blob: 882186e1a0340ab73b7159688e33b43c03637e35 [file] [log] [blame]
/*
* qemu user main
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/resource.h>
#include "qemu.h"
#include "qemu-common.h"
#include "qemu/cache-utils.h"
#include "cpu.h"
#include "tcg.h"
#include "qemu/timer.h"
#include "qemu/envlist.h"
#include "elf.h"
char *exec_path;
int singlestep;
const char *filename;
const char *argv0;
int gdbstub_port;
envlist_t *envlist;
static const char *cpu_model;
unsigned long mmap_min_addr;
#if defined(CONFIG_USE_GUEST_BASE)
unsigned long guest_base;
int have_guest_base;
#if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
/*
* When running 32-on-64 we should make sure we can fit all of the possible
* guest address space into a contiguous chunk of virtual host memory.
*
* This way we will never overlap with our own libraries or binaries or stack
* or anything else that QEMU maps.
*/
# ifdef TARGET_MIPS
/* MIPS only supports 31 bits of virtual address space for user space */
unsigned long reserved_va = 0x77000000;
# else
unsigned long reserved_va = 0xf7000000;
# endif
#else
unsigned long reserved_va;
#endif
#endif
static void usage(void);
static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
const char *qemu_uname_release;
/* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
we allocate a bigger stack. Need a better solution, for example
by remapping the process stack directly at the right place */
unsigned long guest_stack_size = 8 * 1024 * 1024UL;
void gemu_log(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
}
#if defined(TARGET_I386)
int cpu_get_pic_interrupt(CPUX86State *env)
{
return -1;
}
#endif
/***********************************************************/
/* Helper routines for implementing atomic operations. */
/* To implement exclusive operations we force all cpus to syncronise.
We don't require a full sync, only that no cpus are executing guest code.
The alternative is to map target atomic ops onto host equivalents,
which requires quite a lot of per host/target work. */
static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER;
static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER;
static int pending_cpus;
/* Make sure everything is in a consistent state for calling fork(). */
void fork_start(void)
{
pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
pthread_mutex_lock(&exclusive_lock);
mmap_fork_start();
}
void fork_end(int child)
{
mmap_fork_end(child);
if (child) {
CPUState *cpu, *next_cpu;
/* Child processes created by fork() only have a single thread.
Discard information about the parent threads. */
CPU_FOREACH_SAFE(cpu, next_cpu) {
if (cpu != thread_cpu) {
QTAILQ_REMOVE(&cpus, thread_cpu, node);
}
}
pending_cpus = 0;
pthread_mutex_init(&exclusive_lock, NULL);
pthread_mutex_init(&cpu_list_mutex, NULL);
pthread_cond_init(&exclusive_cond, NULL);
pthread_cond_init(&exclusive_resume, NULL);
pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL);
gdbserver_fork((CPUArchState *)thread_cpu->env_ptr);
} else {
pthread_mutex_unlock(&exclusive_lock);
pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
}
}
/* Wait for pending exclusive operations to complete. The exclusive lock
must be held. */
static inline void exclusive_idle(void)
{
while (pending_cpus) {
pthread_cond_wait(&exclusive_resume, &exclusive_lock);
}
}
/* Start an exclusive operation.
Must only be called from outside cpu_arm_exec. */
static inline void start_exclusive(void)
{
CPUState *other_cpu;
pthread_mutex_lock(&exclusive_lock);
exclusive_idle();
pending_cpus = 1;
/* Make all other cpus stop executing. */
CPU_FOREACH(other_cpu) {
if (other_cpu->running) {
pending_cpus++;
cpu_exit(other_cpu);
}
}
if (pending_cpus > 1) {
pthread_cond_wait(&exclusive_cond, &exclusive_lock);
}
}
/* Finish an exclusive operation. */
static inline void end_exclusive(void)
{
pending_cpus = 0;
pthread_cond_broadcast(&exclusive_resume);
pthread_mutex_unlock(&exclusive_lock);
}
/* Wait for exclusive ops to finish, and begin cpu execution. */
static inline void cpu_exec_start(CPUState *cpu)
{
pthread_mutex_lock(&exclusive_lock);
exclusive_idle();
cpu->running = true;
pthread_mutex_unlock(&exclusive_lock);
}
/* Mark cpu as not executing, and release pending exclusive ops. */
static inline void cpu_exec_end(CPUState *cpu)
{
pthread_mutex_lock(&exclusive_lock);
cpu->running = false;
if (pending_cpus > 1) {
pending_cpus--;
if (pending_cpus == 1) {
pthread_cond_signal(&exclusive_cond);
}
}
exclusive_idle();
pthread_mutex_unlock(&exclusive_lock);
}
void cpu_list_lock(void)
{
pthread_mutex_lock(&cpu_list_mutex);
}
void cpu_list_unlock(void)
{
pthread_mutex_unlock(&cpu_list_mutex);
}
#ifdef TARGET_I386
/***********************************************************/
/* CPUX86 core interface */
void cpu_smm_update(CPUX86State *env)
{
}
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_real_ticks();
}
static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
int flags)
{
unsigned int e1, e2;
uint32_t *p;
e1 = (addr << 16) | (limit & 0xffff);
e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
e2 |= flags;
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
}
static uint64_t *idt_table;
#ifdef TARGET_X86_64
static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
uint64_t addr, unsigned int sel)
{
uint32_t *p, e1, e2;
e1 = (addr & 0xffff) | (sel << 16);
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
p[2] = tswap32(addr >> 32);
p[3] = 0;
}
/* only dpl matters as we do only user space emulation */
static void set_idt(int n, unsigned int dpl)
{
set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
}
#else
static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
uint32_t addr, unsigned int sel)
{
uint32_t *p, e1, e2;
e1 = (addr & 0xffff) | (sel << 16);
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
}
/* only dpl matters as we do only user space emulation */
static void set_idt(int n, unsigned int dpl)
{
set_gate(idt_table + n, 0, dpl, 0, 0);
}
#endif
void cpu_loop(CPUX86State *env)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
int trapnr;
abi_ulong pc;
target_siginfo_t info;
for(;;) {
trapnr = cpu_x86_exec(env);
switch(trapnr) {
case 0x80:
/* linux syscall from int $0x80 */
env->regs[R_EAX] = do_syscall(env,
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP],
0, 0);
break;
#ifndef TARGET_ABI32
case EXCP_SYSCALL:
/* linux syscall from syscall instruction */
env->regs[R_EAX] = do_syscall(env,
env->regs[R_EAX],
env->regs[R_EDI],
env->regs[R_ESI],
env->regs[R_EDX],
env->regs[10],
env->regs[8],
env->regs[9],
0, 0);
env->eip = env->exception_next_eip;
break;
#endif
case EXCP0B_NOSEG:
case EXCP0C_STACK:
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
queue_signal(env, info.si_signo, &info);
break;
case EXCP0D_GPF:
/* XXX: potential problem if ABI32 */
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_fault(env);
} else
#endif
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP0E_PAGE:
info.si_signo = SIGSEGV;
info.si_errno = 0;
if (!(env->error_code & 1))
info.si_code = TARGET_SEGV_MAPERR;
else
info.si_code = TARGET_SEGV_ACCERR;
info._sifields._sigfault._addr = env->cr[2];
queue_signal(env, info.si_signo, &info);
break;
case EXCP00_DIVZ:
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_trap(env, trapnr);
} else
#endif
{
/* division by zero */
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = TARGET_FPE_INTDIV;
info._sifields._sigfault._addr = env->eip;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP01_DB:
case EXCP03_INT3:
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_trap(env, trapnr);
} else
#endif
{
info.si_signo = SIGTRAP;
info.si_errno = 0;
if (trapnr == EXCP01_DB) {
info.si_code = TARGET_TRAP_BRKPT;
info._sifields._sigfault._addr = env->eip;
} else {
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
}
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP04_INTO:
case EXCP05_BOUND:
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_trap(env, trapnr);
} else
#endif
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP06_ILLOP:
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_ILLOPN;
info._sifields._sigfault._addr = env->eip;
queue_signal(env, info.si_signo, &info);
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig(cs, TARGET_SIGTRAP);
if (sig)
{
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, &info);
}
}
break;
default:
pc = env->segs[R_CS].base + env->eip;
fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
(long)pc, trapnr);
abort();
}
process_pending_signals(env);
}
}
#endif
#ifdef TARGET_ARM
#define get_user_code_u32(x, gaddr, doswap) \
({ abi_long __r = get_user_u32((x), (gaddr)); \
if (!__r && (doswap)) { \
(x) = bswap32(x); \
} \
__r; \
})
#define get_user_code_u16(x, gaddr, doswap) \
({ abi_long __r = get_user_u16((x), (gaddr)); \
if (!__r && (doswap)) { \
(x) = bswap16(x); \
} \
__r; \
})
#ifdef TARGET_ABI32
/* Commpage handling -- there is no commpage for AArch64 */
/*
* See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
* Input:
* r0 = pointer to oldval
* r1 = pointer to newval
* r2 = pointer to target value
*
* Output:
* r0 = 0 if *ptr was changed, non-0 if no exchange happened
* C set if *ptr was changed, clear if no exchange happened
*
* Note segv's in kernel helpers are a bit tricky, we can set the
* data address sensibly but the PC address is just the entry point.
