bprm->argc++; |
| } |
| } |
| if (!bprm->p) { |
| if (elf_interpreter) { |
| free(elf_interpreter); |
| } |
| free (elf_phdata); |
| close(bprm->fd); |
| return -E2BIG; |
| } |
| } |
| |
| /* OK, This is the point of no return */ |
| info->end_data = 0; |
| info->end_code = 0; |
| info->start_mmap = (abi_ulong)ELF_START_MMAP; |
| info->mmap = 0; |
| elf_entry = (abi_ulong) elf_ex.e_entry; |
| |
| #if defined(CONFIG_USE_GUEST_BASE) |
| /* |
| * In case where user has not explicitly set the guest_base, we |
| * probe here that should we set it automatically. |
| */ |
| if (!have_guest_base) { |
| /* |
| * Go through ELF program header table and find out whether |
| * any of the segments drop below our current mmap_min_addr and |
| * in that case set guest_base to corresponding address. |
| */ |
| for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; |
| i++, elf_ppnt++) { |
| if (elf_ppnt->p_type != PT_LOAD) |
| continue; |
| if (HOST_PAGE_ALIGN(elf_ppnt->p_vaddr) < mmap_min_addr) { |
| guest_base = HOST_PAGE_ALIGN(mmap_min_addr); |
| break; |
| } |
| } |
| } |
| #endif /* CONFIG_USE_GUEST_BASE */ |
| |
| /* Do this so that we can load the interpreter, if need be. We will |
| change some of these later */ |
| info->rss = 0; |
| bprm->p = setup_arg_pages(bprm->p, bprm, info); |
| info->start_stack = bprm->p; |
| |
| /* Now we do a little grungy work by mmaping the ELF image into |
| * the correct location in memory. At this point, we assume that |
| * the image should be loaded at fixed address, not at a variable |
| * address. |
| */ |
| |
| for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { |
| int elf_prot = 0; |
| int elf_flags = 0; |
| abi_ulong error; |
| |
| if (elf_ppnt->p_type != PT_LOAD) |
| continue; |
| |
| if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ; |
| if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; |
| if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; |
| elf_flags = MAP_PRIVATE | MAP_DENYWRITE; |
| if (elf_ex.e_type == ET_EXEC || load_addr_set) { |
| elf_flags |= MAP_FIXED; |
| } else if (elf_ex.e_type == ET_DYN) { |
| /* Try and get dynamic programs out of the way of the default mmap |
| base, as well as whatever program they might try to exec. This |
| is because the brk will follow the loader, and is not movable. */ |
| /* NOTE: for qemu, we do a big mmap to get enough space |
| without hardcoding any address */ |
| error = target_mmap(0, ET_DYN_MAP_SIZE, |
| PROT_NONE, MAP_PRIVATE | MAP_ANON, |
| -1, 0); |
| if (error == -1) { |
| perror("mmap"); |
| exit(-1); |
| } |
| load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr); |
| } |
| |
| error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr), |
| (elf_ppnt->p_filesz + |
| TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)), |
| elf_prot, |
| (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE), |
| bprm->fd, |
| (elf_ppnt->p_offset - |
| TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr))); |
| if (error == -1) { |
| perror("mmap"); |
| exit(-1); |
| } |
| |
| #ifdef LOW_ELF_STACK |
| if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack) |
| elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr); |
| #endif |
| |
| if (!load_addr_set) { |
| load_addr_set = 1; |
| load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset; |
| if (elf_ex.e_type == ET_DYN) { |
| load_bias += error - |
| TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr); |
| load_addr += load_bias; |
| reloc_func_desc = load_bias; |
| } |
| } |
| k = elf_ppnt->p_vaddr; |
| if (k < start_code) |
| start_code = k; |
| if (start_data < k) |
| start_data = k; |
| k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; |
| if (k > elf_bss) |
| elf_bss = k; |
| if ((elf_ppnt->p_flags & PF_X) && end_code < k) |
| end_code = k; |
| if (end_data < k) |
| end_data = k; |
| k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; |
| if (k > elf_brk) elf_brk = k; |
| } |
| |
| elf_entry += load_bias; |
| elf_bss += load_bias; |
| elf_brk += load_bias; |
| start_code += load_bias; |
| end_code += load_bias; |
| start_data += load_bias; |
| end_data += load_bias; |
| |
| if (elf_interpreter) { |
| if (interpreter_type & 1) { |
| elf_entry = load_aout_interp(&interp_ex, interpreter_fd); |
| } |
| else if (interpreter_type & 2) { |
| elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd, |
| &interp_load_addr); |
| } |
| reloc_func_desc = interp_load_addr; |
| |
| close(interpreter_fd); |
| free(elf_interpreter); |
| |
| if (elf_entry == ~((abi_ulong)0UL)) { |
| printf("Unable to load interpreter\n"); |
| free(elf_phdata); |
| exit(-1); |
| return 0; |
| } |
| } |
| |
| free(elf_phdata); |
| |
| if (qemu_log_enabled()) |
| load_symbols(&elf_ex, bprm->fd); |
| |
| if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd); |
| info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX); |
| |
| #ifdef LOW_ELF_STACK |
| info->start_stack = bprm->p = elf_stack - 4; |
| #endif |
| bprm->p = create_elf_tables(bprm->p, |
| bprm->argc, |
| bprm->envc, |
| &elf_ex, |
| load_addr, load_bias, |
| interp_load_addr, |
| (interpreter_type == INTERPRETER_AOUT ? 0 : 1), |
| info); |
| info->load_addr = reloc_func_desc; |
| info->start_brk = info->brk = elf_brk; |
| info->end_code = end_code; |
| info->start_code = start_code; |
| info->start_data = start_data; |
| info->end_data = end_data; |
| info->start_stack = bprm->p; |
| |
| /* Calling set_brk effectively mmaps the pages that we need for the bss and break |
| sections */ |
| set_brk(elf_bss, elf_brk); |
| |
| padzero(elf_bss, elf_brk); |
| |
| #if 0 |
| printf("(start_brk) %x\n" , info->start_brk); |
| printf("(end_code) %x\n" , info->end_code); |
| printf("(start_code) %x\n" , info->start_code); |
| printf("(end_data) %x\n" , info->end_data); |
| printf("(start_stack) %x\n" , info->start_stack); |
| printf("(brk) %x\n" , info->brk); |
| #endif |
| |
| if ( info->personality == PER_SVR4 ) |
| { |
| /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
| and some applications "depend" upon this behavior. |
| Since we do not have the power to recompile these, we |
| emulate the SVr4 behavior. Sigh. */ |
| mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, |
| MAP_FIXED | MAP_PRIVATE, -1, 0); |
| } |
| |
| info->entry = elf_entry; |
| |
| return 0; |
| } |
| |
| static int load_aout_interp(void * exptr, int interp_fd) |
| { |
| printf("a.out interpreter not yet supported\n"); |
| return(0); |
| } |
| |
| void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| init_thread(regs, infop); |
| } |