| /* | 
 |  * QEMU Enhanced Disk Format | 
 |  * | 
 |  * Copyright IBM, Corp. 2010 | 
 |  * | 
 |  * Authors: | 
 |  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com> | 
 |  *  Anthony Liguori   <aliguori@us.ibm.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU LGPL, version 2 or later. | 
 |  * See the COPYING.LIB file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include "qemu-timer.h" | 
 | #include "trace.h" | 
 | #include "qed.h" | 
 | #include "qerror.h" | 
 |  | 
 | static void qed_aio_cancel(BlockDriverAIOCB *blockacb) | 
 | { | 
 |     QEDAIOCB *acb = (QEDAIOCB *)blockacb; | 
 |     bool finished = false; | 
 |  | 
 |     /* Wait for the request to finish */ | 
 |     acb->finished = &finished; | 
 |     while (!finished) { | 
 |         qemu_aio_wait(); | 
 |     } | 
 | } | 
 |  | 
 | static AIOPool qed_aio_pool = { | 
 |     .aiocb_size         = sizeof(QEDAIOCB), | 
 |     .cancel             = qed_aio_cancel, | 
 | }; | 
 |  | 
 | static int bdrv_qed_probe(const uint8_t *buf, int buf_size, | 
 |                           const char *filename) | 
 | { | 
 |     const QEDHeader *header = (const QEDHeader *)buf; | 
 |  | 
 |     if (buf_size < sizeof(*header)) { | 
 |         return 0; | 
 |     } | 
 |     if (le32_to_cpu(header->magic) != QED_MAGIC) { | 
 |         return 0; | 
 |     } | 
 |     return 100; | 
 | } | 
 |  | 
 | /** | 
 |  * Check whether an image format is raw | 
 |  * | 
 |  * @fmt:    Backing file format, may be NULL | 
 |  */ | 
 | static bool qed_fmt_is_raw(const char *fmt) | 
 | { | 
 |     return fmt && strcmp(fmt, "raw") == 0; | 
 | } | 
 |  | 
 | static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) | 
 | { | 
 |     cpu->magic = le32_to_cpu(le->magic); | 
 |     cpu->cluster_size = le32_to_cpu(le->cluster_size); | 
 |     cpu->table_size = le32_to_cpu(le->table_size); | 
 |     cpu->header_size = le32_to_cpu(le->header_size); | 
 |     cpu->features = le64_to_cpu(le->features); | 
 |     cpu->compat_features = le64_to_cpu(le->compat_features); | 
 |     cpu->autoclear_features = le64_to_cpu(le->autoclear_features); | 
 |     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); | 
 |     cpu->image_size = le64_to_cpu(le->image_size); | 
 |     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); | 
 |     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); | 
 | } | 
 |  | 
 | static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) | 
 | { | 
 |     le->magic = cpu_to_le32(cpu->magic); | 
 |     le->cluster_size = cpu_to_le32(cpu->cluster_size); | 
 |     le->table_size = cpu_to_le32(cpu->table_size); | 
 |     le->header_size = cpu_to_le32(cpu->header_size); | 
 |     le->features = cpu_to_le64(cpu->features); | 
 |     le->compat_features = cpu_to_le64(cpu->compat_features); | 
 |     le->autoclear_features = cpu_to_le64(cpu->autoclear_features); | 
 |     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); | 
 |     le->image_size = cpu_to_le64(cpu->image_size); | 
 |     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); | 
 |     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); | 
 | } | 
 |  | 
 | static int qed_write_header_sync(BDRVQEDState *s) | 
 | { | 
 |     QEDHeader le; | 
 |     int ret; | 
 |  | 
 |     qed_header_cpu_to_le(&s->header, &le); | 
 |     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); | 
 |     if (ret != sizeof(le)) { | 
 |         return ret; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | typedef struct { | 
 |     GenericCB gencb; | 
 |     BDRVQEDState *s; | 
 |     struct iovec iov; | 
 |     QEMUIOVector qiov; | 
 |     int nsectors; | 
 |     uint8_t *buf; | 
 | } QEDWriteHeaderCB; | 
 |  | 
 | static void qed_write_header_cb(void *opaque, int ret) | 
 | { | 
 |     QEDWriteHeaderCB *write_header_cb = opaque; | 
 |  | 
 |     qemu_vfree(write_header_cb->buf); | 
 |     gencb_complete(write_header_cb, ret); | 
 | } | 
 |  | 
 | static void qed_write_header_read_cb(void *opaque, int ret) | 
 | { | 
 |     QEDWriteHeaderCB *write_header_cb = opaque; | 
 |     BDRVQEDState *s = write_header_cb->s; | 
 |     BlockDriverAIOCB *acb; | 
 |  | 
 |     if (ret) { | 
 |         qed_write_header_cb(write_header_cb, ret); | 
 |         return; | 
 |     } | 
 |  | 
 |     /* Update header */ | 
 |     qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf); | 
 |  | 
 |     acb = bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov, | 
 |                           write_header_cb->nsectors, qed_write_header_cb, | 
 |                           write_header_cb); | 
 |     if (!acb) { | 
 |         qed_write_header_cb(write_header_cb, -EIO); | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * Update header in-place (does not rewrite backing filename or other strings) | 
 |  * | 
 |  * This function only updates known header fields in-place and does not affect | 
 |  * extra data after the QED header. | 
 |  */ | 
 | static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb, | 
 |                              void *opaque) | 
 | { | 
 |     /* We must write full sectors for O_DIRECT but cannot necessarily generate | 
 |      * the data following the header if an unrecognized compat feature is | 
 |      * active.  Therefore, first read the sectors containing the header, update | 
 |      * them, and write back. | 
 |      */ | 
 |  | 
 |     BlockDriverAIOCB *acb; | 
 |     int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) / | 
 |                    BDRV_SECTOR_SIZE; | 
 |     size_t len = nsectors * BDRV_SECTOR_SIZE; | 
 |     QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb), | 
 |                                                     cb, opaque); | 
 |  | 
 |     write_header_cb->s = s; | 
 |     write_header_cb->nsectors = nsectors; | 
 |     write_header_cb->buf = qemu_blockalign(s->bs, len); | 
 |     write_header_cb->iov.iov_base = write_header_cb->buf; | 
 |     write_header_cb->iov.iov_len = len; | 
 |     qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1); | 
 |  | 
 |     acb = bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors, | 
 |                          qed_write_header_read_cb, write_header_cb); | 
 |     if (!acb) { | 
 |         qed_write_header_cb(write_header_cb, -EIO); | 
 |     } | 
 | } | 
 |  | 
 | static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) | 
 | { | 
 |     uint64_t table_entries; | 
 |     uint64_t l2_size; | 
 |  | 
 |     table_entries = (table_size * cluster_size) / sizeof(uint64_t); | 