*/
static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
{
uint64_t oldval, newval, val;
uint32_t addr, cpsr;
target_siginfo_t info;
/* Based on the 32 bit code in do_kernel_trap */
/* XXX: This only works between threads, not between processes.
It's probably possible to implement this with native host
operations. However things like ldrex/strex are much harder so
there's not much point trying. */
start_exclusive();
cpsr = cpsr_read(env);
addr = env->regs[2];
if (get_user_u64(oldval, env->regs[0])) {
env->exception.vaddress = env->regs[0];
goto segv;
};
if (get_user_u64(newval, env->regs[1])) {
env->exception.vaddress = env->regs[1];
goto segv;
};
if (get_user_u64(val, addr)) {
env->exception.vaddress = addr;
goto segv;
}
if (val == oldval) {
val = newval;
if (put_user_u64(val, addr)) {
env->exception.vaddress = addr;
goto segv;
};
env->regs[0] = 0;
cpsr |= CPSR_C;
} else {
env->regs[0] = -1;
cpsr &= ~CPSR_C;
}
cpsr_write(env, cpsr, CPSR_C);
end_exclusive();
return;
segv:
end_exclusive();
/* We get the PC of the entry address - which is as good as anything,
on a real kernel what you get depends on which mode it uses. */
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = env->exception.vaddress;
queue_signal(env, info.si_signo, &info);
end_exclusive();
}
/* Handle a jump to the kernel code page. */
static int
do_kernel_trap(CPUARMState *env)
{
uint32_t addr;
uint32_t cpsr;
uint32_t val;
switch (env->regs[15]) {
case 0xffff0fa0: /* __kernel_memory_barrier */
/* ??? No-op. Will need to do better for SMP. */
break;
case 0xffff0fc0: /* __kernel_cmpxchg */
/* XXX: This only works between threads, not between processes.
It's probably possible to implement this with native host
operations. However things like ldrex/strex are much harder so
there's not much point trying. */
start_exclusive();
cpsr = cpsr_read(env);
addr = env->regs[2];
/* FIXME: This should SEGV if the access fails. */
if (get_user_u32(val, addr))
val = ~env->regs[0];
if (val == env->regs[0]) {
val = env->regs[1];
/* FIXME: Check for segfaults. */
put_user_u32(val, addr);
env->regs[0] = 0;
cpsr |= CPSR_C;
} else {
env->regs[0] = -1;
cpsr &= ~CPSR_C;
}
cpsr_write(env, cpsr, CPSR_C);
end_exclusive();
break;
case 0xffff0fe0: /* __kernel_get_tls */
env->regs[0] = env->cp15.tpidrro_el0;
break;
case 0xffff0f60: /* __kernel_cmpxchg64 */
arm_kernel_cmpxchg64_helper(env);
break;
default:
return 1;
}
/* Jump back to the caller. */
addr = env->regs[14];
if (addr & 1) {
env->thumb = 1;
addr &= ~1;
}
env->regs[15] = addr;
return 0;
}
/* Store exclusive handling for AArch32 */
static int do_strex(CPUARMState *env)
{
uint64_t val;
int size;
int rc = 1;
int segv = 0;
uint32_t addr;
start_exclusive();
if (env->exclusive_addr != env->exclusive_test) {
goto fail;
}
/* We know we're always AArch32 so the address is in uint32_t range
* unless it was the -1 exclusive-monitor-lost value (which won't
* match exclusive_test above).
*/
assert(extract64(env->exclusive_addr, 32, 32) == 0);
addr = env->exclusive_addr;
size = env->exclusive_info & 0xf;
switch (size) {
case 0:
segv = get_user_u8(val, addr);
break;
case 1:
segv = get_user_u16(val, addr);
break;
case 2:
case 3:
segv = get_user_u32(val, addr);
break;
default:
abort();
}
if (segv) {
env->exception.vaddress = addr;
goto done;
}
if (size == 3) {
uint32_t valhi;
segv = get_user_u32(valhi, addr + 4);
if (segv) {
env->exception.vaddress = addr + 4;
goto done;
}
val = deposit64(val, 32, 32, valhi);
}
if (val != env->exclusive_val) {
goto fail;
}
val = env->regs[(env->exclusive_info >> 8) & 0xf];
switch (size) {
case 0:
segv = put_user_u8(val, addr);
break;
case 1:
segv = put_user_u16(val, addr);
break;
case 2:
case 3:
segv = put_user_u32(val, addr);
break;
}
if (segv) {
env->exception.vaddress = addr;
goto done;
}
if (size == 3) {
val = env->regs[(env->exclusive_info >> 12) & 0xf];
segv = put_user_u32(val, addr + 4);
if (segv) {
env->exception.vaddress = addr + 4;
goto done;
}
}
rc = 0;
fail:
env->regs[15] += 4;
env->regs[(env->exclusive_info >> 4) & 0xf] = rc;
done:
end_exclusive();
return segv;
}
void cpu_loop(CPUARMState *env)
{
CPUState *cs = CPU(arm_env_get_cpu(env));
int trapnr;
unsigned int n, insn;
target_siginfo_t info;
uint32_t addr;
for(;;) {
cpu_exec_start(cs);
trapnr = cpu_arm_exec(env);
cpu_exec_end(cs);
switch(trapnr) {
case EXCP_UDEF:
{
TaskState *ts = cs->opaque;
uint32_t opcode;
int rc;
/* we handle the FPU emulation here, as Linux */
/* we get the opcode */
/* FIXME - what to do if get_user() fails? */
get_user_code_u32(opcode, env->regs[15], env->bswap_code);
rc = EmulateAll(opcode, &ts->fpa, env);
if (rc == 0) { /* illegal instruction */
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_ILLOPN;
info._sifields._sigfault._addr = env->regs[15];
queue_signal(env, info.si_signo, &info);
} else if (rc < 0) { /* FP exception */
int arm_fpe=0;
/* translate softfloat flags to FPSR flags */
if (-rc & float_flag_invalid)
arm_fpe |= BIT_IOC;
if (-rc & float_flag_divbyzero)
arm_fpe |= BIT_DZC;
if (-rc & float_flag_overflow)
arm_fpe |= BIT_OFC;
if (-rc & float_flag_underflow)
arm_fpe |= BIT_UFC;
if (-rc & float_flag_inexact)
arm_fpe |= BIT_IXC;
FPSR fpsr = ts->fpa.fpsr;
//printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
info.si_signo = SIGFPE;
info.si_errno = 0;
/* ordered by priority, least first */
if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
info._sifields._sigfault._addr = env->regs[15];
queue_signal(env, info.si_signo, &info);
} else {
env->regs[15] += 4;
}
/* accumulate unenabled exceptions */
if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
fpsr |= BIT_IXC;
if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
fpsr |= BIT_UFC;
if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
fpsr |= BIT_OFC;
if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
fpsr |= BIT_DZC;
if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
fpsr |= BIT_IOC;
ts->fpa.fpsr=fpsr;
} else { /* everything OK */
/* increment PC */
env->regs[15] += 4;
}
}
break;
case EXCP_SWI:
case EXCP_BKPT:
{
env->eabi = 1;
/* system call */
if (trapnr == EXCP_BKPT) {
if (env->thumb) {
/* FIXME - what to do if get_user() fails? */
get_user_code_u16(insn, env->regs[15], env->bswap_code);
n = insn & 0xff;
env->regs[15] += 2;
} else {
/* FIXME - what to do if get_user() fails? */
get_user_code_u32(insn, env->regs[15], env->bswap_code);
n = (insn & 0xf) | ((insn >> 4) & 0xff0);
env->regs[15] += 4;
}
} else {
if (env->thumb) {
/* FIXME - what to do if get_user() fails? */
get_user_code_u16(insn, env->regs[15] - 2,
env->bswap_code);
n = insn & 0xff;
} else {
/* FIXME - what to do if get_user() fails? */
get_user_code_u32(insn, env->regs[15] - 4,
env->bswap_code);
n = insn & 0xffffff;
}
}
if (n == ARM_NR_cacheflush) {
/* nop */
} else if (n == ARM_NR_semihosting
|| n == ARM_NR_thumb_semihosting) {
env->regs[0] = do_arm_semihosting (env);
} else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) {
/* linux syscall */
if (env->thumb || n == 0) {
n = env->regs[7];
} else {
n -= ARM_SYSCALL_BASE;
env->eabi = 0;
}
if ( n > ARM_NR_BASE) {
switch (n) {
case ARM_NR_cacheflush:
/* nop */
break;
case ARM_NR_set_tls:
cpu_set_tls(env, env->regs[0]);
env->regs[0] = 0;
break;
default:
gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
n);
env->regs[0] = -TARGET_ENOSYS;
break;
}
} else {
env->regs[0] = do_syscall(env,
n,
env->regs[0],
env->regs[1],
env->regs[2],
env->regs[3],
env->regs[4],
env->regs[5],
0, 0);
}
} else {
goto error;
}
}
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_STREX:
if (!do_strex(env)) {
break;
}
/* fall through for segv */
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
addr = env->exception.vaddress;
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = addr;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig(cs, TARGET_SIGTRAP);
if (sig)
{
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, &info);
}
}
break;
case EXCP_KERNEL_TRAP:
if (do_kernel_trap(env))
goto error;
break;
default:
error:
fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
abort();
}
process_pending_signals(env);
}
}
#else
/*
* Handle AArch64 store-release exclusive
*
* rs = gets the status result of store exclusive
* rt = is the register that is stored
* rt2 = is the second register store (in STP)
*
*/
static int do_strex_a64(CPUARMState *env)
{
uint64_t val;
int size;
bool is_pair;
int rc = 1;
int segv = 0;
uint64_t addr;
int rs, rt, rt2;
start_exclusive();
/* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */
size = extract32(env->exclusive_info, 0, 2);
is_pair = extract32(env->exclusive_info, 2, 1);
rs = extract32(env->exclusive_info, 4, 5);
rt = extract32(env->exclusive_info, 9, 5);
rt2 = extract32(env->exclusive_info, 14, 5);
addr = env->exclusive_addr;
if (addr != env->exclusive_test) {
goto finish;
}
switch (size) {
case 0:
segv = get_user_u8(val, addr);
break;
case 1:
segv = get_user_u16(val, addr);
break;
case 2:
segv = get_user_u32(val, addr);
break;
case 3:
segv = get_user_u64(val, addr);
break;
default:
abort();
}
if (segv) {
env->exception.vaddress = addr;
goto error;
}
if (val != env->exclusive_val) {
goto finish;
}
if (is_pair) {
if (size == 2) {
segv = get_user_u32(val, addr + 4);
} else {
segv = get_user_u64(val, addr + 8);
}
if (segv) {
env->exception.vaddress = addr + (size == 2 ? 4 : 8);
goto error;
}
if (val != env->exclusive_high) {
goto finish;
}
}
/* handle the zero register */
val = rt == 31 ? 0 : env->xregs[rt];
switch (size) {
case 0:
segv = put_user_u8(val, addr);
break;
case 1:
segv = put_user_u16(val, addr);
break;
case 2:
segv = put_user_u32(val, addr);
break;
case 3:
segv = put_user_u64(val, addr);
break;
}
if (segv) {
goto error;
}
if (is_pair) {
/* handle the zero register */
val = rt2 == 31 ? 0 : env->xregs[rt2];
if (size == 2) {
segv = put_user_u32(val, addr + 4);
} else {
segv = put_user_u64(val, addr + 8);
}
if (segv) {
env->exception.vaddress = addr + (size == 2 ? 4 : 8);
goto error;
}
}
rc = 0;
finish:
env->pc += 4;
/* rs == 31 encodes a write to the ZR, thus throwing away
* the status return. This is rather silly but valid.
