|  | /* | 
|  | =============================================================================== | 
|  |  | 
|  | This C source file is part of the SoftFloat IEC/IEEE Floating-point | 
|  | Arithmetic Package, Release 2. | 
|  |  | 
|  | Written by John R. Hauser.  This work was made possible in part by the | 
|  | International Computer Science Institute, located at Suite 600, 1947 Center | 
|  | Street, Berkeley, California 94704.  Funding was partially provided by the | 
|  | National Science Foundation under grant MIP-9311980.  The original version | 
|  | of this code was written as part of a project to build a fixed-point vector | 
|  | processor in collaboration with the University of California at Berkeley, | 
|  | overseen by Profs. Nelson Morgan and John Wawrzynek.  More information | 
|  | is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | 
|  | arithmetic/softfloat.html'. | 
|  |  | 
|  | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort | 
|  | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | 
|  | TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO | 
|  | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | 
|  | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | 
|  |  | 
|  | Derivative works are acceptable, even for commercial purposes, so long as | 
|  | (1) they include prominent notice that the work is derivative, and (2) they | 
|  | include prominent notice akin to these three paragraphs for those parts of | 
|  | this code that are retained. | 
|  |  | 
|  | =============================================================================== | 
|  | */ | 
|  |  | 
|  | #include "fpa11.h" | 
|  | #include "milieu.h" | 
|  | #include "softfloat.h" | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Floating-point rounding mode, extended double-precision rounding precision, | 
|  | and exception flags. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | int8 float_rounding_mode = float_round_nearest_even; | 
|  | int8 floatx80_rounding_precision = 80; | 
|  | int8 float_exception_flags; | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Primitive arithmetic functions, including multi-word arithmetic, and | 
|  | division and square root approximations.  (Can be specialized to target if | 
|  | desired.) | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | #include "softfloat-macros" | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Functions and definitions to determine:  (1) whether tininess for underflow | 
|  | is detected before or after rounding by default, (2) what (if anything) | 
|  | happens when exceptions are raised, (3) how signaling NaNs are distinguished | 
|  | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | 
|  | are propagated from function inputs to output.  These details are target- | 
|  | specific. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | #include "softfloat-specialize" | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | 
|  | and 7, and returns the properly rounded 32-bit integer corresponding to the | 
|  | input.  If `zSign' is nonzero, the input is negated before being converted | 
|  | to an integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point | 
|  | input is simply rounded to an integer, with the inexact exception raised if | 
|  | the input cannot be represented exactly as an integer.  If the fixed-point | 
|  | input is too large, however, the invalid exception is raised and the largest | 
|  | positive or negative integer is returned. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static int32 roundAndPackInt32( flag zSign, bits64 absZ ) | 
|  | { | 
|  | int8 roundingMode; | 
|  | flag roundNearestEven; | 
|  | int8 roundIncrement, roundBits; | 
|  | int32 z; | 
|  |  | 
|  | roundingMode = float_rounding_mode; | 
|  | roundNearestEven = ( roundingMode == float_round_nearest_even ); | 
|  | roundIncrement = 0x40; | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | roundIncrement = 0x7F; | 
|  | if ( zSign ) { | 
|  | if ( roundingMode == float_round_up ) roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | if ( roundingMode == float_round_down ) roundIncrement = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | roundBits = absZ & 0x7F; | 
|  | absZ = ( absZ + roundIncrement )>>7; | 
|  | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | 
|  | z = absZ; | 
|  | if ( zSign ) z = - z; | 
|  | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | 
|  | float_exception_flags |= float_flag_invalid; | 
|  | return zSign ? 0x80000000 : 0x7FFFFFFF; | 
|  | } | 
|  | if ( roundBits ) float_exception_flags |= float_flag_inexact; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the fraction bits of the single-precision floating-point value `a'. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE bits32 extractFloat32Frac( float32 a ) | 
|  | { | 
|  |  | 
|  | return a & 0x007FFFFF; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the exponent bits of the single-precision floating-point value `a'. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE int16 extractFloat32Exp( float32 a ) | 
|  | { | 
|  |  | 
|  | return ( a>>23 ) & 0xFF; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the sign bit of the single-precision floating-point value `a'. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE flag extractFloat32Sign( float32 a ) | 
|  | { | 
|  |  | 
|  | return a>>31; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Normalizes the subnormal single-precision floating-point value represented | 
|  | by the denormalized significand `aSig'.  The normalized exponent and | 
|  | significand are stored at the locations pointed to by `zExpPtr' and | 
|  | `zSigPtr', respectively. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static void | 
|  | normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | shiftCount = countLeadingZeros32( aSig ) - 8; | 
|  | *zSigPtr = aSig<<shiftCount; | 
|  | *zExpPtr = 1 - shiftCount; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | 
|  | single-precision floating-point value, returning the result.  After being | 
|  | shifted into the proper positions, the three fields are simply added | 
|  | together to form the result.  This means that any integer portion of `zSig' | 
|  | will be added into the exponent.  Since a properly normalized significand | 
|  | will have an integer portion equal to 1, the `zExp' input should be 1 less | 
|  | than the desired result exponent whenever `zSig' is a complete, normalized | 
|  | significand. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) | 
|  | { | 
|  | return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | and significand `zSig', and returns the proper single-precision floating- | 
|  | point value corresponding to the abstract input.  Ordinarily, the abstract | 
|  | value is simply rounded and packed into the single-precision format, with | 
|  | the inexact exception raised if the abstract input cannot be represented | 
|  | exactly.  If the abstract value is too large, however, the overflow and | 
|  | inexact exceptions are raised and an infinity or maximal finite value is | 
|  | returned.  If the abstract value is too small, the input value is rounded to | 
|  | a subnormal number, and the underflow and inexact exceptions are raised if | 
|  | the abstract input cannot be represented exactly as a subnormal single- | 
|  | precision floating-point number. | 
|  | The input significand `zSig' has its binary point between bits 30 | 
|  | and 29, which is 7 bits to the left of the usual location.  This shifted | 
|  | significand must be normalized or smaller.  If `zSig' is not normalized, | 
|  | `zExp' must be 0; in that case, the result returned is a subnormal number, | 
|  | and it must not require rounding.  In the usual case that `zSig' is | 
|  | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | 
|  | The handling of underflow and overflow follows the IEC/IEEE Standard for | 
|  | Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) | 
|  | { | 
|  | int8 roundingMode; | 
|  | flag roundNearestEven; | 
|  | int8 roundIncrement, roundBits; | 
|  | flag isTiny; | 
|  |  | 
|  | roundingMode = float_rounding_mode; | 
|  | roundNearestEven = ( roundingMode == float_round_nearest_even ); | 
|  | roundIncrement = 0x40; | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | roundIncrement = 0x7F; | 
|  | if ( zSign ) { | 
|  | if ( roundingMode == float_round_up ) roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | if ( roundingMode == float_round_down ) roundIncrement = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | roundBits = zSig & 0x7F; | 
|  | if ( 0xFD <= (bits16) zExp ) { | 
|  | if (    ( 0xFD < zExp ) | 
|  | || (    ( zExp == 0xFD ) | 
|  | && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) | 
|  | ) { | 
|  | float_raise( float_flag_overflow | float_flag_inexact ); | 
|  | return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); | 
|  | } | 
|  | if ( zExp < 0 ) { | 
|  | isTiny = | 
|  | ( float_detect_tininess == float_tininess_before_rounding ) | 
|  | || ( zExp < -1 ) | 
|  | || ( zSig + roundIncrement < 0x80000000 ); | 
|  | shift32RightJamming( zSig, - zExp, &zSig ); | 
|  | zExp = 0; | 
|  | roundBits = zSig & 0x7F; | 
|  | if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | 
|  | } | 
|  | } | 
|  | if ( roundBits ) float_exception_flags |= float_flag_inexact; | 
|  | zSig = ( zSig + roundIncrement )>>7; | 
|  | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | 
|  | if ( zSig == 0 ) zExp = 0; | 
|  | return packFloat32( zSign, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | and significand `zSig', and returns the proper single-precision floating- | 
|  | point value corresponding to the abstract input.  This routine is just like | 
|  | `roundAndPackFloat32' except that `zSig' does not have to be normalized in | 
|  | any way.  In all cases, `zExp' must be 1 less than the ``true'' floating- | 
|  | point exponent. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static float32 | 
|  | normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | shiftCount = countLeadingZeros32( zSig ) - 1; | 
|  | return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the fraction bits of the double-precision floating-point value `a'. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE bits64 extractFloat64Frac( float64 a ) | 
|  | { | 
|  |  | 
|  | return a & LIT64( 0x000FFFFFFFFFFFFF ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the exponent bits of the double-precision floating-point value `a'. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE int16 extractFloat64Exp( float64 a ) | 
|  | { | 
|  |  | 
|  | return ( a>>52 ) & 0x7FF; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the sign bit of the double-precision floating-point value `a'. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE flag extractFloat64Sign( float64 a ) | 
|  | { | 
|  |  | 
|  | return a>>63; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Normalizes the subnormal double-precision floating-point value represented | 
|  | by the denormalized significand `aSig'.  The normalized exponent and | 
|  | significand are stored at the locations pointed to by `zExpPtr' and | 
|  | `zSigPtr', respectively. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static void | 
|  | normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | shiftCount = countLeadingZeros64( aSig ) - 11; | 
|  | *zSigPtr = aSig<<shiftCount; | 
|  | *zExpPtr = 1 - shiftCount; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | 
|  | double-precision floating-point value, returning the result.  After being | 
|  | shifted into the proper positions, the three fields are simply added | 
|  | together to form the result.  This means that any integer portion of `zSig' | 
