|  | /* | 
|  | * General purpose implementation of a simple periodic countdown timer. | 
|  | * | 
|  | * Copyright (c) 2007 CodeSourcery. | 
|  | * | 
|  | * This code is licensed under the GNU LGPL. | 
|  | */ | 
|  | #include "hw/hw.h" | 
|  | #include "qemu/timer.h" | 
|  | #include "hw/ptimer.h" | 
|  | #include "qemu/host-utils.h" | 
|  |  | 
|  | struct ptimer_state | 
|  | { | 
|  | uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */ | 
|  | uint64_t limit; | 
|  | uint64_t delta; | 
|  | uint32_t period_frac; | 
|  | int64_t period; | 
|  | int64_t last_event; | 
|  | int64_t next_event; | 
|  | QEMUBH *bh; | 
|  | QEMUTimer *timer; | 
|  | }; | 
|  |  | 
|  | /* Use a bottom-half routine to avoid reentrancy issues.  */ | 
|  | static void ptimer_trigger(ptimer_state *s) | 
|  | { | 
|  | if (s->bh) { | 
|  | qemu_bh_schedule(s->bh); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ptimer_reload(ptimer_state *s) | 
|  | { | 
|  | if (s->delta == 0) { | 
|  | ptimer_trigger(s); | 
|  | s->delta = s->limit; | 
|  | } | 
|  | if (s->delta == 0 || s->period == 0) { | 
|  | fprintf(stderr, "Timer with period zero, disabling\n"); | 
|  | s->enabled = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | s->last_event = s->next_event; | 
|  | s->next_event = s->last_event + s->delta * s->period; | 
|  | if (s->period_frac) { | 
|  | s->next_event += ((int64_t)s->period_frac * s->delta) >> 32; | 
|  | } | 
|  | timer_mod(s->timer, s->next_event); | 
|  | } | 
|  |  | 
|  | static void ptimer_tick(void *opaque) | 
|  | { | 
|  | ptimer_state *s = (ptimer_state *)opaque; | 
|  | ptimer_trigger(s); | 
|  | s->delta = 0; | 
|  | if (s->enabled == 2) { | 
|  | s->enabled = 0; | 
|  | } else { | 
|  | ptimer_reload(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t ptimer_get_count(ptimer_state *s) | 
|  | { | 
|  | int64_t now; | 
|  | uint64_t counter; | 
|  |  | 
|  | if (s->enabled) { | 
|  | now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | /* Figure out the current counter value.  */ | 
|  | if (now - s->next_event > 0 | 
|  | || s->period == 0) { | 
|  | /* Prevent timer underflowing if it should already have | 
|  | triggered.  */ | 
|  | counter = 0; | 
|  | } else { | 
|  | uint64_t rem; | 
|  | uint64_t div; | 
|  | int clz1, clz2; | 
|  | int shift; | 
|  |  | 
|  | /* We need to divide time by period, where time is stored in | 
|  | rem (64-bit integer) and period is stored in period/period_frac | 
|  | (64.32 fixed point). | 
|  |  | 
|  | Doing full precision division is hard, so scale values and | 
|  | do a 64-bit division.  The result should be rounded down, | 
|  | so that the rounding error never causes the timer to go | 
|  | backwards. | 
|  | */ | 
|  |  | 
|  | rem = s->next_event - now; | 
|  | div = s->period; | 
|  |  | 
|  | clz1 = clz64(rem); | 
|  | clz2 = clz64(div); | 
|  | shift = clz1 < clz2 ? clz1 : clz2; | 
|  |  | 
|  | rem <<= shift; | 
|  | div <<= shift; | 
|  | if (shift >= 32) { | 
|  | div |= ((uint64_t)s->period_frac << (shift - 32)); | 
|  | } else { | 
|  | if (shift != 0) | 
|  | div |= (s->period_frac >> (32 - shift)); | 
|  | /* Look at remaining bits of period_frac and round div up if | 
|  | necessary.  */ | 
|  | if ((uint32_t)(s->period_frac << shift)) | 
|  | div += 1; | 
|  | } | 
|  | counter = rem / div; | 
|  | } | 
|  | } else { | 
|  | counter = s->delta; | 
|  | } | 
|  | return counter; | 