 |     l2_size = table_entries * cluster_size; | 
 |  | 
 |     return l2_size * table_entries; | 
 | } | 
 |  | 
 | static bool qed_is_cluster_size_valid(uint32_t cluster_size) | 
 | { | 
 |     if (cluster_size < QED_MIN_CLUSTER_SIZE || | 
 |         cluster_size > QED_MAX_CLUSTER_SIZE) { | 
 |         return false; | 
 |     } | 
 |     if (cluster_size & (cluster_size - 1)) { | 
 |         return false; /* not power of 2 */ | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | static bool qed_is_table_size_valid(uint32_t table_size) | 
 | { | 
 |     if (table_size < QED_MIN_TABLE_SIZE || | 
 |         table_size > QED_MAX_TABLE_SIZE) { | 
 |         return false; | 
 |     } | 
 |     if (table_size & (table_size - 1)) { | 
 |         return false; /* not power of 2 */ | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, | 
 |                                     uint32_t table_size) | 
 | { | 
 |     if (image_size % BDRV_SECTOR_SIZE != 0) { | 
 |         return false; /* not multiple of sector size */ | 
 |     } | 
 |     if (image_size > qed_max_image_size(cluster_size, table_size)) { | 
 |         return false; /* image is too large */ | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | /** | 
 |  * Read a string of known length from the image file | 
 |  * | 
 |  * @file:       Image file | 
 |  * @offset:     File offset to start of string, in bytes | 
 |  * @n:          String length in bytes | 
 |  * @buf:        Destination buffer | 
 |  * @buflen:     Destination buffer length in bytes | 
 |  * @ret:        0 on success, -errno on failure | 
 |  * | 
 |  * The string is NUL-terminated. | 
 |  */ | 
 | static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n, | 
 |                            char *buf, size_t buflen) | 
 | { | 
 |     int ret; | 
 |     if (n >= buflen) { | 
 |         return -EINVAL; | 
 |     } | 
 |     ret = bdrv_pread(file, offset, buf, n); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     buf[n] = '\0'; | 
 |     return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * Allocate new clusters | 
 |  * | 
 |  * @s:          QED state | 
 |  * @n:          Number of contiguous clusters to allocate | 
 |  * @ret:        Offset of first allocated cluster | 
 |  * | 
 |  * This function only produces the offset where the new clusters should be | 
 |  * written.  It updates BDRVQEDState but does not make any changes to the image | 
 |  * file. | 
 |  */ | 
 | static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) | 
 | { | 
 |     uint64_t offset = s->file_size; | 
 |     s->file_size += n * s->header.cluster_size; | 
 |     return offset; | 
 | } | 
 |  | 
 | QEDTable *qed_alloc_table(BDRVQEDState *s) | 
 | { | 
 |     /* Honor O_DIRECT memory alignment requirements */ | 
 |     return qemu_blockalign(s->bs, | 
 |                            s->header.cluster_size * s->header.table_size); | 
 | } | 
 |  | 
 | /** | 
 |  * Allocate a new zeroed L2 table | 
 |  */ | 
 | static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) | 
 | { | 
 |     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); | 
 |  | 
 |     l2_table->table = qed_alloc_table(s); | 
 |     l2_table->offset = qed_alloc_clusters(s, s->header.table_size); | 
 |  | 
 |     memset(l2_table->table->offsets, 0, | 
 |            s->header.cluster_size * s->header.table_size); | 
 |     return l2_table; | 
 | } | 
 |  | 
 | static void qed_aio_next_io(void *opaque, int ret); | 
 |  | 
 | static void qed_plug_allocating_write_reqs(BDRVQEDState *s) | 
 | { | 
 |     assert(!s->allocating_write_reqs_plugged); | 
 |  | 
 |     s->allocating_write_reqs_plugged = true; | 
 | } | 
 |  | 
 | static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) | 
 | { | 
 |     QEDAIOCB *acb; | 
 |  | 
 |     assert(s->allocating_write_reqs_plugged); | 
 |  | 
 |     s->allocating_write_reqs_plugged = false; | 
 |  | 
 |     acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs); | 
 |     if (acb) { | 
 |         qed_aio_next_io(acb, 0); | 
 |     } | 
 | } | 
 |  | 
 | static void qed_finish_clear_need_check(void *opaque, int ret) | 
 | { | 
 |     /* Do nothing */ | 
 | } | 
 |  | 
 | static void qed_flush_after_clear_need_check(void *opaque, int ret) | 
 | { | 
 |     BDRVQEDState *s = opaque; | 
 |  | 
 |     bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s); | 
 |  | 
 |     /* No need to wait until flush completes */ | 
 |     qed_unplug_allocating_write_reqs(s); | 
 | } | 
 |  | 
 | static void qed_clear_need_check(void *opaque, int ret) | 
 | { | 
 |     BDRVQEDState *s = opaque; | 
 |  | 
 |     if (ret) { | 
 |         qed_unplug_allocating_write_reqs(s); | 
 |         return; | 
 |     } | 
 |  | 
 |     s->header.features &= ~QED_F_NEED_CHECK; | 
 |     qed_write_header(s, qed_flush_after_clear_need_check, s); | 
 | } | 
 |  | 
 | static void qed_need_check_timer_cb(void *opaque) | 
 | { | 
 |     BDRVQEDState *s = opaque; | 
 |  | 
 |     /* The timer should only fire when allocating writes have drained */ | 
 |     assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs)); | 
 |  | 
 |     trace_qed_need_check_timer_cb(s); | 
 |  | 
 |     qed_plug_allocating_write_reqs(s); | 
 |  | 
 |     /* Ensure writes are on disk before clearing flag */ | 
 |     bdrv_aio_flush(s->bs, qed_clear_need_check, s); | 
 | } | 
 |  | 
 | static void qed_start_need_check_timer(BDRVQEDState *s) | 
 | { | 
 |     trace_qed_start_need_check_timer(s); | 
 |  | 
 |     /* Use vm_clock so we don't alter the image file while suspended for | 
 |      * migration. | 
 |      */ | 
 |     qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) + | 
 |                    get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT); | 
 | } | 
 |  | 
 | /* It's okay to call this multiple times or when no timer is started */ | 
 | static void qed_cancel_need_check_timer(BDRVQEDState *s) | 
 | { | 
 |     trace_qed_cancel_need_check_timer(s); | 
 |     qemu_del_timer(s->need_check_timer); | 
 | } | 
 |  | 
 | static int bdrv_qed_open(BlockDriverState *bs, int flags) | 
 | { | 
 |     BDRVQEDState *s = bs->opaque; | 
 |     QEDHeader le_header; | 
 |     int64_t file_size; | 
 |     int ret; | 
 |  | 
 |     s->bs = bs; | 
 |     QSIMPLEQ_INIT(&s->allocating_write_reqs); | 
 |  | 
 |     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = 0; /* ret should always be 0 or -errno */ | 
 |     qed_header_le_to_cpu(&le_header, &s->header); | 
 |  | 
 |     if (s->header.magic != QED_MAGIC) { | 
 |         return -EINVAL; | 
 |     } | 