|  | will be added into the exponent.  Since a properly normalized significand | 
|  | will have an integer portion equal to 1, the `zExp' input should be 1 less | 
|  | than the desired result exponent whenever `zSig' is a complete, normalized | 
|  | significand. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ) | 
|  | { | 
|  |  | 
|  | return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | and significand `zSig', and returns the proper double-precision floating- | 
|  | point value corresponding to the abstract input.  Ordinarily, the abstract | 
|  | value is simply rounded and packed into the double-precision format, with | 
|  | the inexact exception raised if the abstract input cannot be represented | 
|  | exactly.  If the abstract value is too large, however, the overflow and | 
|  | inexact exceptions are raised and an infinity or maximal finite value is | 
|  | returned.  If the abstract value is too small, the input value is rounded to | 
|  | a subnormal number, and the underflow and inexact exceptions are raised if | 
|  | the abstract input cannot be represented exactly as a subnormal double- | 
|  | precision floating-point number. | 
|  | The input significand `zSig' has its binary point between bits 62 | 
|  | and 61, which is 10 bits to the left of the usual location.  This shifted | 
|  | significand must be normalized or smaller.  If `zSig' is not normalized, | 
|  | `zExp' must be 0; in that case, the result returned is a subnormal number, | 
|  | and it must not require rounding.  In the usual case that `zSig' is | 
|  | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | 
|  | The handling of underflow and overflow follows the IEC/IEEE Standard for | 
|  | Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) | 
|  | { | 
|  | int8 roundingMode; | 
|  | flag roundNearestEven; | 
|  | int16 roundIncrement, roundBits; | 
|  | flag isTiny; | 
|  |  | 
|  | roundingMode = float_rounding_mode; | 
|  | roundNearestEven = ( roundingMode == float_round_nearest_even ); | 
|  | roundIncrement = 0x200; | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | roundIncrement = 0x3FF; | 
|  | if ( zSign ) { | 
|  | if ( roundingMode == float_round_up ) roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | if ( roundingMode == float_round_down ) roundIncrement = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | roundBits = zSig & 0x3FF; | 
|  | if ( 0x7FD <= (bits16) zExp ) { | 
|  | if (    ( 0x7FD < zExp ) | 
|  | || (    ( zExp == 0x7FD ) | 
|  | && ( (sbits64) ( zSig + roundIncrement ) < 0 ) ) | 
|  | ) { | 
|  | //register int lr = __builtin_return_address(0); | 
|  | //printk("roundAndPackFloat64 called from 0x%08x\n",lr); | 
|  | float_raise( float_flag_overflow | float_flag_inexact ); | 
|  | return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 ); | 
|  | } | 
|  | if ( zExp < 0 ) { | 
|  | isTiny = | 
|  | ( float_detect_tininess == float_tininess_before_rounding ) | 
|  | || ( zExp < -1 ) | 
|  | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | 
|  | shift64RightJamming( zSig, - zExp, &zSig ); | 
|  | zExp = 0; | 
|  | roundBits = zSig & 0x3FF; | 
|  | if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | 
|  | } | 
|  | } | 
|  | if ( roundBits ) float_exception_flags |= float_flag_inexact; | 
|  | zSig = ( zSig + roundIncrement )>>10; | 
|  | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | 
|  | if ( zSig == 0 ) zExp = 0; | 
|  | return packFloat64( zSign, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | and significand `zSig', and returns the proper double-precision floating- | 
|  | point value corresponding to the abstract input.  This routine is just like | 
|  | `roundAndPackFloat64' except that `zSig' does not have to be normalized in | 
|  | any way.  In all cases, `zExp' must be 1 less than the ``true'' floating- | 
|  | point exponent. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static float64 | 
|  | normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | shiftCount = countLeadingZeros64( zSig ) - 1; | 
|  | return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount ); | 
|  |  | 
|  | } | 
|  |  | 
|  | #ifdef FLOATX80 | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the fraction bits of the extended double-precision floating-point | 
|  | value `a'. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE bits64 extractFloatx80Frac( floatx80 a ) | 
|  | { | 
|  |  | 
|  | return a.low; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the exponent bits of the extended double-precision floating-point | 
|  | value `a'. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE int32 extractFloatx80Exp( floatx80 a ) | 
|  | { | 
|  |  | 
|  | return a.high & 0x7FFF; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the sign bit of the extended double-precision floating-point value | 
|  | `a'. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE flag extractFloatx80Sign( floatx80 a ) | 
|  | { | 
|  |  | 
|  | return a.high>>15; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Normalizes the subnormal extended double-precision floating-point value | 
|  | represented by the denormalized significand `aSig'.  The normalized exponent | 
|  | and significand are stored at the locations pointed to by `zExpPtr' and | 
|  | `zSigPtr', respectively. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static void | 
|  | normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | shiftCount = countLeadingZeros64( aSig ); | 
|  | *zSigPtr = aSig<<shiftCount; | 
|  | *zExpPtr = 1 - shiftCount; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | 
|  | extended double-precision floating-point value, returning the result. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ) | 
|  | { | 
|  | floatx80 z; | 
|  |  | 
|  | z.low = zSig; | 
|  | z.high = ( ( (bits16) zSign )<<15 ) + zExp; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | 
|  | and extended significand formed by the concatenation of `zSig0' and `zSig1', | 
|  | and returns the proper extended double-precision floating-point value | 
|  | corresponding to the abstract input.  Ordinarily, the abstract value is | 
|  | rounded and packed into the extended double-precision format, with the | 
|  | inexact exception raised if the abstract input cannot be represented | 
|  | exactly.  If the abstract value is too large, however, the overflow and | 
|  | inexact exceptions are raised and an infinity or maximal finite value is | 
|  | returned.  If the abstract value is too small, the input value is rounded to | 
|  | a subnormal number, and the underflow and inexact exceptions are raised if | 
|  | the abstract input cannot be represented exactly as a subnormal extended | 
|  | double-precision floating-point number. | 
|  | If `roundingPrecision' is 32 or 64, the result is rounded to the same | 
|  | number of bits as single or double precision, respectively.  Otherwise, the | 
|  | result is rounded to the full precision of the extended double-precision | 
|  | format. | 
|  | The input significand must be normalized or smaller.  If the input | 
|  | significand is not normalized, `zExp' must be 0; in that case, the result | 
|  | returned is a subnormal number, and it must not require rounding.  The | 
|  | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static floatx80 | 
|  | roundAndPackFloatx80( | 
|  | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | 
|  | ) | 
|  | { | 
|  | int8 roundingMode; | 
|  | flag roundNearestEven, increment, isTiny; | 
|  | int64 roundIncrement, roundMask, roundBits; | 
|  |  | 
|  | roundingMode = float_rounding_mode; | 
|  | roundNearestEven = ( roundingMode == float_round_nearest_even ); | 
|  | if ( roundingPrecision == 80 ) goto precision80; | 
|  | if ( roundingPrecision == 64 ) { | 
|  | roundIncrement = LIT64( 0x0000000000000400 ); | 
|  | roundMask = LIT64( 0x00000000000007FF ); | 
|  | } | 
|  | else if ( roundingPrecision == 32 ) { | 
|  | roundIncrement = LIT64( 0x0000008000000000 ); | 
|  | roundMask = LIT64( 0x000000FFFFFFFFFF ); | 
|  | } | 
|  | else { | 
|  | goto precision80; | 
|  | } | 
|  | zSig0 |= ( zSig1 != 0 ); | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | roundIncrement = roundMask; | 
|  | if ( zSign ) { | 
|  | if ( roundingMode == float_round_up ) roundIncrement = 0; | 
|  | } | 
|  | else { | 
|  | if ( roundingMode == float_round_down ) roundIncrement = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | roundBits = zSig0 & roundMask; | 
|  | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | 
|  | if (    ( 0x7FFE < zExp ) | 
|  | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | 
|  | ) { | 
|  | goto overflow; | 
|  | } | 
|  | if ( zExp <= 0 ) { | 
|  | isTiny = | 
|  | ( float_detect_tininess == float_tininess_before_rounding ) | 
|  | || ( zExp < 0 ) | 
|  | || ( zSig0 <= zSig0 + roundIncrement ); | 
|  | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | 
|  | zExp = 0; | 
|  | roundBits = zSig0 & roundMask; | 
|  | if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | 
|  | if ( roundBits ) float_exception_flags |= float_flag_inexact; | 
|  | zSig0 += roundIncrement; | 
|  | if ( (sbits64) zSig0 < 0 ) zExp = 1; | 
|  | roundIncrement = roundMask + 1; | 
|  | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | 
|  | roundMask |= roundIncrement; | 
|  | } | 
|  | zSig0 &= ~ roundMask; | 
|  | return packFloatx80( zSign, zExp, zSig0 ); | 
|  | } | 
|  | } | 
|  | if ( roundBits ) float_exception_flags |= float_flag_inexact; | 
|  | zSig0 += roundIncrement; | 
|  | if ( zSig0 < roundIncrement ) { | 
|  | ++zExp; | 
|  | zSig0 = LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | roundIncrement = roundMask + 1; | 
|  | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | 
|  | roundMask |= roundIncrement; | 
|  | } | 
|  | zSig0 &= ~ roundMask; | 
|  | if ( zSig0 == 0 ) zExp = 0; | 
|  | return packFloatx80( zSign, zExp, zSig0 ); | 
|  | precision80: | 
|  | increment = ( (sbits64) zSig1 < 0 ); | 
|  | if ( ! roundNearestEven ) { | 
|  | if ( roundingMode == float_round_to_zero ) { | 
|  | increment = 0; | 
|  | } | 
|  | else { | 
|  | if ( zSign ) { | 
|  | increment = ( roundingMode == float_round_down ) && zSig1; | 
|  | } | 
|  | else { | 
|  | increment = ( roundingMode == float_round_up ) && zSig1; | 
|  | } | 
|  | } | 
|  | } | 
|  | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | 
|  | if (    ( 0x7FFE < zExp ) | 
|  | || (    ( zExp == 0x7FFE ) | 
|  | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | 
|  | && increment | 
|  | ) | 
|  | ) { | 
|  | roundMask = 0; | 
|  | overflow: | 
|  | float_raise( float_flag_overflow | float_flag_inexact ); | 
|  | if (    ( roundingMode == float_round_to_zero ) | 
|  | || ( zSign && ( roundingMode == float_round_up ) ) | 
|  | || ( ! zSign && ( roundingMode == float_round_down ) ) | 
|  | ) { | 
|  | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | 
|  | } | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( zExp <= 0 ) { | 
|  | isTiny = | 
|  | ( float_detect_tininess == float_tininess_before_rounding ) | 
|  | || ( zExp < 0 ) | 
|  | || ! increment | 
|  | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | 
|  | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | 
|  | zExp = 0; | 
|  | if ( isTiny && zSig1 ) float_raise( float_flag_underflow ); | 
|  | if ( zSig1 ) float_exception_flags |= float_flag_inexact; | 
|  | if ( roundNearestEven ) { | 
|  | increment = ( (sbits64) zSig1 < 0 ); | 
|  | } | 
|  | else { | 
|  | if ( zSign ) { | 
|  | increment = ( roundingMode == float_round_down ) && zSig1; | 
|  | } | 
|  | else { | 
|  | increment = ( roundingMode == float_round_up ) && zSig1; | 
|  | } | 
|  | } | 
|  | if ( increment ) { | 
|  | ++zSig0; | 
|  | zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); | 
