|  | /* | 
|  | * Block driver for the QCOW version 2 format | 
|  | * | 
|  | * Copyright (c) 2004-2006 Fabrice Bellard | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include <zlib.h> | 
|  |  | 
|  | #include "qemu-common.h" | 
|  | #include "block/block_int.h" | 
|  | #include "block/qcow2.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, | 
|  | bool exact_size) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | int new_l1_size2, ret, i; | 
|  | uint64_t *new_l1_table; | 
|  | int64_t old_l1_table_offset, old_l1_size; | 
|  | int64_t new_l1_table_offset, new_l1_size; | 
|  | uint8_t data[12]; | 
|  |  | 
|  | if (min_size <= s->l1_size) | 
|  | return 0; | 
|  |  | 
|  | /* Do a sanity check on min_size before trying to calculate new_l1_size | 
|  | * (this prevents overflows during the while loop for the calculation of | 
|  | * new_l1_size) */ | 
|  | if (min_size > INT_MAX / sizeof(uint64_t)) { | 
|  | return -EFBIG; | 
|  | } | 
|  |  | 
|  | if (exact_size) { | 
|  | new_l1_size = min_size; | 
|  | } else { | 
|  | /* Bump size up to reduce the number of times we have to grow */ | 
|  | new_l1_size = s->l1_size; | 
|  | if (new_l1_size == 0) { | 
|  | new_l1_size = 1; | 
|  | } | 
|  | while (min_size > new_l1_size) { | 
|  | new_l1_size = (new_l1_size * 3 + 1) / 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (new_l1_size > INT_MAX / sizeof(uint64_t)) { | 
|  | return -EFBIG; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG_ALLOC2 | 
|  | fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", | 
|  | s->l1_size, new_l1_size); | 
|  | #endif | 
|  |  | 
|  | new_l1_size2 = sizeof(uint64_t) * new_l1_size; | 
|  | new_l1_table = qemu_try_blockalign(bs->file, | 
|  | align_offset(new_l1_size2, 512)); | 
|  | if (new_l1_table == NULL) { | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); | 
|  |  | 
|  | memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); | 
|  |  | 
|  | /* write new table (align to cluster) */ | 
|  | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); | 
|  | new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); | 
|  | if (new_l1_table_offset < 0) { | 
|  | qemu_vfree(new_l1_table); | 
|  | return new_l1_table_offset; | 
|  | } | 
|  |  | 
|  | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* the L1 position has not yet been updated, so these clusters must | 
|  | * indeed be completely free */ | 
|  | ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, | 
|  | new_l1_size2); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); | 
|  | for(i = 0; i < s->l1_size; i++) | 
|  | new_l1_table[i] = cpu_to_be64(new_l1_table[i]); | 
|  | ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | for(i = 0; i < s->l1_size; i++) | 
|  | new_l1_table[i] = be64_to_cpu(new_l1_table[i]); | 
|  |  | 
|  | /* set new table */ | 
|  | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); | 
|  | cpu_to_be32w((uint32_t*)data, new_l1_size); | 
|  | stq_be_p(data + 4, new_l1_table_offset); | 
|  | ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  | qemu_vfree(s->l1_table); | 
|  | old_l1_table_offset = s->l1_table_offset; | 
|  | s->l1_table_offset = new_l1_table_offset; | 
|  | s->l1_table = new_l1_table; | 
|  | old_l1_size = s->l1_size; | 
|  | s->l1_size = new_l1_size; | 
|  | qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), | 
|  | QCOW2_DISCARD_OTHER); | 
|  | return 0; | 
|  | fail: | 
|  | qemu_vfree(new_l1_table); | 
|  | qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, | 
|  | QCOW2_DISCARD_OTHER); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * l2_load | 
|  | * | 
|  | * Loads a L2 table into memory. If the table is in the cache, the cache | 
|  | * is used; otherwise the L2 table is loaded from the image file. | 
|  | * | 
|  | * Returns a pointer to the L2 table on success, or NULL if the read from | 
|  | * the image file failed. | 
|  | */ | 
|  |  | 
|  | static int l2_load(BlockDriverState *bs, uint64_t l2_offset, | 
|  | uint64_t **l2_table) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | int ret; | 
|  |  | 
|  | ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writes one sector of the L1 table to the disk (can't update single entries | 
|  | * and we really don't want bdrv_pread to perform a read-modify-write) | 
|  | */ | 
|  | #define L1_ENTRIES_PER_SECTOR (512 / 8) | 
|  | int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; | 
|  | int l1_start_index; | 
|  | int i, ret; | 
|  |  | 
|  | l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); | 
|  | for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; | 
|  | i++) | 
|  | { | 
|  | buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); | 
|  | } | 
|  |  | 
|  | ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, | 
|  | s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); | 
|  | ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, | 
|  | buf, sizeof(buf)); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * l2_allocate | 
|  | * | 
|  | * Allocate a new l2 entry in the file. If l1_index points to an already | 
|  | * used entry in the L2 table (i.e. we are doing a copy on write for the L2 | 
|  | * table) copy the contents of the old L2 table into the newly allocated one. | 
|  | * Otherwise the new table is initialized with zeros. | 
|  | * | 
|  | */ | 
|  |  | 
|  | static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | uint64_t old_l2_offset; | 
|  | uint64_t *l2_table = NULL; | 
|  | int64_t l2_offset; | 
|  | int ret; | 
|  |  | 
|  | old_l2_offset = s->l1_table[l1_index]; | 
|  |  | 
|  | trace_qcow2_l2_allocate(bs, l1_index); | 
|  |  | 
|  | /* allocate a new l2 entry */ | 
|  |  | 
|  | l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); | 
|  | if (l2_offset < 0) { | 
|  | ret = l2_offset; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* allocate a new entry in the l2 cache */ | 
|  |  | 
|  | trace_qcow2_l2_allocate_get_empty(bs, l1_index); | 
|  | ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | l2_table = *table; | 
|  |  | 
|  | if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { | 
|  | /* if there was no old l2 table, clear the new table */ | 
|  | memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); | 
|  | } else { | 
|  | uint64_t* old_table; | 
|  |  | 
|  | /* if there was an old l2 table, read it from the disk */ | 
|  | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); | 
|  | ret = qcow2_cache_get(bs, s->l2_table_cache, | 
|  | old_l2_offset & L1E_OFFSET_MASK, | 
|  | (void**) &old_table); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | memcpy(l2_table, old_table, s->cluster_size); | 
|  |  | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table); | 
|  | } | 
|  |  | 
|  | /* write the l2 table to the file */ | 
|  | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); | 
|  |  | 
|  | trace_qcow2_l2_allocate_write_l2(bs, l1_index); | 
|  | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); | 
|  | ret = qcow2_cache_flush(bs, s->l2_table_cache); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* update the L1 entry */ | 