 |     if (s->header.features & ~QED_FEATURE_MASK) { | 
 |         /* image uses unsupported feature bits */ | 
 |         char buf[64]; | 
 |         snprintf(buf, sizeof(buf), "%" PRIx64, | 
 |             s->header.features & ~QED_FEATURE_MASK); | 
 |         qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE, | 
 |             bs->device_name, "QED", buf); | 
 |         return -ENOTSUP; | 
 |     } | 
 |     if (!qed_is_cluster_size_valid(s->header.cluster_size)) { | 
 |         return -EINVAL; | 
 |     } | 
 |  | 
 |     /* Round down file size to the last cluster */ | 
 |     file_size = bdrv_getlength(bs->file); | 
 |     if (file_size < 0) { | 
 |         return file_size; | 
 |     } | 
 |     s->file_size = qed_start_of_cluster(s, file_size); | 
 |  | 
 |     if (!qed_is_table_size_valid(s->header.table_size)) { | 
 |         return -EINVAL; | 
 |     } | 
 |     if (!qed_is_image_size_valid(s->header.image_size, | 
 |                                  s->header.cluster_size, | 
 |                                  s->header.table_size)) { | 
 |         return -EINVAL; | 
 |     } | 
 |     if (!qed_check_table_offset(s, s->header.l1_table_offset)) { | 
 |         return -EINVAL; | 
 |     } | 
 |  | 
 |     s->table_nelems = (s->header.cluster_size * s->header.table_size) / | 
 |                       sizeof(uint64_t); | 
 |     s->l2_shift = ffs(s->header.cluster_size) - 1; | 
 |     s->l2_mask = s->table_nelems - 1; | 
 |     s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1; | 
 |  | 
 |     if ((s->header.features & QED_F_BACKING_FILE)) { | 
 |         if ((uint64_t)s->header.backing_filename_offset + | 
 |             s->header.backing_filename_size > | 
 |             s->header.cluster_size * s->header.header_size) { | 
 |             return -EINVAL; | 
 |         } | 
 |  | 
 |         ret = qed_read_string(bs->file, s->header.backing_filename_offset, | 
 |                               s->header.backing_filename_size, bs->backing_file, | 
 |                               sizeof(bs->backing_file)); | 
 |         if (ret < 0) { | 
 |             return ret; | 
 |         } | 
 |  | 
 |         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { | 
 |             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); | 
 |         } | 
 |     } | 
 |  | 
 |     /* Reset unknown autoclear feature bits.  This is a backwards | 
 |      * compatibility mechanism that allows images to be opened by older | 
 |      * programs, which "knock out" unknown feature bits.  When an image is | 
 |      * opened by a newer program again it can detect that the autoclear | 
 |      * feature is no longer valid. | 
 |      */ | 
 |     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && | 
 |         !bdrv_is_read_only(bs->file)) { | 
 |         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; | 
 |  | 
 |         ret = qed_write_header_sync(s); | 
 |         if (ret) { | 
 |             return ret; | 
 |         } | 
 |  | 
 |         /* From here on only known autoclear feature bits are valid */ | 
 |         bdrv_flush(bs->file); | 
 |     } | 
 |  | 
 |     s->l1_table = qed_alloc_table(s); | 
 |     qed_init_l2_cache(&s->l2_cache); | 
 |  | 
 |     ret = qed_read_l1_table_sync(s); | 
 |     if (ret) { | 
 |         goto out; | 
 |     } | 
 |  | 
 |     /* If image was not closed cleanly, check consistency */ | 
 |     if (s->header.features & QED_F_NEED_CHECK) { | 
 |         /* Read-only images cannot be fixed.  There is no risk of corruption | 
 |          * since write operations are not possible.  Therefore, allow | 
 |          * potentially inconsistent images to be opened read-only.  This can | 
 |          * aid data recovery from an otherwise inconsistent image. | 
 |          */ | 
 |         if (!bdrv_is_read_only(bs->file)) { | 
 |             BdrvCheckResult result = {0}; | 
 |  | 
 |             ret = qed_check(s, &result, true); | 
 |             if (ret) { | 
 |                 goto out; | 
 |             } | 
 |             if (!result.corruptions && !result.check_errors) { | 
 |                 /* Ensure fixes reach storage before clearing check bit */ | 
 |                 bdrv_flush(s->bs); | 
 |  | 
 |                 s->header.features &= ~QED_F_NEED_CHECK; | 
 |                 qed_write_header_sync(s); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     s->need_check_timer = qemu_new_timer_ns(vm_clock, | 
 |                                             qed_need_check_timer_cb, s); | 
 |  | 
 | out: | 
 |     if (ret) { | 
 |         qed_free_l2_cache(&s->l2_cache); | 
 |         qemu_vfree(s->l1_table); | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | static void bdrv_qed_close(BlockDriverState *bs) | 
 | { | 
 |     BDRVQEDState *s = bs->opaque; | 
 |  | 
 |     qed_cancel_need_check_timer(s); | 
 |     qemu_free_timer(s->need_check_timer); | 
 |  | 
 |     /* Ensure writes reach stable storage */ | 
 |     bdrv_flush(bs->file); | 
 |  | 
 |     /* Clean shutdown, no check required on next open */ | 
 |     if (s->header.features & QED_F_NEED_CHECK) { | 
 |         s->header.features &= ~QED_F_NEED_CHECK; | 
 |         qed_write_header_sync(s); | 
 |     } | 
 |  | 
 |     qed_free_l2_cache(&s->l2_cache); | 
 |     qemu_vfree(s->l1_table); | 
 | } | 
 |  | 
 | static int qed_create(const char *filename, uint32_t cluster_size, | 
 |                       uint64_t image_size, uint32_t table_size, | 
 |                       const char *backing_file, const char *backing_fmt) | 
 | { | 
 |     QEDHeader header = { | 
 |         .magic = QED_MAGIC, | 
 |         .cluster_size = cluster_size, | 
 |         .table_size = table_size, | 
 |         .header_size = 1, | 
 |         .features = 0, | 
 |         .compat_features = 0, | 
 |         .l1_table_offset = cluster_size, | 
 |         .image_size = image_size, | 
 |     }; | 
 |     QEDHeader le_header; | 
 |     uint8_t *l1_table = NULL; | 
 |     size_t l1_size = header.cluster_size * header.table_size; | 
 |     int ret = 0; | 
 |     BlockDriverState *bs = NULL; | 
 |  | 
 |     ret = bdrv_create_file(filename, NULL); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     /* File must start empty and grow, check truncate is supported */ | 
 |     ret = bdrv_truncate(bs, 0); | 
 |     if (ret < 0) { | 
 |         goto out; | 
 |     } | 
 |  | 
 |     if (backing_file) { | 
 |         header.features |= QED_F_BACKING_FILE; | 
 |         header.backing_filename_offset = sizeof(le_header); | 