|  | if ( (sbits64) zSig0 < 0 ) zExp = 1; | 
|  | } | 
|  | return packFloatx80( zSign, zExp, zSig0 ); | 
|  | } | 
|  | } | 
|  | if ( zSig1 ) float_exception_flags |= float_flag_inexact; | 
|  | if ( increment ) { | 
|  | ++zSig0; | 
|  | if ( zSig0 == 0 ) { | 
|  | ++zExp; | 
|  | zSig0 = LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | else { | 
|  | zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); | 
|  | } | 
|  | } | 
|  | else { | 
|  | if ( zSig0 == 0 ) zExp = 0; | 
|  | } | 
|  |  | 
|  | return packFloatx80( zSign, zExp, zSig0 ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Takes an abstract floating-point value having sign `zSign', exponent | 
|  | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | 
|  | and returns the proper extended double-precision floating-point value | 
|  | corresponding to the abstract input.  This routine is just like | 
|  | `roundAndPackFloatx80' except that the input significand does not have to be | 
|  | normalized. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static floatx80 | 
|  | normalizeRoundAndPackFloatx80( | 
|  | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | 
|  | ) | 
|  | { | 
|  | int8 shiftCount; | 
|  |  | 
|  | if ( zSig0 == 0 ) { | 
|  | zSig0 = zSig1; | 
|  | zSig1 = 0; | 
|  | zExp -= 64; | 
|  | } | 
|  | shiftCount = countLeadingZeros64( zSig0 ); | 
|  | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | 
|  | zExp -= shiftCount; | 
|  | return | 
|  | roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the 32-bit two's complement integer `a' to | 
|  | the single-precision floating-point format.  The conversion is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float32 int32_to_float32( int32 a ) | 
|  | { | 
|  | flag zSign; | 
|  |  | 
|  | if ( a == 0 ) return 0; | 
|  | if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); | 
|  | zSign = ( a < 0 ); | 
|  | return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the 32-bit two's complement integer `a' to | 
|  | the double-precision floating-point format.  The conversion is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float64 int32_to_float64( int32 a ) | 
|  | { | 
|  | flag aSign; | 
|  | uint32 absA; | 
|  | int8 shiftCount; | 
|  | bits64 zSig; | 
|  |  | 
|  | if ( a == 0 ) return 0; | 
|  | aSign = ( a < 0 ); | 
|  | absA = aSign ? - a : a; | 
|  | shiftCount = countLeadingZeros32( absA ) + 21; | 
|  | zSig = absA; | 
|  | return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount ); | 
|  |  | 
|  | } | 
|  |  | 
|  | #ifdef FLOATX80 | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the 32-bit two's complement integer `a' | 
|  | to the extended double-precision floating-point format.  The conversion | 
|  | is performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | floatx80 int32_to_floatx80( int32 a ) | 
|  | { | 
|  | flag zSign; | 
|  | uint32 absA; | 
|  | int8 shiftCount; | 
|  | bits64 zSig; | 
|  |  | 
|  | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | 
|  | zSign = ( a < 0 ); | 
|  | absA = zSign ? - a : a; | 
|  | shiftCount = countLeadingZeros32( absA ) + 32; | 
|  | zSig = absA; | 
|  | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the single-precision floating-point value | 
|  | `a' to the 32-bit two's complement integer format.  The conversion is | 
|  | performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic---which means in particular that the conversion is rounded | 
|  | according to the current rounding mode.  If `a' is a NaN, the largest | 
|  | positive integer is returned.  Otherwise, if the conversion overflows, the | 
|  | largest integer with the same sign as `a' is returned. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | int32 float32_to_int32( float32 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp, shiftCount; | 
|  | bits32 aSig; | 
|  | bits64 zSig; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | 
|  | if ( aExp ) aSig |= 0x00800000; | 
|  | shiftCount = 0xAF - aExp; | 
|  | zSig = aSig; | 
|  | zSig <<= 32; | 
|  | if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig ); | 
|  | return roundAndPackInt32( aSign, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the single-precision floating-point value | 
|  | `a' to the 32-bit two's complement integer format.  The conversion is | 
|  | performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic, except that the conversion is always rounded toward zero.  If | 
|  | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the | 
|  | conversion overflows, the largest integer with the same sign as `a' is | 
|  | returned. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | int32 float32_to_int32_round_to_zero( float32 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp, shiftCount; | 
|  | bits32 aSig; | 
|  | int32 z; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | shiftCount = aExp - 0x9E; | 
|  | if ( 0 <= shiftCount ) { | 
|  | if ( a == 0xCF000000 ) return 0x80000000; | 
|  | float_raise( float_flag_invalid ); | 
|  | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; | 
|  | return 0x80000000; | 
|  | } | 
|  | else if ( aExp <= 0x7E ) { | 
|  | if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; | 
|  | return 0; | 
|  | } | 
|  | aSig = ( aSig | 0x00800000 )<<8; | 
|  | z = aSig>>( - shiftCount ); | 
|  | if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { | 
|  | float_exception_flags |= float_flag_inexact; | 
|  | } | 
|  | return aSign ? - z : z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the single-precision floating-point value | 
|  | `a' to the double-precision floating-point format.  The conversion is | 
|  | performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float64 float32_to_float64( float32 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp; | 
|  | bits32 aSig; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); | 
|  | return packFloat64( aSign, 0x7FF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | --aExp; | 
|  | } | 
|  | return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | #ifdef FLOATX80 | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the single-precision floating-point value | 
|  | `a' to the extended double-precision floating-point format.  The conversion | 
|  | is performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | floatx80 float32_to_floatx80( float32 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp; | 
|  | bits32 aSig; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) ); | 
|  | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | aSig |= 0x00800000; | 
|  | return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Rounds the single-precision floating-point value `a' to an integer, and | 
|  | returns the result as a single-precision floating-point value.  The | 
|  | operation is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float32 float32_round_to_int( float32 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp; | 
|  | bits32 lastBitMask, roundBitsMask; | 
|  | int8 roundingMode; | 
|  | float32 z; | 
|  |  | 
|  | aExp = extractFloat32Exp( a ); | 
|  | if ( 0x96 <= aExp ) { | 
|  | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | 
|  | return propagateFloat32NaN( a, a ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | if ( aExp <= 0x7E ) { | 
|  | if ( (bits32) ( a<<1 ) == 0 ) return a; | 
|  | float_exception_flags |= float_flag_inexact; | 
|  | aSign = extractFloat32Sign( a ); | 
|  | switch ( float_rounding_mode ) { | 
|  | case float_round_nearest_even: | 
|  | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | 
|  | return packFloat32( aSign, 0x7F, 0 ); | 
|  | } | 
|  | break; | 
|  | case float_round_down: | 
|  | return aSign ? 0xBF800000 : 0; | 
|  | case float_round_up: | 
|  | return aSign ? 0x80000000 : 0x3F800000; | 
|  | } | 
|  | return packFloat32( aSign, 0, 0 ); | 
|  | } | 
|  | lastBitMask = 1; | 
|  | lastBitMask <<= 0x96 - aExp; | 
|  | roundBitsMask = lastBitMask - 1; | 
|  | z = a; | 
|  | roundingMode = float_rounding_mode; | 
|  | if ( roundingMode == float_round_nearest_even ) { | 
|  | z += lastBitMask>>1; | 
|  | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | 
|  | } | 
|  | else if ( roundingMode != float_round_to_zero ) { | 
|  | if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { | 
|  | z += roundBitsMask; | 
|  | } | 
|  | } | 
|  | z &= ~ roundBitsMask; | 
|  | if ( z != a ) float_exception_flags |= float_flag_inexact; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of adding the absolute values of the single-precision | 
|  | floating-point values `a' and `b'.  If `zSign' is true, the sum is negated | 
|  | before being returned.  `zSign' is ignored if the result is a NaN.  The | 
|  | addition is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) | 
|  | { | 
|  | int16 aExp, bExp, zExp; | 
|  | bits32 aSig, bSig, zSig; | 
|  | int16 expDiff; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | bSig = extractFloat32Frac( b ); | 
|  | bExp = extractFloat32Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | aSig <<= 6; | 
|  | bSig <<= 6; | 
|  | if ( 0 < expDiff ) { | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return propagateFloat32NaN( a, b ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | --expDiff; | 
|  | } | 
|  | else { | 
|  | bSig |= 0x20000000; | 
|  | } | 
|  | shift32RightJamming( bSig, expDiff, &bSig ); | 
|  | zExp = aExp; | 
|  | } | 
|  | else if ( expDiff < 0 ) { | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b ); | 
|  | return packFloat32( zSign, 0xFF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | ++expDiff; | 
|  | } | 
|  | else { | 
|  | aSig |= 0x20000000; | 
|  | } | 
|  | shift32RightJamming( aSig, - expDiff, &aSig ); | 
|  | zExp = bExp; | 
|  | } | 
|  | else { | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig | bSig ) return propagateFloat32NaN( a, b ); | 
|  | return a; | 
|  | } | 
|  | if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); | 
|  | zSig = 0x40000000 + aSig + bSig; | 
|  | zExp = aExp; | 
|  | goto roundAndPack; | 
|  | } | 
|  | aSig |= 0x20000000; | 
|  | zSig = ( aSig + bSig )<<1; | 
|  | --zExp; | 
|  | if ( (sbits32) zSig < 0 ) { | 
|  | zSig = aSig + bSig; | 
|  | ++zExp; | 
|  | } | 
|  | roundAndPack: | 
|  | return roundAndPackFloat32( zSign, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of subtracting the absolute values of the single- | 
|  | precision floating-point values `a' and `b'.  If `zSign' is true, the | 
|  | difference is negated before being returned.  `zSign' is ignored if the | 
|  | result is a NaN.  The subtraction is performed according to the IEC/IEEE | 
|  | Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) | 
|  | { | 
|  | int16 aExp, bExp, zExp; | 
|  | bits32 aSig, bSig, zSig; | 
|  | int16 expDiff; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | bSig = extractFloat32Frac( b ); | 
|  | bExp = extractFloat32Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | aSig <<= 7; | 
|  | bSig <<= 7; | 
|  | if ( 0 < expDiff ) goto aExpBigger; | 
|  | if ( expDiff < 0 ) goto bExpBigger; | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig | bSig ) return propagateFloat32NaN( a, b ); | 
|  | float_raise( float_flag_invalid ); | 
|  | return float32_default_nan; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | aExp = 1; | 
|  | bExp = 1; | 
|  | } | 
|  | if ( bSig < aSig ) goto aBigger; | 
|  | if ( aSig < bSig ) goto bBigger; | 
|  | return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); | 
|  | bExpBigger: | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b ); | 
|  | return packFloat32( zSign ^ 1, 0xFF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | ++expDiff; | 
|  | } | 
|  | else { | 
|  | aSig |= 0x40000000; | 
|  | } | 
|  | shift32RightJamming( aSig, - expDiff, &aSig ); | 