|  | trace_qcow2_l2_allocate_write_l1(bs, l1_index); | 
|  | s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; | 
|  | ret = qcow2_write_l1_entry(bs, l1_index); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | *table = l2_table; | 
|  | trace_qcow2_l2_allocate_done(bs, l1_index, 0); | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | trace_qcow2_l2_allocate_done(bs, l1_index, ret); | 
|  | if (l2_table != NULL) { | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void**) table); | 
|  | } | 
|  | s->l1_table[l1_index] = old_l2_offset; | 
|  | if (l2_offset > 0) { | 
|  | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), | 
|  | QCOW2_DISCARD_ALWAYS); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks how many clusters in a given L2 table are contiguous in the image | 
|  | * file. As soon as one of the flags in the bitmask stop_flags changes compared | 
|  | * to the first cluster, the search is stopped and the cluster is not counted | 
|  | * as contiguous. (This allows it, for example, to stop at the first compressed | 
|  | * cluster which may require a different handling) | 
|  | */ | 
|  | static int count_contiguous_clusters(int nb_clusters, int cluster_size, | 
|  | uint64_t *l2_table, uint64_t stop_flags) | 
|  | { | 
|  | int i; | 
|  | uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; | 
|  | uint64_t first_entry = be64_to_cpu(l2_table[0]); | 
|  | uint64_t offset = first_entry & mask; | 
|  |  | 
|  | if (!offset) | 
|  | return 0; | 
|  |  | 
|  | assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED); | 
|  |  | 
|  | for (i = 0; i < nb_clusters; i++) { | 
|  | uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; | 
|  | if (offset + (uint64_t) i * cluster_size != l2_entry) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static int count_contiguous_free_clusters(int nb_clusters, uint64_t *l2_table) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nb_clusters; i++) { | 
|  | int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); | 
|  |  | 
|  | if (type != QCOW2_CLUSTER_UNALLOCATED) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* The crypt function is compatible with the linux cryptoloop | 
|  | algorithm for < 4 GB images. NOTE: out_buf == in_buf is | 
|  | supported */ | 
|  | int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num, | 
|  | uint8_t *out_buf, const uint8_t *in_buf, | 
|  | int nb_sectors, bool enc, | 
|  | Error **errp) | 
|  | { | 
|  | union { | 
|  | uint64_t ll[2]; | 
|  | uint8_t b[16]; | 
|  | } ivec; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | for(i = 0; i < nb_sectors; i++) { | 
|  | ivec.ll[0] = cpu_to_le64(sector_num); | 
|  | ivec.ll[1] = 0; | 
|  | if (qcrypto_cipher_setiv(s->cipher, | 
|  | ivec.b, G_N_ELEMENTS(ivec.b), | 
|  | errp) < 0) { | 
|  | return -1; | 
|  | } | 
|  | if (enc) { | 
|  | ret = qcrypto_cipher_encrypt(s->cipher, | 
|  | in_buf, | 
|  | out_buf, | 
|  | 512, | 
|  | errp); | 
|  | } else { | 
|  | ret = qcrypto_cipher_decrypt(s->cipher, | 
|  | in_buf, | 
|  | out_buf, | 
|  | 512, | 
|  | errp); | 
|  | } | 
|  | if (ret < 0) { | 
|  | return -1; | 
|  | } | 
|  | sector_num++; | 
|  | in_buf += 512; | 
|  | out_buf += 512; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int coroutine_fn copy_sectors(BlockDriverState *bs, | 
|  | uint64_t start_sect, | 
|  | uint64_t cluster_offset, | 
|  | int n_start, int n_end) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | QEMUIOVector qiov; | 
|  | struct iovec iov; | 
|  | int n, ret; | 
|  |  | 
|  | n = n_end - n_start; | 
|  | if (n <= 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | iov.iov_len = n * BDRV_SECTOR_SIZE; | 
|  | iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); | 
|  | if (iov.iov_base == NULL) { | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | qemu_iovec_init_external(&qiov, &iov, 1); | 
|  |  | 
|  | BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); | 
|  |  | 
|  | if (!bs->drv) { | 
|  | ret = -ENOMEDIUM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Call .bdrv_co_readv() directly instead of using the public block-layer | 
|  | * interface.  This avoids double I/O throttling and request tracking, | 
|  | * which can lead to deadlock when block layer copy-on-read is enabled. | 
|  | */ | 
|  | ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (bs->encrypted) { | 
|  | Error *err = NULL; | 
|  | assert(s->cipher); | 
|  | if (qcow2_encrypt_sectors(s, start_sect + n_start, | 
|  | iov.iov_base, iov.iov_base, n, | 
|  | true, &err) < 0) { | 
|  | ret = -EIO; | 
|  | error_free(err); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = qcow2_pre_write_overlap_check(bs, 0, | 
|  | cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); | 
|  | ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | qemu_vfree(iov.iov_base); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * get_cluster_offset | 
|  | * | 
|  | * For a given offset of the disk image, find the cluster offset in | 
|  | * qcow2 file. The offset is stored in *cluster_offset. | 
|  | * | 
|  | * on entry, *num is the number of contiguous sectors we'd like to | 
|  | * access following offset. | 
|  | * | 
|  | * on exit, *num is the number of contiguous sectors we can read. | 
|  | * | 
|  | * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error | 
|  | * cases. | 
|  | */ | 
|  | int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, | 
|  | int *num, uint64_t *cluster_offset) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | unsigned int l2_index; | 
|  | uint64_t l1_index, l2_offset, *l2_table; | 
|  | int l1_bits, c; | 
|  | unsigned int index_in_cluster, nb_clusters; | 
|  | uint64_t nb_available, nb_needed; | 
|  | int ret; | 
|  |  | 
|  | index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); | 
|  | nb_needed = *num + index_in_cluster; | 
|  |  | 
|  | l1_bits = s->l2_bits + s->cluster_bits; | 
|  |  | 
|  | /* compute how many bytes there are between the offset and | 
|  | * the end of the l1 entry | 
|  | */ | 
|  |  | 
|  | nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); | 
|  |  | 
|  | /* compute the number of available sectors */ | 
|  |  | 
|  | nb_available = (nb_available >> 9) + index_in_cluster; | 
|  |  | 
|  | if (nb_needed > nb_available) { | 
|  | nb_needed = nb_available; | 
|  | } | 
|  | assert(nb_needed <= INT_MAX); | 
|  |  | 
|  | *cluster_offset = 0; | 
|  |  | 
|  | /* seek to the l2 offset in the l1 table */ | 
|  |  | 
|  | l1_index = offset >> l1_bits; | 
|  | if (l1_index >= s->l1_size) { | 
|  | ret = QCOW2_CLUSTER_UNALLOCATED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; | 
|  | if (!l2_offset) { | 
|  | ret = QCOW2_CLUSTER_UNALLOCATED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (offset_into_cluster(s, l2_offset)) { | 
|  | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 | 
|  | " unaligned (L1 index: %#" PRIx64 ")", | 
|  | l2_offset, l1_index); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* load the l2 table in memory */ | 
|  |  | 