 |         header.backing_filename_size = strlen(backing_file); | 
 |  | 
 |         if (qed_fmt_is_raw(backing_fmt)) { | 
 |             header.features |= QED_F_BACKING_FORMAT_NO_PROBE; | 
 |         } | 
 |     } | 
 |  | 
 |     qed_header_cpu_to_le(&header, &le_header); | 
 |     ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header)); | 
 |     if (ret < 0) { | 
 |         goto out; | 
 |     } | 
 |     ret = bdrv_pwrite(bs, sizeof(le_header), backing_file, | 
 |                       header.backing_filename_size); | 
 |     if (ret < 0) { | 
 |         goto out; | 
 |     } | 
 |  | 
 |     l1_table = g_malloc0(l1_size); | 
 |     ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size); | 
 |     if (ret < 0) { | 
 |         goto out; | 
 |     } | 
 |  | 
 |     ret = 0; /* success */ | 
 | out: | 
 |     g_free(l1_table); | 
 |     bdrv_delete(bs); | 
 |     return ret; | 
 | } | 
 |  | 
 | static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options) | 
 | { | 
 |     uint64_t image_size = 0; | 
 |     uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE; | 
 |     uint32_t table_size = QED_DEFAULT_TABLE_SIZE; | 
 |     const char *backing_file = NULL; | 
 |     const char *backing_fmt = NULL; | 
 |  | 
 |     while (options && options->name) { | 
 |         if (!strcmp(options->name, BLOCK_OPT_SIZE)) { | 
 |             image_size = options->value.n; | 
 |         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) { | 
 |             backing_file = options->value.s; | 
 |         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) { | 
 |             backing_fmt = options->value.s; | 
 |         } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) { | 
 |             if (options->value.n) { | 
 |                 cluster_size = options->value.n; | 
 |             } | 
 |         } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) { | 
 |             if (options->value.n) { | 
 |                 table_size = options->value.n; | 
 |             } | 
 |         } | 
 |         options++; | 
 |     } | 
 |  | 
 |     if (!qed_is_cluster_size_valid(cluster_size)) { | 
 |         fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n", | 
 |                 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); | 
 |         return -EINVAL; | 
 |     } | 
 |     if (!qed_is_table_size_valid(table_size)) { | 
 |         fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n", | 
 |                 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); | 
 |         return -EINVAL; | 
 |     } | 
 |     if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) { | 
 |         fprintf(stderr, "QED image size must be a non-zero multiple of " | 
 |                         "cluster size and less than %" PRIu64 " bytes\n", | 
 |                 qed_max_image_size(cluster_size, table_size)); | 
 |         return -EINVAL; | 
 |     } | 
 |  | 
 |     return qed_create(filename, cluster_size, image_size, table_size, | 
 |                       backing_file, backing_fmt); | 
 | } | 
 |  | 
 | typedef struct { | 
 |     int is_allocated; | 
 |     int *pnum; | 
 | } QEDIsAllocatedCB; | 
 |  | 
 | static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len) | 
 | { | 
 |     QEDIsAllocatedCB *cb = opaque; | 
 |     *cb->pnum = len / BDRV_SECTOR_SIZE; | 
 |     cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO); | 
 | } | 
 |  | 
 | static int bdrv_qed_is_allocated(BlockDriverState *bs, int64_t sector_num, | 
 |                                   int nb_sectors, int *pnum) | 
 | { | 
 |     BDRVQEDState *s = bs->opaque; | 
 |     uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE; | 
 |     size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE; | 
 |     QEDIsAllocatedCB cb = { | 
 |         .is_allocated = -1, | 
 |         .pnum = pnum, | 
 |     }; | 
 |     QEDRequest request = { .l2_table = NULL }; | 
 |  | 
 |     qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb); | 
 |  | 
 |     while (cb.is_allocated == -1) { | 
 |         qemu_aio_wait(); | 
 |     } | 
 |  | 
 |     qed_unref_l2_cache_entry(request.l2_table); | 
 |  | 
 |     return cb.is_allocated; | 
 | } | 
 |  | 
 | static int bdrv_qed_make_empty(BlockDriverState *bs) | 
 | { | 
 |     return -ENOTSUP; | 
 | } | 
 |  | 
 | static BDRVQEDState *acb_to_s(QEDAIOCB *acb) | 
 | { | 
 |     return acb->common.bs->opaque; | 
 | } | 
 |  | 
 | /** | 
 |  * Read from the backing file or zero-fill if no backing file | 
 |  * | 
 |  * @s:          QED state | 
 |  * @pos:        Byte position in device | 
 |  * @qiov:       Destination I/O vector | 
 |  * @cb:         Completion function | 
 |  * @opaque:     User data for completion function | 
 |  * | 
 |  * This function reads qiov->size bytes starting at pos from the backing file. | 
 |  * If there is no backing file then zeroes are read. | 
 |  */ | 
 | static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos, | 
 |                                   QEMUIOVector *qiov, | 
 |                                   BlockDriverCompletionFunc *cb, void *opaque) | 
 | { | 
 |     BlockDriverAIOCB *aiocb; | 
 |     uint64_t backing_length = 0; | 
 |     size_t size; | 
 |  | 
 |     /* If there is a backing file, get its length.  Treat the absence of a | 
 |      * backing file like a zero length backing file. | 
 |      */ | 
 |     if (s->bs->backing_hd) { | 
 |         int64_t l = bdrv_getlength(s->bs->backing_hd); | 
 |         if (l < 0) { | 
 |             cb(opaque, l); | 
 |             return; | 
 |         } | 
 |         backing_length = l; | 
 |     } | 
 |  | 
 |     /* Zero all sectors if reading beyond the end of the backing file */ | 
 |     if (pos >= backing_length || | 
 |         pos + qiov->size > backing_length) { | 
 |         qemu_iovec_memset(qiov, 0, qiov->size); | 
 |     } | 
 |  | 
 |     /* Complete now if there are no backing file sectors to read */ | 
 |     if (pos >= backing_length) { | 
 |         cb(opaque, 0); | 
 |         return; | 
 |     } | 
 |  | 
 |     /* If the read straddles the end of the backing file, shorten it */ | 
 |     size = MIN((uint64_t)backing_length - pos, qiov->size); | 
 |  | 
 |     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING); | 
 |     aiocb = bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE, | 
 |                            qiov, size / BDRV_SECTOR_SIZE, cb, opaque); | 
 |     if (!aiocb) { | 
 |         cb(opaque, -EIO); | 
 |     } | 
 | } | 
 |  | 
 | typedef struct { | 
 |     GenericCB gencb; | 
 |     BDRVQEDState *s; | 