|  | bSig |= 0x40000000; | 
|  | bBigger: | 
|  | zSig = bSig - aSig; | 
|  | zExp = bExp; | 
|  | zSign ^= 1; | 
|  | goto normalizeRoundAndPack; | 
|  | aExpBigger: | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return propagateFloat32NaN( a, b ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | --expDiff; | 
|  | } | 
|  | else { | 
|  | bSig |= 0x40000000; | 
|  | } | 
|  | shift32RightJamming( bSig, expDiff, &bSig ); | 
|  | aSig |= 0x40000000; | 
|  | aBigger: | 
|  | zSig = aSig - bSig; | 
|  | zExp = aExp; | 
|  | normalizeRoundAndPack: | 
|  | --zExp; | 
|  | return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of adding the single-precision floating-point values `a' | 
|  | and `b'.  The operation is performed according to the IEC/IEEE Standard for | 
|  | Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float32 float32_add( float32 a, float32 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return addFloat32Sigs( a, b, aSign ); | 
|  | } | 
|  | else { | 
|  | return subFloat32Sigs( a, b, aSign ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of subtracting the single-precision floating-point values | 
|  | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard | 
|  | for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float32 float32_sub( float32 a, float32 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return subFloat32Sigs( a, b, aSign ); | 
|  | } | 
|  | else { | 
|  | return addFloat32Sigs( a, b, aSign ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of multiplying the single-precision floating-point values | 
|  | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard | 
|  | for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float32 float32_mul( float32 a, float32 b ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int16 aExp, bExp, zExp; | 
|  | bits32 aSig, bSig; | 
|  | bits64 zSig64; | 
|  | bits32 zSig; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSig = extractFloat32Frac( b ); | 
|  | bExp = extractFloat32Exp( b ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | 
|  | return propagateFloat32NaN( a, b ); | 
|  | } | 
|  | if ( ( bExp | bSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return float32_default_nan; | 
|  | } | 
|  | return packFloat32( zSign, 0xFF, 0 ); | 
|  | } | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b ); | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return float32_default_nan; | 
|  | } | 
|  | return packFloat32( zSign, 0xFF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); | 
|  | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | zExp = aExp + bExp - 0x7F; | 
|  | aSig = ( aSig | 0x00800000 )<<7; | 
|  | bSig = ( bSig | 0x00800000 )<<8; | 
|  | shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); | 
|  | zSig = zSig64; | 
|  | if ( 0 <= (sbits32) ( zSig<<1 ) ) { | 
|  | zSig <<= 1; | 
|  | --zExp; | 
|  | } | 
|  | return roundAndPackFloat32( zSign, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of dividing the single-precision floating-point value `a' | 
|  | by the corresponding value `b'.  The operation is performed according to the | 
|  | IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float32 float32_div( float32 a, float32 b ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int16 aExp, bExp, zExp; | 
|  | bits32 aSig, bSig, zSig; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSig = extractFloat32Frac( b ); | 
|  | bExp = extractFloat32Exp( b ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return propagateFloat32NaN( a, b ); | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b ); | 
|  | float_raise( float_flag_invalid ); | 
|  | return float32_default_nan; | 
|  | } | 
|  | return packFloat32( zSign, 0xFF, 0 ); | 
|  | } | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b ); | 
|  | return packFloat32( zSign, 0, 0 ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return float32_default_nan; | 
|  | } | 
|  | float_raise( float_flag_divbyzero ); | 
|  | return packFloat32( zSign, 0xFF, 0 ); | 
|  | } | 
|  | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | zExp = aExp - bExp + 0x7D; | 
|  | aSig = ( aSig | 0x00800000 )<<7; | 
|  | bSig = ( bSig | 0x00800000 )<<8; | 
|  | if ( bSig <= ( aSig + aSig ) ) { | 
|  | aSig >>= 1; | 
|  | ++zExp; | 
|  | } | 
|  | zSig = ( ( (bits64) aSig )<<32 ) / bSig; | 
|  | if ( ( zSig & 0x3F ) == 0 ) { | 
|  | zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 ); | 
|  | } | 
|  | return roundAndPackFloat32( zSign, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the remainder of the single-precision floating-point value `a' | 
|  | with respect to the corresponding value `b'.  The operation is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float32 float32_rem( float32 a, float32 b ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int16 aExp, bExp, expDiff; | 
|  | bits32 aSig, bSig; | 
|  | bits32 q; | 
|  | bits64 aSig64, bSig64, q64; | 
|  | bits32 alternateASig; | 
|  | sbits32 sigMean; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSig = extractFloat32Frac( b ); | 
|  | bExp = extractFloat32Exp( b ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | 
|  | return propagateFloat32NaN( a, b ); | 
|  | } | 
|  | float_raise( float_flag_invalid ); | 
|  | return float32_default_nan; | 
|  | } | 
|  | if ( bExp == 0xFF ) { | 
|  | if ( bSig ) return propagateFloat32NaN( a, b ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return float32_default_nan; | 
|  | } | 
|  | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return a; | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | expDiff = aExp - bExp; | 
|  | aSig |= 0x00800000; | 
|  | bSig |= 0x00800000; | 
|  | if ( expDiff < 32 ) { | 
|  | aSig <<= 8; | 
|  | bSig <<= 8; | 
|  | if ( expDiff < 0 ) { | 
|  | if ( expDiff < -1 ) return a; | 
|  | aSig >>= 1; | 
|  | } | 
|  | q = ( bSig <= aSig ); | 
|  | if ( q ) aSig -= bSig; | 
|  | if ( 0 < expDiff ) { | 
|  | q = ( ( (bits64) aSig )<<32 ) / bSig; | 
|  | q >>= 32 - expDiff; | 
|  | bSig >>= 2; | 
|  | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | 
|  | } | 
|  | else { | 
|  | aSig >>= 2; | 
|  | bSig >>= 2; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if ( bSig <= aSig ) aSig -= bSig; | 
|  | aSig64 = ( (bits64) aSig )<<40; | 
|  | bSig64 = ( (bits64) bSig )<<40; | 
|  | expDiff -= 64; | 
|  | while ( 0 < expDiff ) { | 
|  | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | 
|  | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | 
|  | aSig64 = - ( ( bSig * q64 )<<38 ); | 
|  | expDiff -= 62; | 
|  | } | 
|  | expDiff += 64; | 
|  | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | 
|  | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | 
|  | q = q64>>( 64 - expDiff ); | 
|  | bSig <<= 6; | 
|  | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | 
|  | } | 
|  | do { | 
|  | alternateASig = aSig; | 
|  | ++q; | 
|  | aSig -= bSig; | 
|  | } while ( 0 <= (sbits32) aSig ); | 
|  | sigMean = aSig + alternateASig; | 
|  | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | 
|  | aSig = alternateASig; | 
|  | } | 
|  | zSign = ( (sbits32) aSig < 0 ); | 
|  | if ( zSign ) aSig = - aSig; | 
|  | return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the square root of the single-precision floating-point value `a'. | 
|  | The operation is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float32 float32_sqrt( float32 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp, zExp; | 
|  | bits32 aSig, zSig; | 
|  | bits64 rem, term; | 
|  |  | 
|  | aSig = extractFloat32Frac( a ); | 
|  | aExp = extractFloat32Exp( a ); | 
|  | aSign = extractFloat32Sign( a ); | 
|  | if ( aExp == 0xFF ) { | 
|  | if ( aSig ) return propagateFloat32NaN( a, 0 ); | 
|  | if ( ! aSign ) return a; | 
|  | float_raise( float_flag_invalid ); | 
|  | return float32_default_nan; | 
|  | } | 
|  | if ( aSign ) { | 
|  | if ( ( aExp | aSig ) == 0 ) return a; | 
|  | float_raise( float_flag_invalid ); | 
|  | return float32_default_nan; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return 0; | 
|  | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | 
|  | aSig = ( aSig | 0x00800000 )<<8; | 
|  | zSig = estimateSqrt32( aExp, aSig ) + 2; | 
|  | if ( ( zSig & 0x7F ) <= 5 ) { | 
|  | if ( zSig < 2 ) { | 
|  | zSig = 0xFFFFFFFF; | 
|  | } | 
|  | else { | 
|  | aSig >>= aExp & 1; | 
|  | term = ( (bits64) zSig ) * zSig; | 
|  | rem = ( ( (bits64) aSig )<<32 ) - term; | 
|  | while ( (sbits64) rem < 0 ) { | 
|  | --zSig; | 
|  | rem += ( ( (bits64) zSig )<<1 ) | 1; | 
|  | } | 
|  | zSig |= ( rem != 0 ); | 
|  | } | 
|  | } | 
|  | shift32RightJamming( zSig, 1, &zSig ); | 
|  | return roundAndPackFloat32( 0, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the single-precision floating-point value `a' is equal to the | 
|  | corresponding value `b', and 0 otherwise.  The comparison is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float32_eq( float32 a, float32 b ) | 
|  | { | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the single-precision floating-point value `a' is less than or | 
|  | equal to the corresponding value `b', and 0 otherwise.  The comparison is | 
|  | performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float32_le( float32 a, float32 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); | 
|  | return ( a == b ) || ( aSign ^ ( a < b ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the single-precision floating-point value `a' is less than | 
|  | the corresponding value `b', and 0 otherwise.  The comparison is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float32_lt( float32 a, float32 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); | 
|  | return ( a != b ) && ( aSign ^ ( a < b ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the single-precision floating-point value `a' is equal to the | 
|  | corresponding value `b', and 0 otherwise.  The invalid exception is raised | 
|  | if either operand is a NaN.  Otherwise, the comparison is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float32_eq_signaling( float32 a, float32 b ) | 
|  | { | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return 0; | 
|  | } | 
|  | return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the single-precision floating-point value `a' is less than or | 
|  | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not | 
|  | cause an exception.  Otherwise, the comparison is performed according to the | 
|  | IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float32_le_quiet( float32 a, float32 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | //int16 aExp, bExp; | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); | 
|  | return ( a == b ) || ( aSign ^ ( a < b ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the single-precision floating-point value `a' is less than | 
|  | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an | 
|  | exception.  Otherwise, the comparison is performed according to the IEC/IEEE | 
|  | Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float32_lt_quiet( float32 a, float32 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | 
|  | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | 
|  | ) { | 
|  | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat32Sign( a ); | 
|  | bSign = extractFloat32Sign( b ); | 
|  | if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); | 
|  | return ( a != b ) && ( aSign ^ ( a < b ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the double-precision floating-point value | 
|  | `a' to the 32-bit two's complement integer format.  The conversion is | 
|  | performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic---which means in particular that the conversion is rounded | 
|  | according to the current rounding mode.  If `a' is a NaN, the largest | 