|  | ret = l2_load(bs, l2_offset, &l2_table); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* find the cluster offset for the given disk offset */ | 
|  |  | 
|  | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | 
|  | *cluster_offset = be64_to_cpu(l2_table[l2_index]); | 
|  |  | 
|  | /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */ | 
|  | nb_clusters = size_to_clusters(s, nb_needed << 9); | 
|  |  | 
|  | ret = qcow2_get_cluster_type(*cluster_offset); | 
|  | switch (ret) { | 
|  | case QCOW2_CLUSTER_COMPRESSED: | 
|  | /* Compressed clusters can only be processed one by one */ | 
|  | c = 1; | 
|  | *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; | 
|  | break; | 
|  | case QCOW2_CLUSTER_ZERO: | 
|  | if (s->qcow_version < 3) { | 
|  | qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" | 
|  | " in pre-v3 image (L2 offset: %#" PRIx64 | 
|  | ", L2 index: %#x)", l2_offset, l2_index); | 
|  | ret = -EIO; | 
|  | goto fail; | 
|  | } | 
|  | c = count_contiguous_clusters(nb_clusters, s->cluster_size, | 
|  | &l2_table[l2_index], QCOW_OFLAG_ZERO); | 
|  | *cluster_offset = 0; | 
|  | break; | 
|  | case QCOW2_CLUSTER_UNALLOCATED: | 
|  | /* how many empty clusters ? */ | 
|  | c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); | 
|  | *cluster_offset = 0; | 
|  | break; | 
|  | case QCOW2_CLUSTER_NORMAL: | 
|  | /* how many allocated clusters ? */ | 
|  | c = count_contiguous_clusters(nb_clusters, s->cluster_size, | 
|  | &l2_table[l2_index], QCOW_OFLAG_ZERO); | 
|  | *cluster_offset &= L2E_OFFSET_MASK; | 
|  | if (offset_into_cluster(s, *cluster_offset)) { | 
|  | qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#" | 
|  | PRIx64 " unaligned (L2 offset: %#" PRIx64 | 
|  | ", L2 index: %#x)", *cluster_offset, | 
|  | l2_offset, l2_index); | 
|  | ret = -EIO; | 
|  | goto fail; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); | 
|  |  | 
|  | nb_available = (c * s->cluster_sectors); | 
|  |  | 
|  | out: | 
|  | if (nb_available > nb_needed) | 
|  | nb_available = nb_needed; | 
|  |  | 
|  | *num = nb_available - index_in_cluster; | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | fail: | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_cluster_table | 
|  | * | 
|  | * for a given disk offset, load (and allocate if needed) | 
|  | * the l2 table. | 
|  | * | 
|  | * the l2 table offset in the qcow2 file and the cluster index | 
|  | * in the l2 table are given to the caller. | 
|  | * | 
|  | * Returns 0 on success, -errno in failure case | 
|  | */ | 
|  | static int get_cluster_table(BlockDriverState *bs, uint64_t offset, | 
|  | uint64_t **new_l2_table, | 
|  | int *new_l2_index) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | unsigned int l2_index; | 
|  | uint64_t l1_index, l2_offset; | 
|  | uint64_t *l2_table = NULL; | 
|  | int ret; | 
|  |  | 
|  | /* seek to the l2 offset in the l1 table */ | 
|  |  | 
|  | l1_index = offset >> (s->l2_bits + s->cluster_bits); | 
|  | if (l1_index >= s->l1_size) { | 
|  | ret = qcow2_grow_l1_table(bs, l1_index + 1, false); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(l1_index < s->l1_size); | 
|  | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; | 
|  | if (offset_into_cluster(s, l2_offset)) { | 
|  | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 | 
|  | " unaligned (L1 index: %#" PRIx64 ")", | 
|  | l2_offset, l1_index); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* seek the l2 table of the given l2 offset */ | 
|  |  | 
|  | if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { | 
|  | /* load the l2 table in memory */ | 
|  | ret = l2_load(bs, l2_offset, &l2_table); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } else { | 
|  | /* First allocate a new L2 table (and do COW if needed) */ | 
|  | ret = l2_allocate(bs, l1_index, &l2_table); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Then decrease the refcount of the old table */ | 
|  | if (l2_offset) { | 
|  | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), | 
|  | QCOW2_DISCARD_OTHER); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* find the cluster offset for the given disk offset */ | 
|  |  | 
|  | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | 
|  |  | 
|  | *new_l2_table = l2_table; | 
|  | *new_l2_index = l2_index; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * alloc_compressed_cluster_offset | 
|  | * | 
|  | * For a given offset of the disk image, return cluster offset in | 
|  | * qcow2 file. | 
|  | * | 
|  | * If the offset is not found, allocate a new compressed cluster. | 
|  | * | 
|  | * Return the cluster offset if successful, | 
|  | * Return 0, otherwise. | 
|  | * | 
|  | */ | 
|  |  | 
|  | uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, | 
|  | uint64_t offset, | 
|  | int compressed_size) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | int l2_index, ret; | 
|  | uint64_t *l2_table; | 
|  | int64_t cluster_offset; | 
|  | int nb_csectors; | 
|  |  | 
|  | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); | 
|  | if (ret < 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Compression can't overwrite anything. Fail if the cluster was already | 
|  | * allocated. */ | 
|  | cluster_offset = be64_to_cpu(l2_table[l2_index]); | 
|  | if (cluster_offset & L2E_OFFSET_MASK) { | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | cluster_offset = qcow2_alloc_bytes(bs, compressed_size); | 
|  | if (cluster_offset < 0) { | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - | 
|  | (cluster_offset >> 9); | 
|  |  | 
|  | cluster_offset |= QCOW_OFLAG_COMPRESSED | | 
|  | ((uint64_t)nb_csectors << s->csize_shift); | 
|  |  | 
|  | /* update L2 table */ | 
|  |  | 
|  | /* compressed clusters never have the copied flag */ | 
|  |  | 
|  | BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); | 
|  | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); | 
|  | l2_table[l2_index] = cpu_to_be64(cluster_offset); | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); | 
|  |  | 
|  | return cluster_offset; | 
|  | } | 
|  |  | 
|  | static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | int ret; | 
|  |  | 
|  | if (r->nb_sectors == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | qemu_co_mutex_unlock(&s->lock); | 
|  | ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, | 
|  | r->offset / BDRV_SECTOR_SIZE, | 
|  | r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); | 
|  | qemu_co_mutex_lock(&s->lock); | 
|  |  | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Before we update the L2 table to actually point to the new cluster, we | 
|  | * need to be sure that the refcounts have been increased and COW was | 
|  | * handled. | 
|  | */ | 
|  | qcow2_cache_depends_on_flush(s->l2_table_cache); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | int i, j = 0, l2_index, ret; | 
|  | uint64_t *old_cluster, *l2_table; | 
|  | uint64_t cluster_offset = m->alloc_offset; | 
|  |  | 
|  | trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); | 
|  | assert(m->nb_clusters > 0); | 
|  |  | 
|  | old_cluster = g_try_new(uint64_t, m->nb_clusters); | 