 |     QEMUIOVector qiov; | 
 |     struct iovec iov; | 
 |     uint64_t offset; | 
 | } CopyFromBackingFileCB; | 
 |  | 
 | static void qed_copy_from_backing_file_cb(void *opaque, int ret) | 
 | { | 
 |     CopyFromBackingFileCB *copy_cb = opaque; | 
 |     qemu_vfree(copy_cb->iov.iov_base); | 
 |     gencb_complete(©_cb->gencb, ret); | 
 | } | 
 |  | 
 | static void qed_copy_from_backing_file_write(void *opaque, int ret) | 
 | { | 
 |     CopyFromBackingFileCB *copy_cb = opaque; | 
 |     BDRVQEDState *s = copy_cb->s; | 
 |     BlockDriverAIOCB *aiocb; | 
 |  | 
 |     if (ret) { | 
 |         qed_copy_from_backing_file_cb(copy_cb, ret); | 
 |         return; | 
 |     } | 
 |  | 
 |     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); | 
 |     aiocb = bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE, | 
 |                             ©_cb->qiov, | 
 |                             copy_cb->qiov.size / BDRV_SECTOR_SIZE, | 
 |                             qed_copy_from_backing_file_cb, copy_cb); | 
 |     if (!aiocb) { | 
 |         qed_copy_from_backing_file_cb(copy_cb, -EIO); | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * Copy data from backing file into the image | 
 |  * | 
 |  * @s:          QED state | 
 |  * @pos:        Byte position in device | 
 |  * @len:        Number of bytes | 
 |  * @offset:     Byte offset in image file | 
 |  * @cb:         Completion function | 
 |  * @opaque:     User data for completion function | 
 |  */ | 
 | static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, | 
 |                                        uint64_t len, uint64_t offset, | 
 |                                        BlockDriverCompletionFunc *cb, | 
 |                                        void *opaque) | 
 | { | 
 |     CopyFromBackingFileCB *copy_cb; | 
 |  | 
 |     /* Skip copy entirely if there is no work to do */ | 
 |     if (len == 0) { | 
 |         cb(opaque, 0); | 
 |         return; | 
 |     } | 
 |  | 
 |     copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque); | 
 |     copy_cb->s = s; | 
 |     copy_cb->offset = offset; | 
 |     copy_cb->iov.iov_base = qemu_blockalign(s->bs, len); | 
 |     copy_cb->iov.iov_len = len; | 
 |     qemu_iovec_init_external(©_cb->qiov, ©_cb->iov, 1); | 
 |  | 
 |     qed_read_backing_file(s, pos, ©_cb->qiov, | 
 |                           qed_copy_from_backing_file_write, copy_cb); | 
 | } | 
 |  | 
 | /** | 
 |  * Link one or more contiguous clusters into a table | 
 |  * | 
 |  * @s:              QED state | 
 |  * @table:          L2 table | 
 |  * @index:          First cluster index | 
 |  * @n:              Number of contiguous clusters | 
 |  * @cluster:        First cluster offset | 
 |  * | 
 |  * The cluster offset may be an allocated byte offset in the image file, the | 
 |  * zero cluster marker, or the unallocated cluster marker. | 
 |  */ | 
 | static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index, | 
 |                                 unsigned int n, uint64_t cluster) | 
 | { | 
 |     int i; | 
 |     for (i = index; i < index + n; i++) { | 
 |         table->offsets[i] = cluster; | 
 |         if (!qed_offset_is_unalloc_cluster(cluster) && | 
 |             !qed_offset_is_zero_cluster(cluster)) { | 
 |             cluster += s->header.cluster_size; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void qed_aio_complete_bh(void *opaque) | 
 | { | 
 |     QEDAIOCB *acb = opaque; | 
 |     BlockDriverCompletionFunc *cb = acb->common.cb; | 
 |     void *user_opaque = acb->common.opaque; | 
 |     int ret = acb->bh_ret; | 
 |     bool *finished = acb->finished; | 
 |  | 
 |     qemu_bh_delete(acb->bh); | 
 |     qemu_aio_release(acb); | 
 |  | 
 |     /* Invoke callback */ | 
 |     cb(user_opaque, ret); | 
 |  | 
 |     /* Signal cancel completion */ | 
 |     if (finished) { | 
 |         *finished = true; | 
 |     } | 
 | } | 
 |  | 
 | static void qed_aio_complete(QEDAIOCB *acb, int ret) | 
 | { | 
 |     BDRVQEDState *s = acb_to_s(acb); | 
 |  | 
 |     trace_qed_aio_complete(s, acb, ret); | 
 |  | 
 |     /* Free resources */ | 
 |     qemu_iovec_destroy(&acb->cur_qiov); | 
 |     qed_unref_l2_cache_entry(acb->request.l2_table); | 
 |  | 
 |     /* Arrange for a bh to invoke the completion function */ | 
 |     acb->bh_ret = ret; | 
 |     acb->bh = qemu_bh_new(qed_aio_complete_bh, acb); | 
 |     qemu_bh_schedule(acb->bh); | 
 |  | 
 |     /* Start next allocating write request waiting behind this one.  Note that | 
 |      * requests enqueue themselves when they first hit an unallocated cluster | 
 |      * but they wait until the entire request is finished before waking up the | 
 |      * next request in the queue.  This ensures that we don't cycle through | 
 |      * requests multiple times but rather finish one at a time completely. | 
 |      */ | 
 |     if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) { | 
 |         QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next); | 
 |         acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs); | 
 |         if (acb) { | 
 |             qed_aio_next_io(acb, 0); | 
 |         } else if (s->header.features & QED_F_NEED_CHECK) { | 
 |             qed_start_need_check_timer(s); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * Commit the current L2 table to the cache | 
 |  */ | 
 | static void qed_commit_l2_update(void *opaque, int ret) | 
 | { | 
 |     QEDAIOCB *acb = opaque; | 
 |     BDRVQEDState *s = acb_to_s(acb); | 
 |     CachedL2Table *l2_table = acb->request.l2_table; | 
 |     uint64_t l2_offset = l2_table->offset; | 
 |  | 
 |     qed_commit_l2_cache_entry(&s->l2_cache, l2_table); | 
 |  | 
 |     /* This is guaranteed to succeed because we just committed the entry to the | 
 |      * cache. | 
 |      */ | 
 |     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); | 
 |     assert(acb->request.l2_table != NULL); | 
 |  | 
 |     qed_aio_next_io(opaque, ret); | 
 | } | 
 |  | 
 | /** | 
 |  * Update L1 table with new L2 table offset and write it out | 
 |  */ | 
 | static void qed_aio_write_l1_update(void *opaque, int ret) | 
 | { | 
 |     QEDAIOCB *acb = opaque; | 
 |     BDRVQEDState *s = acb_to_s(acb); | 
 |     int index; | 
 |  | 
 |     if (ret) { | 
 |         qed_aio_complete(acb, ret); | 
 |         return; | 
 |     } | 
 |  | 
 |     index = qed_l1_index(s, acb->cur_pos); | 
 |     s->l1_table->offsets[index] = acb->request.l2_table->offset; | 
 |  | 
 |     qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb); | 