|  | positive integer is returned.  Otherwise, if the conversion overflows, the | 
|  | largest integer with the same sign as `a' is returned. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | int32 float64_to_int32( float64 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp, shiftCount; | 
|  | bits64 aSig; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | 
|  | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | 
|  | shiftCount = 0x42C - aExp; | 
|  | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | 
|  | return roundAndPackInt32( aSign, aSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the double-precision floating-point value | 
|  | `a' to the 32-bit two's complement integer format.  The conversion is | 
|  | performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic, except that the conversion is always rounded toward zero.  If | 
|  | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the | 
|  | conversion overflows, the largest integer with the same sign as `a' is | 
|  | returned. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | int32 float64_to_int32_round_to_zero( float64 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp, shiftCount; | 
|  | bits64 aSig, savedASig; | 
|  | int32 z; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | shiftCount = 0x433 - aExp; | 
|  | if ( shiftCount < 21 ) { | 
|  | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | 
|  | goto invalid; | 
|  | } | 
|  | else if ( 52 < shiftCount ) { | 
|  | if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | 
|  | return 0; | 
|  | } | 
|  | aSig |= LIT64( 0x0010000000000000 ); | 
|  | savedASig = aSig; | 
|  | aSig >>= shiftCount; | 
|  | z = aSig; | 
|  | if ( aSign ) z = - z; | 
|  | if ( ( z < 0 ) ^ aSign ) { | 
|  | invalid: | 
|  | float_exception_flags |= float_flag_invalid; | 
|  | return aSign ? 0x80000000 : 0x7FFFFFFF; | 
|  | } | 
|  | if ( ( aSig<<shiftCount ) != savedASig ) { | 
|  | float_exception_flags |= float_flag_inexact; | 
|  | } | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the double-precision floating-point value | 
|  | `a' to the 32-bit two's complement unsigned integer format.  The conversion | 
|  | is performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic---which means in particular that the conversion is rounded | 
|  | according to the current rounding mode.  If `a' is a NaN, the largest | 
|  | positive integer is returned.  Otherwise, if the conversion overflows, the | 
|  | largest positive integer is returned. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | int32 float64_to_uint32( float64 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp, shiftCount; | 
|  | bits64 aSig; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = 0; //extractFloat64Sign( a ); | 
|  | //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | 
|  | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | 
|  | shiftCount = 0x42C - aExp; | 
|  | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | 
|  | return roundAndPackInt32( aSign, aSig ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the double-precision floating-point value | 
|  | `a' to the 32-bit two's complement integer format.  The conversion is | 
|  | performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic, except that the conversion is always rounded toward zero.  If | 
|  | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the | 
|  | conversion overflows, the largest positive integer is returned. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | int32 float64_to_uint32_round_to_zero( float64 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp, shiftCount; | 
|  | bits64 aSig, savedASig; | 
|  | int32 z; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | shiftCount = 0x433 - aExp; | 
|  | if ( shiftCount < 21 ) { | 
|  | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | 
|  | goto invalid; | 
|  | } | 
|  | else if ( 52 < shiftCount ) { | 
|  | if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | 
|  | return 0; | 
|  | } | 
|  | aSig |= LIT64( 0x0010000000000000 ); | 
|  | savedASig = aSig; | 
|  | aSig >>= shiftCount; | 
|  | z = aSig; | 
|  | if ( aSign ) z = - z; | 
|  | if ( ( z < 0 ) ^ aSign ) { | 
|  | invalid: | 
|  | float_exception_flags |= float_flag_invalid; | 
|  | return aSign ? 0x80000000 : 0x7FFFFFFF; | 
|  | } | 
|  | if ( ( aSig<<shiftCount ) != savedASig ) { | 
|  | float_exception_flags |= float_flag_inexact; | 
|  | } | 
|  | return z; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the double-precision floating-point value | 
|  | `a' to the single-precision floating-point format.  The conversion is | 
|  | performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float32 float64_to_float32( float64 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp; | 
|  | bits64 aSig; | 
|  | bits32 zSig; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) ); | 
|  | return packFloat32( aSign, 0xFF, 0 ); | 
|  | } | 
|  | shift64RightJamming( aSig, 22, &aSig ); | 
|  | zSig = aSig; | 
|  | if ( aExp || zSig ) { | 
|  | zSig |= 0x40000000; | 
|  | aExp -= 0x381; | 
|  | } | 
|  | return roundAndPackFloat32( aSign, aExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | #ifdef FLOATX80 | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the double-precision floating-point value | 
|  | `a' to the extended double-precision floating-point format.  The conversion | 
|  | is performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | floatx80 float64_to_floatx80( float64 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp; | 
|  | bits64 aSig; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) ); | 
|  | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | return | 
|  | packFloatx80( | 
|  | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Rounds the double-precision floating-point value `a' to an integer, and | 
|  | returns the result as a double-precision floating-point value.  The | 
|  | operation is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float64 float64_round_to_int( float64 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp; | 
|  | bits64 lastBitMask, roundBitsMask; | 
|  | int8 roundingMode; | 
|  | float64 z; | 
|  |  | 
|  | aExp = extractFloat64Exp( a ); | 
|  | if ( 0x433 <= aExp ) { | 
|  | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | 
|  | return propagateFloat64NaN( a, a ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | if ( aExp <= 0x3FE ) { | 
|  | if ( (bits64) ( a<<1 ) == 0 ) return a; | 
|  | float_exception_flags |= float_flag_inexact; | 
|  | aSign = extractFloat64Sign( a ); | 
|  | switch ( float_rounding_mode ) { | 
|  | case float_round_nearest_even: | 
|  | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | 
|  | return packFloat64( aSign, 0x3FF, 0 ); | 
|  | } | 
|  | break; | 
|  | case float_round_down: | 
|  | return aSign ? LIT64( 0xBFF0000000000000 ) : 0; | 
|  | case float_round_up: | 
|  | return | 
|  | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); | 
|  | } | 
|  | return packFloat64( aSign, 0, 0 ); | 
|  | } | 
|  | lastBitMask = 1; | 
|  | lastBitMask <<= 0x433 - aExp; | 
|  | roundBitsMask = lastBitMask - 1; | 
|  | z = a; | 
|  | roundingMode = float_rounding_mode; | 
|  | if ( roundingMode == float_round_nearest_even ) { | 
|  | z += lastBitMask>>1; | 
|  | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | 
|  | } | 
|  | else if ( roundingMode != float_round_to_zero ) { | 
|  | if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { | 
|  | z += roundBitsMask; | 
|  | } | 
|  | } | 
|  | z &= ~ roundBitsMask; | 
|  | if ( z != a ) float_exception_flags |= float_flag_inexact; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of adding the absolute values of the double-precision | 
|  | floating-point values `a' and `b'.  If `zSign' is true, the sum is negated | 
|  | before being returned.  `zSign' is ignored if the result is a NaN.  The | 
|  | addition is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) | 
|  | { | 
|  | int16 aExp, bExp, zExp; | 
|  | bits64 aSig, bSig, zSig; | 
|  | int16 expDiff; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | bSig = extractFloat64Frac( b ); | 
|  | bExp = extractFloat64Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | aSig <<= 9; | 
|  | bSig <<= 9; | 
|  | if ( 0 < expDiff ) { | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return propagateFloat64NaN( a, b ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | --expDiff; | 
|  | } | 
|  | else { | 
|  | bSig |= LIT64( 0x2000000000000000 ); | 
|  | } | 
|  | shift64RightJamming( bSig, expDiff, &bSig ); | 
|  | zExp = aExp; | 
|  | } | 
|  | else if ( expDiff < 0 ) { | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b ); | 
|  | return packFloat64( zSign, 0x7FF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | ++expDiff; | 
|  | } | 
|  | else { | 
|  | aSig |= LIT64( 0x2000000000000000 ); | 
|  | } | 
|  | shift64RightJamming( aSig, - expDiff, &aSig ); | 
|  | zExp = bExp; | 
|  | } | 
|  | else { | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig | bSig ) return propagateFloat64NaN( a, b ); | 
|  | return a; | 
|  | } | 
|  | if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); | 
|  | zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; | 
|  | zExp = aExp; | 
|  | goto roundAndPack; | 
|  | } | 
|  | aSig |= LIT64( 0x2000000000000000 ); | 
|  | zSig = ( aSig + bSig )<<1; | 
|  | --zExp; | 
|  | if ( (sbits64) zSig < 0 ) { | 
|  | zSig = aSig + bSig; | 
|  | ++zExp; | 
|  | } | 
|  | roundAndPack: | 
|  | return roundAndPackFloat64( zSign, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of subtracting the absolute values of the double- | 
|  | precision floating-point values `a' and `b'.  If `zSign' is true, the | 
|  | difference is negated before being returned.  `zSign' is ignored if the | 
|  | result is a NaN.  The subtraction is performed according to the IEC/IEEE | 
|  | Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) | 
|  | { | 
|  | int16 aExp, bExp, zExp; | 
|  | bits64 aSig, bSig, zSig; | 
|  | int16 expDiff; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | bSig = extractFloat64Frac( b ); | 
|  | bExp = extractFloat64Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | aSig <<= 10; | 
|  | bSig <<= 10; | 
|  | if ( 0 < expDiff ) goto aExpBigger; | 
|  | if ( expDiff < 0 ) goto bExpBigger; | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig | bSig ) return propagateFloat64NaN( a, b ); | 
|  | float_raise( float_flag_invalid ); | 
|  | return float64_default_nan; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | aExp = 1; | 
|  | bExp = 1; | 
|  | } | 
|  | if ( bSig < aSig ) goto aBigger; | 
|  | if ( aSig < bSig ) goto bBigger; | 
|  | return packFloat64( float_rounding_mode == float_round_down, 0, 0 ); | 
|  | bExpBigger: | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b ); | 
|  | return packFloat64( zSign ^ 1, 0x7FF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | ++expDiff; | 
|  | } | 
|  | else { | 
|  | aSig |= LIT64( 0x4000000000000000 ); | 
|  | } | 
|  | shift64RightJamming( aSig, - expDiff, &aSig ); | 
|  | bSig |= LIT64( 0x4000000000000000 ); | 
|  | bBigger: | 
|  | zSig = bSig - aSig; | 
|  | zExp = bExp; | 
|  | zSign ^= 1; | 
|  | goto normalizeRoundAndPack; | 
|  | aExpBigger: | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return propagateFloat64NaN( a, b ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | --expDiff; | 
|  | } | 
|  | else { | 
|  | bSig |= LIT64( 0x4000000000000000 ); | 
|  | } | 
|  | shift64RightJamming( bSig, expDiff, &bSig ); | 
|  | aSig |= LIT64( 0x4000000000000000 ); | 
|  | aBigger: | 
|  | zSig = aSig - bSig; | 
|  | zExp = aExp; | 
|  | normalizeRoundAndPack: | 
|  | --zExp; | 
