| /* |
| * General purpose implementation of a simple periodic countdown timer. |
| * |
| * Copyright (c) 2007 CodeSourcery. |
| * |
| * This code is licensed under the GNU LGPL. |
| */ |
| #include "hw/hw.h" |
| #include "qemu/timer.h" |
| #include "hw/ptimer.h" |
| #include "qemu/host-utils.h" |
| |
| struct ptimer_state |
| { |
| uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */ |
| uint64_t limit; |
| uint64_t delta; |
| uint32_t period_frac; |
| int64_t period; |
| int64_t last_event; |
| int64_t next_event; |
| QEMUBH *bh; |
| QEMUTimer *timer; |
| }; |
| |
| /* Use a bottom-half routine to avoid reentrancy issues. */ |
| static void ptimer_trigger(ptimer_state *s) |
| { |
| if (s->bh) { |
| qemu_bh_schedule(s->bh); |
| } |
| } |
| |
| static void ptimer_reload(ptimer_state *s) |
| { |
| if (s->delta == 0) { |
| ptimer_trigger(s); |
| s->delta = s->limit; |
| } |
| if (s->delta == 0 || s->period == 0) { |
| fprintf(stderr, "Timer with period zero, disabling\n"); |
| s->enabled = 0; |
| return; |
| } |
| |
| s->last_event = s->next_event; |
| s->next_event = s->last_event + s->delta * s->period; |
| if (s->period_frac) { |
| s->next_event += ((int64_t)s->period_frac * s->delta) >> 32; |
| } |
| timer_mod(s->timer, s->next_event); |
| } |
| |
| static void ptimer_tick(void *opaque) |
| { |
| ptimer_state *s = (ptimer_state *)opaque; |
| ptimer_trigger(s); |
| s->delta = 0; |
| if (s->enabled == 2) { |
| s->enabled = 0; |
| } else { |
| ptimer_reload(s); |
| } |
| } |
| |
| uint64_t ptimer_get_count(ptimer_state *s) |
| { |
| int64_t now; |
| uint64_t counter; |
| |
| if (s->enabled) { |
| now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| /* Figure out the current counter value. */ |
| if (now - s->next_event > 0 |
| || s->period == 0) { |
| /* Prevent timer underflowing if it should already have |
| triggered. */ |
| counter = 0; |
| } else { |
| uint64_t rem; |
| uint64_t div; |
| int clz1, clz2; |
| int shift; |
| |
| /* We need to divide time by period, where time is stored in |
| rem (64-bit integer) and period is stored in period/period_frac |
| (64.32 fixed point). |
| |
| Doing full precision division is hard, so scale values and |
| do a 64-bit division. The result should be rounded down, |
| so that the rounding error never causes the timer to go |
| backwards. |
| */ |
| |
| rem = s->next_event - now; |
| div = s->period; |
| |
| clz1 = clz64(rem); |
| clz2 = clz64(div); |
| shift = clz1 < clz2 ? clz1 : clz2; |
| |
| rem <<= shift; |
| div <<= shift; |
| if (shift >= 32) { |
| div |= ((uint64_t)s->period_frac << (shift - 32)); |
| } else { |
| if (shift != 0) |
| div |= (s->period_frac >> (32 - shift)); |
| /* Look at remaining bits of period_frac and round div up if |
| necessary. */ |
| if ((uint32_t)(s->period_frac << shift)) |
| div += 1; |
| } |
| counter = rem / div; |
| } |
| } else { |
| counter = s->delta; |
| } |
| return counter; |
| } |
| |
| void ptimer_set_count(ptimer_state *s, uint64_t count) |
| { |
| s->delta = count; |
| if (s->enabled) { |
| s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| ptimer_reload(s); |
| } |
| } |
| |
| void ptimer_run(ptimer_state *s, int oneshot) |
| { |
| if (s->enabled) { |
| return; |
| } |
| if (s->period == 0) { |
| fprintf(stderr, "Timer with period zero, disabling\n"); |
| return; |
| } |
| s->enabled = oneshot ? 2 : 1; |
| s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| ptimer_reload(s); |
| } |
| |
| /* Pause a timer. Note that this may cause it to "lose" time, even if it |
| is immediately restarted. */ |
| void ptimer_stop(ptimer_state *s) |
| { |
| if (!s->enabled) |
| return; |
| |
| s->delta = ptimer_get_count(s); |
| timer_del(s->timer); |
| s->enabled = 0; |
| } |
| |
| /* Set counter increment interval in nanoseconds. */ |
| void ptimer_set_period(ptimer_state *s, int64_t period) |
| { |
| s->period = period; |
| s->period_frac = 0; |
| if (s->enabled) { |
| s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| ptimer_reload(s); |
| } |
| } |
| |
| /* Set counter frequency in Hz. */ |
| void ptimer_set_freq(ptimer_state *s, uint32_t freq) |
| { |
| s->period = 1000000000ll / freq; |
| s->period_frac = (1000000000ll << 32) / freq; |
| if (s->enabled) { |
| s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| ptimer_reload(s); |
| } |
| } |
| |
| /* Set the initial countdown value. If reload is nonzero then also set |
| count = limit. */ |
| void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) |
| { |
| /* |
| * Artificially limit timeout rate to something |
| * achievable under QEMU. Otherwise, QEMU spends all |
| * its time generating timer interrupts, and there |
| * is no forward progress. |
| * About ten microseconds is the fastest that really works |
| * on the current generation of host machines. |
| */ |
| |
| if (limit * s->period < 10000 && s->period) { |
| limit = 10000 / s->period; |
| } |
| |
| s->limit = limit; |
| if (reload) |
| s->delta = limit; |
| if (s->enabled && reload) { |
| s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| ptimer_reload(s); |
| } |
| } |
| |
| const VMStateDescription vmstate_ptimer = { |
| .name = "ptimer", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT8(enabled, ptimer_state), |
| VMSTATE_UINT64(limit, ptimer_state), |
| VMSTATE_UINT64(delta, ptimer_state), |
| VMSTATE_UINT32(period_frac, ptimer_state), |
| VMSTATE_INT64(period, ptimer_state), |
| VMSTATE_INT64(last_event, ptimer_state), |
| VMSTATE_INT64(next_event, ptimer_state), |
| VMSTATE_TIMER(timer, ptimer_state), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| ptimer_state *ptimer_init(QEMUBH *bh) |
| { |
| ptimer_state *s; |
| |
| s = (ptimer_state *)g_malloc0(sizeof(ptimer_state)); |
| s->bh = bh; |
| s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s); |
| return s; |
| } |