 | } | 
 |  | 
 | /** | 
 |  * Update L2 table with new cluster offsets and write them out | 
 |  */ | 
 | static void qed_aio_write_l2_update(void *opaque, int ret) | 
 | { | 
 |     QEDAIOCB *acb = opaque; | 
 |     BDRVQEDState *s = acb_to_s(acb); | 
 |     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; | 
 |     int index; | 
 |  | 
 |     if (ret) { | 
 |         goto err; | 
 |     } | 
 |  | 
 |     if (need_alloc) { | 
 |         qed_unref_l2_cache_entry(acb->request.l2_table); | 
 |         acb->request.l2_table = qed_new_l2_table(s); | 
 |     } | 
 |  | 
 |     index = qed_l2_index(s, acb->cur_pos); | 
 |     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, | 
 |                          acb->cur_cluster); | 
 |  | 
 |     if (need_alloc) { | 
 |         /* Write out the whole new L2 table */ | 
 |         qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true, | 
 |                             qed_aio_write_l1_update, acb); | 
 |     } else { | 
 |         /* Write out only the updated part of the L2 table */ | 
 |         qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false, | 
 |                             qed_aio_next_io, acb); | 
 |     } | 
 |     return; | 
 |  | 
 | err: | 
 |     qed_aio_complete(acb, ret); | 
 | } | 
 |  | 
 | /** | 
 |  * Flush new data clusters before updating the L2 table | 
 |  * | 
 |  * This flush is necessary when a backing file is in use.  A crash during an | 
 |  * allocating write could result in empty clusters in the image.  If the write | 
 |  * only touched a subregion of the cluster, then backing image sectors have | 
 |  * been lost in the untouched region.  The solution is to flush after writing a | 
 |  * new data cluster and before updating the L2 table. | 
 |  */ | 
 | static void qed_aio_write_flush_before_l2_update(void *opaque, int ret) | 
 | { | 
 |     QEDAIOCB *acb = opaque; | 
 |     BDRVQEDState *s = acb_to_s(acb); | 
 |  | 
 |     if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) { | 
 |         qed_aio_complete(acb, -EIO); | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * Write data to the image file | 
 |  */ | 
 | static void qed_aio_write_main(void *opaque, int ret) | 
 | { | 
 |     QEDAIOCB *acb = opaque; | 
 |     BDRVQEDState *s = acb_to_s(acb); | 
 |     uint64_t offset = acb->cur_cluster + | 
 |                       qed_offset_into_cluster(s, acb->cur_pos); | 
 |     BlockDriverCompletionFunc *next_fn; | 
 |     BlockDriverAIOCB *file_acb; | 
 |  | 
 |     trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size); | 
 |  | 
 |     if (ret) { | 
 |         qed_aio_complete(acb, ret); | 
 |         return; | 
 |     } | 
 |  | 
 |     if (acb->find_cluster_ret == QED_CLUSTER_FOUND) { | 
 |         next_fn = qed_aio_next_io; | 
 |     } else { | 
 |         if (s->bs->backing_hd) { | 
 |             next_fn = qed_aio_write_flush_before_l2_update; | 
 |         } else { | 
 |             next_fn = qed_aio_write_l2_update; | 
 |         } | 
 |     } | 
 |  | 
 |     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); | 
 |     file_acb = bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE, | 
 |                                &acb->cur_qiov, | 
 |                                acb->cur_qiov.size / BDRV_SECTOR_SIZE, | 
 |                                next_fn, acb); | 
 |     if (!file_acb) { | 
 |         qed_aio_complete(acb, -EIO); | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * Populate back untouched region of new data cluster | 
 |  */ | 
 | static void qed_aio_write_postfill(void *opaque, int ret) | 
 | { | 
 |     QEDAIOCB *acb = opaque; | 
 |     BDRVQEDState *s = acb_to_s(acb); | 
 |     uint64_t start = acb->cur_pos + acb->cur_qiov.size; | 
 |     uint64_t len = | 
 |         qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; | 
 |     uint64_t offset = acb->cur_cluster + | 
 |                       qed_offset_into_cluster(s, acb->cur_pos) + | 
 |                       acb->cur_qiov.size; | 
 |  | 
 |     if (ret) { | 
 |         qed_aio_complete(acb, ret); | 
 |         return; | 
 |     } | 
 |  | 
 |     trace_qed_aio_write_postfill(s, acb, start, len, offset); | 
 |     qed_copy_from_backing_file(s, start, len, offset, | 
 |                                 qed_aio_write_main, acb); | 
 | } | 
 |  | 
 | /** | 
 |  * Populate front untouched region of new data cluster | 
 |  */ | 
 | static void qed_aio_write_prefill(void *opaque, int ret) | 
 | { | 
 |     QEDAIOCB *acb = opaque; | 
 |     BDRVQEDState *s = acb_to_s(acb); | 
 |     uint64_t start = qed_start_of_cluster(s, acb->cur_pos); | 
 |     uint64_t len = qed_offset_into_cluster(s, acb->cur_pos); | 
 |  | 
 |     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); | 
 |     qed_copy_from_backing_file(s, start, len, acb->cur_cluster, | 
 |                                 qed_aio_write_postfill, acb); | 
 | } | 
 |  | 
 | /** | 
 |  * Check if the QED_F_NEED_CHECK bit should be set during allocating write | 
 |  */ | 
 | static bool qed_should_set_need_check(BDRVQEDState *s) | 
 | { | 
 |     /* The flush before L2 update path ensures consistency */ | 
 |     if (s->bs->backing_hd) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     return !(s->header.features & QED_F_NEED_CHECK); | 
 | } | 
 |  | 
 | /** | 
 |  * Write new data cluster | 
 |  * | 
 |  * @acb:        Write request | 
 |  * @len:        Length in bytes | 
 |  * | 
 |  * This path is taken when writing to previously unallocated clusters. | 
 |  */ | 
 | static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len) | 
 | { | 
 |     BDRVQEDState *s = acb_to_s(acb); | 
 |  | 
 |     /* Cancel timer when the first allocating request comes in */ | 
 |     if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) { | 
 |         qed_cancel_need_check_timer(s); | 
 |     } | 
 |  | 
 |     /* Freeze this request if another allocating write is in progress */ | 
 |     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) { | 
 |         QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next); | 
 |     } | 
 |     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) || | 
 |         s->allocating_write_reqs_plugged) { | 
 |         return; /* wait for existing request to finish */ | 
 |     } | 
 |  | 
 |     acb->cur_nclusters = qed_bytes_to_clusters(s, | 
 |             qed_offset_into_cluster(s, acb->cur_pos) + len); | 
 |     acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); | 