|  | if (old_cluster == NULL) { | 
|  | ret = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* copy content of unmodified sectors */ | 
|  | ret = perform_cow(bs, m, &m->cow_start); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = perform_cow(bs, m, &m->cow_end); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* Update L2 table. */ | 
|  | if (s->use_lazy_refcounts) { | 
|  | qcow2_mark_dirty(bs); | 
|  | } | 
|  | if (qcow2_need_accurate_refcounts(s)) { | 
|  | qcow2_cache_set_dependency(bs, s->l2_table_cache, | 
|  | s->refcount_block_cache); | 
|  | } | 
|  |  | 
|  | ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); | 
|  |  | 
|  | assert(l2_index + m->nb_clusters <= s->l2_size); | 
|  | for (i = 0; i < m->nb_clusters; i++) { | 
|  | /* if two concurrent writes happen to the same unallocated cluster | 
|  | * each write allocates separate cluster and writes data concurrently. | 
|  | * The first one to complete updates l2 table with pointer to its | 
|  | * cluster the second one has to do RMW (which is done above by | 
|  | * copy_sectors()), update l2 table with its cluster pointer and free | 
|  | * old cluster. This is what this loop does */ | 
|  | if(l2_table[l2_index + i] != 0) | 
|  | old_cluster[j++] = l2_table[l2_index + i]; | 
|  |  | 
|  | l2_table[l2_index + i] = cpu_to_be64((cluster_offset + | 
|  | (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); | 
|  | } | 
|  |  | 
|  |  | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); | 
|  |  | 
|  | /* | 
|  | * If this was a COW, we need to decrease the refcount of the old cluster. | 
|  | * Also flush bs->file to get the right order for L2 and refcount update. | 
|  | * | 
|  | * Don't discard clusters that reach a refcount of 0 (e.g. compressed | 
|  | * clusters), the next write will reuse them anyway. | 
|  | */ | 
|  | if (j != 0) { | 
|  | for (i = 0; i < j; i++) { | 
|  | qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, | 
|  | QCOW2_DISCARD_NEVER); | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | err: | 
|  | g_free(old_cluster); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the number of contiguous clusters that can be used for an allocating | 
|  | * write, but require COW to be performed (this includes yet unallocated space, | 
|  | * which must copy from the backing file) | 
|  | */ | 
|  | static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters, | 
|  | uint64_t *l2_table, int l2_index) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nb_clusters; i++) { | 
|  | uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); | 
|  | int cluster_type = qcow2_get_cluster_type(l2_entry); | 
|  |  | 
|  | switch(cluster_type) { | 
|  | case QCOW2_CLUSTER_NORMAL: | 
|  | if (l2_entry & QCOW_OFLAG_COPIED) { | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case QCOW2_CLUSTER_UNALLOCATED: | 
|  | case QCOW2_CLUSTER_COMPRESSED: | 
|  | case QCOW2_CLUSTER_ZERO: | 
|  | break; | 
|  | default: | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | assert(i <= nb_clusters); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if there already is an AIO write request in flight which allocates | 
|  | * the same cluster. In this case we need to wait until the previous | 
|  | * request has completed and updated the L2 table accordingly. | 
|  | * | 
|  | * Returns: | 
|  | *   0       if there was no dependency. *cur_bytes indicates the number of | 
|  | *           bytes from guest_offset that can be read before the next | 
|  | *           dependency must be processed (or the request is complete) | 
|  | * | 
|  | *   -EAGAIN if we had to wait for another request, previously gathered | 
|  | *           information on cluster allocation may be invalid now. The caller | 
|  | *           must start over anyway, so consider *cur_bytes undefined. | 
|  | */ | 
|  | static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, | 
|  | uint64_t *cur_bytes, QCowL2Meta **m) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | QCowL2Meta *old_alloc; | 
|  | uint64_t bytes = *cur_bytes; | 
|  |  | 
|  | QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { | 
|  |  | 
|  | uint64_t start = guest_offset; | 
|  | uint64_t end = start + bytes; | 
|  | uint64_t old_start = l2meta_cow_start(old_alloc); | 
|  | uint64_t old_end = l2meta_cow_end(old_alloc); | 
|  |  | 
|  | if (end <= old_start || start >= old_end) { | 
|  | /* No intersection */ | 
|  | } else { | 
|  | if (start < old_start) { | 
|  | /* Stop at the start of a running allocation */ | 
|  | bytes = old_start - start; | 
|  | } else { | 
|  | bytes = 0; | 
|  | } | 
|  |  | 
|  | /* Stop if already an l2meta exists. After yielding, it wouldn't | 
|  | * be valid any more, so we'd have to clean up the old L2Metas | 
|  | * and deal with requests depending on them before starting to | 
|  | * gather new ones. Not worth the trouble. */ | 
|  | if (bytes == 0 && *m) { | 
|  | *cur_bytes = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (bytes == 0) { | 
|  | /* Wait for the dependency to complete. We need to recheck | 
|  | * the free/allocated clusters when we continue. */ | 
|  | qemu_co_mutex_unlock(&s->lock); | 
|  | qemu_co_queue_wait(&old_alloc->dependent_requests); | 
|  | qemu_co_mutex_lock(&s->lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Make sure that existing clusters and new allocations are only used up to | 
|  | * the next dependency if we shortened the request above */ | 
|  | *cur_bytes = bytes; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks how many already allocated clusters that don't require a copy on | 
|  | * write there are at the given guest_offset (up to *bytes). If | 
|  | * *host_offset is not zero, only physically contiguous clusters beginning at | 
|  | * this host offset are counted. | 
|  | * | 
|  | * Note that guest_offset may not be cluster aligned. In this case, the | 
|  | * returned *host_offset points to exact byte referenced by guest_offset and | 
|  | * therefore isn't cluster aligned as well. | 
|  | * | 
|  | * Returns: | 
|  | *   0:     if no allocated clusters are available at the given offset. | 
|  | *          *bytes is normally unchanged. It is set to 0 if the cluster | 
|  | *          is allocated and doesn't need COW, but doesn't have the right | 
|  | *          physical offset. | 
|  | * | 
|  | *   1:     if allocated clusters that don't require a COW are available at | 
|  | *          the requested offset. *bytes may have decreased and describes | 
|  | *          the length of the area that can be written to. | 
|  | * | 
|  | *  -errno: in error cases | 
|  | */ | 
|  | static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, | 
|  | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | int l2_index; | 
|  | uint64_t cluster_offset; | 
|  | uint64_t *l2_table; | 
|  | uint64_t nb_clusters; | 
|  | unsigned int keep_clusters; | 
|  | int ret; | 
|  |  | 
|  | trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, | 
|  | *bytes); | 
|  |  | 
|  | assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset) | 