*/
if (rs < 31) {
env->xregs[rs] = rc;
}
error:
/* instruction faulted, PC does not advance */
/* either way a strex releases any exclusive lock we have */
env->exclusive_addr = -1;
end_exclusive();
return segv;
}
/* AArch64 main loop */
void cpu_loop(CPUARMState *env)
{
CPUState *cs = CPU(arm_env_get_cpu(env));
int trapnr, sig;
target_siginfo_t info;
uint32_t addr;
for (;;) {
cpu_exec_start(cs);
trapnr = cpu_arm_exec(env);
cpu_exec_end(cs);
switch (trapnr) {
case EXCP_SWI:
env->xregs[0] = do_syscall(env,
env->xregs[8],
env->xregs[0],
env->xregs[1],
env->xregs[2],
env->xregs[3],
env->xregs[4],
env->xregs[5],
0, 0);
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_UDEF:
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_ILLOPN;
info._sifields._sigfault._addr = env->pc;
queue_signal(env, info.si_signo, &info);
break;
case EXCP_STREX:
if (!do_strex_a64(env)) {
break;
}
/* fall through for segv */
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
addr = env->exception.vaddress;
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = addr;
queue_signal(env, info.si_signo, &info);
break;
case EXCP_DEBUG:
case EXCP_BKPT:
sig = gdb_handlesig(cs, TARGET_SIGTRAP);
if (sig) {
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, &info);
}
break;
default:
fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
abort();
}
process_pending_signals(env);
/* Exception return on AArch64 always clears the exclusive monitor,
* so any return to running guest code implies this.
* A strex (successful or otherwise) also clears the monitor, so
* we don't need to specialcase EXCP_STREX.
*/
env->exclusive_addr = -1;
}
}
#endif /* ndef TARGET_ABI32 */
#endif
#ifdef TARGET_UNICORE32
void cpu_loop(CPUUniCore32State *env)
{
CPUState *cs = CPU(uc32_env_get_cpu(env));
int trapnr;
unsigned int n, insn;
target_siginfo_t info;
for (;;) {
cpu_exec_start(cs);
trapnr = uc32_cpu_exec(env);
cpu_exec_end(cs);
switch (trapnr) {
case UC32_EXCP_PRIV:
{
/* system call */
get_user_u32(insn, env->regs[31] - 4);
n = insn & 0xffffff;
if (n >= UC32_SYSCALL_BASE) {
/* linux syscall */
n -= UC32_SYSCALL_BASE;
if (n == UC32_SYSCALL_NR_set_tls) {
cpu_set_tls(env, env->regs[0]);
env->regs[0] = 0;
} else {
env->regs[0] = do_syscall(env,
n,
env->regs[0],
env->regs[1],
env->regs[2],
env->regs[3],
env->regs[4],
env->regs[5],
0, 0);
}
} else {
goto error;
}
}
break;
case UC32_EXCP_DTRAP:
case UC32_EXCP_ITRAP:
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
queue_signal(env, info.si_signo, &info);
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig(cs, TARGET_SIGTRAP);
if (sig) {
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, &info);
}
}
break;
default:
goto error;
}
process_pending_signals(env);
}
error:
fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
abort();
}
#endif
#ifdef TARGET_SPARC
#define SPARC64_STACK_BIAS 2047
//#define DEBUG_WIN
/* WARNING: dealing with register windows _is_ complicated. More info
can be found at http://www.sics.se/~psm/sparcstack.html */
static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
{
index = (index + cwp * 16) % (16 * env->nwindows);
/* wrap handling : if cwp is on the last window, then we use the
registers 'after' the end */
if (index < 8 && env->cwp == env->nwindows - 1)
index += 16 * env->nwindows;
return index;
}
/* save the register window 'cwp1' */
static inline void save_window_offset(CPUSPARCState *env, int cwp1)
{
unsigned int i;
abi_ulong sp_ptr;
sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
#ifdef TARGET_SPARC64
if (sp_ptr & 3)
sp_ptr += SPARC64_STACK_BIAS;
#endif
#if defined(DEBUG_WIN)
printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
sp_ptr, cwp1);
#endif
for(i = 0; i < 16; i++) {
/* FIXME - what to do if put_user() fails? */
put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
sp_ptr += sizeof(abi_ulong);
}
}
static void save_window(CPUSPARCState *env)
{
#ifndef TARGET_SPARC64
unsigned int new_wim;
new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
((1LL << env->nwindows) - 1);
save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
env->wim = new_wim;
#else
save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
env->cansave++;
env->canrestore--;
#endif
}
static void restore_window(CPUSPARCState *env)
{
#ifndef TARGET_SPARC64
unsigned int new_wim;
#endif
unsigned int i, cwp1;
abi_ulong sp_ptr;
#ifndef TARGET_SPARC64
new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
((1LL << env->nwindows) - 1);
#endif
/* restore the invalid window */
cwp1 = cpu_cwp_inc(env, env->cwp + 1);
sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
#ifdef TARGET_SPARC64
if (sp_ptr & 3)
sp_ptr += SPARC64_STACK_BIAS;
#endif
#if defined(DEBUG_WIN)
printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
sp_ptr, cwp1);
#endif
for(i = 0; i < 16; i++) {
/* FIXME - what to do if get_user() fails? */
get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
sp_ptr += sizeof(abi_ulong);
}
#ifdef TARGET_SPARC64
env->canrestore++;
if (env->cleanwin < env->nwindows - 1)
env->cleanwin++;
env->cansave--;
#else
env->wim = new_wim;
#endif
}
static void flush_windows(CPUSPARCState *env)
{
int offset, cwp1;
offset = 1;
for(;;) {
/* if restore would invoke restore_window(), then we can stop */
cwp1 = cpu_cwp_inc(env, env->cwp + offset);
#ifndef TARGET_SPARC64
if (env->wim & (1 << cwp1))
break;
#else
if (env->canrestore == 0)
break;
env->cansave++;
env->canrestore--;
#endif
save_window_offset(env, cwp1);
offset++;
}
cwp1 = cpu_cwp_inc(env, env->cwp + 1);
#ifndef TARGET_SPARC64
/* set wim so that restore will reload the registers */
env->wim = 1 << cwp1;
#endif
#if defined(DEBUG_WIN)
printf("flush_windows: nb=%d\n", offset - 1);
#endif
}
void cpu_loop (CPUSPARCState *env)
{
CPUState *cs = CPU(sparc_env_get_cpu(env));
int trapnr;
abi_long ret;
target_siginfo_t info;
while (1) {
trapnr = cpu_sparc_exec (env);
/* Compute PSR before exposing state. */
if (env->cc_op != CC_OP_FLAGS) {
cpu_get_psr(env);
}
switch (trapnr) {
#ifndef TARGET_SPARC64
case 0x88:
case 0x90:
#else
case 0x110:
case 0x16d:
#endif
ret = do_syscall (env, env->gregs[1],
env->regwptr[0], env->regwptr[1],
env->regwptr[2], env->regwptr[3],
env->regwptr[4], env->regwptr[5],
0, 0);
if ((abi_ulong)ret >= (abi_ulong)(-515)) {
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
env->xcc |= PSR_CARRY;
#else
env->psr |= PSR_CARRY;
#endif
ret = -ret;
} else {
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
env->xcc &= ~PSR_CARRY;
#else
env->psr &= ~PSR_CARRY;
#endif
}
env->regwptr[0] = ret;
/* next instruction */
env->pc = env->npc;
env->npc = env->npc + 4;
break;
case 0x83: /* flush windows */
#ifdef TARGET_ABI32
case 0x103:
#endif
flush_windows(env);
/* next instruction */
env->pc = env->npc;
env->npc = env->npc + 4;
break;
#ifndef TARGET_SPARC64
case TT_WIN_OVF: /* window overflow */
save_window(env);
break;
case TT_WIN_UNF: /* window underflow */
restore_window(env);
break;
case TT_TFAULT:
case TT_DFAULT:
{
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = env->mmuregs[4];
queue_signal(env, info.si_signo, &info);
}
break;
#else
case TT_SPILL: /* window overflow */
save_window(env);
break;
case TT_FILL: /* window underflow */
restore_window(env);
break;
case TT_TFAULT:
case TT_DFAULT:
{