|  | return normalizeRoundAndPackFloat64( zSign, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of adding the double-precision floating-point values `a' | 
|  | and `b'.  The operation is performed according to the IEC/IEEE Standard for | 
|  | Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float64 float64_add( float64 a, float64 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return addFloat64Sigs( a, b, aSign ); | 
|  | } | 
|  | else { | 
|  | return subFloat64Sigs( a, b, aSign ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of subtracting the double-precision floating-point values | 
|  | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard | 
|  | for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float64 float64_sub( float64 a, float64 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return subFloat64Sigs( a, b, aSign ); | 
|  | } | 
|  | else { | 
|  | return addFloat64Sigs( a, b, aSign ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of multiplying the double-precision floating-point values | 
|  | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard | 
|  | for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float64 float64_mul( float64 a, float64 b ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int16 aExp, bExp, zExp; | 
|  | bits64 aSig, bSig, zSig0, zSig1; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSig = extractFloat64Frac( b ); | 
|  | bExp = extractFloat64Exp( b ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | 
|  | return propagateFloat64NaN( a, b ); | 
|  | } | 
|  | if ( ( bExp | bSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return float64_default_nan; | 
|  | } | 
|  | return packFloat64( zSign, 0x7FF, 0 ); | 
|  | } | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b ); | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return float64_default_nan; | 
|  | } | 
|  | return packFloat64( zSign, 0x7FF, 0 ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); | 
|  | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | zExp = aExp + bExp - 0x3FF; | 
|  | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | 
|  | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | 
|  | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | 
|  | zSig0 |= ( zSig1 != 0 ); | 
|  | if ( 0 <= (sbits64) ( zSig0<<1 ) ) { | 
|  | zSig0 <<= 1; | 
|  | --zExp; | 
|  | } | 
|  | return roundAndPackFloat64( zSign, zExp, zSig0 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of dividing the double-precision floating-point value `a' | 
|  | by the corresponding value `b'.  The operation is performed according to | 
|  | the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float64 float64_div( float64 a, float64 b ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int16 aExp, bExp, zExp; | 
|  | bits64 aSig, bSig, zSig; | 
|  | bits64 rem0, rem1; | 
|  | bits64 term0, term1; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSig = extractFloat64Frac( b ); | 
|  | bExp = extractFloat64Exp( b ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return propagateFloat64NaN( a, b ); | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b ); | 
|  | float_raise( float_flag_invalid ); | 
|  | return float64_default_nan; | 
|  | } | 
|  | return packFloat64( zSign, 0x7FF, 0 ); | 
|  | } | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b ); | 
|  | return packFloat64( zSign, 0, 0 ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return float64_default_nan; | 
|  | } | 
|  | float_raise( float_flag_divbyzero ); | 
|  | return packFloat64( zSign, 0x7FF, 0 ); | 
|  | } | 
|  | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | zExp = aExp - bExp + 0x3FD; | 
|  | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | 
|  | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | 
|  | if ( bSig <= ( aSig + aSig ) ) { | 
|  | aSig >>= 1; | 
|  | ++zExp; | 
|  | } | 
|  | zSig = estimateDiv128To64( aSig, 0, bSig ); | 
|  | if ( ( zSig & 0x1FF ) <= 2 ) { | 
|  | mul64To128( bSig, zSig, &term0, &term1 ); | 
|  | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | 
|  | while ( (sbits64) rem0 < 0 ) { | 
|  | --zSig; | 
|  | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | 
|  | } | 
|  | zSig |= ( rem1 != 0 ); | 
|  | } | 
|  | return roundAndPackFloat64( zSign, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the remainder of the double-precision floating-point value `a' | 
|  | with respect to the corresponding value `b'.  The operation is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float64 float64_rem( float64 a, float64 b ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int16 aExp, bExp, expDiff; | 
|  | bits64 aSig, bSig; | 
|  | bits64 q, alternateASig; | 
|  | sbits64 sigMean; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSig = extractFloat64Frac( b ); | 
|  | bExp = extractFloat64Exp( b ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | 
|  | return propagateFloat64NaN( a, b ); | 
|  | } | 
|  | float_raise( float_flag_invalid ); | 
|  | return float64_default_nan; | 
|  | } | 
|  | if ( bExp == 0x7FF ) { | 
|  | if ( bSig ) return propagateFloat64NaN( a, b ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return float64_default_nan; | 
|  | } | 
|  | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return a; | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | expDiff = aExp - bExp; | 
|  | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | 
|  | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | 
|  | if ( expDiff < 0 ) { | 
|  | if ( expDiff < -1 ) return a; | 
|  | aSig >>= 1; | 
|  | } | 
|  | q = ( bSig <= aSig ); | 
|  | if ( q ) aSig -= bSig; | 
|  | expDiff -= 64; | 
|  | while ( 0 < expDiff ) { | 
|  | q = estimateDiv128To64( aSig, 0, bSig ); | 
|  | q = ( 2 < q ) ? q - 2 : 0; | 
|  | aSig = - ( ( bSig>>2 ) * q ); | 
|  | expDiff -= 62; | 
|  | } | 
|  | expDiff += 64; | 
|  | if ( 0 < expDiff ) { | 
|  | q = estimateDiv128To64( aSig, 0, bSig ); | 
|  | q = ( 2 < q ) ? q - 2 : 0; | 
|  | q >>= 64 - expDiff; | 
|  | bSig >>= 2; | 
|  | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | 
|  | } | 
|  | else { | 
|  | aSig >>= 2; | 
|  | bSig >>= 2; | 
|  | } | 
|  | do { | 
|  | alternateASig = aSig; | 
|  | ++q; | 
|  | aSig -= bSig; | 
|  | } while ( 0 <= (sbits64) aSig ); | 
|  | sigMean = aSig + alternateASig; | 
|  | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | 
|  | aSig = alternateASig; | 
|  | } | 
|  | zSign = ( (sbits64) aSig < 0 ); | 
|  | if ( zSign ) aSig = - aSig; | 
|  | return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the square root of the double-precision floating-point value `a'. | 
|  | The operation is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float64 float64_sqrt( float64 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int16 aExp, zExp; | 
|  | bits64 aSig, zSig; | 
|  | bits64 rem0, rem1, term0, term1; //, shiftedRem; | 
|  | //float64 z; | 
|  |  | 
|  | aSig = extractFloat64Frac( a ); | 
|  | aExp = extractFloat64Exp( a ); | 
|  | aSign = extractFloat64Sign( a ); | 
|  | if ( aExp == 0x7FF ) { | 
|  | if ( aSig ) return propagateFloat64NaN( a, a ); | 
|  | if ( ! aSign ) return a; | 
|  | float_raise( float_flag_invalid ); | 
|  | return float64_default_nan; | 
|  | } | 
|  | if ( aSign ) { | 
|  | if ( ( aExp | aSig ) == 0 ) return a; | 
|  | float_raise( float_flag_invalid ); | 
|  | return float64_default_nan; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return 0; | 
|  | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | 
|  | aSig |= LIT64( 0x0010000000000000 ); | 
|  | zSig = estimateSqrt32( aExp, aSig>>21 ); | 
|  | zSig <<= 31; | 
|  | aSig <<= 9 - ( aExp & 1 ); | 
|  | zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2; | 
|  | if ( ( zSig & 0x3FF ) <= 5 ) { | 
|  | if ( zSig < 2 ) { | 
|  | zSig = LIT64( 0xFFFFFFFFFFFFFFFF ); | 
|  | } | 
|  | else { | 
|  | aSig <<= 2; | 
|  | mul64To128( zSig, zSig, &term0, &term1 ); | 
|  | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | 
|  | while ( (sbits64) rem0 < 0 ) { | 
|  | --zSig; | 
|  | shortShift128Left( 0, zSig, 1, &term0, &term1 ); | 
|  | term1 |= 1; | 
|  | add128( rem0, rem1, term0, term1, &rem0, &rem1 ); | 
|  | } | 
|  | zSig |= ( ( rem0 | rem1 ) != 0 ); | 
|  | } | 
|  | } | 
|  | shift64RightJamming( zSig, 1, &zSig ); | 
|  | return roundAndPackFloat64( 0, zExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the double-precision floating-point value `a' is equal to the | 
|  | corresponding value `b', and 0 otherwise.  The comparison is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float64_eq( float64 a, float64 b ) | 
|  | { | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the double-precision floating-point value `a' is less than or | 
|  | equal to the corresponding value `b', and 0 otherwise.  The comparison is | 
|  | performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float64_le( float64 a, float64 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); | 
|  | return ( a == b ) || ( aSign ^ ( a < b ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the double-precision floating-point value `a' is less than | 
|  | the corresponding value `b', and 0 otherwise.  The comparison is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float64_lt( float64 a, float64 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); | 
|  | return ( a != b ) && ( aSign ^ ( a < b ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the double-precision floating-point value `a' is equal to the | 
|  | corresponding value `b', and 0 otherwise.  The invalid exception is raised | 
|  | if either operand is a NaN.  Otherwise, the comparison is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float64_eq_signaling( float64 a, float64 b ) | 
|  | { | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return 0; | 
|  | } | 
|  | return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the double-precision floating-point value `a' is less than or | 
|  | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not | 
|  | cause an exception.  Otherwise, the comparison is performed according to the | 
|  | IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float64_le_quiet( float64 a, float64 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  | //int16 aExp, bExp; | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); | 
|  | return ( a == b ) || ( aSign ^ ( a < b ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the double-precision floating-point value `a' is less than | 
|  | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an | 
|  | exception.  Otherwise, the comparison is performed according to the IEC/IEEE | 
|  | Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag float64_lt_quiet( float64 a, float64 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | 
|  | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | 
|  | ) { | 
|  | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloat64Sign( a ); | 
|  | bSign = extractFloat64Sign( b ); | 
|  | if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); | 
|  | return ( a != b ) && ( aSign ^ ( a < b ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | #ifdef FLOATX80 | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the extended double-precision floating- | 
|  | point value `a' to the 32-bit two's complement integer format.  The | 
|  | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic---which means in particular that the conversion | 
|  | is rounded according to the current rounding mode.  If `a' is a NaN, the | 
|  | largest positive integer is returned.  Otherwise, if the conversion | 
|  | overflows, the largest integer with the same sign as `a' is returned. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | int32 floatx80_to_int32( floatx80 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, shiftCount; | 