|  | == offset_into_cluster(s, *host_offset)); | 
|  |  | 
|  | /* | 
|  | * Calculate the number of clusters to look for. We stop at L2 table | 
|  | * boundaries to keep things simple. | 
|  | */ | 
|  | nb_clusters = | 
|  | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | 
|  |  | 
|  | l2_index = offset_to_l2_index(s, guest_offset); | 
|  | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | 
|  | assert(nb_clusters <= INT_MAX); | 
|  |  | 
|  | /* Find L2 entry for the first involved cluster */ | 
|  | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | cluster_offset = be64_to_cpu(l2_table[l2_index]); | 
|  |  | 
|  | /* Check how many clusters are already allocated and don't need COW */ | 
|  | if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL | 
|  | && (cluster_offset & QCOW_OFLAG_COPIED)) | 
|  | { | 
|  | /* If a specific host_offset is required, check it */ | 
|  | bool offset_matches = | 
|  | (cluster_offset & L2E_OFFSET_MASK) == *host_offset; | 
|  |  | 
|  | if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { | 
|  | qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " | 
|  | "%#llx unaligned (guest offset: %#" PRIx64 | 
|  | ")", cluster_offset & L2E_OFFSET_MASK, | 
|  | guest_offset); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (*host_offset != 0 && !offset_matches) { | 
|  | *bytes = 0; | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* We keep all QCOW_OFLAG_COPIED clusters */ | 
|  | keep_clusters = | 
|  | count_contiguous_clusters(nb_clusters, s->cluster_size, | 
|  | &l2_table[l2_index], | 
|  | QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); | 
|  | assert(keep_clusters <= nb_clusters); | 
|  |  | 
|  | *bytes = MIN(*bytes, | 
|  | keep_clusters * s->cluster_size | 
|  | - offset_into_cluster(s, guest_offset)); | 
|  |  | 
|  | ret = 1; | 
|  | } else { | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | /* Cleanup */ | 
|  | out: | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); | 
|  |  | 
|  | /* Only return a host offset if we actually made progress. Otherwise we | 
|  | * would make requirements for handle_alloc() that it can't fulfill */ | 
|  | if (ret > 0) { | 
|  | *host_offset = (cluster_offset & L2E_OFFSET_MASK) | 
|  | + offset_into_cluster(s, guest_offset); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates new clusters for the given guest_offset. | 
|  | * | 
|  | * At most *nb_clusters are allocated, and on return *nb_clusters is updated to | 
|  | * contain the number of clusters that have been allocated and are contiguous | 
|  | * in the image file. | 
|  | * | 
|  | * If *host_offset is non-zero, it specifies the offset in the image file at | 
|  | * which the new clusters must start. *nb_clusters can be 0 on return in this | 
|  | * case if the cluster at host_offset is already in use. If *host_offset is | 
|  | * zero, the clusters can be allocated anywhere in the image file. | 
|  | * | 
|  | * *host_offset is updated to contain the offset into the image file at which | 
|  | * the first allocated cluster starts. | 
|  | * | 
|  | * Return 0 on success and -errno in error cases. -EAGAIN means that the | 
|  | * function has been waiting for another request and the allocation must be | 
|  | * restarted, but the whole request should not be failed. | 
|  | */ | 
|  | static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, | 
|  | uint64_t *host_offset, uint64_t *nb_clusters) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  |  | 
|  | trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, | 
|  | *host_offset, *nb_clusters); | 
|  |  | 
|  | /* Allocate new clusters */ | 
|  | trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); | 
|  | if (*host_offset == 0) { | 
|  | int64_t cluster_offset = | 
|  | qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); | 
|  | if (cluster_offset < 0) { | 
|  | return cluster_offset; | 
|  | } | 
|  | *host_offset = cluster_offset; | 
|  | return 0; | 
|  | } else { | 
|  | int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | *nb_clusters = ret; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates new clusters for an area that either is yet unallocated or needs a | 
|  | * copy on write. If *host_offset is non-zero, clusters are only allocated if | 
|  | * the new allocation can match the specified host offset. | 
|  | * | 
|  | * Note that guest_offset may not be cluster aligned. In this case, the | 
|  | * returned *host_offset points to exact byte referenced by guest_offset and | 
|  | * therefore isn't cluster aligned as well. | 
|  | * | 
|  | * Returns: | 
|  | *   0:     if no clusters could be allocated. *bytes is set to 0, | 
|  | *          *host_offset is left unchanged. | 
|  | * | 
|  | *   1:     if new clusters were allocated. *bytes may be decreased if the | 
|  | *          new allocation doesn't cover all of the requested area. | 
|  | *          *host_offset is updated to contain the host offset of the first | 
|  | *          newly allocated cluster. | 
|  | * | 
|  | *  -errno: in error cases | 
|  | */ | 
|  | static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, | 
|  | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | int l2_index; | 
|  | uint64_t *l2_table; | 
|  | uint64_t entry; | 
|  | uint64_t nb_clusters; | 
|  | int ret; | 
|  |  | 
|  | uint64_t alloc_cluster_offset; | 
|  |  | 
|  | trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, | 
|  | *bytes); | 
|  | assert(*bytes > 0); | 
|  |  | 
|  | /* | 
|  | * Calculate the number of clusters to look for. We stop at L2 table | 
|  | * boundaries to keep things simple. | 
|  | */ | 
|  | nb_clusters = | 
|  | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | 
|  |  | 
|  | l2_index = offset_to_l2_index(s, guest_offset); | 
|  | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | 
|  | assert(nb_clusters <= INT_MAX); | 
|  |  | 
|  | /* Find L2 entry for the first involved cluster */ | 
|  | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | entry = be64_to_cpu(l2_table[l2_index]); | 
|  |  | 
|  | /* For the moment, overwrite compressed clusters one by one */ | 
|  | if (entry & QCOW_OFLAG_COMPRESSED) { | 
|  | nb_clusters = 1; | 
|  | } else { | 
|  | nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); | 
|  | } | 
|  |  | 
|  | /* This function is only called when there were no non-COW clusters, so if | 
|  | * we can't find any unallocated or COW clusters either, something is | 
|  | * wrong with our code. */ | 
|  | assert(nb_clusters > 0); | 
|  |  | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); | 
|  |  | 
|  | /* Allocate, if necessary at a given offset in the image file */ | 
|  | alloc_cluster_offset = start_of_cluster(s, *host_offset); | 
|  | ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, | 
|  | &nb_clusters); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Can't extend contiguous allocation */ | 
|  | if (nb_clusters == 0) { | 
|  | *bytes = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* !*host_offset would overwrite the image header and is reserved for "no | 