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
if (trapnr == TT_DFAULT)
info._sifields._sigfault._addr = env->dmmuregs[4];
else
info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
queue_signal(env, info.si_signo, &info);
}
break;
#ifndef TARGET_ABI32
case 0x16e:
flush_windows(env);
sparc64_get_context(env);
break;
case 0x16f:
flush_windows(env);
sparc64_set_context(env);
break;
#endif
#endif
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case TT_ILL_INSN:
{
info.si_signo = TARGET_SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_ILLOPC;
info._sifields._sigfault._addr = env->pc;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig(cs, TARGET_SIGTRAP);
if (sig)
{
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, &info);
}
}
break;
default:
printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
exit (1);
}
process_pending_signals (env);
}
}
#endif
#ifdef TARGET_PPC
static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
{
/* TO FIX */
return 0;
}
uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
{
return cpu_ppc_get_tb(env);
}
uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
{
return cpu_ppc_get_tb(env) >> 32;
}
uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
{
return cpu_ppc_get_tb(env);
}
uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
{
return cpu_ppc_get_tb(env) >> 32;
}
uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
__attribute__ (( alias ("cpu_ppc_load_tbu") ));
uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
{
return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
}
/* XXX: to be fixed */
int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
{
return -1;
}
int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
{
return -1;
}
#define EXCP_DUMP(env, fmt, ...) \
do { \
CPUState *cs = ENV_GET_CPU(env); \
fprintf(stderr, fmt , ## __VA_ARGS__); \
cpu_dump_state(cs, stderr, fprintf, 0); \
qemu_log(fmt, ## __VA_ARGS__); \
if (qemu_log_enabled()) { \
log_cpu_state(cs, 0); \
} \
} while (0)
static int do_store_exclusive(CPUPPCState *env)
{
target_ulong addr;
target_ulong page_addr;
target_ulong val, val2 __attribute__((unused));
int flags;
int segv = 0;
addr = env->reserve_ea;
page_addr = addr & TARGET_PAGE_MASK;
start_exclusive();
mmap_lock();
flags = page_get_flags(page_addr);
if ((flags & PAGE_READ) == 0) {
segv = 1;
} else {
int reg = env->reserve_info & 0x1f;
int size = (env->reserve_info >> 5) & 0xf;
int stored = 0;
if (addr == env->reserve_addr) {
switch (size) {
case 1: segv = get_user_u8(val, addr); break;
case 2: segv = get_user_u16(val, addr); break;
case 4: segv = get_user_u32(val, addr); break;
#if defined(TARGET_PPC64)
case 8: segv = get_user_u64(val, addr); break;
case 16: {
segv = get_user_u64(val, addr);
if (!segv) {
segv = get_user_u64(val2, addr + 8);
}
break;
}
#endif
default: abort();
}
if (!segv && val == env->reserve_val) {
val = env->gpr[reg];
switch (size) {
case 1: segv = put_user_u8(val, addr); break;
case 2: segv = put_user_u16(val, addr); break;
case 4: segv = put_user_u32(val, addr); break;
#if defined(TARGET_PPC64)
case 8: segv = put_user_u64(val, addr); break;
case 16: {
if (val2 == env->reserve_val2) {
segv = put_user_u64(val, addr);
if (!segv) {
segv = put_user_u64(val2, addr + 8);
}
}
break;
}
#endif
default: abort();
}
if (!segv) {
stored = 1;
}
}
}
env->crf[0] = (stored << 1) | xer_so;
env->reserve_addr = (target_ulong)-1;
}
if (!segv) {
env->nip += 4;
}
mmap_unlock();
end_exclusive();
return segv;
}
void cpu_loop(CPUPPCState *env)
{
CPUState *cs = CPU(ppc_env_get_cpu(env));
target_siginfo_t info;
int trapnr;
target_ulong ret;
for(;;) {
cpu_exec_start(cs);
trapnr = cpu_ppc_exec(env);
cpu_exec_end(cs);
switch(trapnr) {
case POWERPC_EXCP_NONE:
/* Just go on */
break;
case POWERPC_EXCP_CRITICAL: /* Critical input */
cpu_abort(cs, "Critical interrupt while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_MCHECK: /* Machine check exception */
cpu_abort(cs, "Machine check exception while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_DSI: /* Data storage exception */
EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n",
env->spr[SPR_DAR]);
/* XXX: check this. Seems bugged */
switch (env->error_code & 0xFF000000) {
case 0x40000000:
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SEGV_MAPERR;
break;
case 0x04000000:
info.si_signo = TARGET_SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_ILLADR;
break;
case 0x08000000:
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SEGV_ACCERR;
break;
default:
/* Let's send a regular segfault... */
EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
env->error_code);
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SEGV_MAPERR;
break;
}
info._sifields._sigfault._addr = env->nip;
queue_signal(env, info.si_signo, &info);
break;
case POWERPC_EXCP_ISI: /* Instruction storage exception */
EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
"\n", env->spr[SPR_SRR0]);
/* XXX: check this */
switch (env->error_code & 0xFF000000) {
case 0x40000000:
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SEGV_MAPERR;
break;
case 0x10000000:
case 0x08000000:
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SEGV_ACCERR;
break;
default:
/* Let's send a regular segfault... */
EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
env->error_code);
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SEGV_MAPERR;
break;
}
info._sifields._sigfault._addr = env->nip - 4;
queue_signal(env, info.si_signo, &info);
break;
case POWERPC_EXCP_EXTERNAL: /* External input */
cpu_abort(cs, "External interrupt while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_ALIGN: /* Alignment exception */
EXCP_DUMP(env, "Unaligned memory access\n");
/* XXX: check this */
info.si_signo = TARGET_SIGBUS;
info.si_errno = 0;
info.si_code = TARGET_BUS_ADRALN;
info._sifields._sigfault._addr = env->nip - 4;
queue_signal(env, info.si_signo, &info);
break;
case POWERPC_EXCP_PROGRAM: /* Program exception */
/* XXX: check this */
switch (env->error_code & ~0xF) {
case POWERPC_EXCP_FP:
EXCP_DUMP(env, "Floating point program exception\n");
info.si_signo = TARGET_SIGFPE;
info.si_errno = 0;
switch (env->error_code & 0xF) {
case POWERPC_EXCP_FP_OX:
info.si_code = TARGET_FPE_FLTOVF;
break;
case POWERPC_EXCP_FP_UX:
info.si_code = TARGET_FPE_FLTUND;
break;
case POWERPC_EXCP_FP_ZX:
case POWERPC_EXCP_FP_VXZDZ:
info.si_code = TARGET_FPE_FLTDIV;
break;
case POWERPC_EXCP_FP_XX:
info.si_code = TARGET_FPE_FLTRES;
break;
case POWERPC_EXCP_FP_VXSOFT:
info.si_code = TARGET_FPE_FLTINV;
break;
case POWERPC_EXCP_FP_VXSNAN:
case POWERPC_EXCP_FP_VXISI:
case POWERPC_EXCP_FP_VXIDI:
case POWERPC_EXCP_FP_VXIMZ:
case POWERPC_EXCP_FP_VXVC:
case POWERPC_EXCP_FP_VXSQRT:
case POWERPC_EXCP_FP_VXCVI:
info.si_code = TARGET_FPE_FLTSUB;
break;
default:
EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
env->error_code);
break;
}
break;
case POWERPC_EXCP_INVAL:
EXCP_DUMP(env, "Invalid instruction\n");
info.si_signo = TARGET_SIGILL;
info.si_errno = 0;
switch (env->error_code & 0xF) {
case POWERPC_EXCP_INVAL_INVAL:
info.si_code = TARGET_ILL_ILLOPC;
break;
case POWERPC_EXCP_INVAL_LSWX:
info.si_code = TARGET_ILL_ILLOPN;
break;
case POWERPC_EXCP_INVAL_SPR:
info.si_code = TARGET_ILL_PRVREG;
break;
case POWERPC_EXCP_INVAL_FP:
info.si_code = TARGET_ILL_COPROC;
break;
default:
EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
env->error_code & 0xF);
info.si_code = TARGET_ILL_ILLADR;
break;
}
break;
case POWERPC_EXCP_PRIV:
EXCP_DUMP(env, "Privilege violation\n");
info.si_signo = TARGET_SIGILL;
info.si_errno = 0;
switch (env->error_code & 0xF) {
case POWERPC_EXCP_PRIV_OPC:
info.si_code = TARGET_ILL_PRVOPC;
break;
case POWERPC_EXCP_PRIV_REG:
info.si_code = TARGET_ILL_PRVREG;
break;
default:
EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
env->error_code & 0xF);
info.si_code = TARGET_ILL_PRVOPC;
break;
}
break;
case POWERPC_EXCP_TRAP:
cpu_abort(cs, "Tried to call a TRAP\n");
break;
default:
/* Should not happen ! */
cpu_abort(cs, "Unknown program exception (%02x)\n",
env->error_code);
break;
}
info._sifields._sigfault._addr = env->nip - 4;
queue_signal(env, info.si_signo, &info);
break;
case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
EXCP_DUMP(env, "No floating point allowed\n");
info.si_signo = TARGET_SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_COPROC;
info._sifields._sigfault._addr = env->nip - 4;
queue_signal(env, info.si_signo, &info);
break;
case POWERPC_EXCP_SYSCALL: /* System call exception */
cpu_abort(cs, "Syscall exception while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
EXCP_DUMP(env, "No APU instruction allowed\n");
info.si_signo = TARGET_SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_COPROC;
info._sifields._sigfault._addr = env->nip - 4;
queue_signal(env, info.si_signo, &info);
break;
case POWERPC_EXCP_DECR: /* Decrementer exception */
cpu_abort(cs, "Decrementer interrupt while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
cpu_abort(cs, "Fix interval timer interrupt while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
cpu_abort(cs, "Watchdog timer interrupt while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_DTLB: /* Data TLB error */
cpu_abort(cs, "Data TLB exception while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_ITLB: /* Instruction TLB error */
cpu_abort(cs, "Instruction TLB exception while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */
EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n");
info.si_signo = TARGET_SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_COPROC;
info._sifields._sigfault._addr = env->nip - 4;
queue_signal(env, info.si_signo, &info);
break;
case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */
cpu_abort(cs, "Embedded floating-point data IRQ not handled\n");
break;
case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */
cpu_abort(cs, "Embedded floating-point round IRQ not handled\n");
break;
case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */
cpu_abort(cs, "Performance monitor exception not handled\n");
break;
case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
cpu_abort(cs, "Doorbell interrupt while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
cpu_abort(cs, "Doorbell critical interrupt while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_RESET: /* System reset exception */
cpu_abort(cs, "Reset interrupt while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_DSEG: /* Data segment exception */
cpu_abort(cs, "Data segment exception while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_ISEG: /* Instruction segment exception */
cpu_abort(cs, "Instruction segment exception "
"while in user mode. Aborting\n");
break;
/* PowerPC 64 with hypervisor mode support */
case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
cpu_abort(cs, "Hypervisor decrementer interrupt "
"while in user mode. Aborting\n");
break;
case POWERPC_EXCP_TRACE: /* Trace exception */
/* Nothing to do:
* we use this exception to emulate step-by-step execution mode.
*/
break;
/* PowerPC 64 with hypervisor mode support */
case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
cpu_abort(cs, "Hypervisor data storage exception "
"while in user mode. Aborting\n");
break;
case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */
cpu_abort(cs, "Hypervisor instruction storage exception "
"while in user mode. Aborting\n");
break;
case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */
cpu_abort(cs, "Hypervisor data segment exception "
"while in user mode. Aborting\n");
break;
case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */
cpu_abort(cs, "Hypervisor instruction segment exception "
"while in user mode. Aborting\n");
break;
case POWERPC_EXCP_VPU: /* Vector unavailable exception */
EXCP_DUMP(env, "No Altivec instructions allowed\n");
info.si_signo = TARGET_SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_COPROC;
info._sifields._sigfault._addr = env->nip - 4;
queue_signal(env, info.si_signo, &info);
break;
case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */
cpu_abort(cs, "Programmable interval timer interrupt "
"while in user mode. Aborting\n");
break;
case POWERPC_EXCP_IO: /* IO error exception */
cpu_abort(cs, "IO error exception while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_RUNM: /* Run mode exception */
cpu_abort(cs, "Run mode exception while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_EMUL: /* Emulation trap exception */
cpu_abort(cs, "Emulation trap exception not handled\n");
break;
case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
cpu_abort(cs, "Instruction fetch TLB exception "
"while in user-mode. Aborting");
break;
case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
cpu_abort(cs, "Data load TLB exception while in user-mode. "
"Aborting");
break;
case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
cpu_abort(cs, "Data store TLB exception while in user-mode. "
"Aborting");
break;
case POWERPC_EXCP_FPA: /* Floating-point assist exception */
cpu_abort(cs, "Floating-point assist exception not handled\n");
break;
case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
cpu_abort(cs, "Instruction address breakpoint exception "
"not handled\n");
break;
case POWERPC_EXCP_SMI: /* System management interrupt */
cpu_abort(cs, "System management interrupt while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_THERM: /* Thermal interrupt */
cpu_abort(cs, "Thermal interrupt interrupt while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */
cpu_abort(cs, "Performance monitor exception not handled\n");
break;
case POWERPC_EXCP_VPUA: /* Vector assist exception */
cpu_abort(cs, "Vector assist exception not handled\n");
break;
case POWERPC_EXCP_SOFTP: /* Soft patch exception */
cpu_abort(cs, "Soft patch exception not handled\n");
break;
case POWERPC_EXCP_MAINT: /* Maintenance exception */
cpu_abort(cs, "Maintenance exception while in user mode. "
"Aborting\n");
break;
case POWERPC_EXCP_STOP: /* stop translation */
/* We did invalidate the instruction cache. Go on */
break;
case POWERPC_EXCP_BRANCH: /* branch instruction: */
/* We just stopped because of a branch. Go on */
break;
case POWERPC_EXCP_SYSCALL_USER:
/* system call in user-mode emulation */
/* WARNING:
* PPC ABI uses overflow flag in cr0 to signal an error
* in syscalls.
*/
env->crf[0] &= ~0x1;
ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
env->gpr[5], env->gpr[6], env->gpr[7],
env->gpr[8], 0, 0);
if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