|  | bits64 aSig; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | 
|  | shiftCount = 0x4037 - aExp; | 
|  | if ( shiftCount <= 0 ) shiftCount = 1; | 
|  | shift64RightJamming( aSig, shiftCount, &aSig ); | 
|  | return roundAndPackInt32( aSign, aSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the extended double-precision floating- | 
|  | point value `a' to the 32-bit two's complement integer format.  The | 
|  | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic, except that the conversion is always rounded | 
|  | toward zero.  If `a' is a NaN, the largest positive integer is returned. | 
|  | Otherwise, if the conversion overflows, the largest integer with the same | 
|  | sign as `a' is returned. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | int32 floatx80_to_int32_round_to_zero( floatx80 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, shiftCount; | 
|  | bits64 aSig, savedASig; | 
|  | int32 z; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | shiftCount = 0x403E - aExp; | 
|  | if ( shiftCount < 32 ) { | 
|  | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | 
|  | goto invalid; | 
|  | } | 
|  | else if ( 63 < shiftCount ) { | 
|  | if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | 
|  | return 0; | 
|  | } | 
|  | savedASig = aSig; | 
|  | aSig >>= shiftCount; | 
|  | z = aSig; | 
|  | if ( aSign ) z = - z; | 
|  | if ( ( z < 0 ) ^ aSign ) { | 
|  | invalid: | 
|  | float_exception_flags |= float_flag_invalid; | 
|  | return aSign ? 0x80000000 : 0x7FFFFFFF; | 
|  | } | 
|  | if ( ( aSig<<shiftCount ) != savedASig ) { | 
|  | float_exception_flags |= float_flag_inexact; | 
|  | } | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the extended double-precision floating- | 
|  | point value `a' to the single-precision floating-point format.  The | 
|  | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float32 floatx80_to_float32( floatx80 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp; | 
|  | bits64 aSig; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (bits64) ( aSig<<1 ) ) { | 
|  | return commonNaNToFloat32( floatx80ToCommonNaN( a ) ); | 
|  | } | 
|  | return packFloat32( aSign, 0xFF, 0 ); | 
|  | } | 
|  | shift64RightJamming( aSig, 33, &aSig ); | 
|  | if ( aExp || aSig ) aExp -= 0x3F81; | 
|  | return roundAndPackFloat32( aSign, aExp, aSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of converting the extended double-precision floating- | 
|  | point value `a' to the double-precision floating-point format.  The | 
|  | conversion is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | float64 floatx80_to_float64( floatx80 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp; | 
|  | bits64 aSig, zSig; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (bits64) ( aSig<<1 ) ) { | 
|  | return commonNaNToFloat64( floatx80ToCommonNaN( a ) ); | 
|  | } | 
|  | return packFloat64( aSign, 0x7FF, 0 ); | 
|  | } | 
|  | shift64RightJamming( aSig, 1, &zSig ); | 
|  | if ( aExp || aSig ) aExp -= 0x3C01; | 
|  | return roundAndPackFloat64( aSign, aExp, zSig ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Rounds the extended double-precision floating-point value `a' to an integer, | 
|  | and returns the result as an extended quadruple-precision floating-point | 
|  | value.  The operation is performed according to the IEC/IEEE Standard for | 
|  | Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | floatx80 floatx80_round_to_int( floatx80 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp; | 
|  | bits64 lastBitMask, roundBitsMask; | 
|  | int8 roundingMode; | 
|  | floatx80 z; | 
|  |  | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | if ( 0x403E <= aExp ) { | 
|  | if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { | 
|  | return propagateFloatx80NaN( a, a ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | if ( aExp <= 0x3FFE ) { | 
|  | if (    ( aExp == 0 ) | 
|  | && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { | 
|  | return a; | 
|  | } | 
|  | float_exception_flags |= float_flag_inexact; | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | switch ( float_rounding_mode ) { | 
|  | case float_round_nearest_even: | 
|  | if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) | 
|  | ) { | 
|  | return | 
|  | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | break; | 
|  | case float_round_down: | 
|  | return | 
|  | aSign ? | 
|  | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | 
|  | : packFloatx80( 0, 0, 0 ); | 
|  | case float_round_up: | 
|  | return | 
|  | aSign ? packFloatx80( 1, 0, 0 ) | 
|  | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | return packFloatx80( aSign, 0, 0 ); | 
|  | } | 
|  | lastBitMask = 1; | 
|  | lastBitMask <<= 0x403E - aExp; | 
|  | roundBitsMask = lastBitMask - 1; | 
|  | z = a; | 
|  | roundingMode = float_rounding_mode; | 
|  | if ( roundingMode == float_round_nearest_even ) { | 
|  | z.low += lastBitMask>>1; | 
|  | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | 
|  | } | 
|  | else if ( roundingMode != float_round_to_zero ) { | 
|  | if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { | 
|  | z.low += roundBitsMask; | 
|  | } | 
|  | } | 
|  | z.low &= ~ roundBitsMask; | 
|  | if ( z.low == 0 ) { | 
|  | ++z.high; | 
|  | z.low = LIT64( 0x8000000000000000 ); | 
|  | } | 
|  | if ( z.low != a.low ) float_exception_flags |= float_flag_inexact; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of adding the absolute values of the extended double- | 
|  | precision floating-point values `a' and `b'.  If `zSign' is true, the sum is | 
|  | negated before being returned.  `zSign' is ignored if the result is a NaN. | 
|  | The addition is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) | 
|  | { | 
|  | int32 aExp, bExp, zExp; | 
|  | bits64 aSig, bSig, zSig0, zSig1; | 
|  | int32 expDiff; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | bSig = extractFloatx80Frac( b ); | 
|  | bExp = extractFloatx80Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | if ( 0 < expDiff ) { | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) --expDiff; | 
|  | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | 
|  | zExp = aExp; | 
|  | } | 
|  | else if ( expDiff < 0 ) { | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( aExp == 0 ) ++expDiff; | 
|  | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | 
|  | zExp = bExp; | 
|  | } | 
|  | else { | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | 
|  | return propagateFloatx80NaN( a, b ); | 
|  | } | 
|  | return a; | 
|  | } | 
|  | zSig1 = 0; | 
|  | zSig0 = aSig + bSig; | 
|  | if ( aExp == 0 ) { | 
|  | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | 
|  | goto roundAndPack; | 
|  | } | 
|  | zExp = aExp; | 
|  | goto shiftRight1; | 
|  | } | 
|  |  | 
|  | zSig0 = aSig + bSig; | 
|  |  | 
|  | if ( (sbits64) zSig0 < 0 ) goto roundAndPack; | 
|  | shiftRight1: | 
|  | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | 
|  | zSig0 |= LIT64( 0x8000000000000000 ); | 
|  | ++zExp; | 
|  | roundAndPack: | 
|  | return | 
|  | roundAndPackFloatx80( | 
|  | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of subtracting the absolute values of the extended | 
|  | double-precision floating-point values `a' and `b'.  If `zSign' is true, | 
|  | the difference is negated before being returned.  `zSign' is ignored if the | 
|  | result is a NaN.  The subtraction is performed according to the IEC/IEEE | 
|  | Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) | 
|  | { | 
|  | int32 aExp, bExp, zExp; | 
|  | bits64 aSig, bSig, zSig0, zSig1; | 
|  | int32 expDiff; | 
|  | floatx80 z; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | bSig = extractFloatx80Frac( b ); | 
|  | bExp = extractFloatx80Exp( b ); | 
|  | expDiff = aExp - bExp; | 
|  | if ( 0 < expDiff ) goto aExpBigger; | 
|  | if ( expDiff < 0 ) goto bExpBigger; | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | 
|  | return propagateFloatx80NaN( a, b ); | 
|  | } | 
|  | float_raise( float_flag_invalid ); | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | aExp = 1; | 
|  | bExp = 1; | 
|  | } | 
|  | zSig1 = 0; | 
|  | if ( bSig < aSig ) goto aBigger; | 
|  | if ( aSig < bSig ) goto bBigger; | 
|  | return packFloatx80( float_rounding_mode == float_round_down, 0, 0 ); | 
|  | bExpBigger: | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | 
|  | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( aExp == 0 ) ++expDiff; | 
|  | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | 
|  | bBigger: | 
|  | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | 
|  | zExp = bExp; | 
|  | zSign ^= 1; | 
|  | goto normalizeRoundAndPack; | 
|  | aExpBigger: | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) --expDiff; | 
|  | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | 
|  | aBigger: | 
|  | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | 
|  | zExp = aExp; | 
|  | normalizeRoundAndPack: | 
|  | return | 
|  | normalizeRoundAndPackFloatx80( | 
|  | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of adding the extended double-precision floating-point | 
|  | values `a' and `b'.  The operation is performed according to the IEC/IEEE | 
|  | Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | floatx80 floatx80_add( floatx80 a, floatx80 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return addFloatx80Sigs( a, b, aSign ); | 
|  | } | 
|  | else { | 
|  | return subFloatx80Sigs( a, b, aSign ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of subtracting the extended double-precision floating- | 
|  | point values `a' and `b'.  The operation is performed according to the | 
|  | IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | floatx80 floatx80_sub( floatx80 a, floatx80 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign == bSign ) { | 
|  | return subFloatx80Sigs( a, b, aSign ); | 
|  | } | 
|  | else { | 
|  | return addFloatx80Sigs( a, b, aSign ); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of multiplying the extended double-precision floating- | 
|  | point values `a' and `b'.  The operation is performed according to the | 
|  | IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | floatx80 floatx80_mul( floatx80 a, floatx80 b ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int32 aExp, bExp, zExp; | 
|  | bits64 aSig, bSig, zSig0, zSig1; | 
|  | floatx80 z; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSig = extractFloatx80Frac( b ); | 
|  | bExp = extractFloatx80Exp( b ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if (    (bits64) ( aSig<<1 ) | 
|  | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | 
|  | return propagateFloatx80NaN( a, b ); | 
|  | } | 
|  | if ( ( bExp | bSig ) == 0 ) goto invalid; | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid ); | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | 
|  | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | 
|  | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | zExp = aExp + bExp - 0x3FFE; | 
|  | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | 
|  | if ( 0 < (sbits64) zSig0 ) { | 
|  | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); | 
|  | --zExp; | 
|  | } | 
|  | return | 
|  | roundAndPackFloatx80( | 
|  | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the result of dividing the extended double-precision floating-point | 
|  | value `a' by the corresponding value `b'.  The operation is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | floatx80 floatx80_div( floatx80 a, floatx80 b ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int32 aExp, bExp, zExp; | 
|  | bits64 aSig, bSig, zSig0, zSig1; | 
|  | bits64 rem0, rem1, rem2, term0, term1, term2; | 
|  | floatx80 z; | 
|  |  | 
|  | aSig = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSig = extractFloatx80Frac( b ); | 