 |     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); | 
 |  | 
 |     if (qed_should_set_need_check(s)) { | 
 |         s->header.features |= QED_F_NEED_CHECK; | 
 |         qed_write_header(s, qed_aio_write_prefill, acb); | 
 |     } else { | 
 |         qed_aio_write_prefill(acb, 0); | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * Write data cluster in place | 
 |  * | 
 |  * @acb:        Write request | 
 |  * @offset:     Cluster offset in bytes | 
 |  * @len:        Length in bytes | 
 |  * | 
 |  * This path is taken when writing to already allocated clusters. | 
 |  */ | 
 | static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len) | 
 | { | 
 |     /* Calculate the I/O vector */ | 
 |     acb->cur_cluster = offset; | 
 |     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); | 
 |  | 
 |     /* Do the actual write */ | 
 |     qed_aio_write_main(acb, 0); | 
 | } | 
 |  | 
 | /** | 
 |  * Write data cluster | 
 |  * | 
 |  * @opaque:     Write request | 
 |  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1, | 
 |  *              or -errno | 
 |  * @offset:     Cluster offset in bytes | 
 |  * @len:        Length in bytes | 
 |  * | 
 |  * Callback from qed_find_cluster(). | 
 |  */ | 
 | static void qed_aio_write_data(void *opaque, int ret, | 
 |                                uint64_t offset, size_t len) | 
 | { | 
 |     QEDAIOCB *acb = opaque; | 
 |  | 
 |     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); | 
 |  | 
 |     acb->find_cluster_ret = ret; | 
 |  | 
 |     switch (ret) { | 
 |     case QED_CLUSTER_FOUND: | 
 |         qed_aio_write_inplace(acb, offset, len); | 
 |         break; | 
 |  | 
 |     case QED_CLUSTER_L2: | 
 |     case QED_CLUSTER_L1: | 
 |     case QED_CLUSTER_ZERO: | 
 |         qed_aio_write_alloc(acb, len); | 
 |         break; | 
 |  | 
 |     default: | 
 |         qed_aio_complete(acb, ret); | 
 |         break; | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * Read data cluster | 
 |  * | 
 |  * @opaque:     Read request | 
 |  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1, | 
 |  *              or -errno | 
 |  * @offset:     Cluster offset in bytes | 
 |  * @len:        Length in bytes | 
 |  * | 
 |  * Callback from qed_find_cluster(). | 
 |  */ | 
 | static void qed_aio_read_data(void *opaque, int ret, | 
 |                               uint64_t offset, size_t len) | 
 | { | 
 |     QEDAIOCB *acb = opaque; | 
 |     BDRVQEDState *s = acb_to_s(acb); | 
 |     BlockDriverState *bs = acb->common.bs; | 
 |     BlockDriverAIOCB *file_acb; | 
 |  | 
 |     /* Adjust offset into cluster */ | 
 |     offset += qed_offset_into_cluster(s, acb->cur_pos); | 
 |  | 
 |     trace_qed_aio_read_data(s, acb, ret, offset, len); | 
 |  | 
 |     if (ret < 0) { | 
 |         goto err; | 
 |     } | 
 |  | 
 |     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); | 
 |  | 
 |     /* Handle zero cluster and backing file reads */ | 
 |     if (ret == QED_CLUSTER_ZERO) { | 
 |         qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size); | 
 |         qed_aio_next_io(acb, 0); | 
 |         return; | 
 |     } else if (ret != QED_CLUSTER_FOUND) { | 
 |         qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov, | 
 |                               qed_aio_next_io, acb); | 
 |         return; | 
 |     } | 
 |  | 
 |     BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); | 
 |     file_acb = bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE, | 
 |                               &acb->cur_qiov, | 
 |                               acb->cur_qiov.size / BDRV_SECTOR_SIZE, | 
 |                               qed_aio_next_io, acb); | 
 |     if (!file_acb) { | 
 |         ret = -EIO; | 
 |         goto err; | 
 |     } | 
 |     return; | 
 |  | 
 | err: | 
 |     qed_aio_complete(acb, ret); | 
 | } | 
 |  | 
 | /** | 
 |  * Begin next I/O or complete the request | 
 |  */ | 
 | static void qed_aio_next_io(void *opaque, int ret) | 
 | { | 
 |     QEDAIOCB *acb = opaque; | 
 |     BDRVQEDState *s = acb_to_s(acb); | 
 |     QEDFindClusterFunc *io_fn = | 
 |         acb->is_write ? qed_aio_write_data : qed_aio_read_data; | 
 |  | 
 |     trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size); | 
 |  | 
 |     /* Handle I/O error */ | 
 |     if (ret) { | 
 |         qed_aio_complete(acb, ret); | 
 |         return; | 
 |     } | 
 |  | 
 |     acb->qiov_offset += acb->cur_qiov.size; | 
 |     acb->cur_pos += acb->cur_qiov.size; | 
 |     qemu_iovec_reset(&acb->cur_qiov); | 
 |  | 
 |     /* Complete request */ | 
 |     if (acb->cur_pos >= acb->end_pos) { | 
 |         qed_aio_complete(acb, 0); | 
 |         return; | 
 |     } | 
 |  | 
 |     /* Find next cluster and start I/O */ | 
 |     qed_find_cluster(s, &acb->request, | 
 |                       acb->cur_pos, acb->end_pos - acb->cur_pos, | 
 |                       io_fn, acb); | 
 | } | 
 |  | 
 | static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs, | 
 |                                        int64_t sector_num, | 
 |                                        QEMUIOVector *qiov, int nb_sectors, | 
 |                                        BlockDriverCompletionFunc *cb, | 
 |                                        void *opaque, bool is_write) | 
 | { | 
 |     QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque); | 
 |  | 
 |     trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors, | 
 |                          opaque, is_write); | 
 |  | 
 |     acb->is_write = is_write; | 
 |     acb->finished = NULL; | 
 |     acb->qiov = qiov; | 
 |     acb->qiov_offset = 0; | 
 |     acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE; | 
 |     acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE; | 
 |     acb->request.l2_table = NULL; | 
 |     qemu_iovec_init(&acb->cur_qiov, qiov->niov); | 
 |  | 
 |     /* Start request */ | 
 |     qed_aio_next_io(acb, 0); | 
 |     return &acb->common; | 
 | } | 
 |  | 
 | static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs, | 
 |                                             int64_t sector_num, | 
 |                                             QEMUIOVector *qiov, int nb_sectors, | 
 |                                             BlockDriverCompletionFunc *cb, | 
 |                                             void *opaque) | 
 | { | 
 |     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false); | 
 | } | 
 |  | 
 | static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs, | 
 |                                              int64_t sector_num, | 