|  | } | 
|  |  | 
|  | void ptimer_set_count(ptimer_state *s, uint64_t count) | 
|  | { | 
|  | s->delta = count; | 
|  | if (s->enabled) { | 
|  | s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | ptimer_reload(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ptimer_run(ptimer_state *s, int oneshot) | 
|  | { | 
|  | if (s->enabled) { | 
|  | return; | 
|  | } | 
|  | if (s->period == 0) { | 
|  | fprintf(stderr, "Timer with period zero, disabling\n"); | 
|  | return; | 
|  | } | 
|  | s->enabled = oneshot ? 2 : 1; | 
|  | s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | ptimer_reload(s); | 
|  | } | 
|  |  | 
|  | /* Pause a timer.  Note that this may cause it to "lose" time, even if it | 
|  | is immediately restarted.  */ | 
|  | void ptimer_stop(ptimer_state *s) | 
|  | { | 
|  | if (!s->enabled) | 
|  | return; | 
|  |  | 
|  | s->delta = ptimer_get_count(s); | 
|  | timer_del(s->timer); | 
|  | s->enabled = 0; | 
|  | } | 
|  |  | 
|  | /* Set counter increment interval in nanoseconds.  */ | 
|  | void ptimer_set_period(ptimer_state *s, int64_t period) | 
|  | { | 
|  | s->period = period; | 
|  | s->period_frac = 0; | 
|  | if (s->enabled) { | 
|  | s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | ptimer_reload(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set counter frequency in Hz.  */ | 
|  | void ptimer_set_freq(ptimer_state *s, uint32_t freq) | 
|  | { | 
|  | s->period = 1000000000ll / freq; | 
|  | s->period_frac = (1000000000ll << 32) / freq; | 
|  | if (s->enabled) { | 
|  | s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | ptimer_reload(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set the initial countdown value.  If reload is nonzero then also set | 
|  | count = limit.  */ | 
|  | void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) | 
|  | { | 
|  | /* | 
|  | * Artificially limit timeout rate to something | 
|  | * achievable under QEMU.  Otherwise, QEMU spends all | 
|  | * its time generating timer interrupts, and there | 
|  | * is no forward progress. | 
|  | * About ten microseconds is the fastest that really works | 
|  | * on the current generation of host machines. | 
|  | */ | 
|  |  | 
|  | if (limit * s->period < 10000 && s->period) { | 
|  | limit = 10000 / s->period; | 
|  | } | 
|  |  | 
|  | s->limit = limit; | 
|  | if (reload) | 
|  | s->delta = limit; | 
|  | if (s->enabled && reload) { | 
|  | s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | ptimer_reload(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | const VMStateDescription vmstate_ptimer = { | 
|  | .name = "ptimer", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .minimum_version_id_old = 1, | 
|  | .fields      = (VMStateField[]) { | 
|  | VMSTATE_UINT8(enabled, ptimer_state), | 
|  | VMSTATE_UINT64(limit, ptimer_state), | 
|  | VMSTATE_UINT64(delta, ptimer_state), | 
|  | VMSTATE_UINT32(period_frac, ptimer_state), | 
|  | VMSTATE_INT64(period, ptimer_state), | 
|  | VMSTATE_INT64(last_event, ptimer_state), | 
|  | VMSTATE_INT64(next_event, ptimer_state), | 
|  | VMSTATE_TIMER(timer, ptimer_state), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | ptimer_state *ptimer_init(QEMUBH *bh) | 
|  | { | 
|  | ptimer_state *s; | 
|  |  | 
|  | s = (ptimer_state *)g_malloc0(sizeof(ptimer_state)); | 
|  | s->bh = bh; | 
|  | s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s); | 
|  | return s; | 
|  | } |