/* Returning from a successful sigreturn syscall.
Avoid corrupting register state. */
break;
}
if (ret > (target_ulong)(-515)) {
env->crf[0] |= 0x1;
ret = -ret;
}
env->gpr[3] = ret;
break;
case POWERPC_EXCP_STCX:
if (do_store_exclusive(env)) {
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = env->nip;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig(cs, TARGET_SIGTRAP);
if (sig) {
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, &info);
}
}
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
default:
cpu_abort(cs, "Unknown exception 0x%d. Aborting\n", trapnr);
break;
}
process_pending_signals(env);
}
}
#endif
#ifdef TARGET_MIPS
# ifdef TARGET_ABI_MIPSO32
# define MIPS_SYS(name, args) args,
static const uint8_t mips_syscall_args[] = {
MIPS_SYS(sys_syscall , 8) /* 4000 */
MIPS_SYS(sys_exit , 1)
MIPS_SYS(sys_fork , 0)
MIPS_SYS(sys_read , 3)
MIPS_SYS(sys_write , 3)
MIPS_SYS(sys_open , 3) /* 4005 */
MIPS_SYS(sys_close , 1)
MIPS_SYS(sys_waitpid , 3)
MIPS_SYS(sys_creat , 2)
MIPS_SYS(sys_link , 2)
MIPS_SYS(sys_unlink , 1) /* 4010 */
MIPS_SYS(sys_execve , 0)
MIPS_SYS(sys_chdir , 1)
MIPS_SYS(sys_time , 1)
MIPS_SYS(sys_mknod , 3)
MIPS_SYS(sys_chmod , 2) /* 4015 */
MIPS_SYS(sys_lchown , 3)
MIPS_SYS(sys_ni_syscall , 0)
MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */
MIPS_SYS(sys_lseek , 3)
MIPS_SYS(sys_getpid , 0) /* 4020 */
MIPS_SYS(sys_mount , 5)
MIPS_SYS(sys_umount , 1)
MIPS_SYS(sys_setuid , 1)
MIPS_SYS(sys_getuid , 0)
MIPS_SYS(sys_stime , 1) /* 4025 */
MIPS_SYS(sys_ptrace , 4)
MIPS_SYS(sys_alarm , 1)
MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */
MIPS_SYS(sys_pause , 0)
MIPS_SYS(sys_utime , 2) /* 4030 */
MIPS_SYS(sys_ni_syscall , 0)
MIPS_SYS(sys_ni_syscall , 0)
MIPS_SYS(sys_access , 2)
MIPS_SYS(sys_nice , 1)
MIPS_SYS(sys_ni_syscall , 0) /* 4035 */
MIPS_SYS(sys_sync , 0)
MIPS_SYS(sys_kill , 2)
MIPS_SYS(sys_rename , 2)
MIPS_SYS(sys_mkdir , 2)
MIPS_SYS(sys_rmdir , 1) /* 4040 */
MIPS_SYS(sys_dup , 1)
MIPS_SYS(sys_pipe , 0)
MIPS_SYS(sys_times , 1)
MIPS_SYS(sys_ni_syscall , 0)
MIPS_SYS(sys_brk , 1) /* 4045 */
MIPS_SYS(sys_setgid , 1)
MIPS_SYS(sys_getgid , 0)
MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */
MIPS_SYS(sys_geteuid , 0)
MIPS_SYS(sys_getegid , 0) /* 4050 */
MIPS_SYS(sys_acct , 0)
MIPS_SYS(sys_umount2 , 2)
MIPS_SYS(sys_ni_syscall , 0)
MIPS_SYS(sys_ioctl , 3)
MIPS_SYS(sys_fcntl , 3) /* 4055 */
MIPS_SYS(sys_ni_syscall , 2)
MIPS_SYS(sys_setpgid , 2)
MIPS_SYS(sys_ni_syscall , 0)
MIPS_SYS(sys_olduname , 1)
MIPS_SYS(sys_umask , 1) /* 4060 */
MIPS_SYS(sys_chroot , 1)
MIPS_SYS(sys_ustat , 2)
MIPS_SYS(sys_dup2 , 2)
MIPS_SYS(sys_getppid , 0)
MIPS_SYS(sys_getpgrp , 0) /* 4065 */
MIPS_SYS(sys_setsid , 0)
MIPS_SYS(sys_sigaction , 3)
MIPS_SYS(sys_sgetmask , 0)
MIPS_SYS(sys_ssetmask , 1)
MIPS_SYS(sys_setreuid , 2) /* 4070 */
MIPS_SYS(sys_setregid , 2)
MIPS_SYS(sys_sigsuspend , 0)
MIPS_SYS(sys_sigpending , 1)
MIPS_SYS(sys_sethostname , 2)
MIPS_SYS(sys_setrlimit , 2) /* 4075 */
MIPS_SYS(sys_getrlimit , 2)
MIPS_SYS(sys_getrusage , 2)
MIPS_SYS(sys_gettimeofday, 2)
MIPS_SYS(sys_settimeofday, 2)
MIPS_SYS(sys_getgroups , 2) /* 4080 */
MIPS_SYS(sys_setgroups , 2)
MIPS_SYS(sys_ni_syscall , 0) /* old_select */
MIPS_SYS(sys_symlink , 2)
MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */
MIPS_SYS(sys_readlink , 3) /* 4085 */
MIPS_SYS(sys_uselib , 1)
MIPS_SYS(sys_swapon , 2)
MIPS_SYS(sys_reboot , 3)
MIPS_SYS(old_readdir , 3)
MIPS_SYS(old_mmap , 6) /* 4090 */
MIPS_SYS(sys_munmap , 2)
MIPS_SYS(sys_truncate , 2)
MIPS_SYS(sys_ftruncate , 2)
MIPS_SYS(sys_fchmod , 2)
MIPS_SYS(sys_fchown , 3) /* 4095 */
MIPS_SYS(sys_getpriority , 2)
MIPS_SYS(sys_setpriority , 3)
MIPS_SYS(sys_ni_syscall , 0)
MIPS_SYS(sys_statfs , 2)
MIPS_SYS(sys_fstatfs , 2) /* 4100 */
MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */
MIPS_SYS(sys_socketcall , 2)
MIPS_SYS(sys_syslog , 3)
MIPS_SYS(sys_setitimer , 3)
MIPS_SYS(sys_getitimer , 2) /* 4105 */
MIPS_SYS(sys_newstat , 2)
MIPS_SYS(sys_newlstat , 2)
MIPS_SYS(sys_newfstat , 2)
MIPS_SYS(sys_uname , 1)
MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */
MIPS_SYS(sys_vhangup , 0)
MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */
MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */
MIPS_SYS(sys_wait4 , 4)
MIPS_SYS(sys_swapoff , 1) /* 4115 */
MIPS_SYS(sys_sysinfo , 1)
MIPS_SYS(sys_ipc , 6)
MIPS_SYS(sys_fsync , 1)
MIPS_SYS(sys_sigreturn , 0)
MIPS_SYS(sys_clone , 6) /* 4120 */
MIPS_SYS(sys_setdomainname, 2)
MIPS_SYS(sys_newuname , 1)
MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */
MIPS_SYS(sys_adjtimex , 1)
MIPS_SYS(sys_mprotect , 3) /* 4125 */
MIPS_SYS(sys_sigprocmask , 3)
MIPS_SYS(sys_ni_syscall , 0) /* was create_module */
MIPS_SYS(sys_init_module , 5)
MIPS_SYS(sys_delete_module, 1)
MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */
MIPS_SYS(sys_quotactl , 0)
MIPS_SYS(sys_getpgid , 1)
MIPS_SYS(sys_fchdir , 1)
MIPS_SYS(sys_bdflush , 2)
MIPS_SYS(sys_sysfs , 3) /* 4135 */
MIPS_SYS(sys_personality , 1)
MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */
MIPS_SYS(sys_setfsuid , 1)
MIPS_SYS(sys_setfsgid , 1)
MIPS_SYS(sys_llseek , 5) /* 4140 */
MIPS_SYS(sys_getdents , 3)
MIPS_SYS(sys_select , 5)
MIPS_SYS(sys_flock , 2)
MIPS_SYS(sys_msync , 3)
MIPS_SYS(sys_readv , 3) /* 4145 */
MIPS_SYS(sys_writev , 3)
MIPS_SYS(sys_cacheflush , 3)
MIPS_SYS(sys_cachectl , 3)
MIPS_SYS(sys_sysmips , 4)
MIPS_SYS(sys_ni_syscall , 0) /* 4150 */
MIPS_SYS(sys_getsid , 1)
MIPS_SYS(sys_fdatasync , 0)
MIPS_SYS(sys_sysctl , 1)
MIPS_SYS(sys_mlock , 2)
MIPS_SYS(sys_munlock , 2) /* 4155 */
MIPS_SYS(sys_mlockall , 1)
MIPS_SYS(sys_munlockall , 0)
MIPS_SYS(sys_sched_setparam, 2)
MIPS_SYS(sys_sched_getparam, 2)
MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */
MIPS_SYS(sys_sched_getscheduler, 1)
MIPS_SYS(sys_sched_yield , 0)
MIPS_SYS(sys_sched_get_priority_max, 1)
MIPS_SYS(sys_sched_get_priority_min, 1)
MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */
MIPS_SYS(sys_nanosleep, 2)
MIPS_SYS(sys_mremap , 5)
MIPS_SYS(sys_accept , 3)
MIPS_SYS(sys_bind , 3)
MIPS_SYS(sys_connect , 3) /* 4170 */
MIPS_SYS(sys_getpeername , 3)
MIPS_SYS(sys_getsockname , 3)
MIPS_SYS(sys_getsockopt , 5)
MIPS_SYS(sys_listen , 2)
MIPS_SYS(sys_recv , 4) /* 4175 */
MIPS_SYS(sys_recvfrom , 6)
MIPS_SYS(sys_recvmsg , 3)
MIPS_SYS(sys_send , 4)
MIPS_SYS(sys_sendmsg , 3)
MIPS_SYS(sys_sendto , 6) /* 4180 */
MIPS_SYS(sys_setsockopt , 5)
MIPS_SYS(sys_shutdown , 2)
MIPS_SYS(sys_socket , 3)
MIPS_SYS(sys_socketpair , 4)
MIPS_SYS(sys_setresuid , 3) /* 4185 */
MIPS_SYS(sys_getresuid , 3)
MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */
MIPS_SYS(sys_poll , 3)
MIPS_SYS(sys_nfsservctl , 3)
MIPS_SYS(sys_setresgid , 3) /* 4190 */
MIPS_SYS(sys_getresgid , 3)
MIPS_SYS(sys_prctl , 5)
MIPS_SYS(sys_rt_sigreturn, 0)
MIPS_SYS(sys_rt_sigaction, 4)
MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */
MIPS_SYS(sys_rt_sigpending, 2)
MIPS_SYS(sys_rt_sigtimedwait, 4)
MIPS_SYS(sys_rt_sigqueueinfo, 3)
MIPS_SYS(sys_rt_sigsuspend, 0)
MIPS_SYS(sys_pread64 , 6) /* 4200 */
MIPS_SYS(sys_pwrite64 , 6)
MIPS_SYS(sys_chown , 3)
MIPS_SYS(sys_getcwd , 2)
MIPS_SYS(sys_capget , 2)
MIPS_SYS(sys_capset , 2) /* 4205 */
MIPS_SYS(sys_sigaltstack , 2)
MIPS_SYS(sys_sendfile , 4)
MIPS_SYS(sys_ni_syscall , 0)
MIPS_SYS(sys_ni_syscall , 0)