|  | * host offset preferred". If 0 was a valid host offset, it'd trigger the | 
|  | * following overlap check; do that now to avoid having an invalid value in | 
|  | * *host_offset. */ | 
|  | if (!alloc_cluster_offset) { | 
|  | ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, | 
|  | nb_clusters * s->cluster_size); | 
|  | assert(ret < 0); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save info needed for meta data update. | 
|  | * | 
|  | * requested_sectors: Number of sectors from the start of the first | 
|  | * newly allocated cluster to the end of the (possibly shortened | 
|  | * before) write request. | 
|  | * | 
|  | * avail_sectors: Number of sectors from the start of the first | 
|  | * newly allocated to the end of the last newly allocated cluster. | 
|  | * | 
|  | * nb_sectors: The number of sectors from the start of the first | 
|  | * newly allocated cluster to the end of the area that the write | 
|  | * request actually writes to (excluding COW at the end) | 
|  | */ | 
|  | int requested_sectors = | 
|  | (*bytes + offset_into_cluster(s, guest_offset)) | 
|  | >> BDRV_SECTOR_BITS; | 
|  | int avail_sectors = nb_clusters | 
|  | << (s->cluster_bits - BDRV_SECTOR_BITS); | 
|  | int alloc_n_start = offset_into_cluster(s, guest_offset) | 
|  | >> BDRV_SECTOR_BITS; | 
|  | int nb_sectors = MIN(requested_sectors, avail_sectors); | 
|  | QCowL2Meta *old_m = *m; | 
|  |  | 
|  | *m = g_malloc0(sizeof(**m)); | 
|  |  | 
|  | **m = (QCowL2Meta) { | 
|  | .next           = old_m, | 
|  |  | 
|  | .alloc_offset   = alloc_cluster_offset, | 
|  | .offset         = start_of_cluster(s, guest_offset), | 
|  | .nb_clusters    = nb_clusters, | 
|  | .nb_available   = nb_sectors, | 
|  |  | 
|  | .cow_start = { | 
|  | .offset     = 0, | 
|  | .nb_sectors = alloc_n_start, | 
|  | }, | 
|  | .cow_end = { | 
|  | .offset     = nb_sectors * BDRV_SECTOR_SIZE, | 
|  | .nb_sectors = avail_sectors - nb_sectors, | 
|  | }, | 
|  | }; | 
|  | qemu_co_queue_init(&(*m)->dependent_requests); | 
|  | QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); | 
|  |  | 
|  | *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); | 
|  | *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) | 
|  | - offset_into_cluster(s, guest_offset)); | 
|  | assert(*bytes != 0); | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | fail: | 
|  | if (*m && (*m)->nb_clusters > 0) { | 
|  | QLIST_REMOVE(*m, next_in_flight); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * alloc_cluster_offset | 
|  | * | 
|  | * For a given offset on the virtual disk, find the cluster offset in qcow2 | 
|  | * file. If the offset is not found, allocate a new cluster. | 
|  | * | 
|  | * If the cluster was already allocated, m->nb_clusters is set to 0 and | 
|  | * other fields in m are meaningless. | 
|  | * | 
|  | * If the cluster is newly allocated, m->nb_clusters is set to the number of | 
|  | * contiguous clusters that have been allocated. In this case, the other | 
|  | * fields of m are valid and contain information about the first allocated | 
|  | * cluster. | 
|  | * | 
|  | * If the request conflicts with another write request in flight, the coroutine | 
|  | * is queued and will be reentered when the dependency has completed. | 
|  | * | 
|  | * Return 0 on success and -errno in error cases | 
|  | */ | 
|  | int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, | 
|  | int *num, uint64_t *host_offset, QCowL2Meta **m) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | uint64_t start, remaining; | 
|  | uint64_t cluster_offset; | 
|  | uint64_t cur_bytes; | 
|  | int ret; | 
|  |  | 
|  | trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num); | 
|  |  | 
|  | assert((offset & ~BDRV_SECTOR_MASK) == 0); | 
|  |  | 
|  | again: | 
|  | start = offset; | 
|  | remaining = (uint64_t)*num << BDRV_SECTOR_BITS; | 
|  | cluster_offset = 0; | 
|  | *host_offset = 0; | 
|  | cur_bytes = 0; | 
|  | *m = NULL; | 
|  |  | 
|  | while (true) { | 
|  |  | 
|  | if (!*host_offset) { | 
|  | *host_offset = start_of_cluster(s, cluster_offset); | 
|  | } | 
|  |  | 
|  | assert(remaining >= cur_bytes); | 
|  |  | 
|  | start           += cur_bytes; | 
|  | remaining       -= cur_bytes; | 
|  | cluster_offset  += cur_bytes; | 
|  |  | 
|  | if (remaining == 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | cur_bytes = remaining; | 
|  |  | 
|  | /* | 
|  | * Now start gathering as many contiguous clusters as possible: | 
|  | * | 
|  | * 1. Check for overlaps with in-flight allocations | 
|  | * | 
|  | *      a) Overlap not in the first cluster -> shorten this request and | 
|  | *         let the caller handle the rest in its next loop iteration. | 
|  | * | 
|  | *      b) Real overlaps of two requests. Yield and restart the search | 
|  | *         for contiguous clusters (the situation could have changed | 
|  | *         while we were sleeping) | 
|  | * | 
|  | *      c) TODO: Request starts in the same cluster as the in-flight | 
|  | *         allocation ends. Shorten the COW of the in-fight allocation, | 
|  | *         set cluster_offset to write to the same cluster and set up | 
|  | *         the right synchronisation between the in-flight request and | 
|  | *         the new one. | 
|  | */ | 
|  | ret = handle_dependencies(bs, start, &cur_bytes, m); | 
|  | if (ret == -EAGAIN) { | 
|  | /* Currently handle_dependencies() doesn't yield if we already had | 
|  | * an allocation. If it did, we would have to clean up the L2Meta | 
|  | * structs before starting over. */ | 
|  | assert(*m == NULL); | 
|  | goto again; | 
|  | } else if (ret < 0) { | 
|  | return ret; | 
|  | } else if (cur_bytes == 0) { | 
|  | break; | 
|  | } else { | 
|  | /* handle_dependencies() may have decreased cur_bytes (shortened | 
|  | * the allocations below) so that the next dependency is processed | 
|  | * correctly during the next loop iteration. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 2. Count contiguous COPIED clusters. | 
|  | */ | 
|  | ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret) { | 
|  | continue; | 
|  | } else if (cur_bytes == 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 3. If the request still hasn't completed, allocate new clusters, | 
|  | *    considering any cluster_offset of steps 1c or 2. | 
|  | */ | 
|  | ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret) { | 
|  | continue; | 
|  | } else { | 
|  | assert(cur_bytes == 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | *num -= remaining >> BDRV_SECTOR_BITS; | 
|  | assert(*num > 0); | 
|  | assert(*host_offset != 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int decompress_buffer(uint8_t *out_buf, int out_buf_size, | 
|  | const uint8_t *buf, int buf_size) | 
|  | { | 
|  | z_stream strm1, *strm = &strm1; | 
|  | int ret, out_len; | 
|  |  | 
|  | memset(strm, 0, sizeof(*strm)); | 
|  |  | 
|  | strm->next_in = (uint8_t *)buf; | 
|  | strm->avail_in = buf_size; | 
|  | strm->next_out = out_buf; | 
|  | strm->avail_out = out_buf_size; | 
|  |  | 
|  | ret = inflateInit2(strm, -12); | 
|  | if (ret != Z_OK) | 