 |                                              QEMUIOVector *qiov, int nb_sectors, | 
 |                                              BlockDriverCompletionFunc *cb, | 
 |                                              void *opaque) | 
 | { | 
 |     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true); | 
 | } | 
 |  | 
 | static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs, | 
 |                                             BlockDriverCompletionFunc *cb, | 
 |                                             void *opaque) | 
 | { | 
 |     return bdrv_aio_flush(bs->file, cb, opaque); | 
 | } | 
 |  | 
 | static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset) | 
 | { | 
 |     BDRVQEDState *s = bs->opaque; | 
 |     uint64_t old_image_size; | 
 |     int ret; | 
 |  | 
 |     if (!qed_is_image_size_valid(offset, s->header.cluster_size, | 
 |                                  s->header.table_size)) { | 
 |         return -EINVAL; | 
 |     } | 
 |  | 
 |     /* Shrinking is currently not supported */ | 
 |     if ((uint64_t)offset < s->header.image_size) { | 
 |         return -ENOTSUP; | 
 |     } | 
 |  | 
 |     old_image_size = s->header.image_size; | 
 |     s->header.image_size = offset; | 
 |     ret = qed_write_header_sync(s); | 
 |     if (ret < 0) { | 
 |         s->header.image_size = old_image_size; | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | static int64_t bdrv_qed_getlength(BlockDriverState *bs) | 
 | { | 
 |     BDRVQEDState *s = bs->opaque; | 
 |     return s->header.image_size; | 
 | } | 
 |  | 
 | static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) | 
 | { | 
 |     BDRVQEDState *s = bs->opaque; | 
 |  | 
 |     memset(bdi, 0, sizeof(*bdi)); | 
 |     bdi->cluster_size = s->header.cluster_size; | 
 |     return 0; | 
 | } | 
 |  | 
 | static int bdrv_qed_change_backing_file(BlockDriverState *bs, | 
 |                                         const char *backing_file, | 
 |                                         const char *backing_fmt) | 
 | { | 
 |     BDRVQEDState *s = bs->opaque; | 
 |     QEDHeader new_header, le_header; | 
 |     void *buffer; | 
 |     size_t buffer_len, backing_file_len; | 
 |     int ret; | 
 |  | 
 |     /* Refuse to set backing filename if unknown compat feature bits are | 
 |      * active.  If the image uses an unknown compat feature then we may not | 
 |      * know the layout of data following the header structure and cannot safely | 
 |      * add a new string. | 
 |      */ | 
 |     if (backing_file && (s->header.compat_features & | 
 |                          ~QED_COMPAT_FEATURE_MASK)) { | 
 |         return -ENOTSUP; | 
 |     } | 
 |  | 
 |     memcpy(&new_header, &s->header, sizeof(new_header)); | 
 |  | 
 |     new_header.features &= ~(QED_F_BACKING_FILE | | 
 |                              QED_F_BACKING_FORMAT_NO_PROBE); | 
 |  | 
 |     /* Adjust feature flags */ | 
 |     if (backing_file) { | 
 |         new_header.features |= QED_F_BACKING_FILE; | 
 |  | 
 |         if (qed_fmt_is_raw(backing_fmt)) { | 
 |             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Calculate new header size */ | 
 |     backing_file_len = 0; | 
 |  | 
 |     if (backing_file) { | 
 |         backing_file_len = strlen(backing_file); | 
 |     } | 
 |  | 
 |     buffer_len = sizeof(new_header); | 
 |     new_header.backing_filename_offset = buffer_len; | 
 |     new_header.backing_filename_size = backing_file_len; | 
 |     buffer_len += backing_file_len; | 
 |  | 
 |     /* Make sure we can rewrite header without failing */ | 
 |     if (buffer_len > new_header.header_size * new_header.cluster_size) { | 
 |         return -ENOSPC; | 
 |     } | 
 |  | 
 |     /* Prepare new header */ | 
 |     buffer = g_malloc(buffer_len); | 
 |  | 
 |     qed_header_cpu_to_le(&new_header, &le_header); | 
 |     memcpy(buffer, &le_header, sizeof(le_header)); | 
 |     buffer_len = sizeof(le_header); | 
 |  | 
 |     memcpy(buffer + buffer_len, backing_file, backing_file_len); | 
 |     buffer_len += backing_file_len; | 
 |  | 
 |     /* Write new header */ | 
 |     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); | 
 |     g_free(buffer); | 
 |     if (ret == 0) { | 
 |         memcpy(&s->header, &new_header, sizeof(new_header)); | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result) | 
 | { | 
 |     BDRVQEDState *s = bs->opaque; | 
 |  | 
 |     return qed_check(s, result, false); | 
 | } | 
 |  | 
 | static QEMUOptionParameter qed_create_options[] = { | 
 |     { | 
 |         .name = BLOCK_OPT_SIZE, | 
 |         .type = OPT_SIZE, | 
 |         .help = "Virtual disk size (in bytes)" | 
 |     }, { | 
 |         .name = BLOCK_OPT_BACKING_FILE, | 
 |         .type = OPT_STRING, | 
 |         .help = "File name of a base image" | 
 |     }, { | 
 |         .name = BLOCK_OPT_BACKING_FMT, | 
 |         .type = OPT_STRING, | 
 |         .help = "Image format of the base image" | 
 |     }, { | 
 |         .name = BLOCK_OPT_CLUSTER_SIZE, | 
 |         .type = OPT_SIZE, | 
 |         .help = "Cluster size (in bytes)", | 
 |         .value = { .n = QED_DEFAULT_CLUSTER_SIZE }, | 
 |     }, { | 
 |         .name = BLOCK_OPT_TABLE_SIZE, | 
 |         .type = OPT_SIZE, | 
 |         .help = "L1/L2 table size (in clusters)" | 
 |     }, | 
 |     { /* end of list */ } | 
 | }; | 
 |  | 
 | static BlockDriver bdrv_qed = { | 
 |     .format_name              = "qed", | 
 |     .instance_size            = sizeof(BDRVQEDState), | 
 |     .create_options           = qed_create_options, | 
 |  | 
 |     .bdrv_probe               = bdrv_qed_probe, | 
 |     .bdrv_open                = bdrv_qed_open, | 
 |     .bdrv_close               = bdrv_qed_close, | 
 |     .bdrv_create              = bdrv_qed_create, | 
 |     .bdrv_is_allocated        = bdrv_qed_is_allocated, | 
 |     .bdrv_make_empty          = bdrv_qed_make_empty, | 
 |     .bdrv_aio_readv           = bdrv_qed_aio_readv, | 
 |     .bdrv_aio_writev          = bdrv_qed_aio_writev, | 
 |     .bdrv_aio_flush           = bdrv_qed_aio_flush, | 
 |     .bdrv_truncate            = bdrv_qed_truncate, | 
 |     .bdrv_getlength           = bdrv_qed_getlength, | 
 |     .bdrv_get_info            = bdrv_qed_get_info, | 
 |     .bdrv_change_backing_file = bdrv_qed_change_backing_file, | 
 |     .bdrv_check               = bdrv_qed_check, | 
 | }; | 
 |  | 
 | static void bdrv_qed_init(void) | 
 | { | 
 |     bdrv_register(&bdrv_qed); | 
 | } | 
 |  | 
 | block_init(bdrv_qed_init); |