MIPS_SYS(sys_mmap2 , 6) /* 4210 */
MIPS_SYS(sys_truncate64 , 4)
MIPS_SYS(sys_ftruncate64 , 4)
MIPS_SYS(sys_stat64 , 2)
MIPS_SYS(sys_lstat64 , 2)
MIPS_SYS(sys_fstat64 , 2) /* 4215 */
MIPS_SYS(sys_pivot_root , 2)
MIPS_SYS(sys_mincore , 3)
MIPS_SYS(sys_madvise , 3)
MIPS_SYS(sys_getdents64 , 3)
MIPS_SYS(sys_fcntl64 , 3) /* 4220 */
MIPS_SYS(sys_ni_syscall , 0)
MIPS_SYS(sys_gettid , 0)
MIPS_SYS(sys_readahead , 5)
MIPS_SYS(sys_setxattr , 5)
MIPS_SYS(sys_lsetxattr , 5) /* 4225 */
MIPS_SYS(sys_fsetxattr , 5)
MIPS_SYS(sys_getxattr , 4)
MIPS_SYS(sys_lgetxattr , 4)
MIPS_SYS(sys_fgetxattr , 4)
MIPS_SYS(sys_listxattr , 3) /* 4230 */
MIPS_SYS(sys_llistxattr , 3)
MIPS_SYS(sys_flistxattr , 3)
MIPS_SYS(sys_removexattr , 2)
MIPS_SYS(sys_lremovexattr, 2)
MIPS_SYS(sys_fremovexattr, 2) /* 4235 */
MIPS_SYS(sys_tkill , 2)
MIPS_SYS(sys_sendfile64 , 5)
MIPS_SYS(sys_futex , 6)
MIPS_SYS(sys_sched_setaffinity, 3)
MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */
MIPS_SYS(sys_io_setup , 2)
MIPS_SYS(sys_io_destroy , 1)
MIPS_SYS(sys_io_getevents, 5)
MIPS_SYS(sys_io_submit , 3)
MIPS_SYS(sys_io_cancel , 3) /* 4245 */
MIPS_SYS(sys_exit_group , 1)
MIPS_SYS(sys_lookup_dcookie, 3)
MIPS_SYS(sys_epoll_create, 1)
MIPS_SYS(sys_epoll_ctl , 4)
MIPS_SYS(sys_epoll_wait , 3) /* 4250 */
MIPS_SYS(sys_remap_file_pages, 5)
MIPS_SYS(sys_set_tid_address, 1)
MIPS_SYS(sys_restart_syscall, 0)
MIPS_SYS(sys_fadvise64_64, 7)
MIPS_SYS(sys_statfs64 , 3) /* 4255 */
MIPS_SYS(sys_fstatfs64 , 2)
MIPS_SYS(sys_timer_create, 3)
MIPS_SYS(sys_timer_settime, 4)
MIPS_SYS(sys_timer_gettime, 2)
MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */
MIPS_SYS(sys_timer_delete, 1)
MIPS_SYS(sys_clock_settime, 2)
MIPS_SYS(sys_clock_gettime, 2)
MIPS_SYS(sys_clock_getres, 2)
MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */
MIPS_SYS(sys_tgkill , 3)
MIPS_SYS(sys_utimes , 2)
MIPS_SYS(sys_mbind , 4)
MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */
MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */
MIPS_SYS(sys_mq_open , 4)
MIPS_SYS(sys_mq_unlink , 1)
MIPS_SYS(sys_mq_timedsend, 5)
MIPS_SYS(sys_mq_timedreceive, 5)
MIPS_SYS(sys_mq_notify , 2) /* 4275 */
MIPS_SYS(sys_mq_getsetattr, 3)
MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */
MIPS_SYS(sys_waitid , 4)
MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */
MIPS_SYS(sys_add_key , 5)
MIPS_SYS(sys_request_key, 4)
MIPS_SYS(sys_keyctl , 5)
MIPS_SYS(sys_set_thread_area, 1)
MIPS_SYS(sys_inotify_init, 0)
MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
MIPS_SYS(sys_inotify_rm_watch, 2)
MIPS_SYS(sys_migrate_pages, 4)
MIPS_SYS(sys_openat, 4)
MIPS_SYS(sys_mkdirat, 3)
MIPS_SYS(sys_mknodat, 4) /* 4290 */
MIPS_SYS(sys_fchownat, 5)
MIPS_SYS(sys_futimesat, 3)
MIPS_SYS(sys_fstatat64, 4)
MIPS_SYS(sys_unlinkat, 3)
MIPS_SYS(sys_renameat, 4) /* 4295 */
MIPS_SYS(sys_linkat, 5)
MIPS_SYS(sys_symlinkat, 3)
MIPS_SYS(sys_readlinkat, 4)
MIPS_SYS(sys_fchmodat, 3)
MIPS_SYS(sys_faccessat, 3) /* 4300 */
MIPS_SYS(sys_pselect6, 6)
MIPS_SYS(sys_ppoll, 5)
MIPS_SYS(sys_unshare, 1)
MIPS_SYS(sys_splice, 6)
MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
MIPS_SYS(sys_tee, 4)
MIPS_SYS(sys_vmsplice, 4)
MIPS_SYS(sys_move_pages, 6)
MIPS_SYS(sys_set_robust_list, 2)
MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
MIPS_SYS(sys_kexec_load, 4)
MIPS_SYS(sys_getcpu, 3)
MIPS_SYS(sys_epoll_pwait, 6)
MIPS_SYS(sys_ioprio_set, 3)
MIPS_SYS(sys_ioprio_get, 2)
MIPS_SYS(sys_utimensat, 4)
MIPS_SYS(sys_signalfd, 3)
MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */
MIPS_SYS(sys_eventfd, 1)
MIPS_SYS(sys_fallocate, 6) /* 4320 */
MIPS_SYS(sys_timerfd_create, 2)
MIPS_SYS(sys_timerfd_gettime, 2)
MIPS_SYS(sys_timerfd_settime, 4)
MIPS_SYS(sys_signalfd4, 4)
MIPS_SYS(sys_eventfd2, 2) /* 4325 */
MIPS_SYS(sys_epoll_create1, 1)
MIPS_SYS(sys_dup3, 3)
MIPS_SYS(sys_pipe2, 2)
MIPS_SYS(sys_inotify_init1, 1)
MIPS_SYS(sys_preadv, 6) /* 4330 */
MIPS_SYS(sys_pwritev, 6)
MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
MIPS_SYS(sys_perf_event_open, 5)
MIPS_SYS(sys_accept4, 4)
MIPS_SYS(sys_recvmmsg, 5) /* 4335 */
MIPS_SYS(sys_fanotify_init, 2)
MIPS_SYS(sys_fanotify_mark, 6)
MIPS_SYS(sys_prlimit64, 4)
MIPS_SYS(sys_name_to_handle_at, 5)
MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
MIPS_SYS(sys_clock_adjtime, 2)
MIPS_SYS(sys_syncfs, 1)
};
# undef MIPS_SYS
# endif /* O32 */
static int do_store_exclusive(CPUMIPSState *env)
{
target_ulong addr;
target_ulong page_addr;
target_ulong val;
int flags;
int segv = 0;
int reg;
int d;
addr = env->lladdr;
page_addr = addr & TARGET_PAGE_MASK;
start_exclusive();
mmap_lock();
flags = page_get_flags(page_addr);
if ((flags & PAGE_READ) == 0) {
segv = 1;
} else {
reg = env->llreg & 0x1f;
d = (env->llreg & 0x20) != 0;
if (d) {
segv = get_user_s64(val, addr);
} else {
segv = get_user_s32(val, addr);
}
if (!segv) {
if (val != env->llval) {
env->active_tc.gpr[reg] = 0;
} else {
if (d) {
segv = put_user_u64(env->llnewval, addr);
} else {
segv = put_user_u32(env->llnewval, addr);
}
if (!segv) {
env->active_tc.gpr[reg] = 1;
}
}
}
}
env->lladdr = -1;
if (!segv) {
env->active_tc.PC += 4;
}
mmap_unlock();
end_exclusive();
return segv;
}
/* Break codes */
enum {
BRK_OVERFLOW = 6,
BRK_DIVZERO = 7
};
static int do_break(CPUMIPSState *env, target_siginfo_t *info,
unsigned int code)
{
int ret = -1;
switch (code) {
case BRK_OVERFLOW:
case BRK_DIVZERO:
info->si_signo = TARGET_SIGFPE;
info->si_errno = 0;
info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV;
queue_signal(env, info->si_signo, &*info);
ret = 0;
break;
default:
info->si_signo = TARGET_SIGTRAP;
info->si_errno = 0;
queue_signal(env, info->si_signo, &*info);
ret = 0;
break;
}
return ret;
}
void cpu_loop(CPUMIPSState *env)
{
CPUState *cs = CPU(mips_env_get_cpu(env));
target_siginfo_t info;
int trapnr;
abi_long ret;
# ifdef TARGET_ABI_MIPSO32
unsigned int syscall_num;
# endif
for(;;) {
cpu_exec_start(cs);
trapnr = cpu_mips_exec(env);
cpu_exec_end(cs);
switch(trapnr) {
case EXCP_SYSCALL:
env->active_tc.PC += 4;
# ifdef TARGET_ABI_MIPSO32
syscall_num = env->active_tc.gpr[2] - 4000;
if (syscall_num >= sizeof(mips_syscall_args)) {
ret = -TARGET_ENOSYS;
} else {
int nb_args;
abi_ulong sp_reg;
abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
nb_args = mips_syscall_args[syscall_num];
sp_reg = env->active_tc.gpr[29];
switch (nb_args) {
/* these arguments are taken from the stack */
case 8:
if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
goto done_syscall;
}
case 7:
if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
goto done_syscall;
}
case 6:
if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
goto done_syscall;
}
case 5:
if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
goto done_syscall;
}
default:
break;
}
ret = do_syscall(env, env->active_tc.gpr[2],
env->active_tc.gpr[4],
env->active_tc.gpr[5],
env->active_tc.gpr[6],
env->active_tc.gpr[7],
arg5, arg6, arg7, arg8);
}
done_syscall:
# else
ret = do_syscall(env, env->active_tc.gpr[2],
env->active_tc.gpr[4], env->active_tc.gpr[5],
env->active_tc.gpr[6], env->active_tc.gpr[7],
env->active_tc.gpr[8], env->active_tc.gpr[9],
env->active_tc.gpr[10], env->active_tc.gpr[11]);
# endif /* O32 */
if (ret == -TARGET_QEMU_ESIGRETURN) {
/* Returning from a successful sigreturn syscall.