|  | return -1; | 
|  | ret = inflate(strm, Z_FINISH); | 
|  | out_len = strm->next_out - out_buf; | 
|  | if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || | 
|  | out_len != out_buf_size) { | 
|  | inflateEnd(strm); | 
|  | return -1; | 
|  | } | 
|  | inflateEnd(strm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | int ret, csize, nb_csectors, sector_offset; | 
|  | uint64_t coffset; | 
|  |  | 
|  | coffset = cluster_offset & s->cluster_offset_mask; | 
|  | if (s->cluster_cache_offset != coffset) { | 
|  | nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; | 
|  | sector_offset = coffset & 511; | 
|  | csize = nb_csectors * 512 - sector_offset; | 
|  | BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); | 
|  | ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | if (decompress_buffer(s->cluster_cache, s->cluster_size, | 
|  | s->cluster_data + sector_offset, csize) < 0) { | 
|  | return -EIO; | 
|  | } | 
|  | s->cluster_cache_offset = coffset; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This discards as many clusters of nb_clusters as possible at once (i.e. | 
|  | * all clusters in the same L2 table) and returns the number of discarded | 
|  | * clusters. | 
|  | */ | 
|  | static int discard_single_l2(BlockDriverState *bs, uint64_t offset, | 
|  | uint64_t nb_clusters, enum qcow2_discard_type type, | 
|  | bool full_discard) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | uint64_t *l2_table; | 
|  | int l2_index; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Limit nb_clusters to one L2 table */ | 
|  | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | 
|  | assert(nb_clusters <= INT_MAX); | 
|  |  | 
|  | for (i = 0; i < nb_clusters; i++) { | 
|  | uint64_t old_l2_entry; | 
|  |  | 
|  | old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); | 
|  |  | 
|  | /* | 
|  | * If full_discard is false, make sure that a discarded area reads back | 
|  | * as zeroes for v3 images (we cannot do it for v2 without actually | 
|  | * writing a zero-filled buffer). We can skip the operation if the | 
|  | * cluster is already marked as zero, or if it's unallocated and we | 
|  | * don't have a backing file. | 
|  | * | 
|  | * TODO We might want to use bdrv_get_block_status(bs) here, but we're | 
|  | * holding s->lock, so that doesn't work today. | 
|  | * | 
|  | * If full_discard is true, the sector should not read back as zeroes, | 
|  | * but rather fall through to the backing file. | 
|  | */ | 
|  | switch (qcow2_get_cluster_type(old_l2_entry)) { | 
|  | case QCOW2_CLUSTER_UNALLOCATED: | 
|  | if (full_discard || !bs->backing_hd) { | 
|  | continue; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case QCOW2_CLUSTER_ZERO: | 
|  | if (!full_discard) { | 
|  | continue; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case QCOW2_CLUSTER_NORMAL: | 
|  | case QCOW2_CLUSTER_COMPRESSED: | 
|  | break; | 
|  |  | 
|  | default: | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | /* First remove L2 entries */ | 
|  | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); | 
|  | if (!full_discard && s->qcow_version >= 3) { | 
|  | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); | 
|  | } else { | 
|  | l2_table[l2_index + i] = cpu_to_be64(0); | 
|  | } | 
|  |  | 
|  | /* Then decrease the refcount */ | 
|  | qcow2_free_any_clusters(bs, old_l2_entry, 1, type); | 
|  | } | 
|  |  | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); | 
|  |  | 
|  | return nb_clusters; | 
|  | } | 
|  |  | 
|  | int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, | 
|  | int nb_sectors, enum qcow2_discard_type type, bool full_discard) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | uint64_t end_offset; | 
|  | uint64_t nb_clusters; | 
|  | int ret; | 
|  |  | 
|  | end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); | 
|  |  | 
|  | /* Round start up and end down */ | 
|  | offset = align_offset(offset, s->cluster_size); | 
|  | end_offset = start_of_cluster(s, end_offset); | 
|  |  | 
|  | if (offset > end_offset) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nb_clusters = size_to_clusters(s, end_offset - offset); | 
|  |  | 
|  | s->cache_discards = true; | 
|  |  | 
|  | /* Each L2 table is handled by its own loop iteration */ | 
|  | while (nb_clusters > 0) { | 
|  | ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | nb_clusters -= ret; | 
|  | offset += (ret * s->cluster_size); | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | fail: | 
|  | s->cache_discards = false; | 
|  | qcow2_process_discards(bs, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This zeroes as many clusters of nb_clusters as possible at once (i.e. | 
|  | * all clusters in the same L2 table) and returns the number of zeroed | 
|  | * clusters. | 
|  | */ | 
|  | static int zero_single_l2(BlockDriverState *bs, uint64_t offset, | 
|  | uint64_t nb_clusters) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | uint64_t *l2_table; | 
|  | int l2_index; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Limit nb_clusters to one L2 table */ | 
|  | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | 
|  | assert(nb_clusters <= INT_MAX); | 
|  |  | 
|  | for (i = 0; i < nb_clusters; i++) { | 
|  | uint64_t old_offset; | 
|  |  | 
|  | old_offset = be64_to_cpu(l2_table[l2_index + i]); | 
|  |  | 
|  | /* Update L2 entries */ | 
|  | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); | 
|  | if (old_offset & QCOW_OFLAG_COMPRESSED) { | 
|  | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); | 
|  | qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); | 
|  | } else { | 
|  | l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); | 
|  | } | 
|  | } | 
|  |  | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); | 
|  |  | 
|  | return nb_clusters; | 
|  | } | 
|  |  | 
|  | int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | uint64_t nb_clusters; | 
|  | int ret; | 
|  |  | 
|  | /* The zero flag is only supported by version 3 and newer */ | 
|  | if (s->qcow_version < 3) { | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | /* Each L2 table is handled by its own loop iteration */ | 
|  | nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); | 
|  |  | 
|  | s->cache_discards = true; | 
|  |  | 
|  | while (nb_clusters > 0) { | 
|  | ret = zero_single_l2(bs, offset, nb_clusters); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | nb_clusters -= ret; | 
|  | offset += (ret * s->cluster_size); | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | fail: | 
|  | s->cache_discards = false; | 
|  | qcow2_process_discards(bs, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expands all zero clusters in a specific L1 table (or deallocates them, for | 
|  | * non-backed non-pre-allocated zero clusters). | 
|  | * | 
|  | * l1_entries and *visited_l1_entries are used to keep track of progress for | 
|  | * status_cb(). l1_entries contains the total number of L1 entries and | 
|  | * *visited_l1_entries counts all visited L1 entries. | 
|  | */ | 
|  | static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, | 