|  | bExp = extractFloatx80Exp( b ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | zSign = aSign ^ bSign; | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | 
|  | goto invalid; | 
|  | } | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | 
|  | return packFloatx80( zSign, 0, 0 ); | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | if ( ( aExp | aSig ) == 0 ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid ); | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | float_raise( float_flag_divbyzero ); | 
|  | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | 
|  | } | 
|  | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | 
|  | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | 
|  | } | 
|  | zExp = aExp - bExp + 0x3FFE; | 
|  | rem1 = 0; | 
|  | if ( bSig <= aSig ) { | 
|  | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | 
|  | ++zExp; | 
|  | } | 
|  | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | 
|  | mul64To128( bSig, zSig0, &term0, &term1 ); | 
|  | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | 
|  | while ( (sbits64) rem0 < 0 ) { | 
|  | --zSig0; | 
|  | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | 
|  | } | 
|  | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | 
|  | if ( (bits64) ( zSig1<<1 ) <= 8 ) { | 
|  | mul64To128( bSig, zSig1, &term1, &term2 ); | 
|  | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | 
|  | while ( (sbits64) rem1 < 0 ) { | 
|  | --zSig1; | 
|  | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | 
|  | } | 
|  | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | 
|  | } | 
|  | return | 
|  | roundAndPackFloatx80( | 
|  | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the remainder of the extended double-precision floating-point value | 
|  | `a' with respect to the corresponding value `b'.  The operation is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | floatx80 floatx80_rem( floatx80 a, floatx80 b ) | 
|  | { | 
|  | flag aSign, bSign, zSign; | 
|  | int32 aExp, bExp, expDiff; | 
|  | bits64 aSig0, aSig1, bSig; | 
|  | bits64 q, term0, term1, alternateASig0, alternateASig1; | 
|  | floatx80 z; | 
|  |  | 
|  | aSig0 = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSig = extractFloatx80Frac( b ); | 
|  | bExp = extractFloatx80Exp( b ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if (    (bits64) ( aSig0<<1 ) | 
|  | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | 
|  | return propagateFloatx80NaN( a, b ); | 
|  | } | 
|  | goto invalid; | 
|  | } | 
|  | if ( bExp == 0x7FFF ) { | 
|  | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | 
|  | return a; | 
|  | } | 
|  | if ( bExp == 0 ) { | 
|  | if ( bSig == 0 ) { | 
|  | invalid: | 
|  | float_raise( float_flag_invalid ); | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( (bits64) ( aSig0<<1 ) == 0 ) return a; | 
|  | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | 
|  | } | 
|  | bSig |= LIT64( 0x8000000000000000 ); | 
|  | zSign = aSign; | 
|  | expDiff = aExp - bExp; | 
|  | aSig1 = 0; | 
|  | if ( expDiff < 0 ) { | 
|  | if ( expDiff < -1 ) return a; | 
|  | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | 
|  | expDiff = 0; | 
|  | } | 
|  | q = ( bSig <= aSig0 ); | 
|  | if ( q ) aSig0 -= bSig; | 
|  | expDiff -= 64; | 
|  | while ( 0 < expDiff ) { | 
|  | q = estimateDiv128To64( aSig0, aSig1, bSig ); | 
|  | q = ( 2 < q ) ? q - 2 : 0; | 
|  | mul64To128( bSig, q, &term0, &term1 ); | 
|  | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | 
|  | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | 
|  | expDiff -= 62; | 
|  | } | 
|  | expDiff += 64; | 
|  | if ( 0 < expDiff ) { | 
|  | q = estimateDiv128To64( aSig0, aSig1, bSig ); | 
|  | q = ( 2 < q ) ? q - 2 : 0; | 
|  | q >>= 64 - expDiff; | 
|  | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | 
|  | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | 
|  | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | 
|  | while ( le128( term0, term1, aSig0, aSig1 ) ) { | 
|  | ++q; | 
|  | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | 
|  | } | 
|  | } | 
|  | else { | 
|  | term1 = 0; | 
|  | term0 = bSig; | 
|  | } | 
|  | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | 
|  | if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | 
|  | || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | 
|  | && ( q & 1 ) ) | 
|  | ) { | 
|  | aSig0 = alternateASig0; | 
|  | aSig1 = alternateASig1; | 
|  | zSign = ! zSign; | 
|  | } | 
|  | return | 
|  | normalizeRoundAndPackFloatx80( | 
|  | 80, zSign, bExp + expDiff, aSig0, aSig1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns the square root of the extended double-precision floating-point | 
|  | value `a'.  The operation is performed according to the IEC/IEEE Standard | 
|  | for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | floatx80 floatx80_sqrt( floatx80 a ) | 
|  | { | 
|  | flag aSign; | 
|  | int32 aExp, zExp; | 
|  | bits64 aSig0, aSig1, zSig0, zSig1; | 
|  | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; | 
|  | bits64 shiftedRem0, shiftedRem1; | 
|  | floatx80 z; | 
|  |  | 
|  | aSig0 = extractFloatx80Frac( a ); | 
|  | aExp = extractFloatx80Exp( a ); | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | if ( aExp == 0x7FFF ) { | 
|  | if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a ); | 
|  | if ( ! aSign ) return a; | 
|  | goto invalid; | 
|  | } | 
|  | if ( aSign ) { | 
|  | if ( ( aExp | aSig0 ) == 0 ) return a; | 
|  | invalid: | 
|  | float_raise( float_flag_invalid ); | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | return z; | 
|  | } | 
|  | if ( aExp == 0 ) { | 
|  | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | 
|  | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | 
|  | } | 
|  | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | 
|  | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | 
|  | zSig0 <<= 31; | 
|  | aSig1 = 0; | 
|  | shift128Right( aSig0, 0, ( aExp & 1 ) + 2, &aSig0, &aSig1 ); | 
|  | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0 ) + zSig0 + 4; | 
|  | if ( 0 <= (sbits64) zSig0 ) zSig0 = LIT64( 0xFFFFFFFFFFFFFFFF ); | 
|  | shortShift128Left( aSig0, aSig1, 2, &aSig0, &aSig1 ); | 
|  | mul64To128( zSig0, zSig0, &term0, &term1 ); | 
|  | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | 
|  | while ( (sbits64) rem0 < 0 ) { | 
|  | --zSig0; | 
|  | shortShift128Left( 0, zSig0, 1, &term0, &term1 ); | 
|  | term1 |= 1; | 
|  | add128( rem0, rem1, term0, term1, &rem0, &rem1 ); | 
|  | } | 
|  | shortShift128Left( rem0, rem1, 63, &shiftedRem0, &shiftedRem1 ); | 
|  | zSig1 = estimateDiv128To64( shiftedRem0, shiftedRem1, zSig0 ); | 
|  | if ( (bits64) ( zSig1<<1 ) <= 10 ) { | 
|  | if ( zSig1 == 0 ) zSig1 = 1; | 
|  | mul64To128( zSig0, zSig1, &term1, &term2 ); | 
|  | shortShift128Left( term1, term2, 1, &term1, &term2 ); | 
|  | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | 
|  | mul64To128( zSig1, zSig1, &term2, &term3 ); | 
|  | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | 
|  | while ( (sbits64) rem1 < 0 ) { | 
|  | --zSig1; | 
|  | shortShift192Left( 0, zSig0, zSig1, 1, &term1, &term2, &term3 ); | 
|  | term3 |= 1; | 
|  | add192( | 
|  | rem1, rem2, rem3, term1, term2, term3, &rem1, &rem2, &rem3 ); | 
|  | } | 
|  | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | 
|  | } | 
|  | return | 
|  | roundAndPackFloatx80( | 
|  | floatx80_rounding_precision, 0, zExp, zSig0, zSig1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the extended double-precision floating-point value `a' is | 
|  | equal to the corresponding value `b', and 0 otherwise.  The comparison is | 
|  | performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag floatx80_eq( floatx80 a, floatx80 b ) | 
|  | { | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | if (    floatx80_is_signaling_nan( a ) | 
|  | || floatx80_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return | 
|  | ( a.low == b.low ) | 
|  | && (    ( a.high == b.high ) | 
|  | || (    ( a.low == 0 ) | 
|  | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | 
|  | ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the extended double-precision floating-point value `a' is | 
|  | less than or equal to the corresponding value `b', and 0 otherwise.  The | 
|  | comparison is performed according to the IEC/IEEE Standard for Binary | 
|  | Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag floatx80_le( floatx80 a, floatx80 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | == 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? le128( b.high, b.low, a.high, a.low ) | 
|  | : le128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the extended double-precision floating-point value `a' is | 
|  | less than the corresponding value `b', and 0 otherwise.  The comparison | 
|  | is performed according to the IEC/IEEE Standard for Binary Floating-point | 
|  | Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag floatx80_lt( floatx80 a, floatx80 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | != 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? lt128( b.high, b.low, a.high, a.low ) | 
|  | : lt128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the extended double-precision floating-point value `a' is equal | 
|  | to the corresponding value `b', and 0 otherwise.  The invalid exception is | 
|  | raised if either operand is a NaN.  Otherwise, the comparison is performed | 
|  | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag floatx80_eq_signaling( floatx80 a, floatx80 b ) | 
|  | { | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | return 0; | 
|  | } | 
|  | return | 
|  | ( a.low == b.low ) | 
|  | && (    ( a.high == b.high ) | 
|  | || (    ( a.low == 0 ) | 
|  | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | 
|  | ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the extended double-precision floating-point value `a' is less | 
|  | than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs | 
|  | do not cause an exception.  Otherwise, the comparison is performed according | 
|  | to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag floatx80_le_quiet( floatx80 a, floatx80 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | if (    floatx80_is_signaling_nan( a ) | 
|  | || floatx80_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | == 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? le128( b.high, b.low, a.high, a.low ) | 
|  | : le128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | Returns 1 if the extended double-precision floating-point value `a' is less | 
|  | than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause | 
|  | an exception.  Otherwise, the comparison is performed according to the | 
|  | IEC/IEEE Standard for Binary Floating-point Arithmetic. | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  | flag floatx80_lt_quiet( floatx80 a, floatx80 b ) | 
|  | { | 
|  | flag aSign, bSign; | 
|  |  | 
|  | if (    (    ( extractFloatx80Exp( a ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | 
|  | || (    ( extractFloatx80Exp( b ) == 0x7FFF ) | 
|  | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | 
|  | ) { | 
|  | if (    floatx80_is_signaling_nan( a ) | 
|  | || floatx80_is_signaling_nan( b ) ) { | 
|  | float_raise( float_flag_invalid ); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | aSign = extractFloatx80Sign( a ); | 
|  | bSign = extractFloatx80Sign( b ); | 
|  | if ( aSign != bSign ) { | 
|  | return | 
|  | aSign | 
|  | && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | 
|  | != 0 ); | 
|  | } | 
|  | return | 
|  | aSign ? lt128( b.high, b.low, a.high, a.low ) | 
|  | : lt128( a.high, a.low, b.high, b.low ); | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  |