Avoid clobbering register state. */
break;
}
if ((abi_ulong)ret >= (abi_ulong)-1133) {
env->active_tc.gpr[7] = 1; /* error flag */
ret = -ret;
} else {
env->active_tc.gpr[7] = 0; /* error flag */
}
env->active_tc.gpr[2] = ret;
break;
case EXCP_TLBL:
case EXCP_TLBS:
case EXCP_AdEL:
case EXCP_AdES:
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = env->CP0_BadVAddr;
queue_signal(env, info.si_signo, &info);
break;
case EXCP_CpU:
case EXCP_RI:
info.si_signo = TARGET_SIGILL;
info.si_errno = 0;
info.si_code = 0;
queue_signal(env, info.si_signo, &info);
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig(cs, TARGET_SIGTRAP);
if (sig)
{
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, &info);
}
}
break;
case EXCP_SC:
if (do_store_exclusive(env)) {
info.si_signo = TARGET_SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = env->active_tc.PC;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP_DSPDIS:
info.si_signo = TARGET_SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_ILLOPC;
queue_signal(env, info.si_signo, &info);
break;
/* The code below was inspired by the MIPS Linux kernel trap
* handling code in arch/mips/kernel/traps.c.
*/
case EXCP_BREAK:
{
abi_ulong trap_instr;
unsigned int code;
if (env->hflags & MIPS_HFLAG_M16) {
if (env->insn_flags & ASE_MICROMIPS) {
/* microMIPS mode */
ret = get_user_u16(trap_instr, env->active_tc.PC);
if (ret != 0) {
goto error;
}
if ((trap_instr >> 10) == 0x11) {
/* 16-bit instruction */
code = trap_instr & 0xf;
} else {
/* 32-bit instruction */
abi_ulong instr_lo;
ret = get_user_u16(instr_lo,
env->active_tc.PC + 2);
if (ret != 0) {
goto error;
}
trap_instr = (trap_instr << 16) | instr_lo;
code = ((trap_instr >> 6) & ((1 << 20) - 1));
/* Unfortunately, microMIPS also suffers from
the old assembler bug... */
if (code >= (1 << 10)) {
code >>= 10;
}
}
} else {
/* MIPS16e mode */
ret = get_user_u16(trap_instr, env->active_tc.PC);
if (ret != 0) {
goto error;
}
code = (trap_instr >> 6) & 0x3f;
}
} else {
ret = get_user_ual(trap_instr, env->active_tc.PC);
if (ret != 0) {
goto error;
}
/* As described in the original Linux kernel code, the
* below checks on 'code' are to work around an old
* assembly bug.
*/
code = ((trap_instr >> 6) & ((1 << 20) - 1));
if (code >= (1 << 10)) {
code >>= 10;
}
}
if (do_break(env, &info, code) != 0) {
goto error;
}
}
break;
case EXCP_TRAP:
{
abi_ulong trap_instr;
unsigned int code = 0;
if (env->hflags & MIPS_HFLAG_M16) {
/* microMIPS mode */
abi_ulong instr[2];
ret = get_user_u16(instr[0], env->active_tc.PC) ||
get_user_u16(instr[1], env->active_tc.PC + 2);
trap_instr = (instr[0] << 16) | instr[1];
} else {
ret = get_user_ual(trap_instr, env->active_tc.PC);
}
if (ret != 0) {
goto error;
}
/* The immediate versions don't provide a code. */
if (!(trap_instr & 0xFC000000)) {
if (env->hflags & MIPS_HFLAG_M16) {
/* microMIPS mode */
code = ((trap_instr >> 12) & ((1 << 4) - 1));
} else {
code = ((trap_instr >> 6) & ((1 << 10) - 1));
}
}
if (do_break(env, &info, code) != 0) {
goto error;
}
}
break;
default:
error:
fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
abort();
}
process_pending_signals(env);
}
}
#endif
#ifdef TARGET_OPENRISC
void cpu_loop(CPUOpenRISCState *env)
{
CPUState *cs = CPU(openrisc_env_get_cpu(env));
int trapnr, gdbsig;
for (;;) {
trapnr = cpu_exec(env);
gdbsig = 0;
switch (trapnr) {
case EXCP_RESET:
qemu_log("\nReset request, exit, pc is %#x\n", env->pc);
exit(1);
break;
case EXCP_BUSERR:
qemu_log("\nBus error, exit, pc is %#x\n", env->pc);
gdbsig = SIGBUS;
break;
case EXCP_DPF:
case EXCP_IPF:
cpu_dump_state(cs, stderr, fprintf, 0);
gdbsig = TARGET_SIGSEGV;
break;
case EXCP_TICK:
qemu_log("\nTick time interrupt pc is %#x\n", env->pc);
break;
case EXCP_ALIGN:
qemu_log("\nAlignment pc is %#x\n", env->pc);
gdbsig = SIGBUS;
break;
case EXCP_ILLEGAL:
qemu_log("\nIllegal instructionpc is %#x\n", env->pc);
gdbsig = SIGILL;
break;
case EXCP_INT:
qemu_log("\nExternal interruptpc is %#x\n", env->pc);
break;
case EXCP_DTLBMISS:
case EXCP_ITLBMISS:
qemu_log("\nTLB miss\n");
break;
case EXCP_RANGE:
qemu_log("\nRange\n");
gdbsig = SIGSEGV;
break;
case EXCP_SYSCALL:
env->pc += 4; /* 0xc00; */
env->gpr[11] = do_syscall(env,
env->gpr[11], /* return value */
env->gpr[3], /* r3 - r7 are params */
env->gpr[4],
env->gpr[5],
env->gpr[6],
env->gpr[7],
env->gpr[8], 0, 0);
break;
case EXCP_FPE:
qemu_log("\nFloating point error\n");
break;
case EXCP_TRAP:
qemu_log("\nTrap\n");
gdbsig = SIGTRAP;
break;
case EXCP_NR:
qemu_log("\nNR\n");
break;
default:
qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
gdbsig = TARGET_SIGILL;
break;
}
if (gdbsig) {
gdb_handlesig(cs, gdbsig);
if (gdbsig != TARGET_SIGTRAP) {
exit(1);
}
}
process_pending_signals(env);
}
}
#endif /* TARGET_OPENRISC */
#ifdef TARGET_SH4
void cpu_loop(CPUSH4State *env)
{
CPUState *cs = CPU(sh_env_get_cpu(env));
int trapnr, ret;
target_siginfo_t info;
while (1) {
trapnr = cpu_sh4_exec (env);
switch (trapnr) {
case 0x160:
env->pc += 2;
ret = do_syscall(env,
env->gregs[3],
env->gregs[4],
env->gregs[5],
env->gregs[6],
env->gregs[7],
env->gregs[0],
env->gregs[1],
0, 0);
env->gregs[0] = ret;
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig(cs, TARGET_SIGTRAP);
if (sig)
{
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, &info);
}
}
break;
case 0xa0:
case 0xc0:
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = env->tea;
queue_signal(env, info.si_signo, &info);
break;
default:
printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
exit (1);
}
process_pending_signals (env);
}
}
#endif
#ifdef TARGET_CRIS
void cpu_loop(CPUCRISState *env)
{
CPUState *cs = CPU(cris_env_get_cpu(env));
int trapnr, ret;
target_siginfo_t info;
while (1) {
trapnr = cpu_cris_exec (env);
switch (trapnr) {
case 0xaa:
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = env->pregs[PR_EDA];
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_BREAK:
ret = do_syscall(env,
env->regs[9],
env->regs[10],
env->regs[11],
env->regs[12],
env->regs[13],
env->pregs[7],
env->pregs[11],
0, 0);
env->regs[10] = ret;
break;
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig(cs, TARGET_SIGTRAP);
if (sig)
{
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, &info);
}
}
break;
default:
printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
exit (1);
}
process_pending_signals (env);
}
}
#endif
#ifdef TARGET_MICROBLAZE
void cpu_loop(CPUMBState *env)
{
CPUState *cs = CPU(mb_env_get_cpu(env));
int trapnr, ret;
target_siginfo_t info;
while (1) {
trapnr = cpu_mb_exec (env);
switch (trapnr) {
case 0xaa:
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = 0;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_BREAK:
/* Return address is 4 bytes after the call. */
env->regs[14] += 4;
env->sregs[SR_PC] = env->regs[14];
ret = do_syscall(env,
env->regs[12],
env->regs[5],
env->regs[6],
env->regs[7],
env->regs[8],
env->regs[9],
env->regs[10],
0, 0);
env->regs[3] = ret;
break;
case EXCP_HW_EXCP:
env->regs[17] = env->sregs[SR_PC] + 4;
if (env->iflags & D_FLAG) {
env->sregs[SR_ESR] |= 1 << 12;
env->sregs[SR_PC] -= 4;
/* FIXME: if branch was immed, replay the imm as well. */
}
env->iflags &= ~(IMM_FLAG | D_FLAG);
switch (env->sregs[SR_ESR] & 31) {
case ESR_EC_DIVZERO:
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = TARGET_FPE_FLTDIV;
info._sifields._sigfault._addr = 0;
queue_signal(env, info.si_signo, &info);
break;