|  | int l1_size, int64_t *visited_l1_entries, | 
|  | int64_t l1_entries, | 
|  | BlockDriverAmendStatusCB *status_cb) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | bool is_active_l1 = (l1_table == s->l1_table); | 
|  | uint64_t *l2_table = NULL; | 
|  | int ret; | 
|  | int i, j; | 
|  |  | 
|  | if (!is_active_l1) { | 
|  | /* inactive L2 tables require a buffer to be stored in when loading | 
|  | * them from disk */ | 
|  | l2_table = qemu_try_blockalign(bs->file, s->cluster_size); | 
|  | if (l2_table == NULL) { | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < l1_size; i++) { | 
|  | uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; | 
|  | bool l2_dirty = false; | 
|  | uint64_t l2_refcount; | 
|  |  | 
|  | if (!l2_offset) { | 
|  | /* unallocated */ | 
|  | (*visited_l1_entries)++; | 
|  | if (status_cb) { | 
|  | status_cb(bs, *visited_l1_entries, l1_entries); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (offset_into_cluster(s, l2_offset)) { | 
|  | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" | 
|  | PRIx64 " unaligned (L1 index: %#x)", | 
|  | l2_offset, i); | 
|  | ret = -EIO; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (is_active_l1) { | 
|  | /* get active L2 tables from cache */ | 
|  | ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, | 
|  | (void **)&l2_table); | 
|  | } else { | 
|  | /* load inactive L2 tables from disk */ | 
|  | ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE, | 
|  | (void *)l2_table, s->cluster_sectors); | 
|  | } | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, | 
|  | &l2_refcount); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < s->l2_size; j++) { | 
|  | uint64_t l2_entry = be64_to_cpu(l2_table[j]); | 
|  | int64_t offset = l2_entry & L2E_OFFSET_MASK; | 
|  | int cluster_type = qcow2_get_cluster_type(l2_entry); | 
|  | bool preallocated = offset != 0; | 
|  |  | 
|  | if (cluster_type != QCOW2_CLUSTER_ZERO) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!preallocated) { | 
|  | if (!bs->backing_hd) { | 
|  | /* not backed; therefore we can simply deallocate the | 
|  | * cluster */ | 
|  | l2_table[j] = 0; | 
|  | l2_dirty = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | offset = qcow2_alloc_clusters(bs, s->cluster_size); | 
|  | if (offset < 0) { | 
|  | ret = offset; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (l2_refcount > 1) { | 
|  | /* For shared L2 tables, set the refcount accordingly (it is | 
|  | * already 1 and needs to be l2_refcount) */ | 
|  | ret = qcow2_update_cluster_refcount(bs, | 
|  | offset >> s->cluster_bits, | 
|  | refcount_diff(1, l2_refcount), false, | 
|  | QCOW2_DISCARD_OTHER); | 
|  | if (ret < 0) { | 
|  | qcow2_free_clusters(bs, offset, s->cluster_size, | 
|  | QCOW2_DISCARD_OTHER); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (offset_into_cluster(s, offset)) { | 
|  | qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " | 
|  | "%#" PRIx64 " unaligned (L2 offset: %#" | 
|  | PRIx64 ", L2 index: %#x)", offset, | 
|  | l2_offset, j); | 
|  | if (!preallocated) { | 
|  | qcow2_free_clusters(bs, offset, s->cluster_size, | 
|  | QCOW2_DISCARD_ALWAYS); | 
|  | } | 
|  | ret = -EIO; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); | 
|  | if (ret < 0) { | 
|  | if (!preallocated) { | 
|  | qcow2_free_clusters(bs, offset, s->cluster_size, | 
|  | QCOW2_DISCARD_ALWAYS); | 
|  | } | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE, | 
|  | s->cluster_sectors, 0); | 
|  | if (ret < 0) { | 
|  | if (!preallocated) { | 
|  | qcow2_free_clusters(bs, offset, s->cluster_size, | 
|  | QCOW2_DISCARD_ALWAYS); | 
|  | } | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (l2_refcount == 1) { | 
|  | l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); | 
|  | } else { | 
|  | l2_table[j] = cpu_to_be64(offset); | 
|  | } | 
|  | l2_dirty = true; | 
|  | } | 
|  |  | 
|  | if (is_active_l1) { | 
|  | if (l2_dirty) { | 
|  | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); | 
|  | qcow2_cache_depends_on_flush(s->l2_table_cache); | 
|  | } | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); | 
|  | } else { | 
|  | if (l2_dirty) { | 
|  | ret = qcow2_pre_write_overlap_check(bs, | 
|  | QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, | 
|  | s->cluster_size); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE, | 
|  | (void *)l2_table, s->cluster_sectors); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | (*visited_l1_entries)++; | 
|  | if (status_cb) { | 
|  | status_cb(bs, *visited_l1_entries, l1_entries); | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | fail: | 
|  | if (l2_table) { | 
|  | if (!is_active_l1) { | 
|  | qemu_vfree(l2_table); | 
|  | } else { | 
|  | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For backed images, expands all zero clusters on the image. For non-backed | 
|  | * images, deallocates all non-pre-allocated zero clusters (and claims the | 
|  | * allocation for pre-allocated ones). This is important for downgrading to a | 
|  | * qcow2 version which doesn't yet support metadata zero clusters. | 
|  | */ | 
|  | int qcow2_expand_zero_clusters(BlockDriverState *bs, | 
|  | BlockDriverAmendStatusCB *status_cb) | 
|  | { | 
|  | BDRVQcow2State *s = bs->opaque; | 
|  | uint64_t *l1_table = NULL; | 
|  | int64_t l1_entries = 0, visited_l1_entries = 0; | 
|  | int ret; | 
|  | int i, j; | 
|  |  | 
|  | if (status_cb) { | 
|  | l1_entries = s->l1_size; | 
|  | for (i = 0; i < s->nb_snapshots; i++) { | 
|  | l1_entries += s->snapshots[i].l1_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, | 
|  | &visited_l1_entries, l1_entries, | 
|  | status_cb); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Inactive L1 tables may point to active L2 tables - therefore it is | 
|  | * necessary to flush the L2 table cache before trying to access the L2 | 
|  | * tables pointed to by inactive L1 entries (else we might try to expand | 
|  | * zero clusters that have already been expanded); furthermore, it is also | 
|  | * necessary to empty the L2 table cache, since it may contain tables which | 
|  | * are now going to be modified directly on disk, bypassing the cache. | 
|  | * qcow2_cache_empty() does both for us. */ | 
|  | ret = qcow2_cache_empty(bs, s->l2_table_cache); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < s->nb_snapshots; i++) { | 
|  | int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) + | 
|  | BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE; | 
|  |  | 
|  | l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); | 
|  |  | 
|  | ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset / | 
|  | BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < s->snapshots[i].l1_size; j++) { | 
|  | be64_to_cpus(&l1_table[j]); | 
|  | } | 
|  |  | 
|  | ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, | 
|  | &visited_l1_entries, l1_entries, | 
|  | status_cb); | 
|  | if (ret < 0) { | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | fail: | 
|  | g_free(l1_table); | 
|  | return ret; | 
|  | } |